1
|
Alnasser SM. The role of glutathione S-transferases in human disease pathogenesis and their current inhibitors. Genes Dis 2025; 12:101482. [PMID: 40290119 PMCID: PMC12022661 DOI: 10.1016/j.gendis.2024.101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/01/2024] [Accepted: 11/02/2024] [Indexed: 04/30/2025] Open
Abstract
Glutathione S-transferases (GSTs) are a family of enzymes detoxifying various harmful compounds by conjugating them with glutathione. While primarily beneficial, dysregulation of GST activity or specific isoforms can contribute to disease pathogenesis. The intricate balance of detoxification processes regulated by GSTs is pivotal in cellular homeostasis, whereby dysregulation in these mechanisms can have profound implications for human health. Certain GSTs neutralize carcinogens, shielding cells and potentially preventing tumorigenesis. Polymorphisms in specific GSTs may result in the accumulation of toxic metabolites, exacerbating oxidative stress, inflammation, and DNA damage, notably observed in neurodegenerative diseases like Parkinson's disease. They can also modulate signaling pathways involved in cell proliferation, survival, and apoptosis, with aberrant activity potentially contributing to uncontrolled cell growth and resistance to cell death, thus promoting cancer development. They may also contribute to autoimmune diseases and chronic inflammatory conditions. This knowledge is useful for designing therapeutic interventions and understanding chemoresistance due to GST polymorphisms. A variety of GST inhibitors have been developed and investigated, with researchers actively working on new inhibitors aimed at preventing off-target effects. By leveraging knowledge of the involvement of specific GST isoforms in disease pathogenesis across different populations, more effective and targeted therapeutics can be designed to enhance patient care and improve treatment outcomes.
Collapse
Affiliation(s)
- Sulaiman Mohammad Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| |
Collapse
|
2
|
Qiu J, Guo F, Shi J, Guo T, Piao H. Piperlongumine inhibits glioblastoma proliferation by inducing ferroptosis. J Pharm Pharmacol 2025; 77:822-833. [PMID: 39692457 DOI: 10.1093/jpp/rgae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024]
Abstract
OBJECTIVES This study aimed to investigate the effects of Piperlongumine on Glioblastoma multiforme. METHODS The effects of Piperlongumine on the viability and proliferation of glioma cells LN229 and A172 were measured. Changes in mitochondrial structure were observed. Cell proliferative capacity was assessed using immunofluorescence. The levels of glutathione, malondialdehyde, 4-hydroxynonenal, and intracellular reactive oxygen species were detected. The levels of ferroptosis-related proteins were detected. A plasmid transfection was performed to overexpress the nuclear factor erythroid 2-related factor 2 gene; a subcutaneous tumor model was established in nude mice to observe the in vivo inhibitory effects of Piperlongumine on Glioblastoma multiforme and the recovery effect of Fer-1. The expression levels of ferroptosis-related proteins were detected using immunohistochemistry. KEY FINDINGS Piperlongumine inhibited the viability of glioma cells, as well as their proliferation. The ferroptosis inhibitors were able to restore the inhibitory effect of Piperlongumine on glioma cell proliferation. Forced overexpression of nuclear factor erythroid 2-related factor 2 partially reversed Piperlongumine-induced ferroptosis; Piperlongumine exhibited a significant inhibitory effect on Glioblastoma multiforme cells in vivo, which could be restored by Fer-1. CONCLUSIONS Piperlongumine inhibits Glioblastoma multiforme proliferation by inducing ferroptosis in vitro and vivo model.
Collapse
Affiliation(s)
- Jianting Qiu
- Liaoning University of Traditional Chinese Medicine, Shenyang 110000, China
- Department of Neurology, The People's Hospital of Liaoning Province, Shenyang 110000, China
| | - Fangzhou Guo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital & Guangxi Cancer Institute, Nanning 530000, China
| | - Ji Shi
- Department of Neurosurgery, Liaoning Cancer Hospital & Institute, Shenyang 110000, China
| | - Tangjun Guo
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Haozhe Piao
- Liaoning University of Traditional Chinese Medicine, Shenyang 110000, China
- Department of Neurosurgery, Liaoning Cancer Hospital & Institute, Shenyang 110000, China
| |
Collapse
|
3
|
Sisto A, van Wermeskerken T, Pancher M, Gatto P, Asselbergh B, Assunção Carreira ÁS, De Winter V, Adami V, Provenzani A, Timmerman V. Autophagy induction by piplartine ameliorates axonal degeneration caused by mutant HSPB1 and HSPB8 in Charcot-Marie-Tooth type 2 neuropathies. Autophagy 2025; 21:1116-1143. [PMID: 39698979 PMCID: PMC12013449 DOI: 10.1080/15548627.2024.2439649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
HSPB1 [heat shock protein family B (small) member 1] and HSPB8 are essential molecular chaperones for neuronal proteostasis, as they prevent protein aggregation. Mutant HSPB1 and HSPB8 primarily harm peripheral neurons, resulting in axonal Charcot-Marie-Tooth neuropathies (CMT2). Macroautophagy/autophagy is a shared mechanism by which HSPB1 and HSPB8 mutations cause neuronal dysfunction. Autophagosome formation is reduced in mutant HSPB1-induced pluripotent stem-cell-derived motor neurons from CMT type 2F patients. Likewise, the HSPB8K141N knockin mouse model, mimicking CMT type 2 L, exhibits axonal degeneration and muscle atrophy, with SQSTM1/p62-positive deposits. We show here that mouse embryonic fibroblasts isolated from a HSPB8K141N/green fluorescent protein (GFP)-LC3 model have diminished autophagosome production under conditions of MTOR inhibition. To correct the autophagic deficits in the HSPB1 and HSPB8 models, we screened by high-throughput autophagosome quantification the repurposing Spectrum Collection library for molecules that could boost the autophagic activity above the canonical MTOR inhibition. Hit compounds were validated on motor neurons obtained by differentiation of HSPB1P182L and HSPB8K141N patient-derived induced pluripotent stem cells, focusing on autophagy induction as well as neurite network density, axonal degeneration, and mitochondrial morphology. We identified molecules that specifically stimulate autophagosome formation in the HSPB8K141N cells, without affecting autophagy flux. Two top lead compounds induced autophagy and reduced axonal degeneration, thus promoting neuronal network maturation in the CMT2 patient-derived motor neurons. Based on these findings, the phenotypical screen revealed that piplartine rescued autophagy deficiencies in both the HSPB1 and HSPB8 models, demonstrating autophagy induction as an effective therapeutic strategy for CMT neuropathies and other chaperonopathies.
Collapse
Affiliation(s)
- Angela Sisto
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Tamira van Wermeskerken
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Pamela Gatto
- HTS Core Facility, University of Trento, Trento, Italy
| | - Bob Asselbergh
- Neuromics Support Facility, VIB - Center for Molecular Neurology, Antwerp, Belgium
- Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Vicky De Winter
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | | | - Alessandro Provenzani
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Liu W, Jiang Z, Wang R, Zhang X, Jiang X, Chen C, Guo P, Yi M, Li W. Targeting EGFR-Mcl-1 Axis by Piperlongumine as a Novel Strategy for Non-Small Cell Lung Cancer Therapy. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:597-619. [PMID: 40145280 DOI: 10.1142/s0192415x25500235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Non-small cell lung cancer (NSCLC) is a malignancy that faces serious resistance challenges in treatment. In this study, we identified Piperlongumine as a promising therapeutic candidate to overcome Osimertinib resistance in NSCLC. We systematically investigated the inhibitory effect of Piperlongumine on NSCLC cells and confirmed that it could effectively inhibit the in vitro kinase activity of wild-type (WT), exon 19 deletion, and L858R/T790M-mutated EGFR. We also found that Piperlongumine-induced intrinsic apoptosis by interfering with the EGFR signaling pathway, which was characterized by the down-regulation of the anti-apoptotic protein Mcl-1. Further mechanistic studies revealed that Piperlongumine-induced degradation of Mcl-1 was dependent on the Akt-GSK3β signaling pathway. Additionally, Piperlongumine-promoted interaction between Mcl-1 and β-TRCP, thereby enhancing β-TRCP-mediated ubiquitination and the degradation of Mcl-1. Furthermore, Piperlongumine significantly inhibited tumor growth in both Osimertinib-sensitive and resistant NSCLC xenograft models. These findings highlight the potential of Piperlongumine as an effective agent in overcoming EGFR-targeted therapy resistance and suggest new avenues for its clinical application in NSCLC treatment.
Collapse
Affiliation(s)
- Wen Liu
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, P. R. China
| | - Zhibin Jiang
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, P. R. China
| | - Ruirui Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, P. R. China
| | - Xiongjian Zhang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, P. R. China
| | - Xiaoqing Jiang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, P. R. China
| | - Can Chen
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, P. R. China
| | - Pengfei Guo
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, P. R. China
| | - Ming Yi
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, P. R. China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, P. R. China
| |
Collapse
|
5
|
Wang R, Wang Q, Liao J, Yu X, Li W. Piperlongumine overcomes osimertinib resistance via governing ubiquitination-modulated Sp1 turnover. JCI Insight 2025; 10:e186165. [PMID: 40125551 PMCID: PMC11949057 DOI: 10.1172/jci.insight.186165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/31/2025] [Indexed: 03/25/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) is a common cause of cancer-related deaths worldwide, and its incidence has been increasing in recent years. While targeted therapies like osimertinib, an epidermal growth factor receptor tyrosine kinase inhibitor, have brought about notable improvements in patient outcomes for advanced NSCLC, the challenge of acquired drug resistance persists. Here, we found that cellular mesenchymal-epithelial transition factor (c-Met) was highly expressed in osimertinib-resistant cells, and depletion of c-Met markedly inhibited the growth of osimertinib-resistant cells ex vivo and in vivo, suggesting that c-Met is a potential target to address osimertinib resistance. Through a screening process using a natural product compound library, we identified piperlongumine as a potent inhibitor to overcome osimertinib resistance. Furthermore, the combined treatment of piperlongumine and osimertinib exhibited robust antitumor effects in resistant cells, partially restoring their sensitivity to osimertinib. Additionally, we discovered that piperlongumine could enhance the interaction between E3 ligase RNF4 and Sp1, inhibit the phosphorylation of Sp1 at Thr739, facilitate the ubiquitination and degradation of Sp1, lead to c-Met destabilization, and trigger intrinsic apoptosis in resistant cells. In summary, our study sheds light on the potential of piperlongumine in overcoming osimertinib resistance, offering new strategies and perspectives for the clinical management of drug-resistant NSCLC.
Collapse
Affiliation(s)
| | - Qiang Wang
- NHC Key Laboratory of Translational Research on Transplantation Medicine, Department of Transplant Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | | | - Xinfang Yu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Li
- Department of Radiology and
| |
Collapse
|
6
|
Gong R, Long G, Wang Q, Hu X, Luo H, Zhang D, Shang J, Han Y, Huang C, Shang Y. Piplartine alleviates sepsis-induced acute kidney injury by inhibiting TSPO-mediated macrophage pyroptosis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167687. [PMID: 39862996 DOI: 10.1016/j.bbadis.2025.167687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Sepsis-induced acute kidney injury (SI-AKI) is the most common organ dysfunction of sepsis, characterized with prolonged hospitalization periods and significantly elevated mortality rates. Piplartine (PLG), an alkaloid extracted from Piper longum within the Piperaceae family, has exhibited diverse pharmacological activities, including anti-inflammatory, anti-atherosclerotic, and anti-tumor effects. Herein, we investigated whether the PLG could reverse SI-AKI and explore its possible anti-inflammatory mechanisms. We constructed an SI-AKI model using cecal ligation and puncture (CLP) and systematically evaluated the protective effect of PLG administered by gavage in the SI-AKI mice. Subsequently, we performed proteomic sequencing of the kidney and integrated data from the GeneCards and SwissTargetPrediction databases to identify potential targets and mechanisms. Immunofluorescence and western blotting were used to examine the expression of relevant targets and pathways in vivo and in vitro. The influence of PLG on the predicted target and pathway was verified using an agonist of the target protein and a series of biochemical experiments. PLG exhibited significant efficacy against pathological damage, neutrophil and macrophage infiltration, and macrophage pyroptosis in kidneys at 30 mg/kg. An integrated analysis of proteomic data identified the translocator protein (TSPO) as a potential target for the renoprotective effects of PLG. Moreover, a TSPO agonist (RO5-4864) prominently reversed the protective effect of PLG in SI-AKI mice, as manifested by a deterioration in renal function, histopathological lesions and macrophage pyroptosis in the kidneys. Our results suggest that PLG may ameliorate SI-AKI, potentially through partial inhibition of the TSPO-macrophage pyroptosis pathway.
Collapse
Affiliation(s)
- Rui Gong
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Gangyu Long
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430023, Hubei, China
| | - Qian Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Xujuan Hu
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430023, Hubei, China
| | - Hong Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Sichuan University, Chengdu 610041, Sichuan, China
| | - Dingyu Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Jun Shang
- SpecAlly Life Technology Co., Ltd, Wuhan 430073, Hubei, China
| | - Yang Han
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430023, Hubei, China.
| | - Chaolin Huang
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430023, Hubei, China.
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.
| |
Collapse
|
7
|
Haghani I, Hashemi SM, Abastabar M, Yahyazadeh Z, Ebrahimi-Barough R, Hoseinnejad A, Teymoori A, Azadeh H, Rashidi M, Aghili SR, Hedayati MT, Shokohi T, Otasevic S, Sillanpää M, Nosratabadi M, Badali H. In vitro and silico activity of piperlongumine against azole-susceptible/resistant Aspergillus fumigatus and terbinafine-susceptible/resistant Trichophyton species. Diagn Microbiol Infect Dis 2025; 111:116578. [PMID: 39500105 DOI: 10.1016/j.diagmicrobio.2024.116578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024]
Abstract
In recent years, the widespread emergence of drug resistance in yeasts and filamentous fungi to existing antifungal armamentariums has become a severe threat to global health. There is also concern regarding increased rates of azole resistance in Aspergillus fumigatus and Terbinafine resistance in Trichophyton species. To overcome this concern of resistance to regular therapies, new antifungal drugs with novel and effective mechanisms are crucially needed. Herbal remedies may be promising strategies for the treatment of resistant infections. We aimed to investigate the in vitro and silico activity of piperlongumine against clinical azole susceptible/resistant A. fumigatus and terbinafine-susceptible/resistant Trichophyton species. In the current study, piperlongumine demonstrated potent antifungal activity, with minimum inhibitory concentrations (MICs) ranging from 0.016-4 μg/mL against Trichophyton isolates and 0.25-2 μg/mL for A. fumigatus isolates. Additionally, molecular docking studies indicated that piperlongumine has a strong binding affinity to the active sites of squalene epoxidase and sterol 14-alpha demethylase. However, further studies are warranted to correlate these findings with clinical outcomes and provide the basis for further investigations to pave the way for developing novel antifungal agents.
Collapse
Affiliation(s)
- Iman Haghani
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyedeh Mahdieh Hashemi
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Abastabar
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Yahyazadeh
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Robab Ebrahimi-Barough
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Akbar Hoseinnejad
- Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Teymoori
- Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Azadeh
- Department of Internal Medicine, Rheumatology Division, Orthopedic Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4847191628, Iran
| | - Seyed Reza Aghili
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Taghi Hedayati
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Tahereh Shokohi
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Mika Sillanpää
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah, 32093 Kuwait, Kuwait; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura-140401, Punjab, India; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa; Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India; Sustainability Cluster, School of Advanced Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248007, India
| | - Mohsen Nosratabadi
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran.
| | - Hamid Badali
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Molecular Microbiology & Immunology/South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
8
|
Zhang M, Wang K, Li M, Fang X, Chen Z, Li Y, Lu H, Zhang Q. Highly Efficient and Long-Lasting Chemiluminescence-Functionalized Nanohydrogel for Imaging-Guided Precise Piperlongumine Chemotherapy. Anal Chem 2024; 96:19833-19839. [PMID: 39610273 DOI: 10.1021/acs.analchem.4c05654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
A major challenge for imaging-guided precise chemotherapy remains the ability to track the in situ real-time variation of the reactive oxygen species (ROS) level during treatment with prooxidation antitumor drugs. Chemiluminescence (CL) is widely used as an in vivo imaging tool with an excellent signal-to-noise ratio and high biological safety. However, suffering from flash-type and poor water solubility, most of the reported CL probes for ROS detection are unsuitable for in vivo long-term tracking. Herein, we designed a water-soluble CL nanohydrogel (L-012/Co2+@NGs) by cross-linking of vinyl-derived β-cyclodextrin monomer (MAH-β-CD) and loaded with luminol analog L-012 and cobalt ions (Co2+). In vitro studies reveal that L-012/Co2+@NGs exhibit long-lasting CL emission (up to 4 h) due to the slow diffusion of hydrogen peroxide in the nanohydrogel. High catalytic efficiency from the accelerated reduction of Co3+ to Co2+ through Tris and chelation of Co2+, as well as protection of the β-CD cavity against the active intermediate of L-012, enables L-012/Co2+@NGs to exhibit a 722-fold CL signal turn-on ratio and a nanomolar limit of detection (8.9 nmol/L). Piperlongumine (PL) was selected as a model of prooxidation drugs. The long-term and highly efficient CL strategy was designed for monitoring the local dynamic changes of ROS in PL-treated tumor-bearing mice for 150 min. The CL signal increased over time until reaching its maximum with a ∼6-fold increase at 15 min and then decreased slowly. The CL-functionalized nanohydrogel platform with good biocompatibility offers a great opportunity for imaging-guided precise tumor chemotherapy of PL and other prooxidation antitumor drugs.
Collapse
Affiliation(s)
- Miaomiao Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Kang Wang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Meiqin Li
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Xun Fang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Zhongxiang Chen
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Yuting Li
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Haifeng Lu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Qunlin Zhang
- Stomatologic Hospital and College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei 230032, China
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
9
|
Chen C, Feng Y, Zhou C, Liu Z, Tang Z, Zhang Y, Li T, Gu C, Chen J. Development of natural product-based targeted protein degraders as anticancer agents. Bioorg Chem 2024; 153:107772. [PMID: 39243739 DOI: 10.1016/j.bioorg.2024.107772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Targeted protein degradation (TPD) has emerged as a powerful approach for eliminating cancer-causing proteins through an "event-driven" pharmacological mode. Proteolysis-targeting chimeras (PROTACs), molecular glues (MGs), and hydrophobic tagging (HyTing) have evolved into three major classes of TPD technologies. Natural products (NPs) are a primary source of anticancer drugs and have played important roles in the development of TPD technology. NPs potentially expand the toolbox of TPD by providing a variety of E3 ligase ligands, protein of interest (POI) warheads, and hydrophobic tags (HyTs). As a promising direction in the TPD field, NP-based degraders have shown great potential for anticancer therapy. In this review, we summarize recent advances in the development of NP-based degraders (PROTACs, MGs and HyTing) with anticancer applications. Moreover, we put forward the challenges while presenting potential opportunities for the advancement of future targeted protein degraders derived from NPs.
Collapse
Affiliation(s)
- Cheng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanyan Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chen Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States
| | - Zhouyan Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziwei Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ye Zhang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Tong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chenglei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jichao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
10
|
Braga CB, Perli G, Fonseca R, Grigolo TA, Ionta M, Ornelas C, Pilli RA. Enhanced Synergistic Efficacy Against Breast Cancer Cells Promoted by Co-Encapsulation of Piplartine and Paclitaxel in Acetalated Dextran Nanoparticles. Mol Pharm 2024; 21:5577-5597. [PMID: 39365693 DOI: 10.1021/acs.molpharmaceut.4c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Malignant breast tumors constitute the most frequent cancer diagnosis among women. Notwithstanding the progress in treatments, this condition persists as a major public health issue. Paclitaxel (PTX) is a first-line classical chemotherapeutic drug used as a single active pharmaceutical ingredient (API) or in combination therapy for breast cancer (BC) treatment. Adverse effects, poor water solubility, and inevitable susceptibility to drug resistance seriously limit its therapeutic efficacy in the clinic. Piplartine (PPT), an alkaloid extracted from Piper longum L., has been shown to inhibit cancer cell proliferation in several cell lines due to its pro-oxidant activity. However, PPT has low water solubility and bioavailability in vivo, and new strategies should be developed to optimize its use as a chemotherapeutic agent. In this context, the present study aimed to synthesize a series of acetalated dextran nanoparticles (Ac-Dex NPs) encapsulating PPT and PTX to overcome the limitations of PPT and PTX, maximizing their therapeutic efficacy and achieving prolonged and targeted codelivery of these anticancer compounds into BC cells. Biodegradable, pH-responsive, and biocompatible Ac-Dex NPs with diameters of 100-200 nm and spherical morphologies were formulated using a single emulsion method. Selected Ac-Dex NPs containing only PPT or PTX as well as those coloaded with PPT and PTX achieved excellent drug-loading capabilities (PPT, ca. 11-33%; PTX, ca. 2-14%) and high encapsulation efficiencies (PPT, ∼57-98%; PTX, ∼80-97%). Under physiological conditions (pH 7.4), these NPs exhibited excellent colloidal stability and were capable of protecting drug release, while under acidic conditions (pH 5.5) they showed structural collapse, releasing the therapeutics in an extended manner. Cytotoxicity results demonstrated that the encapsulation in Ac-Dex NPs had a positive effect on the activities of both PPT and PTX against the MCF-7 human breast cancer cell line after 48 h of treatment, as well as toward MDA-MB-231 triple-negative BC cells. PPT/PTX@Ac-Dex NPs were significantly more cytotoxic (IC50/PPT = 0.25-1.77 μM and IC50/PTX = 0.07-0.75 μM) and selective (SI = 2.9-6.7) against MCF-7 cells than all the control therapeutic agents: free PPT (IC50 = 4.57 μM; SI = 1.2), free PTX (IC50 = 0.97 μM; SI = 1.0), the single-drug-loaded Ac-Dex NPs, and the physical mixture of both free drugs. All combinations of PPT and PTX resulted in pronounced synergistic antiproliferative effects in MCF-7 cells, with an optimal molar ratio of PPT to PTX of 2.3:1. PPT/PTX-2@Ac-Dex NPs notably promoted apoptosis, cell cycle arrest at the G2/M, accumulation of intracellular reactive oxygen species (ROS), and combined effects from both PPT and PTX on the microtubule network of MCF-7 cells. Overall, the combination of PTX and PPT in pH-responsive Ac-Dex NPs may offer great potential to improve the therapeutic efficacy, overcome the limitations, and provide effective simultaneous delivery of these therapeutics for BC treatment.
Collapse
Affiliation(s)
- Carolyne Brustolin Braga
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
| | - Gabriel Perli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, 20018 Donostia-San Sebastián Spain
| | - Rafael Fonseca
- Institute of Biomedical Sciences, Federal University of Alfenas, UNIFAL-MG, 37130-001 Alfenas, Minas Gerais, Brazil
| | - Thiago Augusto Grigolo
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas, UNIFAL-MG, 37130-001 Alfenas, Minas Gerais, Brazil
| | - Catia Ornelas
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
- R&D Department, ChemistryX, R&D and Consulting Company, 9000 Funchal, Portugal
- R&D Department, Dendriwave, Research & Development Start-Up Company, 9000 Funchal, Portugal
| | - Ronaldo A Pilli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
| |
Collapse
|
11
|
Dai Y, Chen J, Fang J, Liang S, Zhang H, Li H, Chen W. Piperlongumine, a natural alkaloid from Piper longum L. ameliorates metabolic-associated fatty liver disease by antagonizing the thromboxane A 2 receptor. Biochem Pharmacol 2024; 229:116518. [PMID: 39236933 DOI: 10.1016/j.bcp.2024.116518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/02/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) encompasses a broad spectrum of hepatic disorders, including hyperglycemia, hepatic steatosis, and insulin resistance. Piperlongumine (PL), a natural amide alkaloid extracted from the fruits of Piper longum L., exhibited hepatoprotective effects in zebrafish and liver injury mice. This study aimed to investigate the therapeutic potential of PL on MAFLD and its underlying mechanisms. The findings demonstrate that PL effectively combats MAFLD induced by a high-fat diet (HFD) and improves metabolic characteristics in mice. Additionally, our results suggest that the anti-MAFLD effect of PL is attributed to the suppression of excessive hepatic gluconeogenesis, inhibition of de novo lipogenesis, and alleviation of insulin resistance. Importantly, the results indicate that, on the one hand, the hypoglycemic effect of PL is closely associated with CREB-regulated transcriptional coactivators (CRTC2)-dependent cyclic AMP response element binding protein (CREB) phosphorylation; on the other hand, the lipid-lowering effect of PL is attributed to reducing the nuclear localization of sterol regulatory element-binding proteins 1c (Srebp-1c). Mechanistically, PL could alleviate insulin resistance induced by endoplasmic reticulum stress by antagonizing the thromboxane A2 receptor (TP)/Ca2+ signaling, and the TP receptor serves as the potential target for PL in the treatment of MAFLD. Therefore, our results suggested PL effectively improved the major hallmarks of MAFLD induced by HFD, highlighting a potential therapeutic strategy for MAFLD.
Collapse
Affiliation(s)
- Yufeng Dai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinxiang Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jialong Fang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shuxiao Liang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Haitao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
12
|
Yin S, Xu P, Jiang Y, Yang X, Lin Y, Zheng M, Hu J, Zhao Q. Predicting the potential associations between circRNA and drug sensitivity using a multisource feature-based approach. J Cell Mol Med 2024; 28:e18591. [PMID: 39347936 PMCID: PMC11441279 DOI: 10.1111/jcmm.18591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 10/01/2024] Open
Abstract
The unique non-coding RNA molecule known as circular RNA (circRNA) is distinguished from conventional linear RNA by having a longer half-life, greater degree of conservation and inherent solidity. Extensive research has demonstrated the profound impact of circRNA expression on cellular drug sensitivity and therapeutic efficacy. There is an immediate need for the creation of efficient computational techniques to anticipate the potential correlations between circRNA and drug sensitivity, as classical biological research approaches are time-consuming and costly. In this work, we introduce a novel deep learning model called SNMGCDA, which aims to forecast the relationships between circRNA and drug sensitivity. SNMGCDA incorporates a diverse range of similarity networks, enabling the derivation of feature vectors for circRNAs and drugs using three distinct calculation methods. First, we utilize a sparse autoencoder for the extraction of drug characteristics. Subsequently, the application of non-negative matrix factorization (NMF) enables the identification of relationships between circRNAs and drugs based on their shared features. Additionally, the multi-head graph attention network is employed to capture the characteristics of circRNAs. After acquiring the characteristics from these three separate components, we combine them to form a unified and inclusive feature vector for each cluster of circRNA and drug. Finally, the relevant feature vectors and labels are inputted into a multilayer perceptron (MLP) to make predictions. The outcomes of the experiment, obtained through 5-fold cross-validation (5-fold CV) and 10-fold cross-validation (10-fold CV), demonstrate SNMGCDA outperforms five other state-of-art methods in terms of performance. Additionally, the majority of case studies have predominantly confirmed newly discovered correlations by SNMGCDA, thereby emphasizing its reliability in predicting potential relationships between circRNAs and drugs.
Collapse
Affiliation(s)
- Shuaidong Yin
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Peng Xu
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Yefeng Jiang
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Xin Yang
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Ye Lin
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Manyu Zheng
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Jinpeng Hu
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
| |
Collapse
|
13
|
Zou Y, Wan X, Ding Z, Tang C, Wang C, Chen X. Design, synthesis, and biological studies of nitric oxide-donating piperlongumine derivatives triggered by lysyl oxidase as anti-triple negative breast cancer agents. Fitoterapia 2024; 177:106091. [PMID: 38908760 DOI: 10.1016/j.fitote.2024.106091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Nitric oxide (NO) is an important gas messenger molecule with a wide range of biological functions. High concentration of NO exerts promising antitumor effects and is regarded as one of the hot spots in cancer research, that have limitations in their direct application due to its gaseous state, short half-life (seconds) and high reactivity. Lysyl oxidase (LOX) is a copper-dependent amine oxidase that is responsible for the covalent bonding between collagen and elastin and promotes tumor cell invasion and metastasis. The overexpression of LOX in triple-negative breast cancer (TNBC) makes it an attractive target for TNBC therapy. Herein, novel NO donor prodrug molecules were designed and synthesized based on the naturally derived piperlongumine (PL) skeleton, which can be selectively activated by LOX to release high concentrations of NO and PL derivatives, both of them play a synergistic role in TNBC therapy. Among them, the compound TM-1 selectively released NO in highly invasive TNBC cells (MDA-MB-231), and TM-1 was also confirmed as a potential TNBC cell line inhibitor with an inhibitory concentration of 2.274 μM. Molecular docking results showed that TM-1 had a strong and selective binding affinity with LOX protein.
Collapse
Affiliation(s)
- Yu Zou
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Xin Wan
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zedan Ding
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chunyang Tang
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chuan Wang
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xia Chen
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
14
|
Brustolin Braga C, Milan JC, Andrade Meirelles M, Zavan B, Ferreira-Silva GÁ, Caixeta ES, Ionta M, Pilli RA. Furoxan-piplartine hybrids as effective NO donors and ROS inducers in PC3 cancer cells: design, synthesis, and biological evaluation. RSC Med Chem 2024:d4md00281d. [PMID: 39290383 PMCID: PMC11403579 DOI: 10.1039/d4md00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Conjugation of the naturally occurring product piplartine (PPT, 1), which is a potent cytotoxic compound and ROS inducer, with a diphenyl sulfonyl-substituted furoxan moiety (namely, 3,4-bis(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide), an important type of NO donor, via an ether linker of different chain lengths is described, characterized and screened for the anticancer potential. The cytotoxicity of the new hybrids was evaluated on a panel of human cancer cell lines (MCF-7, PC3 and OVCAR-3) and two non-cancer human cells (MCF10A and PNT2). In general, the synthesized hybrids were more cytotoxic and selective compared to their furoxan precursors 4-6 and PPT in the above cancer cells. Particularly, PC3 cells are the most sensitive to hybrids 7 and 9 (IC50 values of 240 nM and 50 nM, respectively), while a lower potency was found for the prostate normal cells (IC50 = 17.8 μM and 14.1 μM, respectively), corresponding to selectivity indices of ca. 75 and 280, respectively. NO generation by the PPT-furoxan compounds in PC3 cells was confirmed using the Griess reaction. Furthermore, the cell growth inhibitory effect of 9 was significantly attenuated by the NO scavenger carboxy-PTIO. The intracellular ROS generation by 7 and 9 was also verified, and different assays showed that co-treatment with the antioxidant N-acetyl-l-cysteine (NAC) provided protection against PPT-induced ROS generation. Further mechanistic studies revealed that 7 and 9 had strong cytotoxicity to induce apoptosis in PC3 cells, being mediated, at least in part, by the NO-release and increase in ROS production. Notably, the ability of 9 to induce apoptosis was stronger than that of 7, which may be attributed to higher levels of NO released by 9. Compounds 7 and 9 modulated the expression profiles of critical regulators of cell cycle, such as CDKN1A (p21), c-MYC, and CCND1 (cyclin D1), as well as induced DNA damage. Overall, tethering the furoxan NO-releasing moiety to the cytotoxic natural product PPT had significant impact on the potential anticancer activity and selectivity of the novel hybrid drug candidates, especially 9, as a result of synergistic effects of both furoxan and PPT's ability to release NO, generate ROS, induce DNA damage, and trigger apoptosis.
Collapse
Affiliation(s)
- Carolyne Brustolin Braga
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas UNICAMP CEP 13083-970 Campinas Sao Paulo Brazil
| | - Julio Cesar Milan
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas UNICAMP CEP 13083-970 Campinas Sao Paulo Brazil
| | - Matheus Andrade Meirelles
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas UNICAMP CEP 13083-970 Campinas Sao Paulo Brazil
| | - Bruno Zavan
- Institute of Biomedical Sciences, Federal University of Alfenas UNIFAL-MG 37130-001 Alfenas Minas Gerais Brazil
| | | | - Ester Siqueira Caixeta
- Institute of Biomedical Sciences, Federal University of Alfenas UNIFAL-MG 37130-001 Alfenas Minas Gerais Brazil
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas UNIFAL-MG 37130-001 Alfenas Minas Gerais Brazil
| | - Ronaldo A Pilli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas UNICAMP CEP 13083-970 Campinas Sao Paulo Brazil
| |
Collapse
|
15
|
Sun Y, Li Q, Huang Y, Yang Z, Li G, Sun X, Gu X, Qiao Y, Wu Q, Xie T, Sui X. Natural products for enhancing the sensitivity or decreasing the adverse effects of anticancer drugs through regulating the redox balance. Chin Med 2024; 19:110. [PMID: 39164783 PMCID: PMC11334420 DOI: 10.1186/s13020-024-00982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024] Open
Abstract
Redox imbalance is reported to play a pivotal role in tumorigenesis, cancer development, and drug resistance. Severe oxidative damage is a general consequence of cancer cell responses to treatment and may cause cancer cell death or severe adverse effects. To maintain their longevity, cancer cells can rescue redox balance and enter a state of resistance to anticancer drugs. Therefore, targeting redox signalling pathways has emerged as an attractive and prospective strategy for enhancing the efficacy of anticancer drugs and decreasing their adverse effects. Over the past few decades, natural products (NPs) have become an invaluable source for developing new anticancer drugs due to their high efficacy and low toxicity. Increasing evidence has demonstrated that many NPs exhibit remarkable antitumour effects, whether used alone or as adjuvants, and are emerging as effective approaches to enhance sensitivity and decrease the adverse effects of conventional cancer therapies by regulating redox balance. Among them are several novel anticancer drugs based on NPs that have entered clinical trials. In this review, we summarize the synergistic anticancer effects and related redox mechanisms of the combination of NPs with conventional anticancer drugs. We believe that NPs targeting redox regulation will represent promising novel candidates and provide prospects for cancer treatment in the future.
Collapse
Affiliation(s)
- Yitian Sun
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qinyi Li
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yufei Huang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Zijing Yang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Guohua Li
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaoyu Sun
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaoqing Gu
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yunhao Qiao
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| | - Tian Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Xinbing Sui
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
16
|
Swain SS, Sahoo SK. Piperlongumine and its derivatives against cancer: A recent update and future prospective. Arch Pharm (Weinheim) 2024; 357:e2300768. [PMID: 38593312 DOI: 10.1002/ardp.202300768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Piperlongumine, or piplartine (PL), is a bioactive alkaloid isolated from Piper longum L. and a potent phytoconstituent in Indian Ayurveda and traditional Chinese medicine with a lot of therapeutic benefits. Apart from all of its biological activities, it demonstrates multimodal anticancer activity by targeting various cancer-associated pathways and being less toxic to normal cells. According to their structure-activity relationship (SAR), the trimethylphenyl ring (cinnamoyl core) and 5,6-dihydropyridin-2-(1H)-one (piperdine core) are responsible for the potent anticancer activity. However, it has poor intrinsic properties (low aqueous solubility, poor bioavailability, etc.). As a result, pharmaceutical researchers have been trying to optimise or modify the structure of PL to improve the drug-likeness profiles. The present review selected 26 eligible research articles on PL derivatives published between 2012 and 2023, followed by the preferred reporting items for systematic reviews and meta-analyses (PRISMA) format. We have thoroughly summarised the anticancer potency, mode of action, SAR and drug chemistry of the proposed PL-derivatives against different cancer cells. Overall, SAR analyses with respect to anticancer potency and drug-ability revealed that substitution of methoxy to hydroxyl, attachment of ligustrazine and 4-hydroxycoumarin heterocyclic rings in place of phenyl rings, and attachment of heterocyclic rings like indole at the C7-C8 olefin position in native PL can help to improve anticancer activity, aqueous solubility, cell permeability, and bioavailability, making them potential leads. Hopefully, the large-scale collection and critical drug-chemistry analyses will be helpful to pharmaceutical and academic researchers in developing potential, less-toxic and cost-effective PL-derivatives that can be used against different cancers.
Collapse
Affiliation(s)
- Shasank S Swain
- Biotechnology Research and Innovation Council-Institute of Life Sciences (BRIC-ILS), Nalco Square, Odisha, India
| | - Sanjeeb K Sahoo
- Biotechnology Research and Innovation Council-Institute of Life Sciences (BRIC-ILS), Nalco Square, Odisha, India
| |
Collapse
|
17
|
Gomes PWP, Mannochio-Russo H, Schmid R, Zuffa S, Damiani T, Quiros-Guerrero LM, Caraballo-Rodríguez AM, Zhao HN, Yang H, Xing S, Charron-Lamoureux V, Chigumba DN, Sedio BE, Myers JA, Allard PM, Harwood TV, Tamayo-Castillo G, Kang KB, Defossez E, Koolen HHF, da Silva MN, E Silva CYY, Rasmann S, Walker TWN, Glauser G, Chaves-Fallas JM, David B, Kim H, Lee KH, Kim MJ, Choi WJ, Keum YS, de Lima EJSP, de Medeiros LS, Bataglion GA, Costa EV, da Silva FMA, Carvalho ARV, Reis JDE, Pamplona S, Jeong E, Lee K, Kim GJ, Kil YS, Nam JW, Choi H, Han YK, Park SY, Lee KY, Hu C, Dong Y, Sang S, Morrison CR, Borges RM, Teixeira AM, Lee SY, Lee BS, Jeong SY, Kim KH, Rutz A, Gaudry A, Bruelhart E, Kappers IF, Karlova R, Meisenburg M, Berdaguer R, Tello JS, Henderson D, Cayola L, Wright SJ, Allen DN, Anderson-Teixeira KJ, Baltzer JL, Lutz JA, McMahon SM, Parker GG, Parker JD, Northen TR, Bowen BP, Pluskal T, van der Hooft JJJ, Carver JJ, Bandeira N, Pullman BS, Wolfender JL, Kersten RD, Wang M, Dorrestein PC. plantMASST - Community-driven chemotaxonomic digitization of plants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593988. [PMID: 38798440 PMCID: PMC11118438 DOI: 10.1101/2024.05.13.593988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Understanding the distribution of hundreds of thousands of plant metabolites across the plant kingdom presents a challenge. To address this, we curated publicly available LC-MS/MS data from 19,075 plant extracts and developed the plantMASST reference database encompassing 246 botanical families, 1,469 genera, and 2,793 species. This taxonomically focused database facilitates the exploration of plant-derived molecules using tandem mass spectrometry (MS/MS) spectra. This tool will aid in drug discovery, biosynthesis, (chemo)taxonomy, and the evolutionary ecology of herbivore interactions.
Collapse
Affiliation(s)
- Paulo Wender P Gomes
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Helena Mannochio-Russo
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Robin Schmid
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Simone Zuffa
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Tito Damiani
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Luis-Manuel Quiros-Guerrero
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, CMU, 1211 Geneva, Switzerland
| | - Andrés Mauricio Caraballo-Rodríguez
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Haoqi Nina Zhao
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Heejung Yang
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Shipei Xing
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Vincent Charron-Lamoureux
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Desnor N Chigumba
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Brian E Sedio
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
- Smithsonian Tropical Research Institute, Republic of Panama
| | - Jonathan A Myers
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Thomas V Harwood
- The DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, United States
| | - Giselle Tamayo-Castillo
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José 11501-2060, Costa Rica
- Escuela de Química, Universidad de Costa Rica, 2061 San José, Costa Rica
| | - Kyo Bin Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Emmanuel Defossez
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
- Botanical garden of Neuchâtel
| | | | - Milton Nascimento da Silva
- Laboratory of Liquid Chromatography, Federal University of Pará, Belém 66075-110, Brazil
- Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Consuelo Yumiko Yoshioka E Silva
- Laboratory of Liquid Chromatography, Federal University of Pará, Belém 66075-110, Brazil
- Institute of Health Sciences, Faculty of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil
| | - Sergio Rasmann
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Tom W N Walker
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Gaëtan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - José Miguel Chaves-Fallas
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José 11501-2060, Costa Rica
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, St. Louis, MO 63121, USA
| | - Bruno David
- Green Mission Pierre Fabre, Institut de Recherche Pierre Fabre, 3 Avenue Hubert Curien, BP 13562, 31562 Toulouse, France
| | - Hyunwoo Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, 32, Dongguk-ro, Goyang, Gyeonggi-do 10326, Korea
| | - Kyu Hyeong Lee
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, 32, Dongguk-ro, Goyang, Gyeonggi-do 10326, Korea
| | - Myeong Ji Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, 32, Dongguk-ro, Goyang, Gyeonggi-do 10326, Korea
| | - Won Jun Choi
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, 32, Dongguk-ro, Goyang, Gyeonggi-do 10326, Korea
| | - Young-Sam Keum
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, 32, Dongguk-ro, Goyang, Gyeonggi-do 10326, Korea
| | | | - Lívia Soman de Medeiros
- Federal University of São Paulo, Diadema, Brazil
- Department of Chemistry, Federal University of São Paulo, Diadema, SP, 09972-270, Brazil
| | | | | | | | - Alice Rhelly V Carvalho
- Laboratory of Liquid Chromatography, Federal University of Pará, Belém 66075-110, Brazil
- Institute of Health Sciences, Faculty of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil
| | - José Diogo E Reis
- Laboratory of Liquid Chromatography, Federal University of Pará, Belém 66075-110, Brazil
- Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Sônia Pamplona
- Laboratory of Liquid Chromatography, Federal University of Pará, Belém 66075-110, Brazil
- Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Eunah Jeong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Kyungha Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Geum Jin Kim
- Department of Pharmacology, College of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
| | - Yun-Seo Kil
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
- Core Research Support Center for Natural Products and Medical Materials, Yeungnam University, Gyeongsan, Republic of Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
- Core Research Support Center for Natural Products and Medical Materials, Yeungnam University, Gyeongsan, Republic of Korea
| | - Yoo Kyong Han
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Si Young Park
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Ki Yong Lee
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Changling Hu
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Yilun Dong
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Colin R Morrison
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
- Brackenridge Field Laboratory, University of Texas at Austin, Austin, TX, USA
| | - Ricardo Moreira Borges
- Walter Mors Institute of Research on Natural Products, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrew Magno Teixeira
- Walter Mors Institute of Research on Natural Products, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Seo Yoon Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bum Soo Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Se Yun Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Adriano Rutz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, CMU, 1211 Geneva, Switzerland
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Arnaud Gaudry
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, CMU, 1211 Geneva, Switzerland
| | - Edouard Bruelhart
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Iris F Kappers
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - Rumyana Karlova
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - Mara Meisenburg
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - Roland Berdaguer
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - J Sebastián Tello
- Latin America Department, Missouri Botanical Garden, St. Louis, MO, USA
| | - David Henderson
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
- Missouri Botanical Garden, St. Louis, MO, USA
| | - Leslie Cayola
- Herbario Nacional de Bolivia, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - David N Allen
- Department of Biology, Middlebury College, Middlebury, VT, USA
| | | | | | - James A Lutz
- Department of Wildland Resources, Utah State University, Logan, UT, USA
| | - Sean M McMahon
- Smithsonian Environmental Research Center, Edgewater, MD, USA
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama City, Panama
| | - Geoffrey G Parker
- Forest Ecology Group, Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - John D Parker
- Forest Ecology Group, Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Trent R Northen
- Environmental Genomics and Systems Biology Division and the DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States
| | - Benjamin P Bowen
- Environmental Genomics and Systems Biology Division and the DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States
| | - Tomáš Pluskal
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Justin J J van der Hooft
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
- Department of Biochemistry, University of Johannesburg, Johannesburg 2006, South Africa
| | - Jeremy J Carver
- Center for Computational Mass Spectrometry, Department of Computer Science and Engineering, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego 92093-0404, United States
| | - Nuno Bandeira
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Benjamin S Pullman
- Center for Computational Mass Spectrometry, Department of Computer Science and Engineering, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego 92093-0404, United States
| | - Jean-Luc Wolfender
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, CMU, 1211 Geneva, Switzerland
| | - Roland D Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Mingxun Wang
- Department of Computer Science, University of California Riverside, Riverside, CA, 92521, United States
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
18
|
Khan F, Pandey P, Verma M, Ramniwas S, Lee D, Moon S, Park MN, Upadhyay TK, Kim B. Emerging trends of phytochemicals as ferroptosis modulators in cancer therapy. Biomed Pharmacother 2024; 173:116363. [PMID: 38479184 DOI: 10.1016/j.biopha.2024.116363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Ferroptosis, a novel form of regulated cell death characterized by dependence on iron and lipid peroxidation, has been implicated in a wide range of clinical conditions including neurological diseases, cardiovascular disorders, acute kidney failure, and various types of cancer. Therefore, it is critical to suppress cancer progression and proliferation. Ferroptosis can be triggered in cancer cells and some normal cells by synthetic substances, such as erastin, Ras-selective lethal small molecule-3, or clinical pharmaceuticals. Natural bioactive compounds are traditional drug discovery tools, and some have been therapeutically used as dietary additives or pharmaceutical agents against various malignancies. The fact that natural products have multiple targets and minimal side effects has led to notable advances in anticancer research. Research has indicated that ferroptosis can also be induced by natural compounds during cancer treatment. In this review, we focused on the most recent developments in emerging molecular processes and the significance of ferroptosis in cancer. To provide new perspectives on the future development of ferroptosis-related anticancer medications, we also provide a summary of the implications of natural phytochemicals in triggering ferroptosis through ROS production and ferritinophagy induction in a variety of malignancies.
Collapse
Affiliation(s)
- Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Pratibha Pandey
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Meenakshi Verma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413, India; Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Seema Ramniwas
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Dain Lee
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea
| | - Seungjoon Moon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea; Chansol Hospital of Korean Medicine, 290, Buheung-ro, Bupyeong-gu, Incheon 21390, the Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara 391760, India
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea.
| |
Collapse
|
19
|
Luo N, Zhang L, Xiu C, Luo X, Hu S, Ji K, Liu Q, Chen J. Piperlongumine, a Piper longum-derived amide alkaloid, protects mice from ovariectomy-induced osteoporosis by inhibiting osteoclastogenesis via suppression of p38 and JNK signaling. Food Funct 2024; 15:2154-2169. [PMID: 38311970 DOI: 10.1039/d3fo03830k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Postmenopausal osteoporosis (PMOP) is a metabolic bone disease that results from overproduction and hyperactivation of osteoclasts caused by insufficient estrogen in women after menopause. Current therapeutic strategies are mainly focused on treating PMOP patients who have already developed severe bone loss or even osteoporotic fractures. Obviously, a better strategy is to prevent PMOP from occurring in the first place. However, such reagents are largely lacking. Piperlongumine (PLM), an amide alkaloid extracted from long pepper Piper longum, exhibits the anti-osteoclastogenic effect in normal bone marrow macrophages (BMMs) and the protective effect against osteolysis induced by titanium particles in mice. This study examined the preventive effect of PLM on PMOP and explored the potential mechanism of this effect using both ovariectomized mice and their primary cells. The result showed that PLM (5 and 10 mg kg-1) administered daily for 6 weeks ameliorated ovariectomy-induced bone loss and osteoclast formation in mice. Further cell experiments showed that PLM directly suppressed osteoclast formation, F-actin ring formation, and osteoclastic resorption pit formation in BMMs derived from osteoporotic mice, but did not obviously affect osteogenic differentiation of bone marrow stromal cells (BMSCs) from these mice. Western blot analysis revealed that PLM attenuated maximal activation of p38 and JNK pathways by RANKL stimulation without affecting acute activation of NF-κB, AKT, and ERK signaling. Furthermore, PLM inhibited expression of key osteoclastogenic transcription factors NFATc1/c-Fos and their target genes (Dcstamp, Atp6v0d2, Acp5, and Oscar). Taken together, our findings suggest that PLM inhibits osteoclast formation and function by suppressing RANKL-induced activation of the p38/JNK-cFos/NFATc1 signaling cascade, thereby preventing ovariectomy-induced osteoporosis in mice. Thus, PLM can potentially be used as an anti-resorption drug or dietary supplement for the prevention of PMOP.
Collapse
Affiliation(s)
- Na Luo
- Department of Clinical Medicine, Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, 51 Huzhou Street, Gongshu District, Hangzhou, Zhejiang 310015, China.
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Lei Zhang
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chunmei Xiu
- Department of Clinical Medicine, Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, 51 Huzhou Street, Gongshu District, Hangzhou, Zhejiang 310015, China.
| | - Xi Luo
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Siyuan Hu
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Kaizhong Ji
- Department of Clinical Medicine, Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, 51 Huzhou Street, Gongshu District, Hangzhou, Zhejiang 310015, China.
| | - Qingbai Liu
- Department of Orthopaedics, Lianshui County People's Hospital, The Affiliated Lianshui County People's Hospital of Kangda College of Nanjing Medical University, Huai'an, Jiangsu, China.
| | - Jianquan Chen
- Department of Clinical Medicine, Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, 51 Huzhou Street, Gongshu District, Hangzhou, Zhejiang 310015, China.
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
20
|
Feng F, Duan Q, Jiang X, Kao X, Zhang D. DendroX: multi-level multi-cluster selection in dendrograms. BMC Genomics 2024; 25:134. [PMID: 38308243 PMCID: PMC10835886 DOI: 10.1186/s12864-024-10048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/24/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Cluster heatmaps are widely used in biology and other fields to uncover clustering patterns in data matrices. Most cluster heatmap packages provide utility functions to divide the dendrograms at a certain level to obtain clusters, but it is often difficult to locate the appropriate cut in the dendrogram to obtain the clusters seen in the heatmap or computed by a statistical method. Multiple cuts are required if the clusters locate at different levels in the dendrogram. RESULTS We developed DendroX, a web app that provides interactive visualization of a dendrogram where users can divide the dendrogram at any level and in any number of clusters and pass the labels of the identified clusters for functional analysis. Helper functions are provided to extract linkage matrices from cluster heatmap objects in R or Python to serve as input to the app. A graphic user interface was also developed to help prepare input files for DendroX from data matrices stored in delimited text files. The app is scalable and has been tested on dendrograms with tens of thousands of leaf nodes. As a case study, we clustered the gene expression signatures of 297 bioactive chemical compounds in the LINCS L1000 dataset and visualized them in DendroX. Seventeen biologically meaningful clusters were identified based on the structure of the dendrogram and the expression patterns in the heatmap. We found that one of the clusters consisting of mostly naturally occurring compounds is not previously reported and has its members sharing broad anticancer, anti-inflammatory and antioxidant activities. CONCLUSIONS DendroX solves the problem of matching visually and computationally determined clusters in a cluster heatmap and helps users navigate among different parts of a dendrogram. The identification of a cluster of naturally occurring compounds with shared bioactivities implicates a convergence of biological effects through divergent mechanisms.
Collapse
Affiliation(s)
- Feiling Feng
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Qiaonan Duan
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Xiaoqing Jiang
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Xiaoming Kao
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Dadong Zhang
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China.
| |
Collapse
|
21
|
Jo HG, Baek CY, Kim D, Kim S, Han Y, Park C, Song HS, Lee D. Network analysis, in vivo, and in vitro experiments identified the mechanisms by which Piper longum L. [Piperaceae] alleviates cartilage destruction, joint inflammation, and arthritic pain. Front Pharmacol 2024; 14:1282943. [PMID: 38328576 PMCID: PMC10847597 DOI: 10.3389/fphar.2023.1282943] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/08/2023] [Indexed: 02/09/2024] Open
Abstract
Osteoarthritis (OA) is characterized by irreversible joint destruction, pain, and dysfunction. Piper longum L. [Piperaceae] (PL) is an East Asian herbal medicine with reported anti-inflammatory, analgesic, antioxidant, anti-stress, and anti-osteoporotic effects. This study aimed to evaluate the efficacy of PL in inhibiting pain and progressive joint destruction in OA based on its anti-inflammatory activity, and to explore its potential mechanisms using in vivo and in vitro models of OA. We predicted the potential hub targets and signaling pathways of PL through network analysis and molecular docking. Network analysis results showed that the possible hub targets of PL against OA were F2R, F3, MMP1, MMP2, MMP9, and PTGS2. The molecular docking results predicted strong binding affinities for the core compounds in PL: piperlongumine, piperlonguminine, and piperine. In vitro experiments showed that PL inhibited the expression of LPS-induced pro-inflammatory factors, such as F2R, F3, IL-1β, IL-6, IL-17A, MMP-1, MMP-2, MMP-3, MMP-9, MMP-13, NOS2, PTGS2, PGE2, and TNF-β. These mechanisms and effects were dose-dependent in vivo models. Furthermore, PL inhibited cartilage degradation in an OA-induced rat model. Thus, this study demonstrated that multiple components of PL may inhibit the multilayered pathology of OA by acting on multiple targets and pathways. These findings highlight the potential of PL as a disease-modifying OA drug candidate, which warrants further investigation.
Collapse
Affiliation(s)
- Hee Geun Jo
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, Seongnam-si, Republic of Korea
- Naturalis Inc., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Chae Yun Baek
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, Seongnam-si, Republic of Korea
| | - Donghwan Kim
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Sangjin Kim
- National Institute for Korean Medicine Development, Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea
| | - Yewon Han
- National Institute for Korean Medicine Development, Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea
| | - Chanlim Park
- Smart Software Lab Inc., Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Ho Sueb Song
- Department of Acupuncture and Moxibustion Medicine, College of Korean Medicine, Gachon University, Seongnam-si, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, Seongnam-si, Republic of Korea
| |
Collapse
|
22
|
Zhao P, Tian Y, Geng Y, Zeng C, Ma X, Kang J, Lu L, Zhang X, Tang B, Geng F. Aconitine and its derivatives: bioactivities, structure-activity relationships and preliminary molecular mechanisms. Front Chem 2024; 12:1339364. [PMID: 38318112 PMCID: PMC10839071 DOI: 10.3389/fchem.2024.1339364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Aconitine (AC), which is the primary bioactive diterpene alkaloid derived from Aconitum L plants, have attracted considerable interest due to its unique structural feature. Additionally, AC demonstrates a range of biological activities, such as its ability to enhance cardiac function, inhibit tumor growth, reduce inflammation, and provide analgesic effects. However, the structure-activity relationships of AC are remain unclear. A clear understanding of these relationships is indeed critical in developing effective biomedical applications with AC. In line with these challenges, this paper summarized the structural characteristics of AC and relevant functional and bioactive properties and the structure-activity relationships presented in biomedical applications. The primary temporal scope of this review was established as the period spanning from 2010 to 2023. Subsequently, the objective of this review was to provide a comprehensive understanding of the specific action mechanism of AC, while also exploring potential novel applications of AC derivatives in the biomedical field, drawing upon their structural characteristics. In conclusion, this review has provided a comprehensive analysis of the challenges and prospects associated with AC in the elucidation of structure-bioactivity relationships. Furthermore, the importance of exploring modern biotechnology approaches to enhance the potential biomedical applications of AC has been emphasized.
Collapse
Affiliation(s)
- Pengyu Zhao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ye Tian
- Guizhou Yunfeng Pharmaceutical Co., Ltd., Qianxinan Buyi and Miao Autonomous Prefecture, China
| | - Yuefei Geng
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
| | - Chenjuan Zeng
- Guizhou Yunfeng Pharmaceutical Co., Ltd., Qianxinan Buyi and Miao Autonomous Prefecture, China
| | - Xiuying Ma
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
| | - Jie Kang
- Guizhou Yunfeng Pharmaceutical Co., Ltd., Qianxinan Buyi and Miao Autonomous Prefecture, China
| | - Lin Lu
- Sichuan Engineering Research Center for Medicinal Animals, Chengdu, China
| | - Xin Zhang
- Sichuan Good Doctor Pharmaceutical Group, Chengdu, China
| | - Bo Tang
- Sichuan Engineering Research Center for Medicinal Animals, Chengdu, China
| | - Funeng Geng
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
23
|
Li P, Ma Y, Wang X, Li X, Wang X, Yang J, Liu G. The protective effect of PL 1-3 on D-galactose-induced aging mice. Front Pharmacol 2024; 14:1304801. [PMID: 38235117 PMCID: PMC10791853 DOI: 10.3389/fphar.2023.1304801] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
The aging population has become an issue that cannot be ignored, and research on aging is receiving increasing attention. PL 1-3 possesses diverse pharmacological properties including anti-oxidative stress, inhibits inflammatory responses and anti-apoptosis. This study showed that PL 1-3 could protect mice, especially the brain, against the aging caused by D-galactose (D-gal). D-gal could cause oxidative stress, inflammation, apoptosis and tissue pathological injury and so on in aging mice. The treatment of PL 1-3 could increase the anti-oxidative stress ability in the serum, liver, kidney and brain of aging mice, via increasing the total antioxidant capacity and the levels of anti-oxidative defense enzymes (superoxide dismutase, glutathione peroxidase, and catalase), and reducing the end product of lipid peroxidation (malondialdehyde). In the brain, in addition to the enhanced anti-oxidative stress via upregulating the level of the nuclear factor erythroid 2-related factor 2 and heme oxygenase 1, PL 1-3 could improve the dysfunction of the cholinergic system via reducing the active of acetylcholinesterase so as to increase the level of acetylcholine, increase the anti-inflammatory and anti-apoptosis activities via downregulating the expressions of pro-inflammatory cytokines (interleukin-6 and tumor necrosis factor-α) and pro-apoptosis proteins (Bcl-2 associated X protein and Caspase-3) in the D-gal-induced aging mice, to enhance the anti-aging ability via upregulating the expression of sirtuin 1 and downregulating the expressions of p53, p21, and p16. Besides, PL 1-3 could reverse the liver, kidney and spleen damages induced by D-gal in aging mice. These results suggested that PL 1-3 may be developed as an anti-aging drug for the prevention and intervention of age-related diseases.
Collapse
Affiliation(s)
- Pengxiao Li
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Yazhong Ma
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Xiaotong Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Xin Li
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Xuekun Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Jie Yang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
- Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma Lucidum, Liaocheng University, Liaocheng, Shandong, China
| | - Guoyun Liu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
- Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma Lucidum, Liaocheng University, Liaocheng, Shandong, China
| |
Collapse
|
24
|
Sharma R, Majee C, Mazumder R, Mazumder A, Tyagi PK, Chaitanya MVNL. Insight Into the Role of Alkaloids in the Different Signalling Pathways of Cholangiocarcinoma. JOURNAL OF NATURAL REMEDIES 2024:43-58. [DOI: 10.18311/jnr/2024/34661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/19/2023] [Indexed: 01/04/2025]
Abstract
Throughout the biliary tree, a variety of cells give rise to cholangiocarcinomas, a broad group of malignancies. The fact that these tumours are silent and asymptomatic, especially in their early stages, seriously impairs the effectiveness of available therapeutic options and contributes to their poor prognosis. Over the past few years, increased efforts have been made to identify the aetiology and signalling pathways of these tumours and to create more potent therapies. Since alkaloids are more potent and effective against cholangiocarcinoma cell lines, they have gained importance in the treatment of cholangiocarcinoma. In cell lines with cholangiocarcinoma, they promote apoptosis. and restrict the spread of cells, departure, and development. This review highlights the recent developments in the study of CCA, primarily concentrating on the regulation of the signalling pathway and revealing alkaloids demonstrating strong anti-cholangiocarcinoma efficacy, providing researchers with a rapid approach for the future development of powerful and efficient pharmaceutical compounds.
Collapse
|
25
|
Qian G, Zhang N, Fang H, Fang H. Editorial: Resolution and regeneration of inflammation in lung and brain disorders. Front Immunol 2023; 14:1291087. [PMID: 37854604 PMCID: PMC10580061 DOI: 10.3389/fimmu.2023.1291087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023] Open
Affiliation(s)
- Guojun Qian
- Department of Anesthesiology, Minhang Hospital, Fudan University, Shanghai, China
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Nu Zhang
- Department of Anesthesiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Hongwei Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Fang
- Department of Anesthesiology, Minhang Hospital, Fudan University, Shanghai, China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Zhangjiang Institute, Shanghai, China
| |
Collapse
|
26
|
Shen Z, Wang Y, Wang G, Gu W, Zhao S, Hu X, Liu W, Cai Y, Ma Z, Gautam RK, Jia J, Wan CC, Yan T. Research progress of small-molecule drugs in targeting telomerase in human cancer and aging. Chem Biol Interact 2023; 382:110631. [PMID: 37451664 DOI: 10.1016/j.cbi.2023.110631] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/17/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Telomeres are unique structures located at the ends of linear chromosomes, responsible for stabilizing chromosomal structures. They are synthesized by telomerase, a reverse transcriptase ribonucleoprotein complex. Telomerase activity is generally absent in human somatic cells, except in stem cells and germ cells. Every time a cell divides, the telomere sequence is shortened, eventually leading to replicative senescence and cell apoptosis when the telomeres reach a critical limit. However, most human cancer cells exhibit increased telomerase activity, allowing them to divide continuously. The importance of telomerase in cancer and aging has made developing drugs targeting telomerase a focus of research. Such drugs can inhibit cancer cell growth and delay aging by enhancing telomerase activity in telomere-related syndromes or diseases. This review provides an overview of telomeres, telomerase, and their regulation in cancer and aging, and highlights small-molecule drugs targeting telomerase in these fields.
Collapse
Affiliation(s)
- Ziyi Shen
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yuanhui Wang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Guanzhen Wang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Wei Gu
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Shengchao Zhao
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Xiaomeng Hu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China; Huzhou Central Hospital, Huzhou, 313000, China
| | - Wei Liu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhihong Ma
- Huzhou Central Hospital, Huzhou, 313000, China
| | - Rupesh K Gautam
- Department of Pharmacology, Indore Institute of Pharmacy, Indore, 453331, India
| | - Jia Jia
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine&Nursing, Huzhou University, Huzhou, 313099, China.
| | - Chunpeng Craig Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine&Nursing, Huzhou University, Huzhou, 313099, China.
| |
Collapse
|
27
|
Jeon HJ, Kim C, Kim K, Lee SE. Piperlongumine treatment impacts heart and liver development and causes developmental delay in zebrafish (Danio rerio) embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114995. [PMID: 37167734 DOI: 10.1016/j.ecoenv.2023.114995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
Piperlongumine (PL) and piperine (PP) are alkaloids presented in long pepper (Piper longum), and they exhibit various biological activities, especially anti-cancer properties. With these regards, they are considered as future medicines with high potential. Even they are exposed to humans such a long time, their potential toxicities in the environment have not been studied. Therefore, their ecological toxicities were assessed using zebrafish embryos. PP showed low mortality and no abnormal phenotype up to 10 µM. However, PL exhibited strong acute toxicity at the concentration of 5-10 µM ranges, and abnormal development were frequently found in the range of 1-2.5 µM with pericardial and yolk sac edemas. In transgenic zebrafish embryos, PL induced an increase in the number of intersegmental vessels and delayed the early-stage development. PL treatment affected heart formation and heart rate. The presence of PL induced the expression of cytokines, inflammatory markers, and inflammasome in the embryos. The PL treatment changed the mRNA levels of the ER stress and apoptosis-related genes. In addition, ROS production was observed during early-stage development of PL-treated zebrafish embryos. These results indicate that developing PL as a medicine would require extremely meticulous strategies to prevent potential toxicity.
Collapse
Affiliation(s)
- Hwang-Ju Jeon
- Red River Research Station, Louisiana State University Agricultural Center, Bossier City, LA, USA
| | - Chaeeun Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyeongnam Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung-Eun Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
28
|
Shi C, Huang K, Soto J, Sankaran R, Kalia V, Onwumere O, Young M, Einbond L, Redenti S. Piperlongumine inhibits proliferation and oncogenic MYCN expression in chemoresistant metastatic retinoblastoma cells directly and through extracellular vesicles. Biomed Pharmacother 2023; 161:114554. [PMID: 36940616 PMCID: PMC10157982 DOI: 10.1016/j.biopha.2023.114554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
Ocular retinoblastoma malignancies, which develop into metastatic phenotypes, result in poor prognosis and survival for infant and child patients. To improve the prognosis of metastatic retinoblastoma, it is important to identify novel compounds with less toxic side effects and higher therapeutic efficacy compared to existing chemotherapeutics. Piperlongumine (PL), a neuroprotective, plant-derived compound has been explored for its anticancer activities both in vitro and in vivo. Here, we analyze the potential efficacy of PL for metastatic retinoblastoma cell treatment. Our data reveal that PL treatment significantly inhibits cell proliferation in metastatic retinoblastoma Y79 cells compared to the commonly used retinoblastoma chemotherapeutic drugs carboplatin, etoposide, and vincristine. PL treatment also significantly increases cell death compared to treatment with other chemotherapeutic drugs. PL-induced cell-death signaling was associated with significantly higher caspase 3/7 activities and greater loss of mitochondrial membrane potential. PL was also internalized into Y79 cells with an estimated concentration of 0.310pM and expression analysis revealed reduced MYCN oncogene levels. We next examined extracellular vesicles derived from PL-treated Y79 cells. Extracellular vesicles in other cancers are pro-oncogenic, mediating systemic toxicities via the encapsulation of chemotherapeutic drugs. Within metastatic Y79 EV samples, an estimated PL concentration of 0.026pM was detected. PL treatment significantly downregulated Y79 EV cargo of the oncogene MYCN transcript. Interestingly, non-PL-treated Y79 cells incubated with EVs from PL-treated cells exhibited significantly reduced cell growth. These findings indicate that in metastatic Y79 cells, PL exhibits potent anti-proliferation effects and oncogene downregulation. Importantly, PL is also incorporated into extracellular vesicles released from treated metastatic cells with measurable anti-cancer effects on target cells at a distance from the site of primary treatment. The use of PL in the treatment of metastatic retinoblastoma may reduce primary tumor proliferation and inhibit metastatic cancer activity systemically via extracellular vesicle circulation.
Collapse
Affiliation(s)
- Cui Shi
- Lehman College, the City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; Biochemistry Doctoral Program, The Graduate School, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Kunhui Huang
- Lehman College, the City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; Biochemistry Doctoral Program, The Graduate School, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - John Soto
- Lehman College, the City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA
| | - Renuka Sankaran
- Lehman College, the City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; Biochemistry Doctoral Program, The Graduate School, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Vrinda Kalia
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Onyekwere Onwumere
- Lehman College, the City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; Biology Doctoral Program, The Graduate School of the City University of New York, 365 5th Avenue, New York, NY 10016, USA
| | - Michael Young
- The Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Linda Einbond
- Lehman College, the City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA
| | - Stephen Redenti
- Lehman College, the City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; Biochemistry Doctoral Program, The Graduate School, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA; Biology Doctoral Program, The Graduate School of the City University of New York, 365 5th Avenue, New York, NY 10016, USA.
| |
Collapse
|
29
|
Zhu M, Peng L, Huo S, Peng D, Gou J, Shi W, Tao J, Jiang T, Jiang Y, Wang Q, Huang B, Men L, Li S, Lv J, Lin L. STAT3 signaling promotes cardiac injury by upregulating NCOA4-mediated ferritinophagy and ferroptosis in high-fat-diet fed mice. Free Radic Biol Med 2023; 201:111-125. [PMID: 36940731 DOI: 10.1016/j.freeradbiomed.2023.03.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/22/2023]
Abstract
High-fat diet (HFD) intake provokes obesity and cardiac anomalies. Recent studies have found that ferroptosis plays a role in HFD-induced cardiac injury, but the underlying mechanism is largely unclear. Ferritinophagy is an important part of ferroptosis that is regulated by nuclear receptor coactivator 4 (NCOA4). However, the relationship between ferritinophagy and HFD-induced cardiac damage has not been explored. In this study, we found that oleic acid/palmitic acid (OA/PA) increased the level of ferroptotic events including iron and ROS accumulation, upregulation of PTGS2 mRNA and protein levels, reduced SOD and GSH levels, and significant mitochondrial damage in H9C2 cells, which could be reversed by the ferroptosis inhibitor ferrostatin-1 (Fer-1). Intriguingly, we found that the autophagy inhibitor 3-methyladenine mitigated OA/PA-induced ferritin downregulation, iron overload and ferroptosis. OA/PA increased the protein level of NCOA4. Knockdown of NCOA4 by SiRNA partly reversed the reduction in ferritin, mitigated iron overload and lipid peroxidation, and subsequently alleviated OA/PA-induced cell death, indicating that NCOA4-mediated ferritinophagy was required for OA/PA-induced ferroptosis. Furthermore, we demonstrated that NCOA4 was regulated by IL-6/STAT3 signaling. Inhibition or knockdown of STAT3 effectively reduced NCOA4 levels to protect H9C2 cells from ferritinophagy-mediated ferroptosis, whereas STAT3 overexpression by plasmid appeared to increase NCOA4 expression and contribute to classical ferroptotic events. Consistently, phosphorylated STAT3 upregulation, ferritinophagy activation, and ferroptosis induction also occurred in HFD-fed mice and were responsible for HFD-induced cardiac injury. In addition, we found evidence that piperlongumine, a natural compound, effectively reduced phosphorylated STAT3 levels to protect cardiomyocytes from ferritinophagy-mediated ferroptosis both in vitro and in vivo. Based on these findings, we concluded that ferritinophagy-mediated ferroptosis was one of the critical mechanisms contributing to HFD-induced cardiac injury. The STAT3/NCOA4/FTH1 axis might be a novel therapeutic target for the treatment of HFD-induced cardiac injury.
Collapse
Affiliation(s)
- Mengying Zhu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lulu Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengqi Huo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dewei Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Gou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Shi
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingwen Tao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Jiang
- Division of Geriatrics, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingyu Huang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lintong Men
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
30
|
Goswami MJ, Dutta U, Seema T, Bharali SJ, Yanka H, Tag H, Bharali P, Kakati D. Antioxidant and Antidiabetic Properties of Extracts from Three Underutilized Food Plants of North East India. Chem Biodivers 2023; 20:e202200718. [PMID: 36562215 DOI: 10.1002/cbdv.202200718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Three underutilized leafy vegetables Sarcochlamys pulcherrima (Roxb.) Gaudich (SP), Ipomoea aquatica Forssk. (IA) and Zanthoxylum rhetsa (Roxb.) DC (ZR) were extracted with different solvents viz. 95 % ethyl alcohol, methanol and hot water. The extracts were evaluated for their antioxidant potential via DPPH, ABTS and FRAP assay along with electroanalytical studies using cyclic voltammetry. The antidiabetic potential was determined by recording their α-amylase and α-glucosidase inhibitory assay. The total phenolic content (TPC), total flavonoid content (TFC) and the liquid chromatography-mass spectrometry (LC/MS) based phytochemical profiles of the extracts were also determined. All three extracts of SP exhibited significant antioxidant capacity. The antidiabetic potential of the IA and ZR extracts was found to be higher than or at par with that of standard acarbose. LC/MS studies reveal the presence of hitherto reported antioxidant and antidiabetic compounds like gamma-aminobutyric acid, cinnamic acid, caffeic acid, α-viniferin, piperlonguminine, niacin, kaempferol, etc., in the extracts.
Collapse
Affiliation(s)
- Manab Jyoti Goswami
- Department of Chemistry, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh, 791112, India
| | - Utpal Dutta
- Department of Chemistry, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh, 791112, India
| | - Tage Seema
- Department of Chemistry, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh, 791112, India
| | - Sourav Jyoti Bharali
- Department of Chemistry, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh, 791112, India.,Rajiv Gandhi Institute of Petroleum Technology (AEI), Sibasagar, Assam, 785697, India
| | - Hage Yanka
- Department of Botany, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh, 791112, India
| | - Hui Tag
- Department of Botany, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh, 791112, India
| | - Pankaj Bharali
- Center for Infectious Diseases, CSIR North East Institute of Science & Technology, Jorhat, Assam, 785006, India.,Academy of Scientific and Innovative Research (AcSIR), Gjaziabad, India
| | - Dwipen Kakati
- Department of Chemistry, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh, 791112, India
| |
Collapse
|
31
|
Lan X, Hu M, Jiang L, Wang J, Meng Y, Chen X, Liu A, Ding W, Zhang H, Zhou H, Liu B, Peng G, Liao S, Chen X, Liu J, Shi X. Piperlongumine overcomes imatinib resistance by inducing proteasome inhibition in chronic myelogenous leukemia cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115815. [PMID: 36220508 DOI: 10.1016/j.jep.2022.115815] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Piper longum L., an herbal medicine used in India and other Asian countries, is prescribed routinely for a range of diseases, including tumor. Piperlongumine, a natural product isolated from Piper longum L., has received widespread attention due to its various pharmacological activities, such as anti-inflammatory, antimicrobial, and antitumor effects. AIM OF THE STUDY Chronic myelogenous leukemia (CML) is a hematopoietic disease caused by Bcr-Abl fusion gene, with an incidence of 15% in adult leukemias. Targeting Bcr-Abl by imatinib provides a successful treatment approach for CML. However, imatinib resistance is an inevitable issue for CML treatment. In particular, T315I mutant is the most stubborn of the Bcr-Abl point mutants associated with imatinib resistance. Therefore, it is urgent to find an alternative approach to conquer imatinib resistance. This study investigated the role of a natural product piperlongumine in overcoming imatinib resistance in CML. MATERIALS AND METHODS Cell viability and apoptosis were evaluated by MTS assay and Annexin V/propidium iodide counterstaining assay, respectively. Levels of intracellular signaling proteins were assessed by Western blots. Mitochondrial membrane potential was reflected by the fluorescence intensity of rhodamine-123. The function of proteasome was detected using 20S proteasomal activity assay, proteasomal deubiquitinase activity assay, and deubiquitinase active-site-directed labeling. The antitumor effects of piperlongumine were assessed with mice xenografts. RESULTS We demonstrate that (i) Piperlongumine inhibits proteasome function by targeting 20S proteasomal peptidases and 19S proteasomal deubiquitinases (USP14 and UCHL5) in Bcr-Abl-WT and Bcr-Abl-T315I CML cells; (ii) Piperlongumine inhibits the cell viability of CML cell lines and primary CML cells; (iii) Proteasome inhibition by piperlongumine leads to cell apoptosis and downregulation of Bcr-Abl; (iv) Piperlongumine suppresses the tumor growth of CML xenografts. CONCLUSIONS These results support that blockade of proteasome activity by piperlongumine provides a new therapeutic strategy for treating imatinib-resistant CML.
Collapse
Affiliation(s)
- Xiaoying Lan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510120, China; Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Min Hu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510120, China
| | - Liling Jiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510120, China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511500, China
| | - Jiamin Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510120, China
| | - Yi Meng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510120, China
| | - Xinmei Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510120, China
| | - Aochu Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510120, China
| | - Wa Ding
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510120, China
| | - Haichuan Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510120, China
| | - Huan Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510120, China
| | - Bingyuan Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510120, China
| | - Guanjie Peng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510120, China
| | - Siyan Liao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510120, China
| | - Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510120, China.
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510120, China.
| | - Xianping Shi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
32
|
Dong L, He J, Luo L, Wang K. Targeting the Interplay of Autophagy and ROS for Cancer Therapy: An Updated Overview on Phytochemicals. Pharmaceuticals (Basel) 2023; 16:ph16010092. [PMID: 36678588 PMCID: PMC9865312 DOI: 10.3390/ph16010092] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Autophagy is an evolutionarily conserved self-degradation system that recycles cellular components and damaged organelles, which is critical for the maintenance of cellular homeostasis. Intracellular reactive oxygen species (ROS) are short-lived molecules containing unpaired electrons that are formed by the partial reduction of molecular oxygen. It is widely known that autophagy and ROS can regulate each other to influence the progression of cancer. Recently, due to the wide potent anti-cancer effects with minimal side effects, phytochemicals, especially those that can modulate ROS and autophagy, have attracted great interest of researchers. In this review, we afford an overview of the complex regulatory relationship between autophagy and ROS in cancer, with an emphasis on phytochemicals that regulate ROS and autophagy for cancer therapy. We also discuss the effects of ROS/autophagy inhibitors on the anti-cancer effects of phytochemicals, and the challenges associated with harnessing the regulation potential on ROS and autophagy of phytochemicals for cancer therapy.
Collapse
Affiliation(s)
- Lixia Dong
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jingqiu He
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
- Correspondence: (L.L.); (K.W.)
| | - Kui Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
- Correspondence: (L.L.); (K.W.)
| |
Collapse
|
33
|
He X, Li M, Ye Z, You X, Wang J, Xiao X, Zhu G, Wei J, Zha Y. Identification of Piperlongumine as Potent Inhibitor of Necroptosis. Drug Des Devel Ther 2023; 17:1387-1394. [PMID: 37188283 PMCID: PMC10178306 DOI: 10.2147/dddt.s397971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
Purpose Excessive necroptosis contributes to the pathogenesis of several inflammatory and neurodegenerative diseases. Here, using a high-throughput screening approach, we investigated the anti-necroptosis effects of piperlongumine, an alkaloid isolated from the long pepper plant, in vitro and in a mouse model of systemic inflammatory response syndrome (SIRS). Methods A natural compound library was screened for anti-necroptosis effects in cellular. The underlying mechanism of action of the top candidate piperlongumine was explored by quantifying the necroptosis marker phosphorylated receptor-interacting protein kinase 1 (p-RIPK1) by Western blotting. The anti-inflammatory effect of piperlongumine was assessed in a tumor necrosis factor α (TNFα)-induced SIRS model in mice. Results Among the compounds investigated, piperlongumine significantly rescued cell viability. The half maximal effective concentration (EC50) of piperlongumine for inhibiting necroptosis was 0.47 μM in HT-29 cells, 6.41 μM in FADD-deficient Jurkat cells, and 2.33 µM in CCRF-CEM cells, while the half maximal inhibitory concentration (IC50) was 95.4 µM in HT-29 cells, 93.02 µM in FADD-deficient Jurkat cells, and 161.1 µM in CCRF-CEM cells. Piperlongumine also significantly inhibited TNFα-induced intracellular RIPK1 Ser166 phosphorylation in cell lines and significantly prevented decreases in body temperature and improved survival in SIRS mice. Conclusion As a potent necroptosis inhibitor, piperlongumine prevents phosphorylation of RIPK1 at its activation residue Ser166. Piperlongumine thus potently inhibits necroptosis at concentrations safe enough for human cells in vitro and inhibits TNFα-induced SIRS in mice. Piperlongumine has potential clinical translational value for the treatment of the spectrum of diseases associated with necroptosis, including SIRS.
Collapse
Affiliation(s)
- Xiaoyan He
- Department of Neurology, Institute of Neural Regeneration and Repair, Hubei Clinical Medical Research Center for Rare Disease of Nervous System, The First Hospital of Yichang, Medical College of China Three Gorges University, Yichang, People’s Republic of China
| | - Min Li
- Department of Neurology, Institute of Neural Regeneration and Repair, Hubei Clinical Medical Research Center for Rare Disease of Nervous System, The First Hospital of Yichang, Medical College of China Three Gorges University, Yichang, People’s Republic of China
| | - Zhi Ye
- Department of Neurology, Institute of Neural Regeneration and Repair, Hubei Clinical Medical Research Center for Rare Disease of Nervous System, The First Hospital of Yichang, Medical College of China Three Gorges University, Yichang, People’s Republic of China
| | - Xiaoling You
- Department of Neurology, Institute of Neural Regeneration and Repair, Hubei Clinical Medical Research Center for Rare Disease of Nervous System, The First Hospital of Yichang, Medical College of China Three Gorges University, Yichang, People’s Republic of China
| | - Jia Wang
- Department of Neurology, Institute of Neural Regeneration and Repair, Hubei Clinical Medical Research Center for Rare Disease of Nervous System, The First Hospital of Yichang, Medical College of China Three Gorges University, Yichang, People’s Republic of China
| | - Xin Xiao
- Department of Neurology, Institute of Neural Regeneration and Repair, Hubei Clinical Medical Research Center for Rare Disease of Nervous System, The First Hospital of Yichang, Medical College of China Three Gorges University, Yichang, People’s Republic of China
| | - Guofeng Zhu
- Department of Neurology, Institute of Neural Regeneration and Repair, Hubei Clinical Medical Research Center for Rare Disease of Nervous System, The First Hospital of Yichang, Medical College of China Three Gorges University, Yichang, People’s Republic of China
| | - Jun Wei
- Department of Neurology, Institute of Neural Regeneration and Repair, Hubei Clinical Medical Research Center for Rare Disease of Nervous System, The First Hospital of Yichang, Medical College of China Three Gorges University, Yichang, People’s Republic of China
- Correspondence: Jun Wei; Yunhong Zha, Tel +86-15090922368; +86-13872662508, Email ;
| | - Yunhong Zha
- Department of Neurology, Institute of Neural Regeneration and Repair, Hubei Clinical Medical Research Center for Rare Disease of Nervous System, The First Hospital of Yichang, Medical College of China Three Gorges University, Yichang, People’s Republic of China
| |
Collapse
|
34
|
Qin J, Li H, Wang X, Zhang Y, Duan Y, Yao Y, Yang H, Sun M. Discovery of a novel piperlongumine analogue as a microtubule polymerization inhibitor with potent anti-angiogenic and anti-metastatic efficacy. Eur J Med Chem 2022; 243:114738. [PMID: 36162214 DOI: 10.1016/j.ejmech.2022.114738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/06/2022] [Accepted: 08/31/2022] [Indexed: 11/04/2022]
Abstract
In an effort to discover anticancer agents with simultaneous effects on tubulin and angiogenesis, we designed and synthesized two series of piperlongumie (PL) derivatives by replacing of phenyl group with a variety of benzoheterocycle (series II) or cyclizing the C7-C8 olefin into an aromatic heterocycle (series I). Most of the new compounds showed better antiproliferative activities against six cancer cell lines than the parent drug PL. Compound II-14b had the best cytotoxic profile of these two series in cancer cells, whilst being relatively low cytotoxicity against normal human cells and high potency against drug-resistant cells. It disrupted cellular microtubule networks and inhibited tubulin assembly with an IC50 value of 5.8 μM. Further studies elucidated that II-14b showed antitumor activities through multiple mechanisms, including the pruduction of abundant ROS, the dissipation of mitochondrial membrane potential, the accumulation of DNA double-strand breaks, and the induction of cell cycle in G2/M phase. More importantly, we have observed that it possesses potential anti-angiogenesis capabilities, including suppression of HUVECs cell migration, invasion, and endothelial tube formation in vitro and in vivo. In vivo assessment indicated that II-14b inhibits the growth and metastasis of MGC-803 xenograft tumour in zebrafish. These findings show that II-14b is a high-efficacy and non-toxic antitumor agent.
Collapse
Affiliation(s)
- Jinling Qin
- School of Pharmaceutical Sciences, And Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongliang Li
- School of Pharmaceutical Sciences, And Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xuan Wang
- School of Pharmaceutical Sciences, And Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yixin Zhang
- School of Pharmaceutical Sciences, And Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China
| | - Yongfang Yao
- School of Pharmaceutical Sciences, And Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hua Yang
- School of Pharmaceutical Sciences, And Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Moran Sun
- School of Pharmaceutical Sciences, And Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
35
|
Li P, Guo X, Liu T, Liu Q, Yang J, Liu G. Evaluation of Hepatoprotective Effects of Piperlongumine Derivative PL 1-3-Loaded Albumin Nanoparticles on Lipopolysaccharide/d-Galactosamine-Induced Acute Liver Injury in Mice. Mol Pharm 2022; 19:4576-4587. [PMID: 35971845 DOI: 10.1021/acs.molpharmaceut.2c00215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, piperlongumine (PL) having specific cytotoxicity has attracted considerable attention for anticancer activity. Through structural modification, the active derivative PL 1-3 shows potential anti-inflammatory activity and low cytotoxicity, but its water solubility is low. Here, PL 1-3-loaded bovine serum albumin nanoparticles (1-3 NPs) were prepared and characterized, which can improve the dissolution. 1-3 NPs exhibited effective hepatoprotective effects on lipopolysaccharide/d-galactosamine-induced acute liver injury of mice, which was similar to liver injury in clinical settings. 1-3 NPs treatment can inhibit inflammation, oxidative stress, and apoptosis via the downregulation of NF-κB signaling pathways, the activation of Nrf2/HO-1 signaling pathways, and the inhibition of expression of Bax and caspase 3 proteins. The above results demonstrated that PL 1-3-loaded bovine serum albumin nanoparticles possessed potential value in intervention of inflammation-based liver injury.
Collapse
Affiliation(s)
- Pengxiao Li
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252059, China
| | - Xiaoyuan Guo
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252059, China
| | - Ting Liu
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252059, China
| | - Qing Liu
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252059, China
| | - Jie Yang
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252059, China
| | - Guoyun Liu
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252059, China
| |
Collapse
|
36
|
Alexa-Stratulat T, Pavel-Tanasa M, Cianga VA, Antoniu S. Immune senescence in non-small cell lung cancer management: therapeutic relevance, biomarkers, and mitigating approaches. Expert Rev Anticancer Ther 2022; 22:1197-1210. [PMID: 36270650 DOI: 10.1080/14737140.2022.2139242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Lung cancer and mainly non-small cell lung cancer (NSCLC) still remain a prevalent malignancy worldwide despite sustained screening approaches. Furthermore, a significant proportion of the cases are diagnosed at advanced stages when conservative therapy is often unsuccessful. Cell senescence is an endogenous antitumor weapon but when it is upregulated exerts opposite activities favoring tumor metastasizing and poor response to therapy. However, little is known about this dangerous relationship between cell senescence and NSCLC outcome or on potential approaches to mitigate its unfavorable consequences. AREAS COVERED We discuss cell senescence focusing on immune senescence, its cell and humoral effectors (namely immune senescence associated secretory phenotype-iSASP), its impact on NSCLC outcome, and its biomarkers. Senotherapeutics as mitigating approaches are also considered based on the availability of experimental data pertinent to NSCLC. EXPERT OPINION Characterization of NSCLC subsets in which immune senescence is a risk factor for poor prognosis and poor therapeutic response might be very helpful in supporting the addition of senotherapeutics to conventional cancer therapy. This approach has the potential to improve disease outcome but more studies in this area are necessary.
Collapse
Affiliation(s)
- Teodora Alexa-Stratulat
- Department of Medicine III-Oncology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Mariana Pavel-Tanasa
- Department of Immunology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Vlad-Andrei Cianga
- Department of Hematology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Sabina Antoniu
- Department of Preventive Medicine and Interdisciplinarity, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
37
|
Li J, Cai Z, Li XW, Zhuang C. Natural Product-Inspired Targeted Protein Degraders: Advances and Perspectives. J Med Chem 2022; 65:13533-13560. [PMID: 36205223 DOI: 10.1021/acs.jmedchem.2c01223] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Targeted protein degradation (TPD), a promising therapeutic strategy in drug discovery, has great potential to regulate the endogenous degradation of undruggable targets with small molecules. As vital resources that provide diverse structural templates for drug discovery, natural products (NPs) are a rising and robust arsenal for the development of therapeutic TPD. The first proof-of-concept study of proteolysis-targeting chimeras (PROTACs) was a natural polyketide ovalicin-derived degrader; since then, NPs have shown great potential to promote TPD technology. The use of NP-inspired targeted protein degraders has been confirmed to be a promising strategy to treat many human conditions, including cancer, inflammation, and nonalcoholic fatty liver disease. Nevertheless, the development of NP-inspired degraders is challenging, and the field is currently in its infancy. In this review, we summarize the bioactivities and mechanisms of NP-inspired degraders and discuss the associated challenges and future opportunities in this field.
Collapse
Affiliation(s)
- Jiao Li
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhenyu Cai
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xu-Wen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Chunlin Zhuang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
38
|
Bajalia EM, Azzouz FB, Chism DA, Giansiracusa DM, Wong CG, Plaskett KN, Bishayee A. Phytochemicals for the Prevention and Treatment of Renal Cell Carcinoma: Preclinical and Clinical Evidence and Molecular Mechanisms. Cancers (Basel) 2022; 14:3278. [PMID: 35805049 PMCID: PMC9265746 DOI: 10.3390/cancers14133278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Renal cell carcinoma (RCC) is associated with about 90% of renal malignancies, and its incidence is increasing globally. Plant-derived compounds have gained significant attention in the scientific community for their preventative and therapeutic effects on cancer. To evaluate the anticancer potential of phytocompounds for RCC, we compiled a comprehensive and systematic review of the available literature. Our work was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. The literature search was performed using scholarly databases such as PubMed, Scopus, and ScienceDirect and keywords such as renal cell carcinoma, phytochemicals, cancer, tumor, proliferation, apoptosis, prevention, treatment, in vitro, in vivo, and clinical studies. Based on in vitro results, various phytochemicals, such as phenolics, terpenoids, alkaloids, and sulfur-containing compounds, suppressed cell viability, proliferation and growth, showed cytotoxic activity, inhibited invasion and migration, and enhanced the efficacy of chemotherapeutic drugs in RCC. In various animal tumor models, phytochemicals suppressed renal tumor growth, reduced tumor size, and hindered angiogenesis and metastasis. The relevant antineoplastic mechanisms involved upregulation of caspases, reduction in cyclin activity, induction of cell cycle arrest and apoptosis via modulation of a plethora of cell signaling pathways. Clinical studies demonstrated a reduced risk for the development of kidney cancer and enhancement of the efficacy of chemotherapeutic drugs. Both preclinical and clinical studies displayed significant promise of utilizing phytochemicals for the prevention and treatment of RCC. Further research, confirming the mechanisms and regulatory pathways, along with randomized controlled trials, are needed to establish the use of phytochemicals in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (E.M.B.); (F.B.A.); (D.A.C.); (D.M.G.); (C.G.W.); (K.N.P.)
| |
Collapse
|
39
|
Xu Z, Chu M. Advances in Immunosuppressive Agents Based on Signal Pathway. Front Pharmacol 2022; 13:917162. [PMID: 35694243 PMCID: PMC9178660 DOI: 10.3389/fphar.2022.917162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
Immune abnormality involves in various diseases, such as infection, allergic diseases, autoimmune diseases, as well as transplantation. Several signal pathways have been demonstrated to play a central role in the immune response, including JAK/STAT, NF-κB, PI3K/AKT-mTOR, MAPK, and Keap1/Nrf2/ARE pathway, in which multiple targets have been used to develop immunosuppressive agents. In recent years, varieties of immunosuppressive agents have been approved for clinical use, such as the JAK inhibitor tofacitinib and the mTOR inhibitor everolimus, which have shown good therapeutic effects. Additionally, many immunosuppressive agents are still in clinical trials or preclinical studies. In this review, we classified the immunosuppressive agents according to the immunopharmacological mechanisms, and summarized the phase of immunosuppressive agents.
Collapse
Affiliation(s)
- Zhiqing Xu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Pharmacology, Jilin University, Changchun, China
| | - Ming Chu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
40
|
Qian J, Xu Z, Zhu P, Meng C, Liu Y, Shan W, He A, Gu Y, Ran F, Zhang Y, Ling Y. A Derivative of Piperlongumine and Ligustrazine as a Potential Thioredoxin Reductase Inhibitor in Drug-Resistant Hepatocellular Carcinoma. JOURNAL OF NATURAL PRODUCTS 2021; 84:3161-3168. [PMID: 34806369 DOI: 10.1021/acs.jnatprod.1c00618] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The natural products piperlongumine (1) and ligustrazine (2) have been reported to exert antiproliferative effects against various types of cancer cells by up-regulating the level of reactive oxidative species (ROS). However, the moderate activities of 1 and 2 limit their application. To improve their potential antitumor activity, novel piperlongumine/ligustrazine derivatives were designed and prepared, and their potential pharmacological effects were determined in vitro and in vivo. Among the derivatives obtained, 11 exerted more prominent inhibitory activities against proliferation of drug-sensitive/-resistant cancer cells with lower IC50 values than 1. Particularly, the IC50 value of 11 against drug-resistant Bel-7402/5-FU cells was 0.9 μM, which was about 9-fold better than that of 1 (IC50 value of 8.4 μM). Mechanistic studies showed that 11 demonstrated thioredoxin reductase (TrxR) inhibitory activity, increase of ROS levels, decrease of mitochondrial transmembrane potential levels, and occurrence of DNA damage and autophagy, in a dose-dependent manner, via regulation of DNA damage protein H2AX and autophagy-associated proteins LC3, beclin-1, and p62 in drug-resistant Bel-7402/5-FU cells. Finally, compound 11 at 5 mg/kg displayed potent antitumor activity in vivo with tumor suppression of 76% (w/w). Taken together, compound 11 may represent a promising candidate drug for the chemotherapy of drug-resistant hepatocellular carcinoma and warrant more intensive study.
Collapse
Affiliation(s)
- Jianqiang Qian
- Medical College, Nantong University, Nantong 226001, People's Republic of China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, People's Republic of China
| | - Zhongyuan Xu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, People's Republic of China
| | - Peng Zhu
- Medical College, Nantong University, Nantong 226001, People's Republic of China
| | - Chi Meng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, People's Republic of China
| | - Yun Liu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, People's Republic of China
| | - Wenpei Shan
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, People's Republic of China
| | - Ang He
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, People's Republic of China
| | - Yipeng Gu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, People's Republic of China
| | - Fansheng Ran
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, People's Republic of China
| | - Yanan Zhang
- Medical College, Nantong University, Nantong 226001, People's Republic of China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, People's Republic of China
| | - Yong Ling
- Medical College, Nantong University, Nantong 226001, People's Republic of China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, People's Republic of China
| |
Collapse
|