1
|
Yue H, Li J, Wu L, Wang F, Li Z, Jiang S, Zhao X. Tentative characterization of three novel coumaroyl glucoside β-carboline alkaloids and discovery of hypoglycemic compounds from Nitraria tangutorum Bobr. Fruit. Food Chem 2025; 481:143923. [PMID: 40158372 DOI: 10.1016/j.foodchem.2025.143923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/06/2025] [Accepted: 03/16/2025] [Indexed: 04/02/2025]
Abstract
Nitraria tangutorum Bobr. (NTB), mainly distributed in the Qaidam Basin, had high medicinal and ecological value, and research on its chemical components and bioactivities is necessary. In this study, three novel β-carboline alkaloids tangutorid LI-III were isolated and tentatively identified from NTB fruit, which represent the first example of coumaroyl glucoside-derived β-carboline alkaloids isolated from natural products. The possible biogenetic pathways and MS/MS fragmentation forms of tangutorid LI-III were also tentatively speculated, which provide theoretical basis for rapid identification of this type of components. Hypoglycemic activity research of isolated compounds confirmed that depsides (dihydroxybenzoyl-trihydroxyphenylmethylacetate, 14) not only had strong sucrase and maltase inhibitory activities, but also exhibited noteworthy insulin resistance (IR) ameliorative effects. In addition, cyclic dipeptide (cyclo (tyr-tyr), 10) was also demonstrated to have significant IR improvement effect. This study enriched the structural types of β-carboline alkaloids in fruits and expanded the biological activity of cyclic dipeptide and depsides.
Collapse
Affiliation(s)
- Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China.
| | - Jiaxin Li
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China; University of Chinese Academy of Sciences, Beijing, China
| | - Li Wu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fei Wang
- Qinghai University, Qinghai, China
| | - Zhen Li
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China; University of Chinese Academy of Sciences, Beijing, China
| | - Sirong Jiang
- College of Tobacco Science, Yunnan Agricultural University, Yunnan, China.
| | - Xiaohui Zhao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China.
| |
Collapse
|
2
|
Gao J, Li X, Liu X, Mei Z, Dan M, Zhan W, Zheng S, Zhu R. Synthesis and structure-activity relationship of β-carboline derivatives with antifungal activity. Nat Prod Res 2025:1-9. [PMID: 40359503 DOI: 10.1080/14786419.2025.2502853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 04/16/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025]
Abstract
To search for and screen out effective antifungal lead compounds applicable to agriculture, a total of 21 tetrahydro-β-carboline derivatives were designed, synthesised, and evaluated for their antifungal activity. Based on biological studies, numerous compounds demonstrate notable antifungal properties in vitro. Specifically, compounds a6 and a20 showed higher efficacy against Sclerotinia sclerotiorum compared to carbendazim, with EC50 values of 16.43 mg/L and 12.72 mg/L, respectively. Additionally, compound a16 exhibited exceptional antifungal activity against both S. sclerotiorum and Botrytis cinerea, achieving identical EC50 values of 12.71 mg/L for both pathogens. The results of this study will give reference for the additional design and structural optimisation of β-carboalkaloids as possible agrochemical lead compounds for plant disease control.
Collapse
Affiliation(s)
- Jie Gao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xiaohan Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xinye Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhiyang Mei
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Mingxia Dan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Wei Zhan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Shaojun Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Rui Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| |
Collapse
|
3
|
Thottasseri AA, Rajendran V, Ramesh D, Tom AA, Thomas RR, Ray S, Gopan G, Mani M, Kannan T. Targeting Blood-Stage Malaria: Design, Synthesis, Characterization, In Vitro, and In Silico Evaluation of Pyrrolidinodiazenyl Chalcones. Chem Biol Drug Des 2025; 105:e70081. [PMID: 40070234 DOI: 10.1111/cbdd.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/25/2025] [Accepted: 02/18/2025] [Indexed: 03/25/2025]
Abstract
Malaria is a pervasive and deadly threat to the global population, and the resources available to treat this disease are limited. There is widespread clinical resistance to the most commonly prescribed antimalarial drugs. To address this issue, we synthesized a range of 4'-pyrrolidinodiazenyl chalcones using a covalent bitherapy approach to study their potential antimalarial properties. We examined the structure-activity relationships of these compounds, which could explain their antimalarial activities. The in vitro blood stage antimalarial activity of the compounds was evaluated against the mixed-blood stage culture (ring, trophozoites and schizonts) of Plasmodium falciparum 3D7, and the 50% inhibitory concentrations (IC50s) ranged from 3.3 to 22.2 μg/mL after 48 h of exposure. Compounds 11, 19, and 22 displayed pronounced IC50 values of 7.6 μg/mL, 6.4 μg/mL, and 3.3 μg/mL, respectively. The in vitro cytotoxicity of the active compounds was evaluated on human-derived Mo7e cells and murine-derived BA/F3 cells. Compounds 11 and 19 were found to be noncytotoxic (> 40 μg/mL), whereas compound 22 displayed cytotoxicity at higher concentrations. Moreover, these compounds exerted negligible hemolytic effects on human RBCs at their active concentrations. Molecular docking of these compounds revealed good hydrophobic and hydrogen bonding interactions with the binding sites of Plasmodium falciparum-dihydrofolate reductase, providing a rationale for their antimalarial activity, which is consistent with the in vitro results.
Collapse
Affiliation(s)
| | - Vinoth Rajendran
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, India
| | - Deepthi Ramesh
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, India
| | - Anju Agnes Tom
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, India
| | - Roshiny Roy Thomas
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, India
| | - Sreetama Ray
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, India
| | - Gopika Gopan
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, India
| | - Maheswaran Mani
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, India
| | | |
Collapse
|
4
|
Mohd Azam NNSFN, Othman S, Choo YM. Antimalarial Drug Discovery from Natural and Synthetic Sources. Curr Med Chem 2025; 32:87-110. [PMID: 38818916 DOI: 10.2174/0109298673312727240527064833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
Malaria remains a significant global health threat despite extensive efforts aimed at its eradication. Numerous challenges persist in eliminating the disease, chief among them being the parasite's ability to mutate, resulting in drug resistance. The discovery of antimalarial drugs has relied on both phenotypic and target-based approaches. While phenotypic screening has identified promising candidates, target-based methods offer a more precise approach by leveraging chemically validated targets and computational tools. Analysis of Plasmodium spp . protein structures reveal druggable targets, offering opportunities for in silico screening. Combining compounds from natural and synthetic sources in a target-based approach accelerates the discovery of new antimalarial agents. This review explores previous breakthroughs in antimalarial drug discovery from natural products and synthetic origins, emphasizing their specific target proteins within Plasmodium species.
Collapse
Affiliation(s)
| | - Shatrah Othman
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Yeun-Mun Choo
- Department of Chemistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
5
|
Penava A, Marinović M, de Carvalho LP, Held J, Piantanida I, Saftić DP, Rajić Z, Perković I. Towards Novel Antiplasmodial Agents-Design, Synthesis and Antimalarial Activity of Second-Generation β-Carboline/Chloroquine Hybrids. Molecules 2024; 29:5991. [PMID: 39770079 PMCID: PMC11678116 DOI: 10.3390/molecules29245991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
As the resistance of Plasmodium to the existing antimalarials increases, there is a crucial need to expand the antimalarial drug pipeline. We recently identified potent antimalarial compounds, namely harmiquins, hybrids derived from the β-carboline alkaloid harmine and 4-amino-7-chloroquinoline, a key structural motif of chloroquine (CQ). To further explore the structure-activity relationship, we synthesised 13 novel hybrid compounds at the position N-9 of the β-carboline ring and evaluated their efficacy in vitro against Plasmodium falciparum 3D7 and Dd2 strains (CQ sensitive and multi-drug resistant, respectively). All compounds exhibit persistent antimalarial activity against both strains of P. falciparum. The most interesting derivatives had low nanomolar activity against both strains (IC50 (33) = 4.7 ± 1.3 nM against Pf3D7 and 6.5 ± 2.5 nM against PfDd2; IC50 (37) = 4.6 ± 0.6 nM against 3D7 and 10.5 ± 0.4 nM against Dd2). Resistance indices (RIs) ranged from 0.9 to 5.3 compared to CQ (RI = 14.4), highlighting their superior consistency in activity against both strains. The cytotoxicity screening performed on HepG2 revealed over 3 orders of magnitude higher IC50 for most of the compounds, with SIs from 711.0 to 8081.8. Spectroscopic studies explored the affinities of newly synthesised compounds for DNA, RNA, and HSA. Both tested hybrids, 34 and 39, were intrinsically fluorescent in an aqueous medium, characterised by remarkable Stokes shifts of emission maxima (Δλ = +103 and +93 nm for 34 and 39, respectively). Fluorimetric experiments revealed that compound 34, with its shorter and more flexible linker, exhibited at least an order of magnitude higher affinity toward ds-DNAs versus ds-RNA and two orders of magnitude higher affinity toward GC-DNAs compared to 39. The behaviour of the investigated compounds upon binding to HSA is very similar, showing a strong hypsochromic shift of the emission maximum (almost Δλ = -70 nm) and demonstrating their effectiveness as fluorimetric probes for distinguishing between DNA/RNA and proteins.
Collapse
Affiliation(s)
- Ana Penava
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia; (A.P.); (M.M.)
| | - Marina Marinović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia; (A.P.); (M.M.)
| | - Lais Pessanha de Carvalho
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074 Tübingen, Germany; (L.P.d.C.); (J.H.)
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074 Tübingen, Germany; (L.P.d.C.); (J.H.)
- Partner Site Tübingen, German Center for Infection Research (DZIF), 72074 Tübingen, Germany
| | - Ivo Piantanida
- Rudjer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (I.P.); (D.P.S.)
| | | | - Zrinka Rajić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia; (A.P.); (M.M.)
| | - Ivana Perković
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia; (A.P.); (M.M.)
| |
Collapse
|
6
|
Chen S, Chen X, Qiu D, Wei J, Zhang J, Guo L. Synthesis, pharmacological evaluation, and modeling of novel quaternary ammonium salts derived from β-carboline containing an imidazole moiety as angiogenesis inhibitors. Bioorg Med Chem 2024; 114:117946. [PMID: 39405602 DOI: 10.1016/j.bmc.2024.117946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/26/2024] [Accepted: 10/06/2024] [Indexed: 11/02/2024]
Abstract
In this study, a series of novel β-carboline condensed imidazolium derivatives (7a-7y) were designed and synthesized by incorporating imidazolium salt structures into β-carboline. The cytotoxicity of compounds 7a-7y was evaluated in various cancer cell lines, including lung cancer (A549), gastric cancer (BGC-823), mouse colon cancer (CT-26), liver cancer (Bel-7402), and breast cancer (MCF-7), using the MTT assay. Most compounds exhibited significant activity against one or more of the cancer cell lines. Notably, compounds 7 g, 7o, 7r, 7 s, 7u, 7v, 7x, and 7w showed the highest cytotoxic activity (IC50 < 2 μM) in the tested tumor cell lines. Compound 7x demonstrated cytotoxic activities of 1.3 ± 0.3 μM (for BGC-823), 2.4 ± 0.4 μM (against A549), 7.8 ± 0.9 μM (for Bel-7402), and 9.8 ± 1.4 μM (against CT-26). The chick chorioallantoic membrane assay revealed significant anti-angiogenic potential of compound 7x. Molecular imprinting studies suggested the anti-angiogenic effect of compound 7x might be attributed to inhibition of VEGFR2 kinase. Molecular docking and molecular dynamics further indicate that its activity may be primarily associated with the potential inhibition of VEGFR2. Our research outcomes have provided valuable lead compounds for the development of novel antitumor drugs and have offered beneficial insights for subsequent drug design and optimization.
Collapse
Affiliation(s)
- Shuang Chen
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, PR China
| | - Xiaofei Chen
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, PR China
| | - Dongping Qiu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, PR China
| | - Jiahao Wei
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, PR China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, PR China.
| | - Liang Guo
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, PR China.
| |
Collapse
|
7
|
Wu G, Wang W, Li F, Xu C, Zhou Y, Li Z, Liu B, Shao L, Chen D, Bai S, Wang Z. Design, Synthesis and Biological Activity Evaluation of β-Carboline Derivatives Containing Nitrogen Heterocycles. Molecules 2024; 29:5155. [PMID: 39519796 PMCID: PMC11547513 DOI: 10.3390/molecules29215155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
A series of β-carboline derivatives containing nitrogen heterocycles were designed and synthesized. All compounds were screened for their antitumor activity against four human tumor cell lines (A549, K562, PC-3, T47D). Notably, compound N-(4-(morpholinomethyl)phenyl)-2-((5-(1-(3,4,5-trimethoxyphenyl)-9H-pyrido[3,4-b]indol-3-yl)-1,3,4-oxadiazol-2-yl)thio)acetamide (8q) exhibited significant inhibitory activity against PC-3 cells with an IC50 value of 9.86 µM. Importantly, compound 8q effectively suppressed both the proliferation and migration of PC-3 cells. Mechanistic studies revealed that compound 8q induced cell apoptosis and caused the accumulation of reactive oxygen species (ROS), leading to cell cycle arrest in the G0/G1 phase in PC-3 cells.
Collapse
Affiliation(s)
- Guiyun Wu
- Guizhou Engineering Laboratory for Synthetic Drugs, College of Pharmacy, Guizhou University, Guiyang 550025, China; (G.W.); (F.L.); (D.C.)
| | - Wenhang Wang
- Guizhou Engineering Laboratory for Synthetic Drugs, College of Pharmacy, Guizhou University, Guiyang 550025, China; (G.W.); (F.L.); (D.C.)
| | - Fulian Li
- Guizhou Engineering Laboratory for Synthetic Drugs, College of Pharmacy, Guizhou University, Guiyang 550025, China; (G.W.); (F.L.); (D.C.)
| | - Chenlu Xu
- Guizhou Engineering Laboratory for Synthetic Drugs, College of Pharmacy, Guizhou University, Guiyang 550025, China; (G.W.); (F.L.); (D.C.)
| | - Yue Zhou
- Guizhou Engineering Laboratory for Synthetic Drugs, College of Pharmacy, Guizhou University, Guiyang 550025, China; (G.W.); (F.L.); (D.C.)
| | - Zhurui Li
- Guizhou Engineering Laboratory for Synthetic Drugs, College of Pharmacy, Guizhou University, Guiyang 550025, China; (G.W.); (F.L.); (D.C.)
| | - Bingqian Liu
- Guizhou Engineering Laboratory for Synthetic Drugs, College of Pharmacy, Guizhou University, Guiyang 550025, China; (G.W.); (F.L.); (D.C.)
| | - Lihui Shao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Danping Chen
- Guizhou Engineering Laboratory for Synthetic Drugs, College of Pharmacy, Guizhou University, Guiyang 550025, China; (G.W.); (F.L.); (D.C.)
| | - Song Bai
- Research Center for Green Chemistry and Ecological Environment Technology, Guizhou Industry Polytechnic College, Guiyang 550008, China
| | - Zhenchao Wang
- Guizhou Engineering Laboratory for Synthetic Drugs, College of Pharmacy, Guizhou University, Guiyang 550025, China; (G.W.); (F.L.); (D.C.)
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| |
Collapse
|
8
|
Sravanthi B, Himavathi G, Robert AR, Karunakar P, Kiran KS, Maddila S. Design, synthesis, computational molecular docking studies of novel heterocyclics bearing 1,2,4-triazole, 1,3,4-oxadiazole conjugates as potent antibacterial and antitubercular agents. J Biomol Struct Dyn 2024; 42:5376-5389. [PMID: 37340639 DOI: 10.1080/07391102.2023.2226743] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/11/2023] [Indexed: 06/22/2023]
Abstract
Herein, we report the synthesis, and characterization of a new series of 1,3,4-oxadiazole and 1,2,4-triazole derivatives based on azaindole acetamides and assigned as potential antibacterial and antitubercular substances. The structures of these compounds were established by 1H NMR, 13C NMR, and HRMS spectral analysis. In preliminary antibacterial studies, analogues 6b, 6d, and 6e were found to be most effective against S. aureus with MIC of 12.5, 6.25, and 12.5 μg/mL, whereas 8d displayed excellent activity against S. aureus, B. subtilis, E. coli bacterial strains with zones of inhibition 12.5, 25, and 12.5 μg/mL respectively. Particularly, the prepared scaffolds 8c, 8d, and 8e showed remarkable antifungal activity with MIC value 12.5, 12.5, and 6.25 μg/mL against A. flavus and 6d, 6c producing an increase in the activity against C. Albicans with zones of inhibition 12.5 and 12.5 μg/mL respectively. Also, through the antitubercular studies, we found that compounds 6e and 8b have a strong activity with M. tuberculosis H37Rv with MICs 3.26, and 6.48 μg/mL, respectively. The protein stability, fluctuations of APO-Protein, and protein-ligand complexes were investigated through Molecular Dynamics (MD) simulations studies using Desmond Maestro 11.3, and potential lead molecules were identified. Our findings were further confirmed using molecular docking, revealing that azaindole based ligand 6e, 6f, and 8a has strong hydrophobic Tyr179, Trp183, Ile177, Ile445, and H-bondings interactions Arg151 and Arg454 through molecular dynamics simulation studies, making it potential biological compound. These compounds were further evaluated for their ADMET and physicochemical properties by using SwissADME.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- B Sravanthi
- Department of Chemistry, GITAM School of Sciences, GITAM University, Visakhapatnam, India
- Department of Chemistry, Institute of Aeronautical Engineering, Hyderabad, India
| | - G Himavathi
- Department of Chemistry, GITAM School of Sciences, GITAM University, Visakhapatnam, India
| | - A R Robert
- Department of Chemistry, GITAM School of Sciences, GITAM University, Visakhapatnam, India
| | - Prashantha Karunakar
- Department of Biotechnology, Dayananda Sagar College of Engineering (Affiliated to Visvesvarava Technological University), Bangalore, India
| | - K S Kiran
- Department of Physics, Faculty of Engineering and Technology, Jain University, Bangalore, India
| | - S Maddila
- Department of Chemistry, GITAM School of Sciences, GITAM University, Visakhapatnam, India
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| |
Collapse
|
9
|
Bradley SA, Hansson FG, Lehka BJ, Rago D, Pinho P, Peng H, Adhikari KB, Haidar AK, Hansen LG, Volkova D, Holtz M, Muyo Abad S, Ma X, Koudounas K, Besseau S, Gautron N, Mélin C, Marc J, Birer Williams C, Courdavault V, Jensen ED, Keasling JD, Zhang J, Jensen MK. Yeast Platforms for Production and Screening of Bioactive Derivatives of Rauwolscine. ACS Synth Biol 2024; 13:1498-1512. [PMID: 38635307 DOI: 10.1021/acssynbio.4c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Monoterpene indole alkaloids (MIAs) make up a highly bioactive class of metabolites produced by a range of tropical and subtropical plants. The corynanthe-type MIAs are a stereochemically complex subclass with therapeutic potential against a large number of indications including cancer, psychotic disorders, and erectile dysfunction. Here, we report yeast-based cell factories capable of de novo production of corynanthe-type MIAs rauwolscine, yohimbine, tetrahydroalstonine, and corynanthine. From this, we demonstrate regioselective biosynthesis of 4 fluorinated derivatives of these compounds and de novo biosynthesis of 7-chlororauwolscine by coexpression of a halogenase with the biosynthetic pathway. Finally, we capitalize on the ability of these cell factories to produce derivatives of these bioactive scaffolds to establish a proof-of-principle drug discovery pipeline in which the corynanthe-type MIAs are screened for bioactivity on human drug targets, expressed in yeast. In doing so, we identify antagonistic and agonistic behavior against the human adrenergic G protein-coupled receptors ADRA2A and ADRA2B, and the serotonergic receptor 5HT4b, respectively. This study thus demonstrates a proto-drug discovery pipeline for bioactive plant-inspired small molecules based on one-pot biocatalysis of natural and new-to-nature corynanthe-type MIAs in yeast.
Collapse
Affiliation(s)
- Samuel A Bradley
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Frederik G Hansson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Beata J Lehka
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Daniela Rago
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Pedro Pinho
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Huadong Peng
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Khem B Adhikari
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Ahmad K Haidar
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Lea G Hansen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
- Biomia ApS, DK-2100 Copenhagen, Denmark
| | - Daria Volkova
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Maxence Holtz
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Sergi Muyo Abad
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Xin Ma
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Konstantinos Koudounas
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200 Tours, France
| | - Sébastien Besseau
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200 Tours, France
| | - Nicolas Gautron
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200 Tours, France
| | - Céline Mélin
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200 Tours, France
| | - Jillian Marc
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200 Tours, France
| | - Caroline Birer Williams
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200 Tours, France
| | - Vincent Courdavault
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200 Tours, France
| | - Emil D Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Jay D Keasling
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
- Joint BioEnergy Institute, Emeryville, California 94608,United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720,United States
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes of Advanced Technologies, Shenzhen 518055, China
| | - Jie Zhang
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
- Biomia ApS, DK-2100 Copenhagen, Denmark
| | - Michael K Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
- Biomia ApS, DK-2100 Copenhagen, Denmark
| |
Collapse
|
10
|
Pavić K, Poje G, Pessanha de Carvalho L, Tandarić T, Marinović M, Fontinha D, Held J, Prudêncio M, Piantanida I, Vianello R, Krošl Knežević I, Perković I, Rajić Z. Discovery of harmiprims, harmine-primaquine hybrids, as potent and selective anticancer and antimalarial compounds. Bioorg Med Chem 2024; 105:117734. [PMID: 38677112 DOI: 10.1016/j.bmc.2024.117734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Although cancer and malaria are not etiologically nor pathophysiologically connected, due to their similarities successful repurposing of antimalarial drugs for cancer and vice-versa is known and used in clinical settings and drug research and discovery. With the growing resistance of cancer cells and Plasmodium to the known drugs, there is an urgent need to discover new chemotypes and enrich anticancer and antimalarial drug portfolios. In this paper, we present the design and synthesis of harmiprims, hybrids composed of harmine, an alkaloid of the β-carboline type bearing anticancer and antiplasmodial activities, and primaquine, 8-aminoquinoline antimalarial drug with low antiproliferative activity, covalently bound via triazole or urea. Evaluation of their antiproliferative activities in vitro revealed that N-9 substituted triazole-type harmiprime was the most selective compound against MCF-7, whereas C1-substituted ureido-type hybrid was the most active compound against all cell lines tested. On the other hand, dimeric harmiprime was not toxic at all. Although spectrophotometric studies and thermal denaturation experiments indicated binding of harmiprims to the ds-DNA groove, cell localization showed that harmiprims do not enter cell nucleus nor mitochondria, thus no inhibition of DNA-related processes can be expected. Cell cycle analysis revealed that C1-substituted ureido-type hybrid induced a G1 arrest and reduced the number of cells in the S phase after 24 h, persisting at 48 h, albeit with a less significant increase in G1, possibly due to adaptive cellular responses. In contrast, N-9 substituted triazole-type harmiprime exhibited less pronounced effects on the cell cycle, particularly after 48 h, which is consistent with its moderate activity against the MCF-7 cell line. On the other hand, screening of their antiplasmodial activities against the erythrocytic, hepatic, and gametocytic stages of the Plasmodium life cycle showed that dimeric harmiprime exerts powerful triple-stage antiplasmodial activity, while computational analysis showed its binding within the ATP binding site of PfHsp90.
Collapse
Affiliation(s)
- Kristina Pavić
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia.
| | - Goran Poje
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia
| | | | - Tana Tandarić
- Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden; Rudjer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Marina Marinović
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Jana Held
- University of Tübingen, Institute of Tropical Medicine, Wilhelmstraße 27, 72074 Tübingen, Germany; German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Ivo Piantanida
- Rudjer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Robert Vianello
- Rudjer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | | | - Ivana Perković
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Zrinka Rajić
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia.
| |
Collapse
|
11
|
Bhattacharjee P, Sarkar P, Bhadra K. Evaluation of therapeutic role of harmaline: in vitro cytotoxicity targeting nucleic acids. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:519-533. [PMID: 37656039 DOI: 10.1080/10286020.2023.2251116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
Use of small molecules as valuable drugs against diseases is still an indefinable purpose due to the lack of in-detail knowledge regarding proper bio-target identification, specificity aspects, mode-mechanism of binding and proper in vitro study. Harmaline, an important beta-carboline alkaloid, shows effective anti-proliferative action against different types of human cancers and is also found to be a nucleic acid targeting natural molecule. This review sought to address the different signal pathways of apoptosis by harmaline in different cancer cell lines and simultaneously to characterize the structure activity aspects of the alkaloid with different motifs of nucleic acid to show its preference, biological efficacy and genotoxicity. The results open up new insights for the design and development of small molecule-based nucleic acid therapeutic agents.
Collapse
Affiliation(s)
| | - Paromita Sarkar
- Department of Zoology, University of Kalyani, Nadia, W. Bengal 741235, India
| | - Kakali Bhadra
- Department of Zoology, University of Kalyani, Nadia, W. Bengal 741235, India
| |
Collapse
|
12
|
Pavić K, Poje G, Carvalho LPD, Held J, Rajić Z. Synthesis, antiproliferative and antiplasmodial evaluation of new chloroquine and mefloquine-based harmiquins. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:537-558. [PMID: 38147482 DOI: 10.2478/acph-2023-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 12/28/2023]
Abstract
Here we present the synthesis and evaluation of the biological activity of new hybrid compounds, ureido-type (UT) harmiquins, based on chloroquine (CQ) or mefloquine (MQ) scaffolds and β-carboline alkaloid harmine against cancer cell lines and Plasmodium falciparum. The hybrids were prepared from the corresponding amines by 1,1'-carbonyldiimidazole (CDI)-mediated synthesis. In vitro evaluation of the biological activity of the title compounds revealed two hit compounds. Testing of the antiproliferative activity of the new UT harmiquins, and previously prepared triazole-(TT) and amide-type (AT) CQ-based harmiquins, against a panel of human cell lines, revealed TT harmiquine 16 as the most promising compound, as it showed pronounced and selective activity against the tumor cell line HepG2 (IC 50 = 5.48 ± 3.35 μmol L-1). Screening of the antiplasmodial activities of UT harmiquins against erythrocytic stages of the Plasmodium life cycle identified CQ-based UT harmiquine 12 as a novel antiplasmodial hit because it displayed low IC 50 values in the submicromolar range against CQ-sensitive and resistant strains (IC 50 0.06 ± 0.01, and 0.19 ± 0.02 μmol L-1, respectively), and exhibited high selectivity against Plasmodium, compared to mammalian cells (SI = 92).
Collapse
Affiliation(s)
- Kristina Pavić
- 1University of Zagreb Faculty of Pharmacy and Biochemistry Department of Medicinal Chemistry 10 000 Zagreb, Croatia
| | - Goran Poje
- 1University of Zagreb Faculty of Pharmacy and Biochemistry Department of Medicinal Chemistry 10 000 Zagreb, Croatia
| | | | - Jana Held
- 2University of Tübingen, Institute of Tropical Medicine, 72074, Tübingen Germany
- 3German Center for Infection Research (DZIF), 72074, Tübingen Germany
| | - Zrinka Rajić
- 1University of Zagreb Faculty of Pharmacy and Biochemistry Department of Medicinal Chemistry 10 000 Zagreb, Croatia
| |
Collapse
|
13
|
Abdelazim AH, Algarni MA, Almalki AH. Innovative spectrofluorometric method for determination of harmaline and harmine in different matrices. Sci Rep 2023; 13:19951. [PMID: 37968310 PMCID: PMC10652015 DOI: 10.1038/s41598-023-46041-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023] Open
Abstract
Harmaline and harmine are naturally occurring closely related β-carboline alkaloids found in Peganum and Banisteriopsis plants. They have historical significance in traditional practices due to their potential psychoactive and therapeutic properties. Herein, a highly sensitive spectrofluorometric method was developed for the quantifying of harmaline and harmine in diverse matrices, including pure forms, seed samples, and spiked plasma. The procedures lie in addressing the challenge of overlapping fluorescence spectra exhibited by harmaline and harmine through the incorporation of hydroxypropyl-β-cyclodextrin, altering their chemical properties and fluorescence characteristics. Synchronous fluorescence measurements coupled with first derivative mathematical technique make it possible to distinguish between the harmaline and harmine at 419 and 456 nm, respectively. The method effectiveness is demonstrated through spectral analysis, optimization of the measurement conditions, adopting validation parameters and application to the pure form, seed samples and spiked human plasma. This methodology facilitates accurate determination of these alkaloids over the concentration range of 10─200 ng/mL. Thus, the developed approach provides a robust mean for the precise determination of harmaline and harmine, contributing to analytical chemistry's ongoing efforts to address complex challenges in quantification across diverse matrices.
Collapse
Affiliation(s)
- Ahmed H Abdelazim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt.
| | - Majed A Algarni
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Atiah H Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
- Addiction and Neuroscience Research Unit, Health Science Campus, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| |
Collapse
|
14
|
Li XL, Sun Y, Yin Y, Zhan S, Wang C. A bacterial-like Pictet-Spenglerase drives the evolution of fungi to produce β-carboline glycosides together with separate genes. Proc Natl Acad Sci U S A 2023; 120:e2303327120. [PMID: 37467272 PMCID: PMC10372676 DOI: 10.1073/pnas.2303327120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
Diverse β-carboline (βC) alkaloids are produced by microbes, plants, and animals with myriad bioactivities and drug potentials. However, the biosynthetic mechanism of βCs remains largely elusive, especially regarding the hydroxyl and glucosyl modifications of βCs. Here, we report the presence of the bacterial-like Pictet-Spenglerase gene Fcs1 in the entomopathogenic Beauveria fungi that can catalyze the biosynthesis of the βC skeleton. The overexpression of Fcs1 in Beauveria bassiana led to the identification of six βC methyl glycosides, termed bassicarbosides (BCSs) A-F. We verified that the cytochrome P450 (CYP) genes adjacent to Fcs1 cannot oxidize βCs. Alternatively, the separated CYP684B2 family gene Fcs2 was identified to catalyze βC hydroxylation together with its cofactor gene Fcs3. The functional homologue of Fcs2 is only present in the Fcs1-containing fungi and highly similar to the Fcs1-connected yet nonfunctional CYP. Both evolved quicker than those from fungi without Fcs1 homologues. Finally, the paired methyl/glucosyl transferase genes were verified to mediate the production of BCSs from hydroxy-βCs. All these functionally verified genes are located on different chromosomes of Beauveria, which is in contrast to the typical content-clustered feature of fungal biosynthetic gene clusters (BGCs). We also found that the production of BCSs selectively contributed to fungal infection of different insect species. Our findings shed light on the biosynthetic mechanism of βC glycosides, including the identification of a βC hydroxylase. The results of this study also propose an evolving process of fungal BGC formation following the horizontal transfer of a bacterial gene to fungi.
Collapse
Affiliation(s)
- Xin-Lin Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| | - Yanlei Sun
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| | - Ying Yin
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Shuai Zhan
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
- School of Life Science and Technology,Shanghai Tech University, Shanghai201210, China
| |
Collapse
|
15
|
Design, synthesis and mechanism of action of novel 1,9-disubstituted β-carboline derivatives as antitumor agents. Biomed Pharmacother 2022; 153:113494. [DOI: 10.1016/j.biopha.2022.113494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022] Open
|
16
|
Poje G, Marinović M, Pavić K, Mioč M, Kralj M, de Carvalho LP, Held J, Perković I, Rajić Z. Harmicens, Novel Harmine and Ferrocene Hybrids: Design, Synthesis and Biological Activity. Int J Mol Sci 2022; 23:ijms23169315. [PMID: 36012590 PMCID: PMC9408872 DOI: 10.3390/ijms23169315] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer and malaria are both global health threats. Due to the increase in the resistance to the known drugs, research on new active substances is a priority. Here, we present the design, synthesis, and evaluation of the biological activity of harmicens, hybrids composed of covalently bound harmine/β-carboline and ferrocene scaffolds. Structural diversity was achieved by varying the type and length of the linker between the β-carboline ring and ferrocene, as well as its position on the β-carboline ring. Triazole-type harmicens were prepared using Cu(I)-catalyzed azide-alkyne cycloaddition, while the synthesis of amide-type harmicens was carried out by applying a standard coupling reaction. The results of in vitro biological assays showed that the harmicens exerted moderate antiplasmodial activity against the erythrocytic stage of P. falciparum (IC50 in submicromolar and low micromolar range) and significant and selective antiproliferative activity against the MCF-7 and HCT116 cell lines (IC50 in the single-digit micromolar range, SI > 5.9). Cell localization experiments showed different localizations of nonselective harmicene 36 and HCT116-selective compound 28, which clearly entered the nucleus. A cell cycle analysis revealed that selective harmicene 28 had already induced G1 cell cycle arrest after 24 h, followed by G2/M arrest with a concomitant drastic reduction in the percentage of cells in the S phase, whereas the effect of nonselective compound 36 on the cell cycle was much less pronounced, which agreed with their different localizations within the cell.
Collapse
Affiliation(s)
- Goran Poje
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia
| | - Marina Marinović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia
| | - Kristina Pavić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia
| | - Marija Mioč
- Laboratory of Experimental Therapy, Division of Molecular Medicine, Ruder Boškovic Institute, 10 000 Zagreb, Croatia
| | - Marijeta Kralj
- Laboratory of Experimental Therapy, Division of Molecular Medicine, Ruder Boškovic Institute, 10 000 Zagreb, Croatia
| | | | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, 72074 Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72074 Tübingen, Germany
| | - Ivana Perković
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia
| | - Zrinka Rajić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
17
|
Saadon KE, Taha NMH, Mahmoud NA, Elhagali GAM, Ragab A. Synthesis, characterization, and in vitro antibacterial activity of some new pyridinone and pyrazole derivatives with some in silico ADME and molecular modeling study. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02575-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractA new series of pyridine-2-one and pyrazole derivatives were designed and synthesized based on cyanoacrylamide derivatives containing 2,4-dichlro aniline and 6-methyl 2-amino pyridine as an aryl group. Condensation of cyanoacrylamide derivatives 3a–d with different active methylene (malononitrile, ethyl cyanoacetate cyanoacetamide, and ethyl acetoacetate) in the presence of piperidine as basic catalyst afforded the corresponding pyridinone derivatives 4a–c, 5, 9, and 13. Furthermore, the reaction of cyanoacrylamide derivatives 3a–d with bi-nucleophile as hydrazine hydrate and thiosemicarbazide afforded the corresponding pyrazole derivatives 14a,b and 16. The newly designed derivatives were confirmed and established based on the elemental analysis and spectra data (IR, 1H NMR, 13C NMR, and mass). The in vitro antibacterial activity was evaluated against four bacterial strains with weak to good antibacterial activity. Moreover, the results indicated that the most active derivatives 3a, 4a, 4b, 9, and 16 might lead to antibacterial agents, especially against B. subtilis and P. vulgaris. The DFT calculations were performed to estimate its geometric structure and electronic properties. In addition, the most active pyridinone and pyrazole derivatives were further evaluated for in silico physicochemical, drug-likeness, and toxicity prediction. These derivatives obeyed all Lipinski’s and Veber’s rules without any violation and displayed non-immunotoxin, non-mutagenic, and non-cytotoxic. Molecular docking simulation was performed inside the active site of Topoisomerase IV (PDB:3FV5). It displayed binding energy ranging from -14.97 kcal/mol to -18.86 kcal/mol with hydrogen bonding and arene–cation interaction. Therefore, these derivatives were suggested to be good antibacterial agents via topoisomerase IV inhibitor.
Graphical abstract
Collapse
|
18
|
Poje G, Pessanha de Carvalho L, Held J, Moita D, Prudêncio M, Perković I, Tandarić T, Vianello R, Rajić Z. Design and synthesis of harmiquins, harmine and chloroquine hybrids as potent antiplasmodial agents. Eur J Med Chem 2022; 238:114408. [DOI: 10.1016/j.ejmech.2022.114408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/07/2022] [Accepted: 04/20/2022] [Indexed: 01/12/2023]
|
19
|
Peeters L, Foubert K, Baldé MA, Tuenter E, Matheeussen A, Van Pelt N, Caljon G, Hermans N, Pieters L. Antiplasmodial activity of constituents and their metabolites after in vitro gastrointestinal biotransformation of a Nauclea pobeguinii extract. PHYTOCHEMISTRY 2022; 194:113029. [PMID: 34844038 DOI: 10.1016/j.phytochem.2021.113029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Nauclea pobeguinii is traditionally used for treatment of malaria. Previous studies on the plant extract and strictosamide, the putative active constituent, showed a profound in vivo activity of the extract but no in vitro activity of strictosamide. This might indicate that one or more compounds present in the extract, most likely alkaloids, act as prodrugs undergoing biotransformation after oral administration resulting in the active compounds. The phytochemical composition of a N. pobeguinii extract was characterized using UHPLC-UV-HRMS (Ultrahigh-Performance Liquid Chromatography-Ultraviolet-High Resolution Mass Spectrometry) data. An in vitro gastrointestinal model was used to simulate biotransformation of the extract allowing monitoring of the relative abundances of individual constituents over time on one hand, while antiplasmodial activity and cytotoxicity of the biotransformed extract could be evaluated on the other hand. A diversity of compounds was (tentatively) identified in the extract, mainly saponins and alkaloids, including 32 compounds that have not been reported before in N. pobeguinii. The automated data analysis workflow used for unbiased screening for metabolites showed that glycosylated compounds decreased in intensity over time. Alkaloids containing no sugar moieties, including angustine-type alkaloids, showed no gastrointestinal biotransformation. In vitro gastrointestinal biotransformation of strictosamide did not result in a major metabolite. Moreover, multivariate data analysis using Orthogonal Partial Least Square-Discriminant Analysis (OPLS-DA) showed no in vitro activity of strictosamide or its metabolites suggesting that other compounds or metabolites present in the extract are responsible for the antiplasmodial effect of the N. pobeguinii extract. The OPLS-DA proposes alkaloids with a β-carboline moiety as active principles, suggesting that antiplasmodial activity of N. pobeguinii derives from an additive or synergistic effect of multiple minor alkaloids and their metabolites present in the bark extract of N. pobeguinii.
Collapse
Affiliation(s)
- Laura Peeters
- Natural Products & Food Research and Analysis (NatuRA), University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| | - Kenn Foubert
- Natural Products & Food Research and Analysis (NatuRA), University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Mamadou Aliou Baldé
- Natural Products & Food Research and Analysis (NatuRA), University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Emmy Tuenter
- Natural Products & Food Research and Analysis (NatuRA), University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - An Matheeussen
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Natascha Van Pelt
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Nina Hermans
- Natural Products & Food Research and Analysis (NatuRA), University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| |
Collapse
|
20
|
Zhu S, Huo X, Ma Q, Chen W, Zhang J, Guo L. Design, Synthesis, and Antitumor Activity of β-Carboline-Benzimidazole Hybrids. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Sun XS, Diao XY, Dong XQ, Wang CJ. Base-promoted cascade β-F-elimination/electrocyclization/Diels–Alder/retro-Diels–Alder reaction: efficient access to δ-carboline derivatives. Chem Sci 2022; 13:10448-10454. [PMID: 36277643 PMCID: PMC9473522 DOI: 10.1039/d2sc03166c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/13/2022] [Indexed: 11/30/2022] Open
Abstract
A serendipitous and highly efficient approach for the construction of a variety of δ-carboline derivatives was developed through base-promoted cascade β-F-elimination/electrocyclization/Diels–Alder/retro-Diels–Alder reaction of N-2,2,2-trifluoroethylisatin ketoimine esters with alkynes in good to high yields with excellent regio-/chemoselectivity control. Moreover, a reasonable reaction pathway was proposed, which was in accordance with the prepared reaction intermediate and control experiment results. The δ-carboline product could be easily converted into a new chiral Py-box-type ligand through simple synthetic transformations. This salient strategy featured the advantages of metal-free conditions, excellent regio-/chemoselectivity, good to high yields, and outstanding substrate tolerance. Importantly, the potential application of these fascinating δ-carboline derivative products is well demonstrated in the recognition of ferric ions. A serendipitous and efficient approach to access various δ-carbolines was developed through base-promoted cascade β-F-elimination/electrocyclization/Diels–Alder/retro-Diels–Alder reaction in good to high yields with excellent regio/chemoselectivity.![]()
Collapse
Affiliation(s)
- Xi-Shang Sun
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Xin-Yu Diao
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Wuhan University, Wuhan, Hubei, 430072, P. R. China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
22
|
Dai JK, Dan WJ, Wan JB. Natural and synthetic β-carboline as a privileged antifungal scaffolds. Eur J Med Chem 2021; 229:114057. [PMID: 34954591 DOI: 10.1016/j.ejmech.2021.114057] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 01/04/2023]
Abstract
The discovery of antifungal agents with novel structure, broad-spectrum, low toxicity, and high efficiency has been the focus of medicinal chemists. Over the past decades, β-carboline scaffold has attracted extensive attention in the scientific community due to its potent and diverse biological activities with nine successfully marketed β-carboline-based drugs. In this review, we summarized the current states and advances in the antifungal activity of natural and synthetic β-carbolines. Additionally, the structure-activity relationships and their antifungal mechanisms targeting biofilm, cell wall, cell membrane, and fungal intracellular targets were also systematically discussed. In summary, β-carbolines have the great potential to develop new efficient scaffolds to combat fungal infections.
Collapse
Affiliation(s)
- Jiang-Kun Dai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China; College of Veterinary Medicine, Northwest A&F University, Shaanxi, China; School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Wen-Jia Dan
- School of Life Science and Technology, Weifang Medical University, Shandong, China.
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
23
|
A review of synthetic bioactive tetrahydro-β-carbolines: A medicinal chemistry perspective. Eur J Med Chem 2021; 225:113815. [PMID: 34479038 DOI: 10.1016/j.ejmech.2021.113815] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/22/2021] [Accepted: 08/29/2021] [Indexed: 12/21/2022]
Abstract
1, 2, 3, 4-Tetrahydro-β-carboline (THβC) scaffold is widespread in many natural products (NPs) and synthetic compounds which show a variety of pharmacological activities. In this article, we reviewed the design, structures and biological characteristics of reported synthetic THβC compounds, and structure and activity relationship (SAR) of them were also discussed. This work might provide a reference for subsequent drug development based on THβC.
Collapse
|