1
|
Ma C, Zhou X, Pan S, Liu L. AIM2 mediated neuron PANoptosis plays an important role in diabetes cognitive dysfunction. Behav Brain Res 2025; 491:115651. [PMID: 40404017 DOI: 10.1016/j.bbr.2025.115651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/19/2025] [Accepted: 05/20/2025] [Indexed: 05/24/2025]
Abstract
The increasing global aging population has led to a rise in diabetic cognitive dysfunction (DCD), a common complication of diabetes that significantly impacts the health of elderly individuals. Neuronal death is a key factor in cognitive impairment, with studies showing interactions between cellular pyroptosis, apoptosis, and necroptosis in the development of neurodegenerative disorders. This has led to the concept of PANoptosis, where these pathways work together to cause cell death. High glucose levels can induce neuronal damage and cognitive dysfunction in rats, leading to various forms of programmed cell death. It is hypothesized that high glucose can trigger neuronal PANoptosis, resulting in cognitive dysfunction. AIM2, an upstream regulator of PANoptosis, is closely associated with the pathogenesis of DCD. In DCD, dysregulated glucose metabolism induces the release of mitochondrial DNA (mtDNA), which acts as a ligand to activate the cell membrane-bound DNA sensor AIM2. Upon activation, AIM2 oligomerizes and recruits a caspase recruit domain (ASC), forming a complex that activates caspase-1. Caspase-1 activation subsequently triggers the production of pro-inflammatory cytokines, induces pyroptosis, and mediates apoptosis, necroptosis, and PANoptosis in neurons through signaling crosstalk. Understanding the pathophysiological mechanism of AIM2-mediated neuronal PANoptosis in DCD development can aid in early diagnosis and identify new therapeutic targets.
Collapse
Affiliation(s)
- Chengning Ma
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan 4120208, China
| | - Xiang Zhou
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan 4120208, China
| | - Siyang Pan
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan 4120208, China
| | - Lumei Liu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan 4120208, China.
| |
Collapse
|
2
|
Wu Q, Qi S, Kang Z, Bai X, Li Z, Cheng J, Dong X. PANoptosis in Sepsis: A Central Role and Emerging Therapeutic Target. J Inflamm Res 2025; 18:6245-6261. [PMID: 40386177 PMCID: PMC12085136 DOI: 10.2147/jir.s513367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 05/04/2025] [Indexed: 05/20/2025] Open
Abstract
The pathogenesis of sepsis is intricately linked to regulated cell death. As a novel form of regulated cell death, PANoptosis plays a critical role in driving the inflammatory response, impairing immune cell function, and contributing to multi-organ dysfunction in sepsis. This review explores the molecular mechanisms underlying PANoptosis and its involvement in sepsis. By activating multiple pathways, PANoptosis promotes the release of inflammatory cytokines, triggering a cytokine storm that disrupts immune cell homeostasis and exacerbates organ damage. Emerging therapeutic strategies targeting PANoptosis, including chemotherapeutic agents and herbal remedies, are showing potential for clinical application. The concept of targeting PANoptosis offers a promising avenue for developing innovative treatments for sepsis.
Collapse
Affiliation(s)
- Qiqi Wu
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Siyuan Qi
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhaofeng Kang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Xiangjun Bai
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhanfei Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jing Cheng
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Xijie Dong
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
3
|
Liu Y, Li Z, Wichers H, Bastiaan-Net S, Hoppenbrouwers T. rFIP-nha activates macrophages towards a pro-inflammatory phenotype via AIM2 inflammasome modulation. Front Cell Dev Biol 2025; 13:1533742. [PMID: 40356602 PMCID: PMC12066430 DOI: 10.3389/fcell.2025.1533742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
Fungal immunomodulatory proteins (FIPs) are small proteins from fungi with considerable immunomodulatory activity. FIP-nha (Nectria haematococca) contains two glycosylation sites at positions N5 and N39, and displays a high thermostability and notable anti-tumour activity. However, FIP-nha's immunomodulatory activity on macrophages and the associated mechanism remain unclear. In this study, three rFIP-nha glycan mutants (N5A, N39A, N5+39A) were recombinantly expressed in Pichia pastoris. To test the impact on FIP-nha's immunomodulatory activity, the phagocytotic activity, cytokine secretion, and gene expression of THP-1 macrophages were investigated. rFIP-nha and its mutants reduced macrophage phagocytosis, and induced IL-1β, IL-12 and IL-10 cytokine secretion significantly, indicating that the protein confers a pro-inflammatory behaviour on THP-1 macrophages. However, there were no obvious differences among the different glycan mutants, indicating that the observed activation mechanisms are likely glycosylation-independent. Furthermore, to study the immunomodulatory mechanism, four kinds of inflammasomes (NLRP1, NLRP3, NLRC4 and AIM2) were tested at transcriptional level. AIM2 was found to be 10-fold upregulated. Then, THP1-KO-ASC cells and AIM2 related inhibitors showed that IL-1β release induced by rFIP-nha is ASC signalling pathway dependent. Taken together, these findings suggest that rFIP-nha activates THP-1 macrophages in a pro-inflammatory way by activating the AIM2 inflammasome.
Collapse
Affiliation(s)
- Yusi Liu
- Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, Netherlands
- Laboratory of Food Chemistry, Wageningen University, Wageningen, Netherlands
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Zhen Li
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Harry Wichers
- Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, Netherlands
- Laboratory of Food Chemistry, Wageningen University, Wageningen, Netherlands
| | - Shanna Bastiaan-Net
- Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, Netherlands
| | - Tamara Hoppenbrouwers
- Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, Netherlands
- Laboratory of Food Quality and Design, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
4
|
Singh V, Ubaid S, Kashif M, Singh T, Singh G, Pahwa R, Singh A. Role of inflammasomes in cancer immunity: mechanisms and therapeutic potential. J Exp Clin Cancer Res 2025; 44:109. [PMID: 40155968 PMCID: PMC11954315 DOI: 10.1186/s13046-025-03366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/15/2025] [Indexed: 04/01/2025] Open
Abstract
Inflammasomes are multi-protein complexes that detect pathogenic and damage-associated molecular patterns, activating caspase-1, pyroptosis, and the maturation of pro-inflammatory cytokines such as IL-1β and IL-18Within the tumor microenvironment, inflammasomes like NLRP3 play critical roles in cancer initiation, promotion, and progression. Their activation influences the crosstalk between innate and adaptive immunity by modulating immune cell recruitment, cytokine secretion, and T-cell differentiation. While inflammasomes can contribute to tumor growth and metastasis through chronic inflammation, their components also present novel therapeutic targets. Several inhibitors targeting inflammasome components- such as sensor proteins (e.g., NLRP3, AIM2), adaptor proteins (e.g., ASC), caspase-1, and downstream cytokines- are being explored to modulate inflammasome activity. These therapeutic strategies aim to modulate inflammasome activity to enhance anti-tumor immune responses and improve clinical outcomes. Understanding the role of inflammasomes in cancer immunity is crucial for developing interventions that effectively bridge innate and adaptive immune responses for better therapeutic outcomes.
Collapse
Affiliation(s)
- Vivek Singh
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Saba Ubaid
- Department of Biochemistry, King George'S Medical University (KGMU), U.P, Lucknow, 226003, India
| | - Mohammad Kashif
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Tanvi Singh
- Department of Biochemistry, King George'S Medical University (KGMU), U.P, Lucknow, 226003, India
| | - Gaurav Singh
- Department of Biochemistry, King George'S Medical University (KGMU), U.P, Lucknow, 226003, India
| | - Roma Pahwa
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Singh
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Mosley SR, Chen A, Doell DNW, Choi S, Mowat C, Meier-Stephenson F, Meier-Stephenson V, Baker K. Cytosolic DNA composition is determined by genomic instability mechanism and regulates dendritic cell-mediated anti-tumor immunity. Cell Rep 2025; 44:115177. [PMID: 39864057 DOI: 10.1016/j.celrep.2024.115177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/10/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025] Open
Abstract
Patients with colorectal cancers (CRCs) that have microsatellite instability (MSI) (MSI CRCs) face a better prognosis than those with the more common chromosomal instability (CIN) subtype (CIN CRCs) due to improved T cell-mediated anti-tumor immune responses. Previous investigations identified the cytosolic DNA (cyDNA) sensor STING as necessary for chemokine-mediated T cell recruitment in MSI CRCs. Here, we find that cyDNA from MSI CRC cells is inherently more capable of inducing STING activation and improves cytotoxic T cell activation by dendritic cells (DCs). Sequencing indicates that MSI cyDNA is enriched in microsatellites, which, upon DC uptake, induce anti-tumor immunity in a manner consistent with clinical MSI CRCs. DNA-damaging therapies also modulate cyDNA stimulation capacity, with radiation inducing larger cyDNA sizes and increased mitochondrial DNA content. Identifying highly stimulatory endogenous cyDNAs such as those in MSI CRCs will allow for optimized development of DNA-based STING agonist therapies to improve the responses of CIN CRCs with CIN to immunotherapies.
Collapse
Affiliation(s)
- Shayla R Mosley
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
| | - Angie Chen
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - David N W Doell
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Siwon Choi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Courtney Mowat
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Felix Meier-Stephenson
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Vanessa Meier-Stephenson
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Kristi Baker
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
6
|
Zhang G, Wei H, Zhao A, Yan X, Zhang X, Gan J, Guo M, Wang J, Zhang F, Jiang Y, Liu X, Yang Z, Jiang X. Mitochondrial DNA leakage: underlying mechanisms and therapeutic implications in neurological disorders. J Neuroinflammation 2025; 22:34. [PMID: 39920753 PMCID: PMC11806845 DOI: 10.1186/s12974-025-03363-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
Mitochondrial dysfunction is a pivotal instigator of neuroinflammation, with mitochondrial DNA (mtDNA) leakage as a critical intermediary. This review delineates the intricate pathways leading to mtDNA release, which include membrane permeabilization, vesicular trafficking, disruption of homeostatic regulation, and abnormalities in mitochondrial dynamics. The escaped mtDNA activates cytosolic DNA sensors, especially cyclic gmp-amp synthase (cGAS) signalling and inflammasome, initiating neuroinflammatory cascades via pathways, exacerbating a spectrum of neurological pathologies. The therapeutic promise of targeting mtDNA leakage is discussed in detail, underscoring the necessity for a multifaceted strategy that encompasses the preservation of mtDNA homeostasis, prevention of membrane leakage, reestablishment of mitochondrial dynamics, and inhibition the activation of cytosolic DNA sensors. Advancing our understanding of the complex interplay between mtDNA leakage and neuroinflammation is imperative for developing precision therapeutic interventions for neurological disorders.
Collapse
Affiliation(s)
- Guangming Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Huayuan Wei
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Anliu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Xu Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Jie Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Fayan Zhang
- Heart Disease Department, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Yifang Jiang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xinxing Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Zhen Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, China.
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|
7
|
Kim JK, Sapkota A, Roh T, Jo EK. The intricate interactions between inflammasomes and bacterial pathogens: Roles, mechanisms, and therapeutic potentials. Pharmacol Ther 2025; 265:108756. [PMID: 39581503 DOI: 10.1016/j.pharmthera.2024.108756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/06/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Inflammasomes are intracellular multiprotein complexes that consist of a sensor, an adaptor, and a caspase enzyme to cleave interleukin (IL)-1β and IL-18 into their mature forms. In addition, caspase-1 and -11 activation results in the cleavage of gasdermin D to form pores, thereby inducing pyroptosis. Activation of the inflammasome and pyroptosis promotes host defense against pathogens, whereas dysregulation of the inflammasome can result in various pathologies. Inflammasomes exhibit versatile microbial signal detection, directly or indirectly, through cellular processes, such as ion fluctuations, reactive oxygen species generation, and the disruption of intracellular organelle function; however, bacteria have adaptive strategies to manipulate the inflammasome by altering microbe-associated molecular patterns, intercepting innate pathways with secreted effectors, and attenuating inflammatory and cell death responses. In this review, we summarize recent advances in the diverse roles of the inflammasome during bacterial infections and discuss how bacteria exploit inflammasome pathways to establish infections or persistence. In addition, we highlight the therapeutic potential of harnessing bacterial immune subversion strategies against acute and chronic bacterial infections. A more comprehensive understanding of the significance of inflammasomes in immunity and their intricate roles in the battle between bacterial pathogens and hosts will lead to the development of innovative strategies to address emerging threats posed by the expansion of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Asmita Sapkota
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Taylor Roh
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
8
|
Coll RC, Schroder K. Inflammasome components as new therapeutic targets in inflammatory disease. Nat Rev Immunol 2025; 25:22-41. [PMID: 39251813 DOI: 10.1038/s41577-024-01075-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/11/2024]
Abstract
Inflammation drives pathology in many human diseases for which there are no disease-modifying drugs. Inflammasomes are signalling platforms that can induce pathological inflammation and tissue damage, having potential as an exciting new class of drug targets. Small-molecule inhibitors of the NLRP3 inflammasome that are now in clinical trials have demonstrated proof of concept that inflammasomes are druggable, and so drug development programmes are now focusing on other key inflammasome molecules. In this Review, we describe the potential of inflammasome components as candidate drug targets and the novel inflammasome inhibitors that are being developed. We discuss how the signalling biology of inflammasomes offers mechanistic insights for therapeutic targeting. We also discuss the major scientific and technical challenges associated with drugging these molecules during preclinical development and clinical trials.
Collapse
Affiliation(s)
- Rebecca C Coll
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK.
| | - Kate Schroder
- Institute for Molecular Bioscience (IMB), The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
9
|
Song Y, Peng Y, Wang B, Zhou X, Cai Y, Chen H, Miao C. The roles of pyroptosis in the pathogenesis of autoimmune diseases. Life Sci 2024; 359:123232. [PMID: 39537097 DOI: 10.1016/j.lfs.2024.123232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/19/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The occurrence of autoimmune diseases is a result of the immune system's immune response against healthy components of the body. Pyroptosis is an innovative form of programmed cell death dependent on inflammatory caspases, leading to the release of cytokines. Excessive pyroptosis can lead to a sustained inflammatory response, which may aggravate the development of autoimmune diseases. In rheumatoid arthritis (RA), tumor necrosis factor (TNF) and NLRP3 enhance pyroptosis, exacerbating the disease. In systemic lupus erythematosus (SLE), the release of nuclear antigen promotes the development of SLE. In multiple sclerosis (MS), elevated active caspase-11 in primary astrocytes induces oligodendrocyte pyroptosis, advancing MS progression. This review outlines the mechanisms of pyroptosis in autoimmune diseases. Meanwhile, we elaborated the possible therapeutic targets from the perspective of pyroptosis. We conclude that pyroptosis is expected to be a therapeutic target for autoimmune diseases.
Collapse
Affiliation(s)
- Yingqiu Song
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yanhui Peng
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Bing Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xinyue Zhou
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yikang Cai
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Haiyong Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong.
| | - Chenggui Miao
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China; School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong; Institute of Prevention and Treatment of Rheumatoid Arthritis, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| |
Collapse
|
10
|
Mackay A, Velcicky J, Gommermann N, Mattes H, Janser P, Wright M, Dubois C, Brenneisen S, Ilic S, Vangrevelinghe E, Stiefl N, Boettcher A, Schoenboerner M, Vogelsanger M, Muller-Bentz S, Kamke M, Rubert J, Kauffmann M, Desrayaud S, Trunzer M, Srinivas H, Hinniger A, von Burg N, Beltz K, Dekker C, Farady CJ. Discovery of NP3-253, a Potent Brain Penetrant Inhibitor of the NLRP3 Inflammasome. J Med Chem 2024; 67:20780-20798. [PMID: 39574318 DOI: 10.1021/acs.jmedchem.4c02350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Activation of the NLRP3 inflammasome in response to danger signals is a key innate immune mechanism and results in the production of the pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) as well as pyroptotic cell death. Aberrant NLRP3 activation has been linked to many acute and chronic conditions ranging from atherosclerosis to Alzheimer's disease and cancer, and based on the clinical success of IL-1-targeting therapies, NLRP3 has emerged as an attractive therapeutic target. Herein we describe our discovery, characterization, and structure-based optimization of a pyridazine-based series of NLRP3 inhibitors initiating from an high-throughput screening campaign. The scaffold, exemplified by lead molecule NP3-253, has excellent potency and physicochemical and pharmacokinetic properties, including good brain penetration. The establishment of pharmacokinetic/pharmacodynamic relationships in the periphery and central nervous system in mechanistic models facilitates the use of NP3-253 as a tool to further interrogate the biology of NLRP3 in peripheral and neuroinflammatory models.
Collapse
Affiliation(s)
- Angela Mackay
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - Juraj Velcicky
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | | | - Henri Mattes
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - Philipp Janser
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - Michael Wright
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - Celine Dubois
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | | | - Slavica Ilic
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | | | | | | | | | | | | | - Marion Kamke
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - Joelle Rubert
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | | | | | - Markus Trunzer
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | | | | | | | - Karen Beltz
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - Carien Dekker
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | | |
Collapse
|
11
|
El-Sayed S, McMahon E, Musleh S, Freeman S, Brough D, Kasher PR, Bryce RA. Virtual screening-led design of inhibitor scaffolds for the NLRP3 inflammasome. Bioorg Chem 2024; 153:107909. [PMID: 39467507 DOI: 10.1016/j.bioorg.2024.107909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/03/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024]
Abstract
The NLRP3 inflammasome is a key target for drug discovery due to its implication in a range of inflammation-related diseases. In this work, we identify new inhibitors of the NLRP3 inflammasome via a hierarchical virtual screening strategy using molecular similarity, docking and MD simulation. The most potent inhibitors identified from a subsequent biological assay (IC50 of 1 - 4 μM) feature a sulfonamide group, a motif known to favour NLRP3 inhibition, in conjunction with an indole, benzofuran or tricyclic 6,7-dihydro-5H-indeno[5,6-b]furan ring, yielding novel scaffolds. These structures provide a basis for the design of more potent, selective NLRP3 inhibitors.
Collapse
Affiliation(s)
- Sherihan El-Sayed
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, M13 9PT, UK; Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Emily McMahon
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and the University of Manchester, Manchester M6 8HD, UK
| | - Sondos Musleh
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, M13 9PT, UK; Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Sally Freeman
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, M13 9PT, UK
| | - David Brough
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and the University of Manchester, Manchester M6 8HD, UK
| | - Paul R Kasher
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and the University of Manchester, Manchester M6 8HD, UK
| | - Richard A Bryce
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, M13 9PT, UK.
| |
Collapse
|
12
|
Cai H, Gao M, Xu T, Li K, Zhou Y, Lyu C, Xu S. Silicon dioxide particles induce DNA oxidative damage activating the AIM2-mediated PANoptosis in mice cerebellum. Chem Biol Interact 2024; 403:111258. [PMID: 39362619 DOI: 10.1016/j.cbi.2024.111258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Silicon dioxide (SiO2) particles are novel materials with wide-ranging applications across various fields, posing potential neurotoxic effects. This study investigates the toxicological mechanisms of SiO2 particles of different sizes on murine cerebellar tissue and cells. Six-week-old C57BL/6 mice were orally administered SiO2 particles of three sizes (1 μm, 300 nm, 50 nm) for 21 days to establish an in vivo model, and mice cerebellar astrocytes (C8-D1A cells) were cultured in vitro. Indicators of oxidative stress, DNA damage, and the PANoptosis pathway were detected using methods such as immunofluorescence staining, comet assay, western blotting, and qRT-PCR. The results show that SiO2 particles induce oxidative stress leading to DNA oxidative damage. The aberrant DNA is recognized by AIM2 (absent in melanoma 2), which activates the assembly of the PANoptosome complex, subsequently triggering PANoptosis. Furthermore, the extent of damage is inversely correlated with the size of SiO2 particles. This study elucidates the toxicological mechanism of SiO2 particles causing cerebellar damage via PANoptosis, extending research on PANoptosis in neurotoxicology, and aiding in the formulation of stricter safety standards and protective measures to reduce the potential toxic risk of SiO2 particles to humans.
Collapse
Affiliation(s)
- Hao Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ke Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuanxin Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Chencong Lyu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
13
|
Cheng X, Zeng T, Xu Y, Xiong Y. The emerging role of PANoptosis in viral infections disease. Cell Signal 2024; 125:111497. [PMID: 39489200 DOI: 10.1016/j.cellsig.2024.111497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
PANoptosis is a distinct inflammatory cell death mechanism that involves interactions between pyroptosis, apoptosis, and necroptosis. It can be regulated by diverse PANoptosome complexes built by integrating components from various cell death modalities. There is a rising interest in PANoptosis' process and functions. Viral infection is an important trigger of PANoptosis. Viruses invade host cells through their unique mechanisms and utilize host cell resources for replication and proliferation. In this process, viruses interfere with the normal physiological functions of host cells, including cell death mechanisms. A variety of viruses, such as influenza A virus (IAV), herpes simplex virus 1 (HSV1) and coronaviruses, have been found to induce PANoptosis in host cells. Given the importance of PANoptosis across the disease spectrum, this review briefly describes the relationships between pyroptosis, apoptosis, and necroptosis, highlights the key molecules in PANoptosome formation and activation, and outlines the multifaceted roles of PANoptosis in viral diseases, including potential therapeutic targets. We also talk about key principles and significant concerns for future PANoptosis research. Improved understanding of PANoptosis and its mechanisms is critical for discovering new treatment targets and methods.
Collapse
Affiliation(s)
- Xu Cheng
- Department of Pharmaceutics, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Taoyuan Zeng
- Department of Pharmaceutics, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yingshu Xu
- Department of Pharmaceutics, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Yongai Xiong
- Department of Pharmaceutics, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
14
|
Zhang Y, Xuan X, Ye D, Liu D, Song Y, Gao F, Lu S. The Role of the AIM2 Gene in Obesity-Related Glucose and Lipid Metabolic Disorders: A Recent Update. Diabetes Metab Syndr Obes 2024; 17:3903-3916. [PMID: 39465122 PMCID: PMC11512477 DOI: 10.2147/dmso.s488978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/13/2024] [Indexed: 10/29/2024] Open
Abstract
Absent in melanoma 2 (AIM2) is a protein encoded by the AIM2 gene located on human chromosomes, AIM2 can recognize and bind to double stranded DNA (dsDNA), leading to the assembly of the AIM2 inflammasome. The AIM2 inflammasome plays important proinflammation role in many diseases, and can induce pyroptotic cell death. It has also been closely linked to the development and progression of metabolic diseases and can be activated in obesity, diabetes, nonalcoholic fatty liver disease, and atherosclerosis. In this article, we mainly review the role of AIM2 in glucose metabolism, especially in obesity-related disorders of glucose and lipid metabolism, and provide insights to better understand the role of AIM2 in the pathogenesis, and clinical treatment of metabolic disease.
Collapse
Affiliation(s)
- Yongjiao Zhang
- School of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong, People’s Republic of China
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Xiaolei Xuan
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Diwen Ye
- School of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong, People’s Republic of China
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Dong Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Yufan Song
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Fei Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Sumei Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| |
Collapse
|
15
|
Surve D, Fish A, Debnath M, Pinjari A, Lorenzana A, Piya S, Peyton S, Kulkarni A. Sprayable inflammasome-inhibiting lipid nanorods in a polymeric scaffold for psoriasis therapy. Nat Commun 2024; 15:9035. [PMID: 39426974 PMCID: PMC11490495 DOI: 10.1038/s41467-024-53396-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
Localized delivery of inflammasome inhibitors in phagocytic macrophages could be promising for psoriasis treatment. The present work demonstrates the development of non-spherical lipid nanoparticles, mimicking pathogen-like shapes, consisting of an anti-inflammatory inflammasome inhibiting lipid (pyridoxine dipalmitate) as a trojan horse. The nanorods inhibit inflammasome by 3.8- and 4.5-fold compared with nanoellipses and nanospheres, respectively. Nanorods reduce apoptosis-associated speck-like protein and lysosomal rupture, restrain calcium influx, and mitochondrial reactive oxygen species. Dual inflammasome inhibitor (NLRP3/AIM-2-IN-3) loaded nanorods cause synergistic inhibition by 21.5- and 59-folds compared with nanorods and free drug, respectively alongside caspase-1 inhibition. The NLRP3/AIM-2-IN-3 nanorod when transformed into a polymeric scaffold, simultaneously and effectively inhibits RNA levels of NLRP3, AIM2, caspase-1, chemokine ligand-2, gasdermin-D, interleukin-1β, toll-like receptor 7/ 8, and IL-17A by 6.4-, 1.6-, 2.0-, 13.0-, 4.2-, 24.4-, 4.3-, and 1.82-fold, respectively in psoriatic skin in comparison to Imiquimod positive control group in an in-vivo psoriasis-like mice model.
Collapse
Affiliation(s)
- Dhanashree Surve
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Adam Fish
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Maharshi Debnath
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Aniruddha Pinjari
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Adrian Lorenzana
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Sumi Piya
- Pathology Department, University of Massachusetts-Chan Medical School, Baystate Medical Center, Springfield, MA, 01199, USA
| | - Shelly Peyton
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Ashish Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003, USA.
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
16
|
Xu C, Jing W, Liu C, Yuan B, Zhang X, Liu L, Zhang F, Chen P, Liu Q, Wang H, Du X. Cytoplasmic DNA and AIM2 inflammasome in RA: where they come from and where they go? Front Immunol 2024; 15:1343325. [PMID: 39450183 PMCID: PMC11499118 DOI: 10.3389/fimmu.2024.1343325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Rheumatoid arthritis is a chronic autoimmune disease of undetermined etiology characterized by symmetric synovitis with predominantly destructive and multiple joint inflammation. Cytoplasmic DNA sensors that recognize protein molecules that are not themselves or abnormal dsDNA fragments play an integral role in the generation and perpetuation of autoimmune diseases by activating different signaling pathways and triggering innate immune signaling pathways and host defenses. Among them, melanoma deficiency factor 2 (AIM2) recognizes damaged DNA and double-stranded DNA and binds to them to further assemble inflammasome, initiating the innate immune response and participating in the pathophysiological process of rheumatoid arthritis. In this article, we review the research progress on the source of cytoplasmic DNA, the mechanism of assembly and activation of AIM2 inflammasome, and the related roles of other cytoplasmic DNA sensors in rheumatoid arthritis.
Collapse
Affiliation(s)
- Conghui Xu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Weiyao Jing
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Cui Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Bo Yuan
- Department of Acupuncture and Pain, Affiliated Hospital of Gansu University of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Xinghua Zhang
- Department of Acupuncture, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Limei Liu
- Department of Zheng's Acupuncture, Affiliated Hospital of Gansu University of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Fengfan Zhang
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Ping Chen
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Qiang Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Haidong Wang
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Xiaozheng Du
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
17
|
Yang K, Wang X, Pan H, Wang X, Hu Y, Yao Y, Zhao X, Sun T. The roles of AIM2 in neurodegenerative diseases: insights and therapeutic implications. Front Immunol 2024; 15:1441385. [PMID: 39076969 PMCID: PMC11284019 DOI: 10.3389/fimmu.2024.1441385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
AIM2, a cytosolic innate immune receptor, has the capability to recognize double-stranded DNA (dsDNA). This paper delineates the structural features of AIM2 and its mechanisms of activation, emphasizing its capacity to detect cytosolic DNA and initiate inflammasome assembly. Additionally, we explore the diverse functions of AIM2 in different cells. Insights into AIM2-mediated neuroinflammation provide a foundation for investigating novel therapeutic strategies targeting AIM2 signaling pathways. Furthermore, we present a comprehensive review of the roles of AIM2 in neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Finally, we discuss its therapeutic implications. In conclusion, a profound understanding of AIM2 in neurodegenerative diseases may facilitate the development of effective interventions to mitigate neuronal damage and slow disease progression.
Collapse
Affiliation(s)
- Kai Yang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Xi Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Hanyu Pan
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Xinqing Wang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Yunhan Hu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Yihe Yao
- Institute of WUT-AMU, Wuhan University of Technology, Wuhan, China
| | - Xinyue Zhao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
18
|
Chen P, Cao XW, Dong JW, Zhao J, Wang FJ. Saponin and Ribosome-Inactivating Protein Synergistically Trigger Lysosome-Dependent Apoptosis by Inhibiting Lysophagy: Potential to Become a New Antitumor Strategy. Mol Pharm 2024; 21:2993-3005. [PMID: 38722865 DOI: 10.1021/acs.molpharmaceut.4c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The susceptibility of lysosomal membranes in tumor cells to cationic amphiphilic drugs (CADs) enables CADs to induce lysosomal membrane permeabilization (LMP) and trigger lysosome-dependent cell death (LDCD), suggesting a potential antitumor therapeutic approach. However, the existence of intrinsic lysosomal damage response mechanisms limits the display of the pharmacological activity of CADs. In this study, we report that low concentrations of QS-21, a saponin with cationic amphiphilicity extracted from Quillaja Saponaria tree, can induce LMP but has nontoxicity to tumor cells. QS-21 and MAP30, a type I ribosome-inactivating protein, synergistically induce apoptosis in tumor cells at low concentrations of both. Mechanistically, QS-21-induced LMP helps MAP30 escape from endosomes or lysosomes and subsequently enter the endoplasmic reticulum, where MAP30 downregulates the expression of autophagy-associated LC3 proteins, thereby inhibiting lysophagy. The inhibition of lysophagy results in the impaired clearance of damaged lysosomes, leading to the leakage of massive lysosomal contents such as cathepsins into the cytoplasm, ultimately triggering LDCD. In summary, our study showed that coadministration of QS-21 and MAP30 amplified the lysosomal disruption and can be a new synergistic LDCD-based antitumor therapy.
Collapse
Affiliation(s)
- Piao Chen
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Xue-Wei Cao
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
- ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
- New Drug R&D Center, Zhejiang Fonow Medicine Co., Ltd., 209 West Hulian Road, Dongyang, Zhejiang 322100, People's Republic of China
| | - Jing-Wen Dong
- ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
- New Drug R&D Center, Zhejiang Fonow Medicine Co., Ltd., 209 West Hulian Road, Dongyang, Zhejiang 322100, People's Republic of China
| | - Jian Zhao
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
- ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Fu-Jun Wang
- ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
- New Drug R&D Center, Zhejiang Fonow Medicine Co., Ltd., 209 West Hulian Road, Dongyang, Zhejiang 322100, People's Republic of China
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| |
Collapse
|
19
|
Lin J, Wang J, Fang J, Li M, Xu S, Little PJ, Zhang D, Liu Z. The cytoplasmic sensor, the AIM2 inflammasome: A precise therapeutic target in vascular and metabolic diseases. Br J Pharmacol 2024; 181:1695-1719. [PMID: 38528718 DOI: 10.1111/bph.16355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/02/2024] [Accepted: 02/12/2024] [Indexed: 03/27/2024] Open
Abstract
Cardio-cerebrovascular diseases encompass pathological changes in the heart, brain and vascular system, which pose a great threat to health and well-being worldwide. Moreover, metabolic diseases contribute to and exacerbate the impact of vascular diseases. Inflammation is a complex process that protects against noxious stimuli but is also dysregulated in numerous so-called inflammatory diseases, one of which is atherosclerosis. Inflammation involves multiple organ systems and a complex cascade of molecular and cellular events. Numerous studies have shown that inflammation plays a vital role in cardio-cerebrovascular diseases and metabolic diseases. The absent in melanoma 2 (AIM2) inflammasome detects and is subsequently activated by double-stranded DNA in damaged cells and pathogens. With the assistance of the mature effector molecule caspase-1, the AIM2 inflammasome performs crucial biological functions that underpin its involvement in cardio-cerebrovascular diseases and related metabolic diseases: The production of interleukin-1 beta (IL-1β), interleukin-18 (IL-18) and N-terminal pore-forming Gasdermin D fragment (GSDMD-N) mediates a series of inflammatory responses and programmed cell death (pyroptosis and PANoptosis). Currently, several agents have been reported to inhibit the activity of the AIM2 inflammasome and have the potential to be evaluated for use in clinical settings. In this review, we systemically elucidate the assembly, biological functions, regulation and mechanisms of the AIM2 inflammasome in cardio-cerebrovascular diseases and related metabolic diseases and outline the inhibitory agents of the AIM2 inflammasome as potential therapeutic drugs.
Collapse
Affiliation(s)
- Jiuguo Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| | - Jiaojiao Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| | - Jian Fang
- Huadu District People's Hospital of Guangzhou, Guangzhou, China
| | - Meihang Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| | - Suowen Xu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Peter J Little
- Pharmacy Australia Centre of Excellence, School of Pharmacy, University of Queensland, Woolloongabba, Queensland, Australia
| | - Dongmei Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhiping Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| |
Collapse
|
20
|
Thirugnanam S, Rout N. A Perfect Storm: The Convergence of Aging, Human Immunodeficiency Virus Infection, and Inflammasome Dysregulation. Curr Issues Mol Biol 2024; 46:4768-4786. [PMID: 38785555 PMCID: PMC11119826 DOI: 10.3390/cimb46050287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
The emergence of combination antiretroviral therapy (cART) has greatly transformed the life expectancy of people living with HIV (PWH). Today, over 76% of the individuals with HIV have access to this life-saving therapy. However, this progress has come with a new challenge: an increase in age-related non-AIDS conditions among patients with HIV. These conditions manifest earlier in PWH than in uninfected individuals, accelerating the aging process. Like PWH, the uninfected aging population experiences immunosenescence marked by an increased proinflammatory environment. This phenomenon is linked to chronic inflammation, driven in part by cellular structures called inflammasomes. Inflammatory signaling pathways activated by HIV-1 infection play a key role in inflammasome formation, suggesting a crucial link between HIV and a chronic inflammatory state. This review outlines the inflammatory processes triggered by HIV-1 infection and aging, with a focus on the inflammasomes. This review also explores current research regarding inflammasomes and potential strategies for targeting inflammasomes to mitigate inflammation. Further research on inflammasome signaling presents a unique opportunity to develop targeted interventions and innovative therapeutic modalities for combating HIV and aging-associated inflammatory processes.
Collapse
Affiliation(s)
- Siva Thirugnanam
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA;
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Namita Rout
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA;
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
21
|
Zhao N, Yu X, Zhu X, Song Y, Gao F, Yu B, Qu A. Diabetes Mellitus to Accelerated Atherosclerosis: Shared Cellular and Molecular Mechanisms in Glucose and Lipid Metabolism. J Cardiovasc Transl Res 2024; 17:133-152. [PMID: 38091232 DOI: 10.1007/s12265-023-10470-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/23/2023] [Indexed: 02/28/2024]
Abstract
Diabetes is one of the critical independent risk factors for the progression of cardiovascular disease, and the underlying mechanism regarding this association remains poorly understood. Hence, it is urgent to decipher the fundamental pathophysiology and consequently provide new insights into the identification of innovative therapeutic targets for diabetic atherosclerosis. It is now appreciated that different cell types are heavily involved in the progress of diabetic atherosclerosis, including endothelial cells, macrophages, vascular smooth muscle cells, dependence on altered metabolic pathways, intracellular lipids, and high glucose. Additionally, extensive studies have elucidated that diabetes accelerates the odds of atherosclerosis with the explanation that these two chronic disorders share some common mechanisms, such as endothelial dysfunction and inflammation. In this review, we initially summarize the current research and proposed mechanisms and then highlight the role of these three cell types in diabetes-accelerated atherosclerosis and finally establish the mechanism pinpointing the relationship between diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China
| | - Xiaoting Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China
| | - Xinxin Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China
| | - Yanting Song
- Department of Pathology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Fei Gao
- Department of Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Baoqi Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China.
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, 100069, China.
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China.
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, 100069, China.
| |
Collapse
|
22
|
Fu R, Zhao L, Guo Y, Qin X, Xu W, Cheng X, Zhang Y, Xu S. AIM2 inflammasome: A potential therapeutic target in ischemic stroke. Clin Immunol 2024; 259:109881. [PMID: 38142900 DOI: 10.1016/j.clim.2023.109881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Ischemic stroke (IS) is a significant global public health issue with a high incidence, disability, and mortality rate. A robust inflammatory cascade with complex and wide-ranging mechanisms occurs following ischemic brain injury. Inflammasomes are multiprotein complexes in the cytoplasm that modulate the inflammatory response by releasing pro-inflammatory cytokines and inducing cellular pyroptosis. Among these inflammasomes, the Absent in Melanoma 2 (AIM2) inflammasome shows the ability to detect a wide range of pathogen DNAs, thereby triggering an inflammatory response. Recent studies have indicated that the aberrant expression of AIM2 inflammasome in various cells is closely associated with the pathological processes of ischemic brain injury. This paper summarizes the expression and regulatory role of AIM2 in CNS and peripheral immune cells and discusses current therapeutic approaches targeting AIM2 inflammasome. These findings aim to serve as a reference for future research in this field.
Collapse
Affiliation(s)
- Rong Fu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linna Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Yuying Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Xiaoli Qin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenzhe Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xueqi Cheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunsha Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shixin Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
23
|
Velcicky J, Janser P, Gommermann N, Brenneisen S, Ilic S, Vangrevelinghe E, Stiefl N, Boettcher A, Arnold C, Malinverni C, Dawson J, Murgasova R, Desrayaud S, Beltz K, Hinniger A, Dekker C, Farady CJ, Mackay A. Discovery of Potent, Orally Bioavailable, Tricyclic NLRP3 Inhibitors. J Med Chem 2024; 67:1544-1562. [PMID: 38175811 DOI: 10.1021/acs.jmedchem.3c02098] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
NLRP3 is a molecular sensor recognizing a wide range of danger signals. Its activation leads to the assembly of an inflammasome that allows for activation of caspase-1 and subsequent maturation of IL-1β and IL-18, as well as cleavage of Gasdermin-d and pyroptotic cell death. The NLRP3 inflammasome has been implicated in a plethora of diseases including gout, type 2 diabetes, atherosclerosis, Alzheimer's disease, and cancer. In this publication, we describe the discovery of a novel, tricyclic, NLRP3-binding scaffold by high-throughput screening. The hit (1) could be optimized into an advanced compound NP3-562 demonstrating excellent potency in human whole blood and full inhibition of IL-1β release in a mouse acute peritonitis model at 30 mg/kg po dose. An X-ray structure of NP3-562 bound to the NLRP3 NACHT domain revealed a unique binding mode as compared to the known sulfonylurea-based inhibitors. In addition, NP3-562 shows also a good overall development profile.
Collapse
Affiliation(s)
- Juraj Velcicky
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - Philipp Janser
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | | | | | - Slavica Ilic
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | | | | | | | | | | | - Janet Dawson
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | | | | | - Karen Beltz
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | | | - Carien Dekker
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | | | - Angela Mackay
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| |
Collapse
|
24
|
Zhou N, Zhang Y, Jiao Y, Nan J, Xia A, Mu B, Lin G, Li X, Zhang S, Yang S, Li L. Discovery of a novel pyroptosis inhibitor acting though modulating glutathionylation to suppress NLRP3-related signal pathway. Int Immunopharmacol 2024; 127:111314. [PMID: 38081102 DOI: 10.1016/j.intimp.2023.111314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 01/18/2024]
Abstract
Pyroptosis is a proinflammatory type of regulated cell death and has been involved in many pathological processes. Inhibition of pyroptosis is thought to be a promising strategy for the treatment of related diseases. Here, we performed a phenotypic screening against NLRP3-dependent pyroptosis and obtained the novel compound N77 after structure optimization. N77 showed a half-maximal effective concentration (EC50) of 0.070 ± 0.008 μM against cell pyroptosis induced by nigericin, and exhibited a remarkable ability to prevent NLRP3-dependent inflammasome activation and the release of IL-1β. Chemical proteomics revealed the biological target of N77 to be glutathione-S-transferase Mu 1 (GSTM1); our mechanism of action studies indicated that GSTM1 might act as a negative regulator of NLRP3 inflammasome activation by modulating the glutathionylation of caspase-1. In vivo, N77 substantially alleviated the inflammatory reaction in a pyroptosis-related acute keratitis model. Overall, we identified a novel pyroptosis inhibitor and revealed a new regulatory mechanism of pyroptosis. Our findings suggest an alternative potential therapeutic strategy for pyroptosis-related diseases.
Collapse
Affiliation(s)
- Nenghua Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yun Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Ophthalmology and Macular Disease Research Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Jiao
- Laboratory of Anaesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu China
| | - Jinshan Nan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Anjie Xia
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Ophthalmology and Macular Disease Research Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Mu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Basic Medical College of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Guifeng Lin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xun Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Ophthalmology and Macular Disease Research Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shanshan Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shengyong Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Linli Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
25
|
Yao J, Sterling K, Wang Z, Zhang Y, Song W. The role of inflammasomes in human diseases and their potential as therapeutic targets. Signal Transduct Target Ther 2024; 9:10. [PMID: 38177104 PMCID: PMC10766654 DOI: 10.1038/s41392-023-01687-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 09/18/2023] [Accepted: 10/13/2023] [Indexed: 01/06/2024] Open
Abstract
Inflammasomes are large protein complexes that play a major role in sensing inflammatory signals and triggering the innate immune response. Each inflammasome complex has three major components: an upstream sensor molecule that is connected to a downstream effector protein such as caspase-1 through the adapter protein ASC. Inflammasome formation typically occurs in response to infectious agents or cellular damage. The active inflammasome then triggers caspase-1 activation, followed by the secretion of pro-inflammatory cytokines and pyroptotic cell death. Aberrant inflammasome activation and activity contribute to the development of diabetes, cancer, and several cardiovascular and neurodegenerative disorders. As a result, recent research has increasingly focused on investigating the mechanisms that regulate inflammasome assembly and activation, as well as the potential of targeting inflammasomes to treat various diseases. Multiple clinical trials are currently underway to evaluate the therapeutic potential of several distinct inflammasome-targeting therapies. Therefore, understanding how different inflammasomes contribute to disease pathology may have significant implications for developing novel therapeutic strategies. In this article, we provide a summary of the biological and pathological roles of inflammasomes in health and disease. We also highlight key evidence that suggests targeting inflammasomes could be a novel strategy for developing new disease-modifying therapies that may be effective in several conditions.
Collapse
Affiliation(s)
- Jing Yao
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- Zhejiang Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and The Affiliated Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
26
|
Lou S, Wu M, Cui S. Targeting NLRP3 Inflammasome: Structure, Function, and Inhibitors. Curr Med Chem 2024; 31:2021-2051. [PMID: 38310392 DOI: 10.2174/0109298673289984231127062528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 02/05/2024]
Abstract
Inflammasomes are multimeric protein complexes that can detect various physiological stimuli and danger signals. As a result, they perform a crucial function in the innate immune response. The NLRP3 inflammasome, as a vital constituent of the inflammasome family, is significant in defending against pathogen invasion and preserving cellhomeostasis. NLRP3 inflammasome dysregulation is connected to various pathological conditions, including inflammatory diseases, cancer, and cardiovascular and neurodegenerative diseases. This profile makes NLRP3 an applicable target for treating related diseases, and therefore, there are rising NLRP3 inhibitors disclosed for therapy. Herein, we summarized the updated advances in the structure, function, and inhibitors of NLRP3 inflammasome. Moreover, we aimed to provide an overview of the existing products and future directions for drug research and development.
Collapse
Affiliation(s)
- Shengying Lou
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Miaolian Wu
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| |
Collapse
|
27
|
Wang L, Zhu Y, Zhang L, Guo L, Wang X, Pan Z, Jiang X, Wu F, He G. Mechanisms of PANoptosis and relevant small-molecule compounds for fighting diseases. Cell Death Dis 2023; 14:851. [PMID: 38129399 PMCID: PMC10739961 DOI: 10.1038/s41419-023-06370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/10/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Pyroptosis, apoptosis, and necroptosis are mainly programmed cell death (PCD) pathways for host defense and homeostasis. PANoptosis is a newly distinct inflammatory PCD pathway that is uniquely regulated by multifaceted PANoptosome complexes and highlights significant crosstalk and coordination among pyroptosis (P), apoptosis (A), and/or necroptosis(N). Although some studies have focused on the possible role of PANpoptosis in diseases, the pathogenesis of PANoptosis is complex and underestimated. Furthermore, the progress of PANoptosis and related agonists or inhibitors in disorders has not yet been thoroughly discussed. In this perspective, we provide perspectives on PANoptosome and PANoptosis in the context of diverse pathological conditions and human diseases. The treatment targeting on PANoptosis is also summarized. In conclusion, PANoptosis is involved in plenty of disorders including but not limited to microbial infections, cancers, acute lung injury/acute respiratory distress syndrome (ALI/ARDS), ischemia-reperfusion, and organic failure. PANoptosis seems to be a double-edged sword in diverse conditions, as PANoptosis induces a negative impact on treatment and prognosis in disorders like COVID-19 and ALI/ARDS, while PANoptosis provides host protection from HSV1 or Francisella novicida infection, and kills cancer cells and suppresses tumor growth in colorectal cancer, adrenocortical carcinoma, and other cancers. Compounds and endogenous molecules focused on PANoptosis are promising therapeutic strategies, which can act on PANoptosomes-associated members to regulate PANoptosis. More researches on PANoptosis are needed to better understand the pathology of human conditions and develop better treatment.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yanghui Zhu
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Lu Zhang
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Linghong Guo
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Xiaoyun Wang
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Zhaoping Pan
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Xian Jiang
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| | - Fengbo Wu
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| | - Gu He
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
28
|
Lv C, Cheng T, Zhang B, Sun K, Lu K. Triptolide protects against podocyte injury in diabetic nephropathy by activating the Nrf2/HO-1 pathway and inhibiting the NLRP3 inflammasome pathway. Ren Fail 2023; 45:2165103. [PMID: 36938748 PMCID: PMC10035962 DOI: 10.1080/0886022x.2023.2165103] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Objectives: Diabetic nephropathy (DN) is the most common microvascular complication of diabetes mellitus. This study investigated the mechanism of triptolide (TP) in podocyte injury in DN.Methods: DN mouse models were established by feeding with a high-fat diet and injecting with streptozocin and MPC5 podocyte injury models were induced by high-glucose (HG), followed by TP treatment. Fasting blood glucose and renal function indicators, such as 24 h urine albumin (UAlb), serum creatinine (SCr), blood urea nitrogen (BUN), and kidney/body weight ratio of mice were examined. H&E and TUNEL staining were performed for evaluating pathological changes and apoptosis in renal tissue. The podocyte markers, reactive oxygen species (ROS), oxidative stress (OS), serum inflammatory cytokines, nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway-related proteins, and pyroptosis were detected by Western blotting and corresponding kits. MPC5 cell viability and pyroptosis were evaluated by MTT and Hoechst 33342/PI double-fluorescence staining. Nrf2 inhibitor ML385 was used to verify the regulation of TP on Nrf2.Results: TP improved renal function and histopathological injury of DN mice, alleviated podocytes injury, reduced OS and ROS by activating the Nrf2/heme oxygenase-1 (HO-1) pathway, and weakened pyroptosis by inhibiting the nod-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome pathway. In vitro experiments further verified the inhibition of TP on OS and pyroptosis by mediating the Nrf2/HO-1 and NLRP3 inflammasome pathways. Inhibition of Nrf2 reversed the protective effect of TP on MPC5 cells.Conclusions: Overall, TP alleviated podocyte injury in DN by inhibiting OS and pyroptosis via Nrf2/ROS/NLRP3 axis.
Collapse
Affiliation(s)
- Chenlei Lv
- Department of Nephrology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Tianyang Cheng
- Department of Nephrology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bingbing Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ke Sun
- Department of Nephrology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Keda Lu
- Department of Nephrology, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
29
|
Duan M, Sun L, He X, Wang Z, Hou Y, Zhao Y. Medicinal chemistry strategies targeting NLRP3 inflammasome pathway: A recent update from 2019 to mid-2023. Eur J Med Chem 2023; 260:115750. [PMID: 37639823 DOI: 10.1016/j.ejmech.2023.115750] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Nod-like receptor protein 3 (NLRP3), a therapeutic target that has a close relationship with inflammatory diseases, has drawn significant attention from researchers in the field. An increasing number of NLRP3 inhibitors have been reported since NLRP3 was identified as a biomarker and inflammatory therapeutic target. Inhibiting NLRP3 has been widely studied as therapeutics for the treatment of cryopyrin associated periodic syndrome (CAPS), inflammatory bowel disease (IBD), nonalcoholic steatohepatitis (NASH), arthrolithiasis, Alzheimer's disease (AD) and Parkinson's disease (PD). This review updates the recently reported (2019 to mid-2023) molecule inhibitors targeting the NLRP3 inflammasome pathway, summarizes their structure-activity relationships (SARs), and discusses the therapeutic effects on inflammatory diseases. I hope this review will contribute to the development of novel inhibitors targeting NLRP3 inflammasome pathway as potential drugs.
Collapse
Affiliation(s)
- Meibo Duan
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Lei Sun
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Xinzi He
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Zechen Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Yunlei Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China.
| | - Yanfang Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China.
| |
Collapse
|
30
|
Li N, Zhang R, Tang M, Zhao M, Jiang X, Cai X, Ye N, Su K, Peng J, Zhang X, Wu W, Ye H. Recent Progress and Prospects of Small Molecules for NLRP3 Inflammasome Inhibition. J Med Chem 2023; 66:14447-14473. [PMID: 37879043 DOI: 10.1021/acs.jmedchem.3c01370] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
NLRP3 inflammasome is a multiprotein complex involved in host immune response─which exerts various biological effects by mediating the maturation and secretion of IL-1β and IL-18─and pyroptosis. However, its aberrant activation could cause amplification of inflammatory effects, thereby triggering a range of ailments, including Alzheimer's disease, Parkinson's disease, rheumatoid arthritis, gout, type 2 diabetes mellitus, and cancer. For the past few years, as an attractive anti-inflammatory target, NLRP3-targeting small-molecule inhibitors have been widely reported by both the academic and the industrial communities. In order to deeply understand the advancement of NLRP3 inflammasome inhibitors, we provide comprehensive insights and commentary on drugs currently under clinical investigation, as well as other NLRP3 inflammasome inhibitors from a chemical structure point of view, with an aim to provide new insights for the further development of clinical drugs for NLRP3 inflammasome-mediated diseases.
Collapse
Affiliation(s)
- Na Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruijia Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Zhao
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xueqin Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoying Cai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Neng Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kaiyue Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Peng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinlu Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haoyu Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
31
|
Theofilis P, Oikonomou E, Chasikidis C, Tsioufis K, Tousoulis D. Inflammasomes in Atherosclerosis-From Pathophysiology to Treatment. Pharmaceuticals (Basel) 2023; 16:1211. [PMID: 37765019 PMCID: PMC10537692 DOI: 10.3390/ph16091211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Atherosclerosis, a chronic inflammatory disease characterized by arterial plaque accumulation, remains a significant global health challenge. In recent years, inflammasomes, the intracellular multiprotein complexes crucial for initiating innate immune responses, have emerged as key players in atherosclerosis pathophysiology. This review article aims to provide a comprehensive overview of the current understanding of inflammasome activation and its impact on atherosclerosis development and progression. We explore the intricate interplay between traditional cardiovascular risk factors and inflammasome activation, leading to the perpetuation of inflammatory cascades that drive plaque formation and instability. The review focuses on the molecular mechanisms underlying inflammasome activation, including the role of pattern recognition receptors and cytokines in this process. Moreover, we discuss the contribution of inflammasomes to endothelial dysfunction, foam cell formation, and vascular inflammation. Additionally, recent advances in therapeutic strategies targeting inflammasomes are examined, including pharmacological agents and potential immunomodulatory approaches. By collating and analyzing the current evidence, this review provides valuable insights into the potential of inflammasome-targeted therapies for atherosclerosis management and treatment. Understanding the pivotal role of inflammasomes in atherosclerosis pathophysiology offers promising prospects for developing effective and personalized therapeutic interventions that can mitigate the burden of this prevalent cardiovascular disorder and improve patient outcomes.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- 1st Department of Cardiology, “Hippokration” General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.)
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Chasikidis
- Department of Cardiology, General Hospital of Corinth, 20100 Corinth, Greece
| | - Konstantinos Tsioufis
- 1st Department of Cardiology, “Hippokration” General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.)
| | - Dimitris Tousoulis
- 1st Department of Cardiology, “Hippokration” General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.)
| |
Collapse
|
32
|
Suptela AJ, Marriott I. Cytosolic DNA sensors and glial responses to endogenous DNA. Front Immunol 2023; 14:1130172. [PMID: 36999037 PMCID: PMC10043442 DOI: 10.3389/fimmu.2023.1130172] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/17/2023] Open
Abstract
Genomic instability is a key driving force for the development and progression of many neurodegenerative diseases and central nervous system (CNS) cancers. The initiation of DNA damage responses is a critical step in maintaining genomic integrity and preventing such diseases. However, the absence of these responses or their inability to repair genomic or mitochondrial DNA damage resulting from insults, including ionizing radiation or oxidative stress, can lead to an accumulation of self-DNA in the cytoplasm. Resident CNS cells, such as astrocytes and microglia, are known to produce critical immune mediators following CNS infection due to the recognition of pathogen and damage-associated molecular patterns by specialized pattern recognition receptors (PRRs). Recently, multiple intracellular PRRs, including cyclic GMP-AMP synthase, interferon gamma-inducible 16, absent in melanoma 2, and Z-DNA binding protein, have been identified as cytosolic DNA sensors and to play critical roles in glial immune responses to infectious agents. Intriguingly, these nucleic acid sensors have recently been shown to recognize endogenous DNA and trigger immune responses in peripheral cell types. In the present review, we discuss the available evidence that cytosolic DNA sensors are expressed by resident CNS cells and can mediate their responses to the presence of self-DNA. Furthermore, we discuss the potential for glial DNA sensor-mediated responses to provide protection against tumorigenesis versus the initiation of potentially detrimental neuroinflammation that could initiate or foster the development of neurodegenerative disorders. Determining the mechanisms that underlie the detection of cytosolic DNA by glia and the relative role of each pathway in the context of specific CNS disorders and their stages may prove pivotal in our understanding of the pathogenesis of such conditions and might be leveraged to develop new treatment modalities.
Collapse
Affiliation(s)
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
33
|
Zhang Y, Zhou N, Jiao Y, Lin G, Li X, Gao S, Zhou P, Liu J, Nan J, Zhang M, Yang S. Targeting Noncanonical Pyroptosis With a Small Molecular Inhibitor Alleviates Inflammation in the LPS-Induced Keratitis Mouse Model. Invest Ophthalmol Vis Sci 2023; 64:1. [PMID: 36595275 PMCID: PMC9819737 DOI: 10.1167/iovs.64.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Purpose Pyroptosis, a novel proinflammatory programmed cell death, has been implicated in some ocular diseases. Of special note is the noncanonical pyroptosis that has recently been recognized to play a critical role in microbial keratitis. We previously discovered a new potent small molecular pyroptosis inhibitor, J114. In this investigation, we will explore whether J114 is able to inhibit the noncanonical pyroptosis and the underlying mechanism. Then a lipopolysaccharide (LPS)-induced keratitis mouse model will be used to evaluate the therapeutic effect of J114 in vivo. Methods In vitro, macrophages originating from humans or mice were stimulated with intracellular LPS to induce noncanonical pyroptosis activation. in vivo, acute keratitis in mouse was induced by LPS intrastromal injection. We verified the protective effect of J114 on noncanonical pyroptosis. Clinical scoring, histological observation, macrophage localization, and quantification of pyroptotic markers in the cornea were used to characterize the therapeutic effects. Results J114 substantially inhibited the noncanonical pyroptosis and the release of inflammatory cytokines by suppressing the activation of caspase-4/5/11 and the noncanonical NLRP3 inflammasome through blocking the NLRP3-ASC interaction. in vivo, J114 protected against LPS-induced noncanonical pyroptosis of acute keratitis, as manifested by alleviated clinical manifestations and histological disorders, and relieved inflammatory reactions. Conclusions In this study, we found that J114 could efficiently inhibit LPS-induced noncanonical pyroptosis and revealed the underlying mechanism. This compound displayed significant anti-inflammatory activity in the LPS-induced keratitis mouse model. All the findings indicated that J114 could be a potential lead compound for drug development against inflammatory ocular surface diseases.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China,Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Nenghua Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, China
| | - Yan Jiao
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guifeng Lin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xun Li
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China,Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Sheng Gao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China,Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Pei Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, China
| | - Jingming Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jinshan Nan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Meixia Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China,Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Shi X, Zhuang L, Zhai Z, He Y, Sun E. Polydatin protects against gouty nephropathy by inhibiting renal tubular cell pyroptosis. Int J Rheum Dis 2023; 26:116-123. [PMID: 36328529 DOI: 10.1111/1756-185x.14463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To investigate the protective effect and mechanism of polydatin (PD) against gouty nephropathy (GN) in mice. METHODS Twenty-four mice were randomly divided into three groups: the control group (no treatment), the GN group (300 mg/kg hypoxanthine + 150 mg/kg potassium oxonate), and the GN + PD group (300 mg/kg hypoxanthine + 150 mg/kg potassium oxonate + 50 mg/kg PD). Histological changes in the kidneys and the levels of uric acid (UA), blood urea nitrogen (BUN), and serum creatinine (SCr) in the sera were measured. In addition, the expression of gasdermin D (GSDMD) protein in renal tubular epithelial cells, and the expression of NOD-like receptor protein 3 (NLRP3), GSDMD, and caspase-1 proteins in the kidney tissues were determined by immunohistochemistry, immunofluorescence, and Western blot. RESULTS In vitro, PD inhibited the expression of NLRP3, caspase-1, and GSDMD and protected the renal tubular epithelial cells from pyroptosis. In vivo, PD treatment significantly ameliorated the pathological changes in kidney tissue, and reversed the decrease of serum UA and BUN in GN model mice. The expression of NLRP3, GSDMD, and caspase-1 proteins was also decreased in the PD-treated GN mice. CONCLUSION The results suggest that PD has a protective effect on mice with GN, which may be related to the downregulation of NLRP3, GSDMD, and caspase-1 proteins and the inhibition of renal tubular epithelial cells pyroptosis.
Collapse
Affiliation(s)
- Xingliang Shi
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Institute of Clinical Immunology, Academy of Orthopedics Guangdong Province, Guangzhou, China
| | - Lili Zhuang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Institute of Clinical Immunology, Academy of Orthopedics Guangdong Province, Guangzhou, China
| | - Zeqing Zhai
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Institute of Clinical Immunology, Academy of Orthopedics Guangdong Province, Guangzhou, China
| | - Yi He
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Institute of Clinical Immunology, Academy of Orthopedics Guangdong Province, Guangzhou, China
| | - Erwei Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Institute of Clinical Immunology, Academy of Orthopedics Guangdong Province, Guangzhou, China
| |
Collapse
|
35
|
Zhao J, Guo S, Schrodi SJ, He D. Absent in melanoma 2 (AIM2) in rheumatoid arthritis: novel molecular insights and implications. Cell Mol Biol Lett 2022; 27:108. [PMID: 36476420 PMCID: PMC9730612 DOI: 10.1186/s11658-022-00402-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022] Open
Abstract
Absent in melanoma 2 (AIM2), a member of the Pyrin and HIN domain protein family, is a cytoplasmic receptor that recognizes double-stranded DNA. AIM2 exhibits limited expression under physiological conditions but is widely expressed in many human diseases, including autoimmune diseases, and plays an essential role in the immune response. Rheumatoid arthritis (RA) is an autoimmune disease that poses a severe threat to physical and mental health, and is caused by several genetic and metabolic factors. Multiple immune cells interact to form a complex inflammatory network that mediates inflammatory responses and bone destruction. Abnormal AIM2 expression in multiple immune cell populations (T cells, B cells, fibroblast-like synoviocytes, monocytes, and macrophages) may regulate multiple functional responses in RA through mechanisms such as pyroptosis, PANoptosis, and regulation of other molecules. In this review, we describe and summarize the functional regulation and impact of AIM2 expression in immune cells to improve our understanding of the complex pathological mechanisms. These insights may provide potential directions for the development of new clinical diagnostic strategies for RA.
Collapse
Affiliation(s)
- Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| | - Steven J Schrodi
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China.
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
36
|
El-Sayed S, Freeman S, Bryce RA. A Selective Review and Virtual Screening Analysis of Natural Product Inhibitors of the NLRP3 Inflammasome. Molecules 2022; 27:molecules27196213. [PMID: 36234744 PMCID: PMC9573361 DOI: 10.3390/molecules27196213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The NLRP3 inflammasome is currently an exciting target for drug discovery due to its role in various inflammatory diseases; however, to date, no NLRP3 inhibitors have reached the clinic. Several studies have used natural products as hit compounds to facilitate the design of novel selective NLRP3 inhibitors. Here, we review selected natural products reported in the literature as NLRP3 inhibitors, with a particular focus on those targeting gout. To complement this survey, we also report a virtual screen of the ZINC20 natural product database, predicting favored chemical features that can aid in the design of novel small molecule NLRP3 inhibitors.
Collapse
Affiliation(s)
- Sherihan El-Sayed
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Sally Freeman
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Correspondence: ; Tel.: +44-7950403456
| | - Richard A. Bryce
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
37
|
Shi L, Hu Q, Li L, Yang R, Xu X, Du J, Zou L, Li G, Liu S, Li G, Liang S. Beneficial Effects of lncRNA-UC.360+ shRNA on Diabetic Cardiac Sympathetic Damage via NLRP3 Inflammasome-Induced Pyroptosis in Stellate Ganglion. ACS OMEGA 2022; 7:27714-27721. [PMID: 35967043 PMCID: PMC9366958 DOI: 10.1021/acsomega.2c03619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Hyperglycemia is one of the common symptoms of diabetes, and it produces excessive reactive oxygen species (ROS). This study investigated whether the long noncoding RNA (lncRNA) UC.360+ is involved in diabetic cardiac autonomic neuropathy (DCAN) mediated by NLRP3 inflammasome-induced pyroptosis in the stellate ganglion (SG). Using a rat type 2 diabetes model, we found that lncRNA UC.360+ short hairpin RNA (shRNA) ameliorated the dyslipidaemia of type 2 diabetic rats and reduced serum adrenaline and ROS production in SG under hyperglycemia. In addition, UC.360+ shRNA also reduced the expression of nuclear factor kappa-B (NF-κB), NLRP3, ASC, caspase-1, interleukin-1β (IL-1β), and IL-18 in the SG of diabetic rats and inhibited the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK). Therefore, lncRNA-UC.360+ shRNA may modulate the NLRP3 inflammasome/inflammatory pathway in the SG, which in turn alleviates diabetic heart sympathetic nerve damage.
Collapse
Affiliation(s)
- Liran Shi
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- The
people’s hospital of Jiawang of Xuzhou, Xuzhou 221011, China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Qixing Hu
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Lin Li
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Runan Yang
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Xiumei Xu
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Junpei Du
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Lifang Zou
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Department
of Haematology, The First Affiliated Hospital
of Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Guilin Li
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Shuangmei Liu
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Guodong Li
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Shangdong Liang
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| |
Collapse
|
38
|
Affiliation(s)
- Oliver Soehnlein
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany. .,Department of Physiology and Pharmacology (FyFa), Karolinska Institutet, Stockholm, Sweden.
| | - Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY, USA
| |
Collapse
|
39
|
Yin H, Liu N, Sigdel KR, Duan L. Role of NLRP3 Inflammasome in Rheumatoid Arthritis. Front Immunol 2022; 13:931690. [PMID: 35833125 PMCID: PMC9271572 DOI: 10.3389/fimmu.2022.931690] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by multi-articular, symmetrical and invasive arthritis resulting from immune system abnormalities involving T and B lymphocytes. Although significant progress has been made in the understanding of RA pathogenesis, the underlying mechanisms are not fully understood. Recent studies suggest that NLRP3 inflammasome, a regulator of inflammation, might play an important role in the development of RA. There have been increasing clinical and pre-clinical evidence showing the treatment of NLRP3/IL-1β in inflammatory diseases. To provide a foundation for the development of therapeutic strategies, we will briefly summarize the roles of NLRP3 inflammasome in RA and explore its potential clinical treatment.
Collapse
Affiliation(s)
- Hui Yin
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, China
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Na Liu
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, China
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Keshav Raj Sigdel
- Department of Internal Medicine, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Lihua Duan
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, China
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- *Correspondence: Lihua Duan,
| |
Collapse
|