1
|
Bian L, Liu X, Wang X, Sun Y, Du X, Gu B, Xu X, Song S. Preclinical and First-In-Human Imaging of Novel [ 18F]F-FAPI-FUSCC-07 Tracer: Comparative Prospective Study with [ 18F]F-FAPI-42 and [ 18F]F-FAPI-74. Mol Pharm 2025; 22:1624-1632. [PMID: 39873120 DOI: 10.1021/acs.molpharmaceut.4c01360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
This study aimed to develop and evaluate a novel fibroblast activation protein (FAP)-specific tracer, fluorine-18-labeled fibroblast activation protein inhibitor-FUSCC-07 ([18F]F-FAPI-FUSCC-07), for use in both preclinical and clinical settings. Preclinical evaluations were conducted to assess the stability and partition coefficient of [18F]F-FAPI-FUSCC-07. Experiments involving human glioma U87MG cells demonstrated its cellular uptake and inhibitory properties. Further investigations included biodistribution analysis and micropositron emission tomography/computed tomography (PET/CT) imaging in U87MG tumor-bearing mice, which revealed strong tumor uptake and prolonged retention. In the clinical setting, [18F]F-FAPI-FUSCC-07 was compared directly with [18F]F-FAPI-42 and [18F]F-FAPI-74 to evaluate its performance in imaging various cancers. By expanding the patient cohort, the study provided a more comprehensive assessment of tracer uptake in lesions. The findings demonstrated that [18F]F-FAPI-FUSCC-07 exhibited high stability in phosphate-buffered saline and fetal bovine serum, as well as hydrophilic properties. Clinical imaging results indicated significantly higher tumor uptake and improved target-to-blood pool ratios compared to the other tracers. Moreover, PET imaging of patients with diverse cancers showed that [18F]F-FAPI-FUSCC-07 consistently provided superior image contrast in most cases. These results represent the first clinical evidence supporting the feasibility of [18F]F-FAPI-FUSCC-07 for imaging across multiple tumor types. The study highlights its potential as a promising tracer for FAPI PET imaging, offering enhanced diagnostic precision and broader applicability in oncology.
Collapse
Affiliation(s)
- Linjie Bian
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University; Shanghai 200032, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
| | - Xinyu Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University; Shanghai 200032, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200233, China
| | - Xiao Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University; Shanghai 200032, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200233, China
| | - Yuyun Sun
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University; Shanghai 200032, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
| | - Xinyue Du
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University; Shanghai 200032, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
| | - Bingxin Gu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University; Shanghai 200032, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
| | - Xiaoping Xu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University; Shanghai 200032, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University; Shanghai 200032, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
| |
Collapse
|
2
|
Leier S, Wuest F. Innovative Peptide Bioconjugation Chemistry with Radionuclides: Beyond Classical Click Chemistry. Pharmaceuticals (Basel) 2024; 17:1270. [PMID: 39458911 PMCID: PMC11510044 DOI: 10.3390/ph17101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The incorporation of radionuclides into peptides and larger biomolecules requires efficient and sometimes biorthogonal reaction conditions, to which click chemistry provides a convenient approach. Methods: Traditionally, click-based radiolabeling techniques have focused on classical click chemistry, such as copper(I)-catalyzed alkyne-azide [3+2] cycloaddition (CuAAC), strain-promoted azide-alkyne [3+2] cycloaddition (SPAAC), traceless Staudinger ligation, and inverse electron demand Diels-Alder (IEDDA). Results: However, newly emerging click-based radiolabeling techniques, including tyrosine-click, sulfo-click, sulfur(VI) fluoride exchange (SuFEx), thiol-ene click, azo coupling, hydrazone formations, oxime formations, and RIKEN click offer valuable alternatives to classical click chemistry. Conclusions: This review will discuss the applications of these techniques in peptide radiochemistry.
Collapse
Affiliation(s)
- Samantha Leier
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H1, Canada
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
3
|
Wang Z, Zhu B, Jiang F, Chen X, Wang G, Ding N, Song S, Xu X, Zhang W. Design, synthesis and evaluation of novel prostate-specific membrane antigen-targeted aryl [ 18F]fluorosulfate PET tracers. Bioorg Med Chem 2024; 106:117753. [PMID: 38749342 DOI: 10.1016/j.bmc.2024.117753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024]
Abstract
The expression of prostate-specific membrane antigen (PSMA) in prostate cancer is 100-1000 times higher than that in normal tissues, and it has shown great advantages in the diagnosis and treatment of prostate cancer. The combination of PSMA and PET imaging technology based on the principle of metabolic imaging can achieve high sensitivity and high specificity for diagnosis. Due to its suitable half-life (109 min) and good positron abundance (97%), as well as its cyclotron accelerated generation, 18F has the potential to be commercialize, which has attracted much attention. In this article, we synthesized a series of fluorosulfate PET tracers targeting PSMA. All four analogues have shown high affinity to PSMA (IC50 = 1.85-5.15 nM). After the radioisotope exchange labeling, [18F]L9 and [18F]L10 have PSMA specific cellular uptake (0.65 ± 0.04% AD and 1.19 ± 0.03% AD) and effectively accumulated in 22Rv1 xenograft mice model. This study demonstrates that PSMA-1007-based PSMA-targeted aryl [18F]fluorosulfate novel tracers have the potential for PET imaging in tumor tissues.
Collapse
Affiliation(s)
- Zhaolin Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Bin Zhu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Fan Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Xiangping Chen
- PET Center, Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Guangfa Wang
- PET Center, Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ning Ding
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| | - Xiaoping Xu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| | - Wei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
4
|
Bertram J, Neumaier F, Zlatopolskiy BD, Neumaier B. Desmethyl SuFEx-IT: SO 2F 2-Free Synthesis and Evaluation as a Fluorosulfurylating Agent. J Org Chem 2024; 89:3821-3833. [PMID: 38386004 PMCID: PMC10949248 DOI: 10.1021/acs.joc.3c02643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Access to SuFExable compounds was remarkably simplified by introduction of the solid FO2S-donor SuFEx-IT. However, the published process for preparation of this reagent relies on the use of sulfuryl fluoride (SO2F2), which is difficult to obtain and highly toxic. Herein, we disclose a simple protocol for SO2F2-free, hectogram-scale preparation of the analogous desmethyl SuFEx-IT from inexpensive starting materials. The reagent was prepared in a high (85%) total yield and without chromatographic purification steps. In addition, we demonstrate the utility of desmethyl SuFEx-IT by successful preparation of a series of fluorosulfates and sulfamoyl fluorides in high to excellent yields. As such, our work recognizes desmethyl SuFEx-IT as a valuable alternative to common FO2S-donors and enables cost-efficient access to substrates for SuFEx click chemistry.
Collapse
Affiliation(s)
- Jan Bertram
- Forschungszentrum
Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear
Chemistry (INM-5), Wilhelm-Johnen-Straße, Jülich 52425, Germany
| | - Felix Neumaier
- Forschungszentrum
Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear
Chemistry (INM-5), Wilhelm-Johnen-Straße, Jülich 52425, Germany
- Faculty
of Medicine and Cologne University Hospital, Institute of Radiochemistry
and Experimental Molecular Imaging, University
of Cologne, Kerpener
Straße 62, Cologne 50937, Germany
| | - Boris D. Zlatopolskiy
- Forschungszentrum
Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear
Chemistry (INM-5), Wilhelm-Johnen-Straße, Jülich 52425, Germany
- Faculty
of Medicine and Cologne University Hospital, Institute of Radiochemistry
and Experimental Molecular Imaging, University
of Cologne, Kerpener
Straße 62, Cologne 50937, Germany
| | - Bernd Neumaier
- Forschungszentrum
Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear
Chemistry (INM-5), Wilhelm-Johnen-Straße, Jülich 52425, Germany
- Faculty
of Medicine and Cologne University Hospital, Institute of Radiochemistry
and Experimental Molecular Imaging, University
of Cologne, Kerpener
Straße 62, Cologne 50937, Germany
| |
Collapse
|
5
|
Mawick M, Jaworski C, Bittermann J, Iovkova L, Pu Y, Wängler C, Wängler B, Jurkschat K, Krause N, Schirrmacher R. CycloSiFA: The Next Generation of Silicon-Based Fluoride Acceptors for Positron Emission Tomography (PET). Angew Chem Int Ed Engl 2023; 62:e202309002. [PMID: 37850849 DOI: 10.1002/anie.202309002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023]
Abstract
The ring-opening Si-fluorination of a variety of azasilole derivatives cyclo-1-(iPr2 Si)-4-X-C6 H3 -2-CH2 NR (4: R=2,6-iPr2 C6 H3 , X=H; 4 a: R=2,4,6-Me3 C6 H2 , X=H; 9: R=2,6-iPr2 C6 H3 , X=tBuMe2 SiO; 10: R=2,6-iPr2 C6 H3 , X=OH; 13: R=2,6-iPr2 C6 H3 , X=HCCCH2 O; 22: R=2,6-iPr2 C6 H3 , X=tBuMe2 SiCH2 O) with different 19 F-fluoride sources was studied, optimized and the experience gained was used in a translational approach to create a straightforward 18 F-labelling protocol for the azasilole derivatives [18 F]6 and [18 F]14. The latter constitutes a potential clickable CycloSiFA prosthetic group which might be used in PET tracer development using Cu-catalysed triazole formation. Based on our findings, CycloSiFA has the potential to become a new entry into non-canonical labelling methodologies for radioactive PET tracer development.
Collapse
Affiliation(s)
- Matthias Mawick
- Fakultät für Chemie und Chemische Biologie, Lehrstuhl für Organische Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Carolin Jaworski
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Jens Bittermann
- Fakultät für Chemie und Chemische Biologie, Lehrstuhl für Organische Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Ljuba Iovkova
- Fakultät für Chemie und Chemische Biologie, Lehrstuhl für Organische Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Yinglan Pu
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Carmen Wängler
- Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Björn Wängler
- Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Klaus Jurkschat
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Norbert Krause
- Fakultät für Chemie und Chemische Biologie, Lehrstuhl für Organische Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Ralf Schirrmacher
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
6
|
Craig A, Kogler J, Laube M, Ullrich M, Donat CK, Wodtke R, Kopka K, Stadlbauer S. Preparation of 18F-Labeled Tracers Targeting Fibroblast Activation Protein via Sulfur [ 18F]Fluoride Exchange Reaction. Pharmaceutics 2023; 15:2749. [PMID: 38140090 PMCID: PMC10747913 DOI: 10.3390/pharmaceutics15122749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/14/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Early detection and treatment of cancers can significantly increase patient prognosis and enhance the quality of life of affected patients. The emerging significance of the tumor microenvironment (TME) as a new frontier for cancer diagnosis and therapy may be exploited by radiolabeled tracers for diagnostic imaging techniques such as positron emission tomography (PET). Cancer-associated fibroblasts (CAFs) within the TME are identified by biomarkers such as fibroblast activation protein alpha (FAPα), which are expressed on their surfaces. Targeting FAPα using small-molecule 18F-labeled inhibitors (FAPIs) has recently garnered significant attention for non-invasive tumor visualization using PET. Herein, two potent aryl-fluorosulfate-based FAPIs, 12 and 13, were synthetically prepared, and their inhibition potency was determined using a fluorimetric FAP assay to be IC50 9.63 and 4.17 nM, respectively. Radiofluorination was performed via the sulfur [18F]fluoride exchange ([18F]SuFEx) reaction to furnish [18F]12 and [18F]13 in high activity yields (AY) of 39-56% and molar activities (Am) between 20-55 GBq/µmol. In vitro experiments focused on the stability of the radiolabeled FAPIs after incubation with human serum, liver microsomes and liver cytosol. Preliminary PET studies of the radioligands were performed in healthy mice to investigate the in vivo biodistribution and 18F defluorination rate. Fast pharmacokinetics for the FAP-targeting tracers were retained and considerable bone uptake, caused by either 18F defluorination or radioligand accumulation, was observed. In summary, our findings demonstrate the efficiency of [18F]SuFEx as a radiolabeling method as well as its advantages and limitations with respect to PET tracer development.
Collapse
Affiliation(s)
- Austin Craig
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany; (A.C.)
| | - Jürgen Kogler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany; (A.C.)
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Markus Laube
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany; (A.C.)
| | - Martin Ullrich
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany; (A.C.)
| | - Cornelius K. Donat
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany; (A.C.)
| | - Robert Wodtke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany; (A.C.)
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany; (A.C.)
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Sven Stadlbauer
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany; (A.C.)
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, D-01062 Dresden, Germany
| |
Collapse
|
7
|
Bauer D, Cornejo MA, Hoang TT, Lewis JS, Zeglis BM. Click Chemistry and Radiochemistry: An Update. Bioconjug Chem 2023; 34:1925-1950. [PMID: 37737084 PMCID: PMC10655046 DOI: 10.1021/acs.bioconjchem.3c00286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Indexed: 09/23/2023]
Abstract
The term "click chemistry" describes a class of organic transformations that were developed to make chemical synthesis simpler and easier, in essence allowing chemists to combine molecular subunits as if they were puzzle pieces. Over the last 25 years, the click chemistry toolbox has swelled from the canonical copper-catalyzed azide-alkyne cycloaddition to encompass an array of ligations, including bioorthogonal variants, such as the strain-promoted azide-alkyne cycloaddition and the inverse electron-demand Diels-Alder reaction. Without question, the rise of click chemistry has impacted all areas of chemical and biological science. Yet the unique traits of radiopharmaceutical chemistry have made it particularly fertile ground for this technology. In this update, we seek to provide a comprehensive guide to recent developments at the intersection of click chemistry and radiopharmaceutical chemistry and to illuminate several exciting trends in the field, including the use of emergent click transformations in radiosynthesis, the clinical translation of novel probes synthesized using click chemistry, and the advent of click-based in vivo pretargeting.
Collapse
Affiliation(s)
- David Bauer
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
| | - Mike A. Cornejo
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Chemistry, Hunter College, City University
of New York, New York, New York 10065, United States
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
| | - Tran T. Hoang
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Pharmacology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Jason S. Lewis
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Radiology, Weill Cornell Medical College, New York 10021, New York United States
| | - Brian M. Zeglis
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Chemistry, Hunter College, City University
of New York, New York, New York 10065, United States
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
- Department
of Pharmacology, Weill Cornell Medical College, New York, New York 10065, United States
- Department
of Radiology, Weill Cornell Medical College, New York 10021, New York United States
- Ph.D.
Program
in Biochemistry, Graduate Center of the
City University of New York, New
York, New York 10016, United States
| |
Collapse
|
8
|
Yang Z, Barnes C, Domarkas J, Koch-Paszkowski J, Wright J, Amgheib A, Renard I, Fu R, Archibald S, Aboagye EO, Allott L. Automated sulfur-[ 18F]fluoride exchange radiolabelling of a prostate specific membrane antigen (PSMA) targeted ligand using the GE FASTlab™ cassette-based platform. REACT CHEM ENG 2023; 8:2403-2407. [PMID: 38013985 PMCID: PMC10520611 DOI: 10.1039/d3re00307h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/17/2023] [Indexed: 11/29/2023]
Abstract
Sulfur-[18F]fluoride exchange radiochemistry is a rapid and convenient method for incorporating fluorine-18 into biologically active molecules. We report a fully automated radiolabelling procedure for the synthesis of a [18F]SO3F-bearing prostate specific membrane antigen (PSMA) targeted ligand ([18F]5) using the GE FASTLab™ cassette-based platform in a 25.0 ± 2.6% radiochemical yield (decay corrected). Uptake in vitro and in vivo correlated with PSMA expression, and the radioligand exhibited favourable biodistribution and pharmacokinetic profiles.
Collapse
Affiliation(s)
- Zixuan Yang
- Comprehensive Cancer imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London Hammersmith Hospital, Du Cane Road London UK
| | - Chris Barnes
- Comprehensive Cancer imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London Hammersmith Hospital, Du Cane Road London UK
| | - Juozas Domarkas
- Centre for Biomedicine and Positron Emission Tomography Research Centre, Hull York Medical School and University of Hull Cottingham Road Hull HU6 7RX UK
| | - Joanna Koch-Paszkowski
- Centre for Biomedicine and Positron Emission Tomography Research Centre, Hull York Medical School and University of Hull Cottingham Road Hull HU6 7RX UK
| | - John Wright
- Centre for Biomedicine and Positron Emission Tomography Research Centre, Hull York Medical School and University of Hull Cottingham Road Hull HU6 7RX UK
| | - Ala Amgheib
- Comprehensive Cancer imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London Hammersmith Hospital, Du Cane Road London UK
| | - Isaline Renard
- Centre for Biomedicine and Positron Emission Tomography Research Centre, Hull York Medical School and University of Hull Cottingham Road Hull HU6 7RX UK
| | - Ruisi Fu
- Comprehensive Cancer imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London Hammersmith Hospital, Du Cane Road London UK
| | - Stephen Archibald
- Centre for Biomedicine and Positron Emission Tomography Research Centre, Hull York Medical School and University of Hull Cottingham Road Hull HU6 7RX UK
| | - Eric O Aboagye
- Comprehensive Cancer imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London Hammersmith Hospital, Du Cane Road London UK
| | - Louis Allott
- Centre for Biomedicine and Positron Emission Tomography Research Centre, Hull York Medical School and University of Hull Cottingham Road Hull HU6 7RX UK
| |
Collapse
|
9
|
Humpert S, Hoffmann C, Neumaier F, Zlatopolskiy BD, Neumaier B. Validation of analytical HPLC with post-column injection as a method for rapid and precise quantification of radiochemical yields. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123847. [PMID: 37634390 DOI: 10.1016/j.jchromb.2023.123847] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/29/2023]
Abstract
Accurate assessment of isolated radiochemical yields (RCYs) is a prerequisite for efficient and reliable optimization of labeling reactions. In practice, radiochemical conversions (RCCs) determined by HPLC analysis of crude reaction mixtures are often used to estimate RCYs. However, incomplete recovery of radioactivity from the stationary phase can lead to significant inaccuracies if RCCs are calculated based on the activity eluted from the column (i.e. the summed integrals of all peaks). Here, we validate a simple and practical method that overcomes problems associated with retention of activity on the column by determination of the total activity in the sample using post-column injection. Post-column injections were carried out using an additional injection valve, which was placed between the outlet of the HPLC column and the inlet of the detectors. 2-[18F]Fluoropyridine ([18F]FPy) and 8-cyclopentyl-3-(3-[18F]fluoropropyl)-1-propylxanthine ([18F]CPFPX) were prepared with radiochemical purities of > 99.8% and mixed with [18F]fluoride at a ratio of 1:1 to simulate reaction mixtures obtained by radiolabeling reactions with an RCC of 50%. The samples were analyzed on three different C18 HPLC columns using neutral and acidic mobile phases. RCCs determined using the summed area of all peaks in the chromatograms were compared with those determined using post-column injection. Additionally, RCCs determined by post-column injection were corrected for activity losses before, during and after radiosyntheses to afford analytical RCYs, which were compared with isolated RCYs. Determination of RCCs based on the summed area of all peaks gave correct results under certain chromatographic conditions, but led to overestimation of the actual RCCs by up to 50% in other cases. In contrast, determination of RCCs using post-column injection provided precise results in all cases, and often significantly reduced analysis time. Moreover, analytical RCYs calculated from RCCs determined by post-column injection showed excellent agreement with isolated RCYs (<3% deviation). In conclusion, HPLC analysis using post-column injection enables reliable determination of RCCs independent of the chromatographic conditions and, together with a simple activity balance, rapid and accurate prediction of isolated RCYs.
Collapse
Affiliation(s)
- Swen Humpert
- Forschungszentrum Jülich GmbH, Institute of Neurosciences and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| | - Chris Hoffmann
- Forschungszentrum Jülich GmbH, Institute of Neurosciences and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany; Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Felix Neumaier
- Forschungszentrum Jülich GmbH, Institute of Neurosciences and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany; Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Boris D Zlatopolskiy
- Forschungszentrum Jülich GmbH, Institute of Neurosciences and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany; Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Bernd Neumaier
- Forschungszentrum Jülich GmbH, Institute of Neurosciences and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany; Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany.
| |
Collapse
|
10
|
Kim MP, Cho H, Kayal S, Jeon MH, Seo JK, Son J, Jeong J, Hong SY, Chun JH. Direct 18F-Fluorosulfurylation of Phenols and Amines Using an [ 18F]FSO 2+ Transfer Agent Generated In Situ. J Org Chem 2023; 88:6263-6273. [PMID: 37032486 DOI: 10.1021/acs.joc.3c00512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
We report the direct radiofluorosulfurylation method for the synthesis of 18F-labeled fluorosulfuryl derivatives from phenols and amines using an [18F]FSO2+ transfer agent generated in situ. Nucleophilic radiofluorination is achieved even in a hydrous organic medium, obviating the need for azeotropic drying and the use of cryptands. This unprecedented, operationally simple isotopic functionalization facilitates the reliable production of potential radiotracers for positron emission tomography, rendering facile access to SuFEx radiochemistry.
Collapse
Affiliation(s)
- Min Pyeong Kim
- Department of Chemistry and Department of Chemical Engineering, Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hojin Cho
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Swatilekha Kayal
- Department of Chemistry and Department of Chemical Engineering, Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min Ho Jeon
- Department of Chemistry and Department of Chemical Engineering, Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jeong Kon Seo
- UNIST Central Research Facility, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jeongmin Son
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jinsil Jeong
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sung You Hong
- Department of Chemistry and Department of Chemical Engineering, Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Joong-Hyun Chun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
11
|
King AT, Matesic L, Keaveney ST, Jamie JF. An Investigation into the In Vitro Metabolic Stability of Aryl Sulfonyl Fluorides for their Application in Medicinal Chemistry and Radiochemistry. Mol Pharm 2023; 20:1061-1071. [PMID: 36638322 DOI: 10.1021/acs.molpharmaceut.2c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Molecules that feature a sulfonyl fluoride (SO2F) moiety have been gaining increasing interest due to their unique reactivity and potential applications in synthetic chemistry, medicinal chemistry, and other biological uses. A particular interest is towards 18F-radiochemistry where sulfonyl fluorides can be used as a method to radiolabel biomolecules or can be used as radiofluoride relay reagents that facilitate radiolabeling of other molecules. The low metabolic stability of sulfonyl fluoride S-F bonds, however, presents an issue and limits the applicability of sulfonyl fluorides. The aim of this work was to increase understanding of what features contribute to the metabolic instability of the S-F bond in model aryl sulfonyl fluorides and identify approaches to increasing sulfonyl fluoride stability for 18F-radiochemistry and other medicinal, synthetic chemistry and biological applications. To undertake this, 14 model aryl sulfonyl fluorides compounds with varying functional groups and substitution patterns were investigated, and their stabilities were examined in various media, including phosphate-buffered saline and rat serum as a model for biological conditions. The results indicate that both electronic and steric factors affect the stability of the S-F bond, with the 2,4,6-trisubstituted model aryl sulfonyl fluorides examined displaying the highest in vitro metabolic stability.
Collapse
Affiliation(s)
- Andrew T King
- School of Natural Sciences, Wallumattagal Campus, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Lidia Matesic
- Australian Nuclear Science and Technology Organisation, New Illawarra Rd, Lucas Heights, New South Wales 2234, Australia
| | - Sinead T Keaveney
- School of Natural Sciences, Wallumattagal Campus, Macquarie University, North Ryde, New South Wales 2109, Australia.,School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Joanne F Jamie
- School of Natural Sciences, Wallumattagal Campus, Macquarie University, North Ryde, New South Wales 2109, Australia
| |
Collapse
|
12
|
Wang C, Lin R, Yao S. Recent Advances in 18F-Labeled Amino Acids Synthesis and Application. Pharmaceutics 2022; 14:pharmaceutics14102207. [PMID: 36297641 PMCID: PMC9609324 DOI: 10.3390/pharmaceutics14102207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Radiolabeled amino acids are an important class of agents for positron emission tomography imaging that target amino acid transporters in many tumor types. Traditional 18F-labeled amino acid synthesis strategies are always based on nucleophilic aromatic substitution reactions with multistep radiosynthesis and low radiochemical yields. In recent years, new 18F-labeling methodologies such as metal-catalyzed radiofluorination and heteroatom (B, P, S, Si, etc.)-18F bond formation are being effectively used to synthesize radiopharmaceuticals. This review focuses on recent advances in the synthesis, radiolabeling, and application of a series of 18F-labeled amino acid analogs using new 18F-labeling strategies.
Collapse
|
13
|
Bonnefoy C, Chefdeville E, Tourvieille C, Panossian A, Hanquet G, Leroux F, Toulgoat F, Billard T. Study of Carbamoyl Fluoride: Synthesis, Properties and Applications. Chemistry 2022; 28:e202201589. [PMID: 35639343 DOI: 10.1002/chem.202201589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 12/14/2022]
Abstract
Carbamoyl fluoride is a fluorinated group that, to this date, remains underexplored, probably due to the lack of data concerning its properties. In this paper, a study of carbamoyl fluoride is presented. Stability studies, in particular under physiological conditions, and lipophilicity measurement were performed. A new easy, safe, inexpensive, and metal-free synthesis method is also described. Finally, a potential use in radiochemistry through a 18 F/19 F isotopic exchange is demonstrated.
Collapse
Affiliation(s)
- Clémence Bonnefoy
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, CNRS, Université Lyon 1, 1 rue Victor Grignard, 69622, Lyon, France
| | - Emmanuel Chefdeville
- NMR Centre, Univ Lyon, Université Lyon 1, CNRS, 1 rue Victor Grignard, 69622, Lyon, France
| | | | - Armen Panossian
- Université de Strasbourg, Université de Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 67000, Strasbourg, France
| | - Gilles Hanquet
- Université de Strasbourg, Université de Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 67000, Strasbourg, France
| | - Frédéric Leroux
- Université de Strasbourg, Université de Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 67000, Strasbourg, France
| | - Fabien Toulgoat
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, CNRS, Université Lyon 1, 1 rue Victor Grignard, 69622, Lyon, France.,CPE, Lyon Campus LyonTech-La Doua, 43 Bd du 11 novembre 1918, 69616, Villeurbanne, France
| | - Thierry Billard
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, CNRS, Université Lyon 1, 1 rue Victor Grignard, 69622, Lyon, France.,CERMEP-In vivo imaging Groupement Hospitalier Est, 59 Bd Pinel, 69677, Lyon, France
| |
Collapse
|