1
|
Song H, Wei Y, Gu Z, Han J, Wang X, Gong Y, Wang J. Rapidly screening of pancreatic lipase inhibitors from Sibiraea angustata (rehd.) Hand.-Mazz. leaves using affinity ultrafiltration combined with HPLC-QTOFMS, molecular docking, targeted separation, and in vitro experimental verification. Nat Prod Res 2025:1-8. [PMID: 39853195 DOI: 10.1080/14786419.2025.2457120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/30/2024] [Accepted: 01/19/2025] [Indexed: 01/26/2025]
Abstract
An integrated strategy was proposed for the rapid screening of pancreatic lipase inhibitors from Sibiraea angustata (Rehd.) Hand.-Mazz. (S. angustata) leaves based on affinity ultrafiltration, high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-QTOFMS), molecular docking, targeted separation and in vitro experimental verification. A total of fifteen target compounds, including five flavonoids, one phenylpropanol glycoside and nine terpenoids, had been screened as pancreatic lipase inhibitors from the ethyl acetate and n-butanol fractions of S. angustata leaves. Among these target compounds, thirteen of them are reported as pancreatic lipase inhibitors for the first time. Hyperin, quercetin-3,4'-diglucoside and peltatoside showed stronger binding abilities with pancreatic lipase with ΔG values -9.9, -10.2 and -9.2 kcal/mol while the IC50 values were 0.987 ± 0.079, 0.718 ± 0.054 and 0.916 ± 0.069 mmol/L, respectively. The target compounds quercetin-3,4'-diglucoside and peltatoside were separated with purities higher than 98% using macroporous resin and preparative chromatography.
Collapse
Affiliation(s)
- Hai Song
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye, China
| | - Yangfei Wei
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye, China
| | - Zhixiang Gu
- College of Chemistry and Chemical Engineering, Hexi University, Zhangye, China
| | - Jiandong Han
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye, China
| | - Xiaojun Wang
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye, China
| | - Yongpeng Gong
- College of Chemistry and Chemical Engineering, Hexi University, Zhangye, China
| | - Junke Wang
- College of Chemistry and Chemical Engineering, Hexi University, Zhangye, China
| |
Collapse
|
2
|
Wei Y, Chen T, Song H, Wang S, Shen C, Wang X, Li Y, Wang J. Rapidly screening of pancreatic lipase inhibitors from Clematis tangutica using affinity ultrafiltration-HPLC-QTOFMS technique combined with targeted separation, in vitro validation, and molecular docking. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:101-112. [PMID: 39009466 DOI: 10.1002/pca.3422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
INTRODUCTION Screening of novel pancreatic lipase inhibitors from complex natural products is a meaningful task. OBJECTIVES Through accurately screening and separating pancreatic lipase inhibitors from Clematis tangutica (C. tangutica), to discover new leading compounds for slimming and accelerate the development and utilization of Tibetan medicine resources. METHODS An integrated strategy that combines affinity ultrafiltration and high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (AU-HPLC-QTOFMS), targeted separation, in vitro validation, and molecular docking was developed to screen pancreatic lipase inhibitors from C. tangutica. The AU-HPLC-QTOFMS technique was performed to fish for the potential active substances. Macroporous resin, preparative liquid chromatography, and high-speed countercurrent chromatography were implemented for the accurate and targeted separation of active compounds. The inhibitory activities of target compounds to pancreatic lipase were detected by the inhibition experiments in vitro. The binding affinities and binding sites were analyzed using molecular docking. RESULTS A total of eleven kinds of pancreatic lipase inhibitory substances were screened from C. tangutica. Seven triterpenoid saponins were screened for the first time as lipase inhibitors and successfully prepared with purities higher than 97%. Tanguticoside B, clematangoticoside J, hederoside H1, and rutin showed stronger inhibitory effects with IC50 values of 1.539 ± 0.048, 1.661 ± 0.092, 1.793 ± 0.069, and 1.792 ± 0.094 mmol/l. Moreover, they have the lowest ΔG values of -10.84, -9.97, -10.87, and -9.39 kcal/mol to pancreatic lipase. CONCLUSION The integrated strategy using AU-HPLC-QTOFMS, targeted separation, in vitro validation, and molecular docking was feasible for rapidly screening and directionally isolating pancreatic lipase inhibitors from C. tangutica.
Collapse
Affiliation(s)
- Yangfei Wei
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye, China
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Tao Chen
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Hai Song
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye, China
| | - Shuo Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Cheng Shen
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Xiaojun Wang
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye, China
| | - Yulin Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Junke Wang
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye, China
| |
Collapse
|
3
|
Sánchez-Trasviña C, Lorenzo-Anota HY, Escobar-Fernández AM, Lezama-Aguilar D, Morales-Martínez A, Vélez-Barceló A, Benavides J, Lozano O, Rito-Palomares M, Mayolo-Deloisa K. Silk Fibroin Nanoparticles as a Drug Delivery System of 3,3'-Diindolylmethane with Potential Antiobesogenic Activity. ACS OMEGA 2024; 9:47661-47671. [PMID: 39651090 PMCID: PMC11618424 DOI: 10.1021/acsomega.4c07203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/10/2024] [Accepted: 11/08/2024] [Indexed: 12/11/2024]
Abstract
Obesity is a global disease characterized by excessive lipid accumulation in the adipose tissue. There is an urgent need to explore alternative compounds to treat obesity. Low-molecular-weight compounds from plants, like 3,3'-diindolylmethane (DIM), are emerging as potential alternatives for obesity treatment. In this work, DIM is encapsulated into silk fibroin nanoparticles (SFNP) to evaluate the antiobesogenic potential. The obtained spherical-like SFNPs have a particle size between 165 and 200 nm, a polydispersity index between 0.11 and 0.15, and a zeta potential from -27 to -37 mV. DIM does not modify the nanoparticle shape but changes the secondary structure of fibroin and generates smaller nanoparticles (145 nm). DIM-loaded SFNP (SFNP-DIM) enhance their antioxidant capacity by 4.4-fold compared to SFNP. SFNP-DIM does not show cytotoxicity on white-like adipocytes, unlike 3T3-L1 preadipocytes, where cell viability decreased in a concentration-dependent manner. The SFNP-DIM treatment (5 μM, 0.03 mg SFNP mL-1) does not modify the morphology of white-like adipocytes. It produces an apparent augmentation in the size and number of intracellular lipid droplets and increases by 2.18 ± 0.4-fold of triglyceride content. These findings demonstrated that SFNPs could be a potential delivery system of DIM, suggesting a potential therapeutic agent for treating obesity.
Collapse
Affiliation(s)
- Calef Sánchez-Trasviña
- Institute
for Obesity Research, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León 64849, Mexico
- Escuela
de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León 64849, Mexico
| | - Helen Y. Lorenzo-Anota
- Institute
for Obesity Research, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León 64849, Mexico
- Escuela
de Medicina y Ciencias de la Salud, Tecnológico
de Monterrey, Av. Morones
Prieto 3000 Pte, Monterrey, Nuevo León 64849, Mexico
| | - Aleyda M. Escobar-Fernández
- Institute
for Obesity Research, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León 64849, Mexico
- Escuela
de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León 64849, Mexico
| | - David Lezama-Aguilar
- Institute
for Obesity Research, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León 64849, Mexico
- Escuela
de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León 64849, Mexico
| | - Adriana Morales-Martínez
- Institute
for Obesity Research, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León 64849, Mexico
- Escuela
de Medicina y Ciencias de la Salud, Tecnológico
de Monterrey, Av. Morones
Prieto 3000 Pte, Monterrey, Nuevo León 64849, Mexico
| | - Ana Vélez-Barceló
- Escuela
de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León 64849, Mexico
| | - Jorge Benavides
- Institute
for Obesity Research, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León 64849, Mexico
- Escuela
de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León 64849, Mexico
| | - Omar Lozano
- Institute
for Obesity Research, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León 64849, Mexico
- Escuela
de Medicina y Ciencias de la Salud, Tecnológico
de Monterrey, Av. Morones
Prieto 3000 Pte, Monterrey, Nuevo León 64849, Mexico
| | - Marco Rito-Palomares
- Institute
for Obesity Research, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León 64849, Mexico
- Escuela
de Medicina y Ciencias de la Salud, Tecnológico
de Monterrey, Av. Morones
Prieto 3000 Pte, Monterrey, Nuevo León 64849, Mexico
| | - Karla Mayolo-Deloisa
- Institute
for Obesity Research, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León 64849, Mexico
- Escuela
de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León 64849, Mexico
| |
Collapse
|
4
|
Chen M, Chen D, Xiao R, Zheng X, Liu B, Wang J. Bacillus lipopeptides inhibit lipase activity and promote 3T3-L1 preadipocyte differentiation. J Enzyme Inhib Med Chem 2024; 39:2417915. [PMID: 39434248 PMCID: PMC11497581 DOI: 10.1080/14756366.2024.2417915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024] Open
Abstract
Bacillus lipopeptides have been reported to display anti-obesity effects. In the present study, Lipopeptides from Bacillus velezensis FJAT-45028 that consisted of iturin, fengycin and surfactin were reported. The lipopeptides exhibited a strong lipase inhibition activity in a concentration-dependent manner with a half maximal inhibitory concentration of 0.012 mg/mL, and the inhibition mechanism and type were reversible and competitive, respectively. Results of CCK8 assay showed that 3T3-L1 preadipocyte cells were completely viable under treatment of 0.050-0.2 mg/mL lipopeptides for 24 or 48 h. It was found that the lipopeptides could increase lipid droplets in the differentiated 3T3-L1 adipocytes in tested concentration and suppress the expression of peroxisome proliferator-activated receptor gamma (PPARγ). These results indicated the potential anti-obesity mechanism of the tested lipopeptides might be to inhibit lipase activity but not to suppress lipid accumulation in the adipocytes. Moreover, the lipopeptides could elevate glucose utilisation by 14.43%-33.81% in the differentiated 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Meichun Chen
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Deju Chen
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Rongfeng Xiao
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xuefang Zheng
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Bo Liu
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jieping Wang
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
5
|
Meléndez-Martínez D, Ortega-Hernández E, Reza-Zaldívar EE, Carbajal-Saucedo A, Arnaud-Franco G, Gatica-Colima A, Plenge-Tellechea LF, Antunes-Ricardo M, Jacobo-Velázquez DA, Mayolo-Deloisa K, Lozano O, Rito-Palomares M, Benavides J. Bioprospection of rattlesnake venom peptide fractions with anti-adipose and anti-insulin resistance activity in vitro. Toxicon X 2024; 24:100209. [PMID: 39398348 PMCID: PMC11471244 DOI: 10.1016/j.toxcx.2024.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024] Open
Abstract
Animal venoms are natural products that have served as a source of novel molecules that have inspired novel drugs for several diseases, including for metabolic diseases such as type-2 diabetes and obesity. From venoms, toxins such as exendin-4 (Heloderma suspectum) and crotamine (Crotalus durissus terrificus) have demonstrated their potential as treatments for obesity. Moreover, other toxins such as Phospholipases A2 and Disintegrins have shown their potential to modulate insulin secretion in vitro. This suggests an unexplored diversity of venom peptides with a potential anti-obesogenic in Mexican rattlesnake venoms. For that reason, this study explored the in vitro effect of Crotalus venom peptide-rich fractions on models for insulin resistance, adipocyte lipid accumulation, antioxidant activity, and inflammation process through nitric oxide production inhibition. Our results demonstrated that the peptide-rich fractions of C. aquilus, C. ravus, and C. scutulatus scutulatus were capable of reverting insulin resistance, enhancing glucose consumption to normal control; C. culminatus, C. molossus oaxacus, and C. polystictus diminished the lipid accumulation on adipocytes by 20%; C. aquilus, C. ravus, and C. s. salvini had the most significant cellular antioxidant activity, having nearly 80% of ROS inhibition. C. aquilus, C. pyrrhus, and C. s. salvini inhibited nitric oxide production by about 85%. We demonstrated the potential of these peptides from Crotalus venoms to develop novel drugs to treat type-2 diabetes and obesity. Moreover, we described for the first time that Crotalus venom peptide fractions have antioxidant and inflammatory properties in vitro models.
Collapse
Affiliation(s)
- David Meléndez-Martínez
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849, Monterrey, N.L., Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849, Monterrey, N.L., Mexico
| | - Erika Ortega-Hernández
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849, Monterrey, N.L., Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849, Monterrey, N.L., Mexico
| | - Edwin Estefan Reza-Zaldívar
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. General Ramón Corona 2514, Zapopan, 45201, Mexico
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. General Ramón Corona 2514, Zapopan, 45201, Mexico
| | - Alejandro Carbajal-Saucedo
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Herpetología, San Nicolás de los Garza, Nuevo León, C.P. 66450, Mexico
| | - Gustavo Arnaud-Franco
- Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional, 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S, 23090, Mexico
| | - Ana Gatica-Colima
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez, Chih, 32310, Mexico
| | - Luis Fernando Plenge-Tellechea
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez, Chih, 32310, Mexico
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849, Monterrey, N.L., Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849, Monterrey, N.L., Mexico
| | - Daniel A. Jacobo-Velázquez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849, Monterrey, N.L., Mexico
| | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849, Monterrey, N.L., Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849, Monterrey, N.L., Mexico
| | - Omar Lozano
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849, Monterrey, N.L., Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000 Pte, C.P. 64460, Monterrey, N.L., Mexico
| | - Marco Rito-Palomares
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849, Monterrey, N.L., Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000 Pte, C.P. 64460, Monterrey, N.L., Mexico
| | - Jorge Benavides
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849, Monterrey, N.L., Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849, Monterrey, N.L., Mexico
| |
Collapse
|
6
|
Wei LY, Lin YW, Luo JC, Li YX, Hu YT, Guo SY, Jiang Z, Zhao DD, Chen SB, Huang ZS. Design, synthesis and structure-activity relationship of novel 2-pyrimidinylindole derivatives as orally available anti-obesity agents. Eur J Med Chem 2024; 277:116773. [PMID: 39163779 DOI: 10.1016/j.ejmech.2024.116773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
Due to the emerging global epidemic of obesity, developing safe and effective agents for anti-obesity is urgently needed. Our previous study found that 2-pyrimidinylindole derivative Wd3d exhibited potential anti-obesity activity. Herein, to further optimize the potential moiety, structural modifications were proceeded for two rounds in this study. Firstly, we designed, synthesized, and evaluated 36 new derivatives of 2-pyrimidinylindole scaffold with different substituents on the indole ring and pyrimidine ring to investigate their structure-activity relationship (SAR). Then, analogs with potent activity had the aldehyde group replaced with the acylhydrazone group to reduce cytotoxicity and improve metabolic stability. Detailed SAR studies and animal evaluation experiments led to the discovery of the compound 9ga, which significantly reduced TG accumulation with an EC50 value of 0.07 μM and showed relatively low cytotoxicity with an IC50 value of around 24 μM. Oral administration of 9ga effectively prevented the excessive growth of body weight and lessened fat mass as well as liver mass, decreased lipid accumulation in the liver and blood, and improved the heart injury parameter in the diet-induced obesity mouse model significantly better than Wd3d. A mechanism study showed that 9ga regulated the lipid metabolism during early adipogenesis by inhibiting PPARγ pathway. In conclusion, our study further highlights the anti-obesity potential of 2-pyrimidinylindole derivatives in diet-induced obesity.
Collapse
Affiliation(s)
- Li-Yuan Wei
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yu-Wei Lin
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jia-Chun Luo
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yi-Xian Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yu-Tao Hu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shi-Yao Guo
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhi Jiang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Dan-Dan Zhao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Zhang Z, Cui Y, Zhang X, Hu X, Li S, Li T. Gut microbiota combined with serum metabolites to reveal the effect of Morchella esculenta polysaccharides on lipid metabolism disordered in high-fat diet mice. Int J Biol Macromol 2024; 281:136380. [PMID: 39389515 DOI: 10.1016/j.ijbiomac.2024.136380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
The ameliorating effects and mechanisms of Morchella esculenta polysaccharides (MEP-1) on lipid metabolism were investigated in high-fat diet (HFD) mice. The results showed that MEP-1 intervention significantly reduced serum TC, TG, LDL-C, and inflammatory factors (TNF-α, IL-1β and IL-6) in HFD mice in a dose-dependent manner, and high-dose (400 mg/kg/d) exhibited the most significant reductive effects. In addition, MEP-1 significantly recovered the gut microbiota disorders caused by HFD, especially decreasing the ratio of Firmicutes and Bacteroidetes (F/B) and increasing the dominant bacterial of Muribaculaceae_genus, Bacteroides, Alistipes and Enterococcus. Moreover, MEP-1 promoted the production of SCFAs and increased the expression levels of Occludin, Claudin and Muc2, also regulated lipid metabolism disorder and inflammation by inhibiting TLR4/MyD88/NF-κB via the gut-liver axis. In addition, serum metabolomic analysis revealed that l-phenylalanine, l-arginine and acetylcholine were significantly upregulated with MEP-1 intervention, and were negatively correlated with blood lipid level, in which l-arginine could activate NO/PPARα/CPT1A pathway to ameliorate lipid metabolism disorders. Such results demonstrated that gut microbiota, amino acid metabolic and insulin secretion pathways might be the important factors that mediated the regulation of MEP-1 in lipid metabolism. The results also provided new evidence and strategies for the application of MEP-1 as functional foods.
Collapse
Affiliation(s)
- Zuoyi Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
| | - Yanmin Cui
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
| | - Xiushan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
| | - Xiaopei Hu
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China.
| | - Suhong Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
| | - Tuoping Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China.
| |
Collapse
|
8
|
Wang J, Zhang T, Gu R, Ke Y, Zhang S, Su X, Pan X, He Q, Li G, Zhang Z, Zhang L, Li J, Wu W, Chen C. Development and Evaluation of Reconstructed Nanovesicles from Turmeric for Multifaceted Obesity Intervention. ACS NANO 2024; 18:23117-23135. [PMID: 39153188 DOI: 10.1021/acsnano.4c05309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
The escalating prevalence of obesity poses significant health challenges due to its direct association with various diseases. Most existing medications, such as appetite suppressants and fat absorption inhibitors, suffer from limited effectiveness and undesirable side effects. Here, inspired by the versatile metabolic effects of turmeric, we developed a naturally derived nanoformulation of "Reconstructed Turmeric-derived Nanovesicles (Rec-tNVs)" for obesity treatment. Employing quantitative nanoflow cytometry, a four-orders-of-magnitude increase in curcumin content (∼108 molecules per particle) was identified in individual Rec-tNVs compared to their ultracentrifugation-isolated counterparts. Rec-tNVs, featuring highly aggregated curcumin arrangements and other coencapsulated bioactive compounds, demonstrated a dose-dependent lipid-lowering effect in mature 3T3-L1 cells by promoting lipolysis, suppressing lipogenesis, inducing adipocyte browning, and triggering apoptosis after internalization via multiple pathways. In vivo experiments revealed that Rec-tNVs alleviated obesity more effectively than free curcumin and achieved weight reductions of 18.68 and 14.56% through intragastric and subcutaneous delivery, respectively, in high-fat-diet mouse models over a four-week treatment period. These effects were attributed to targeted actions on adipose tissues and systemic impacts on metabolism and gut microbiota composition. Overall, this study underscores the multifaceted antiobesity efficacy of Rec-tNVs, and offers a promising paradigm for developing plant-derived nanovesicle-based therapeutics.
Collapse
Affiliation(s)
- Jialin Wang
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Tianyu Zhang
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Ruilan Gu
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Yingying Ke
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Siqin Zhang
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Xueqi Su
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Xueping Pan
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Qiuxia He
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Guiling Li
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Zhengxiao Zhang
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Lingyu Zhang
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Jian Li
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Weijing Wu
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian 361018, China
| | - Chaoxiang Chen
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian 361021, China
| |
Collapse
|
9
|
Jiang Z, Hu YT, Guo SY, Li YX, Zhao DD, Wei LY, Lin YW, Xu SM, Huang SL, Li Q, Tan JH, Rao Y, Chen SB, Huang ZS. Development of Novel N-Acylhydrazone Derivatives with High Anti-obesity Activity and Improved Safety by Exploring the Pharmaceutical Properties of Aldehyde Group. J Med Chem 2024; 67:12439-12458. [PMID: 38996004 DOI: 10.1021/acs.jmedchem.4c01242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
The discovery of effective and safe antiobesity agents remains a challenging yet promising field. Our previous studies identified Bouchardatine derivatives as potential antiobesity agents. However, the 8a-aldehyde moiety rendered them unsuitable for drug development. In this study, we designed two series of novel derivatives to modify this structural feature. Through a structure-activity relationship study, we elucidated the role of the 8a-aldehyde group in toxicity induction. We identified compound 14d, featuring an 8a-N-acylhydrazone moiety, which exhibited significant lipid-lowering activity and reduced toxicity. Compound 14d shares a similar lipid-lowering mechanism with our lead compound 3, but demonstrates improved pharmacokinetic properties and safety profile. Both oral and injectable administration of 14d significantly reduced body weight gain and ameliorated metabolic syndrome in diet-induced obese mice. Our findings identify 14d as a promising antiobesity agent and highlight the potential of substituting the aldehyde group with an N-acylhydrazone to enhance drug-like properties.
Collapse
Affiliation(s)
- Zhi Jiang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yu-Tao Hu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Shi-Yao Guo
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yi-Xian Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Dan-Dan Zhao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Li-Yuan Wei
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yu-Wei Lin
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Shu-Min Xu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Shi-Liang Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingjiang Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yong Rao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
10
|
Joshua Ashaolu T, Joshua Olatunji O, Can Karaca A, Lee CC, Mahdi Jafari S. Anti-obesity and anti-diabetic bioactive peptides: A comprehensive review of their sources, properties, and techno-functional challenges. Food Res Int 2024; 187:114427. [PMID: 38763677 DOI: 10.1016/j.foodres.2024.114427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
The scourge of obesity arising from obesogens and poor dieting still ravages our planet as half of the global population may be overweight and obese by 2035. This metabolic disorder is intertwined with type 2 diabetes (T2D), both of which warrant alternative therapeutic options other than clinically approved drugs like orlistat with their tendency of abuse and side effects. In this review, we comprehensively describe the global obesity problem and its connection to T2D. Obesity, overconsumption of fats, the mechanism of fat digestion, obesogenic gut microbiota, inhibition of fat digestion, and natural anti-obesity compounds are discussed. Similar discussions are made for diabetes with regard to glucose regulation, the diabetic gut microbiota, and insulinotropic compounds. The sources and production of anti-obesity bioactive peptides (AOBPs) and anti-diabetic bioactive peptides (ADBPs) are also described while explaining their structure-function relationships, gastrointestinal behaviors, and action mechanisms. Finally, the techno-functional applications of AOBPs and ADBPs are highlighted.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Medicine, Duy Tan University, Da Nang 550000, Vietnam.
| | | | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Chi-Ching Lee
- Istanbul Sabahattin Zaim University, Faculty of Engineering and Natural Sciences, Department of Food Engineering, Istanbul, Turkey.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
11
|
Sánchez-Trasviña C, Coronel-Meneses D, Escobar-Fernández AM, Mayolo-Deloisa K. Transdermal microneedle patches as a promising drug delivery system for anti-obesogenic molecules. Front Bioeng Biotechnol 2024; 12:1380537. [PMID: 38919379 PMCID: PMC11196754 DOI: 10.3389/fbioe.2024.1380537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024] Open
Abstract
Obesity, characterized by excessive storage of lipids, has become a global pandemic with high incidence levels, and its forecast is not encouraging. Currently, there are different strategies to treat obesity; however, these conventional methods have various limitations. Lifestyle changes may result in poor outcomes due to the complexity of obesity causes, pharmaceutic treatments produce severe side effects, and bariatric surgery is highly invasive. In the search for alternative treatments to fight obesity, transdermal drug delivery systems of anti-obesogenic molecules have gained particular attention. However, the diffusion of molecules through the skin is the main drawback due to the characteristics of different layers of the skin, principally the stratum corneum and its barrier-like behavior. In this sense, microneedles patches (MP) have emerged to overcome this limitation by piercing the skin and allowing drug delivery inside the body. Although MP have been studied for some years, it was not until about 2017 that their potential as anti-obesogenic treatment was reported. This article aims to summarize and analyze the strategies employed to produce MP and to embed the active molecules against obesity. Special attention is focused on the microneedle's material, geometry, array, and additional delivery strategies, like nanoencapsulation. MP are a promising tool to develop an easy-access treatment, avoiding the digestive tract and with the capacity to enhance the anti-obesogenic activity by delivering one or more active molecules.
Collapse
Affiliation(s)
- Calef Sánchez-Trasviña
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, NL, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, NL, Mexico
| | - David Coronel-Meneses
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, NL, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, NL, Mexico
| | - Aleyda Margarita Escobar-Fernández
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, NL, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, NL, Mexico
| | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, NL, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, NL, Mexico
| |
Collapse
|
12
|
Guzmán-Carrasco A, Kapravelou G, López-Jurado M, Bermúdez F, Andrés-León E, Terrón-Camero LC, Prados J, Melguizo C, Porres JM, Martínez R. A Novel Plant-Based Nutraceutical Combined with Exercise Can Revert Oxidative Status in Plasma and Liver in a Diet-Induced-Obesity Animal Model. Antioxidants (Basel) 2024; 13:274. [PMID: 38539808 PMCID: PMC10967303 DOI: 10.3390/antiox13030274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 11/11/2024] Open
Abstract
The prevalence of obesity increases alarmingly every year mostly due to external factors such as high-fat and high-refined sugar intake associated with a sedentary lifestyle. It triggers metabolic disorders such as insulin resistance, hyperlipemia, non-alcoholic fatty liver disease, chronic inflammation, oxidative stress, and gut microbiota dysbiosis. The aim of this study was to evaluate the beneficial effects of a combined intervention with caloric restriction, nutraceutical intake, and a mixed training protocol on oxidative stress, inflammation, and gut dysbiosis derived from the development of obesity in a C57BL6/J mouse experimental model of diet-induced obesity (4.6 Kcal/g diet, 45% Kcal as fat, and 20% fructose in the drinking fluid). The nutraceutical was formulated with ethanolic extracts of Argania spinosa pulp (10%) and Camelina sativa seeds (10%) and with protein hydrolysates from Psoralea corylifolia seeds (40%) and Spirodela polyrhiza whole plants (40%). The combination of nutraceutical and exercise decreased the animals' body weights and inflammatory markers (TNFα, IL-6, and resistin) in plasma, while increasing gene expression of cat, sod2, gsta2, and nqo1 in the liver. Obese animals showed lower β-diversity of microbiota and a higher Firmicutes/Bacteroidetes ratio vs. normocaloric controls that were reversed by all interventions implemented. Dietary inclusion of a nutraceutical with high antioxidant potential combined with an exercise protocol can be beneficial for bodyweight control and improvement of metabolic status in patients undergoing obesity treatment.
Collapse
Affiliation(s)
- Ana Guzmán-Carrasco
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Sport and Health University Research Institute (IMUDS), Universidad de Granada, 18016 Granada, Spain; (A.G.-C.); (G.K.); (M.L.-J.); (R.M.)
- Cellbitec S.L., N.I.F. B04847216, Scientific Headquarters of the Almería Technology Park, Universidad de Almería, 04128 Almería, Spain;
- Department of Anatomy and Embryology, Faculty of Medicine, Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research (CIBM), Instituto Biosanitario de Granada (ibs.GRANADA), University of Granada, 18016 Granada, Spain; (J.P.); (C.M.)
| | - Garyfallia Kapravelou
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Sport and Health University Research Institute (IMUDS), Universidad de Granada, 18016 Granada, Spain; (A.G.-C.); (G.K.); (M.L.-J.); (R.M.)
| | - María López-Jurado
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Sport and Health University Research Institute (IMUDS), Universidad de Granada, 18016 Granada, Spain; (A.G.-C.); (G.K.); (M.L.-J.); (R.M.)
| | - Francisco Bermúdez
- Cellbitec S.L., N.I.F. B04847216, Scientific Headquarters of the Almería Technology Park, Universidad de Almería, 04128 Almería, Spain;
| | - Eduardo Andrés-León
- Bioinformatics Unit, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), 18016 Granada, Spain; (E.A.-L.); (L.C.T.-C.)
| | - Laura C. Terrón-Camero
- Bioinformatics Unit, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), 18016 Granada, Spain; (E.A.-L.); (L.C.T.-C.)
| | - José Prados
- Department of Anatomy and Embryology, Faculty of Medicine, Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research (CIBM), Instituto Biosanitario de Granada (ibs.GRANADA), University of Granada, 18016 Granada, Spain; (J.P.); (C.M.)
| | - Consolación Melguizo
- Department of Anatomy and Embryology, Faculty of Medicine, Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research (CIBM), Instituto Biosanitario de Granada (ibs.GRANADA), University of Granada, 18016 Granada, Spain; (J.P.); (C.M.)
| | - Jesus M. Porres
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Sport and Health University Research Institute (IMUDS), Universidad de Granada, 18016 Granada, Spain; (A.G.-C.); (G.K.); (M.L.-J.); (R.M.)
| | - Rosario Martínez
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Sport and Health University Research Institute (IMUDS), Universidad de Granada, 18016 Granada, Spain; (A.G.-C.); (G.K.); (M.L.-J.); (R.M.)
| |
Collapse
|
13
|
Prabhakar PK, Batiha GES. Potential Therapeutic Targets for the Management of Diabetes Mellitus Type 2. Curr Med Chem 2024; 31:3167-3181. [PMID: 37125833 DOI: 10.2174/0929867330666230501172557] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/14/2023] [Accepted: 03/26/2023] [Indexed: 05/02/2023]
Abstract
Diabetes is one of the lifelong chronic metabolic diseases which is prevalent globally. There is a continuous rise in the number of people suffering from this disease with time. It is characterized by hyperglycemia, which leads to severe damage to the body's system, such as blood vessels and nerves. Diabetes occurs due to the dysfunction of pancreatic β -cell which leads to the reduction in the production of insulin or body cells unable to use insulin produce efficiently. As per the data shared International diabetes federation (IDF), there are around 415 million affected by this disease worldwide. There are a number of hit targets available that can be focused on treating diabetes. There are many drugs available and still under development for the treatment of type 2 diabetes. Inhibition of gluconeogenesis, lipolysis, fatty acid oxidation, and glucokinase activator is emerging targets for type 2 diabetes treatment. Diabetes management can be supplemented with drug intervention for obesity. The antidiabetic drug sale is the second-largest in the world, trailing only that of cancer. The future of managing diabetes will be guided by research on various novel targets and the development of various therapeutic leads, such as GLP-1 agonists, DPP-IV inhibitors, and SGLT2 inhibitors that have recently completed their different phases of clinical trials. Among these therapeutic targets associated with type 2 diabetes, this review focused on some common therapeutic targets for developing novel drug candidates of the newer generation with better safety and efficacy.
Collapse
Affiliation(s)
- Pranav Kumar Prabhakar
- Division of Research and Development, Lovely Professional University, Phagwara (Punjab) 144411, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| |
Collapse
|
14
|
Poulios E, Koukounari S, Psara E, Vasios GK, Sakarikou C, Giaginis C. Anti-obesity Properties of Phytochemicals: Highlighting their Molecular Mechanisms against Obesity. Curr Med Chem 2024; 31:25-61. [PMID: 37198988 DOI: 10.2174/0929867330666230517124033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/19/2023]
Abstract
Obesity is a complex, chronic and inflammatory disease that affects more than one-third of the world's population, leading to a higher incidence of diabetes, dyslipidemia, metabolic syndrome, cardiovascular diseases, and some types of cancer. Several phytochemicals are used as flavoring and aromatic compounds, also exerting many benefits for public health. This study aims to summarize and scrutinize the beneficial effects of the most important phytochemicals against obesity. Systematic research of the current international literature was carried out in the most accurate scientific databases, e.g., Pubmed, Scopus, Web of Science and Google Scholar, using a set of critical and representative keywords, such as phytochemicals, obesity, metabolism, metabolic syndrome, etc. Several studies unraveled the potential positive effects of phytochemicals such as berberine, carvacrol, curcumin, quercetin, resveratrol, thymol, etc., against obesity and metabolic disorders. Mechanisms of action include inhibition of adipocyte differentiation, browning of the white adipose tissue, inhibition of enzymes such as lipase and amylase, suppression of inflammation, improvement of the gut microbiota, and downregulation of obesity-inducing genes. In conclusion, multiple bioactive compounds-phytochemicals exert many beneficial effects against obesity. Future molecular and clinical studies must be performed to unravel the multiple molecular mechanisms and anti-obesity activities of these naturally occurring bioactive compounds.
Collapse
Affiliation(s)
- Efthymios Poulios
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Stergia Koukounari
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Evmorfia Psara
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Georgios K Vasios
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Christina Sakarikou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| |
Collapse
|
15
|
Siddiqui SA, Azmy Harahap I, Suthar P, Wu YS, Ghosh N, Castro-Muñoz R. A Comprehensive Review of Phytonutrients as a Dietary Therapy for Obesity. Foods 2023; 12:3610. [PMID: 37835263 PMCID: PMC10572887 DOI: 10.3390/foods12193610] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Obesity is a complex medical condition mainly caused by eating habits, genetics, lifestyle, and medicine. The present study deals with traditional diets like the Mediterranean diet, Nordic diet, African Heritage diet, Asian diet, and DASH, as these are considered to be sustainable diets for curing obesity. However, the bioavailability of phytonutrients consumed in the diet may vary, depending on several factors such as digestion and absorption of phytonutrients, interaction with other substances, cooking processes, and individual differences. Hence, several phytochemicals, like polyphenols, alkaloids, saponins, terpenoids, etc., have been investigated to assess their efficiencies and safety in the prevention and treatment of obesity. These phytochemicals have anti-obesity effects, mediated via modulation of many pathways, such as decreased lipogenesis, lipid absorption, accelerated lipolysis, energy intake, expenditure, and preadipocyte differentiation and proliferation. Owing to these anti-obesity effects, new food formulations incorporating these phytonutrients were introduced that can be beneficial in reducing the prevalence of obesity and promoting public health.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Department of Biotechnology and Sustainability, Technical University of Munich, Essigberg 3, 94315 Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610 Quakenbrück, Germany
| | | | - Priyanka Suthar
- Department of Food Science and Technology, Dr. Y. S. Parmar University of Horticulture and Forestry, Solan 173230, Himachal Pradesh, India;
| | - Yuan Seng Wu
- School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia;
| | - Nibedita Ghosh
- Department of Pharmacology, Girijananda Chowdhury University, Guwahati 781017, Assam, India;
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
16
|
Jiao W, Sang Y, Wang X, Wang S. Metabonomics and the gut microbiome analysis of the effect of 6-shogaol on improving obesity. Food Chem 2023; 404:134734. [DOI: 10.1016/j.foodchem.2022.134734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/24/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
|
17
|
Zeng Z, Wu D, Tang L, Hu X, Zhang J, Geng F. Exploring the binding effects and inhibiting mechanism of hyperoside to lipase using multi-spectroscopic approaches, isothermal titration calorimetry, inhibition kinetics and molecular dynamics. RSC Adv 2023; 13:6507-6517. [PMID: 36845588 PMCID: PMC9950857 DOI: 10.1039/d2ra06715c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/12/2023] [Indexed: 02/28/2023] Open
Abstract
Hyperoside (HYP) is a flavonoid with various physiological activities. The present study examined the interaction mechanism between HYP and lipase using multi-spectrum and computer-aided techniques. Results demonstrated that the force type of HYP on lipase was mainly hydrogen bond, hydrophobic interaction force, and van der Waals force, and HYP had an excellent binding affinity with lipase at 1.576 × 105 M-1. HYP dose-dependently inhibited lipase in the inhibition experiment, and its IC50 value was 1.92 × 10-3 M. Moreover, the results suggested that HYP could inhibit the activity by binding to essential groups. Conformational studies indicated that the conformation and microenvironment of lipase were slightly changed after the addition of HYP. Computational simulations further confirmed the structural relationships of HYP to lipase. The interaction between HYP and lipase can provide ideas for the development of functional foods related to weight loss. The results of this study help comprehend the pathological significance of HYP in biological systems, as well as its mechanism.
Collapse
Affiliation(s)
- Zhen Zeng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University Chengdu 610106 China
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University Chengdu 610106 China
| | - Lan Tang
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University Chengdu 610106 China
| | - Xia Hu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University Chengdu 610106 China
| | - Jing Zhang
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University Chengdu 610106 China
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University Chengdu 610106 China
| |
Collapse
|
18
|
Al-Emarah MK, Kazerani HR, Taghizad F, Dehghani H, Elahi M. Anti-obesity effect of the bacterial product nisin in an NIH Swiss mouse model. Lipids Health Dis 2023; 22:23. [PMID: 36765351 PMCID: PMC9912503 DOI: 10.1186/s12944-023-01788-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Obesity is a life-threatening metabolic disorder that predisposes individuals to other diseases. In this study, the effect of nisin, a bacteriocin produced by some bacteria, on an animal model of obesity based on selected parameters was investigated. Forty Swiss NIH mice were randomly divided into four groups and received either a placebo (saline) or nisin (25, 50, or 100 μg/kg, ip) daily for 8 weeks. The mice in all groups were fed a high-sugar diet throughout the experiment. Bodyweight and food intake were measured weekly, and at the end of the experiment, the levels of FBS, serum triglyceride, cholesterol, high-density lipoprotein, low-density lipoprotein, and hepatic enzymes were tested, and red and white blood cell counts, hemoglobin concentration, mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration were determined. Finally, the expression levels of some obesity-related genes, including stearoyl-CoA desaturase-1 (SCD-1), glucose transporter-4 (GLUT4), zinc finger protein 423 (zfp423), 422 (ap2), and tumor necrosis factor-alpha (TNF-α), were assessed using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). After the experiment, the body weights, abdominal fat, and body mass index were significantly lower in the nisin-treated groups than in the control group. The highest effect was observed with 50 μg/kg nisin. The expression of SCD-1, GLUT4, 422(ap2), and TNF-α decreased significantly following treatment with nisin. No significant differences were observed in the other studied parameters, and no toxic effects were observed for nisin under these experimental conditions. The results suggested that nisin could have antiobesity effects.
Collapse
Affiliation(s)
- M. K. Al-Emarah
- grid.411301.60000 0001 0666 1211Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran ,Faculty of Agriculture and Marshlands, University of Thi-qar, Thi-qar, Iraq
| | - H. R. Kazerani
- grid.411301.60000 0001 0666 1211Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - F. Taghizad
- grid.411301.60000 0001 0666 1211Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - H. Dehghani
- grid.411301.60000 0001 0666 1211Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran ,grid.411301.60000 0001 0666 1211Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - M. Elahi
- grid.411301.60000 0001 0666 1211Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
19
|
Lai KM, Chen SY, Wang GY, Shahidi F, Yen GC. Protective effect of rosmarinic acid-rich extract from Trichodesma khasianum Clarke against microbiota dysbiosis in high-fat diet-fed obese mice. Food Res Int 2023; 164:112344. [PMID: 36737936 DOI: 10.1016/j.foodres.2022.112344] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/06/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Hypertrophy of adipose tissues and dysbiosis are hallmarks of obesity. Although drugs are applied for obesity treatment, side effects limit their use. The anti-obesity capacity of rosmarinic acid (RA) has been documented. Trichodesma khasianum Clarke is an edible RA-rich plant grown in Taiwan. Our previous study found that an 80 % ethanol extract of T. khasianum Clarke leaves (80EETC) ameliorates gastric mucosal damage through its anti-inflammatory, antioxidant, and microbiota modulation abilities. However, the anti-obesity effect of 80EETC remains unclear. Therefore, the objective of this study was to explore the protective effects of low-dose 80EETC (125 mg/kg b.w., 80EETCL) or high-dose 80EETC (250 mg/kg b.w., 80EETCH) on obesity development through gut microbiota modulation in high-fat diet (HFD)-induced C57BL/6 mice. The results showed a high RA content (89.2 ± 7.4 mg/g) in 80EETC. 80EETC administration significantly decreased body weight, body fat ratio, serum lipid levels (TC, TG, and LDL-C), adipose tissue accumulation, malondialdehyde (MDA), and tumor necrosis factor-α (TNF-α) in HFD-fed mice. Furthermore, supplementation with 80EETC reduced the Firmicutes/Bacteroidetes ratio and enhanced the relative abundance of gut microbiota (p_Bacteroidetes, f_Lactobacillus, f_Muribaculaceae, f_Prevotellaceae, g_Lactobacillus, g_Prevotellaceae_NK3B31_group, g_Ruminococcaceae_UCG-013, and g_Ruminococcaceae_UCG-014), which negatively correlated with obesity-related factors such as body weight, energy intake, fat accumulation in adipose tissue, TC, TG, LDL, and MDA. In conclusion, RA-rich 80EETC had a protective effect against obesity development and it has potential in healthy food applications.
Collapse
Affiliation(s)
- Ke-Mei Lai
- Graduate Institute of Food Safety, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan
| | - Sheng-Yi Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Guan-Yu Wang
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St John's, NL, Canada A1C 5S7
| | - Gow-Chin Yen
- Graduate Institute of Food Safety, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan; Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan.
| |
Collapse
|
20
|
Chang YH, Lin H, Li HF, Chen HH, Hung HY. Exploration and biological evaluation of 7-methoxy-3-methyl-1H-chromeno[4,3-c]pyrazol-4-one as an activating transcription factor 3 inducer for managing metabolic syndrome. Eur J Med Chem 2023; 246:114951. [PMID: 36455354 DOI: 10.1016/j.ejmech.2022.114951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
The induction of activating transcription factor 3 (ATF3) was identified as a promising therapeutic mechanism to overcome metabolic syndrome. Hence, a structure-activity relationship campaign on the chiral lead (1b) was conducted with a scaffold-hopping approach, whereby achiral 7-methoxy-3-methyl-1H-chromeno[4,3-c]pyrazol-4-one (16c) was recognized as a potential ATF3 inducer with a lipid-lowering feature in a pre-differentiated 3T3-L1 cell model. Also, in a high-fat diet scenario, mice subjected to 16c demonstrated robust weight loss with shrinkage of the white adipose mass and fewer hypertrophic adipocytes, accompanied by a preferable glycemic profile compared to 1b. Additionally, the biochemical analysis revealed that 16c further ameliorated the liver function and improved the plasma triglyceride profile that were absent from mice treated with 1b. Taken together, 16c shows promise as an ATF3 stimulant for further development to alleviate metabolic syndrome.
Collapse
Affiliation(s)
- Yi-Han Chang
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Heng Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan, ROC
| | - Hsiao-Fen Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan, ROC
| | - Hsi-Hsien Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan, ROC; Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, 11031, Taiwan, ROC; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 11031, Taiwan, ROC; Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan, ROC
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC.
| |
Collapse
|
21
|
Pathophysiology of obesity and its associated diseases. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
22
|
Savova MS, Todorova MN, Apostolov AG, Yahubyan GT, Georgiev MI. Betulinic acid counteracts the lipid accumulation in Caenorhabditis elegans by modulation of nhr-49 expression. Biomed Pharmacother 2022; 156:113862. [DOI: 10.1016/j.biopha.2022.113862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 11/02/2022] Open
|
23
|
Xie Z, Yang S, Deng W, Li J, Chen J. Efficacy and Safety of Liraglutide and Semaglutide on Weight Loss in People with Obesity or Overweight: A Systematic Review. Clin Epidemiol 2022; 14:1463-1476. [PMID: 36510488 PMCID: PMC9738168 DOI: 10.2147/clep.s391819] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The effect and safety of Semaglutide and Liraglutide on weight loss in people with obesity or overweight were evaluated by a Network Meta-Analysis system to provide an evidence-based reference for clinical treatment. METHODS Computer searched PubMed, Embase, and Cochrane Library databases to collect Liraglutide and Semaglutide injection monotherapy RCTs until April 2022, using Stata 16 software for Network Meta-Analysis. RESULTS Twenty-three RCTs study with 11,545 patients and 4 interventions (semaglutide 2.4mg, semaglutide 1.0mg, liraglutide 3.0mg and liraglutide 1.8 mg) were finally included. In terms of efficacy, semaglutide 2.4mg (-12.47 kg) had the best weight loss, followed by liraglutide 3.0mg (-5.24 kg), semaglutide 1.0mg (-3.74 kg) and liraglutide 1.8mg (-3.29 kg). In terms of decreased HbA1c, semaglutide 2.4mg (MD=-1.48%, 95% CI [-1.93, -1.04]), semaglutide 1.0mg (MD=-1.36%, 95% CI [-1.72, -1.01]), liraglutide 1.8mg (MD=-1.23%, 95%Cl [-1.66, -0.80]) more effective than placebo. In terms of safety, the total incidence of adverse events was semaglutide 2.4mg > liraglutide 3.0mg > liraglutide 1.8mg > semaglutide 1.0mg compare to placebo, the incidence of serious adverse events was liraglutide 3.0mg > liraglutide 1.8mg > semaglutide 2.4mg > semaglutide 1.0mg, the incidence of hypoglycemic events was semaglutide 2.4mg > liraglutide 3.0mg > semaglutide 1.0mg > liraglutide 1.8mg. CONCLUSION This meta-analysis indicates that all GLP-1RAs were more efficacious than placebo in people with obesity or overweight on efficacy. Semaglutide 2.4mg has an absolute advantage in weight loss and decreased HbA1c, but the incidence of total adverse events is also the highest and can cause hypoglycemia. In addition, although liraglutide 3.0mg was less effective than semaglutide 2.4mg, serious adverse events were still the most elevated.
Collapse
Affiliation(s)
- Zeyu Xie
- Key Specialty of Clinical Pharmacy, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Sensen Yang
- Key Specialty of Clinical Pharmacy, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Weishang Deng
- Key Specialty of Clinical Pharmacy, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Jinjian Li
- Key Specialty of Clinical Pharmacy, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Jisheng Chen
- Key Specialty of Clinical Pharmacy, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Correspondence: Jisheng Chen, Key Specialty of Clinical Pharmacy, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, People’s Republic of China, Tel +86+20-87622305, Fax +86+20-61321967, Email
| |
Collapse
|