1
|
Chen P, He L, Chen K, Pan Q, Rong J, Mei Q, Sun P, Zhang C, Li D. Electron-donor planar extension based on donor-acceptor-donor molecules generates charge transfer-mediated J-aggregates for NIR-II photothermal immunotherapy and bacterial elimination. Biomaterials 2025; 323:123435. [PMID: 40450765 DOI: 10.1016/j.biomaterials.2025.123435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 05/06/2025] [Accepted: 05/24/2025] [Indexed: 06/11/2025]
Abstract
Second near-infrared photothermal therapy (NIR-II-PTT) has emerged as a promising therapeutic modality in diverse medical aspects. In particular, J-aggregate is a potential strategy to develop high-performance NIR-II-PTT materials, however, it suffers from specific molecular skeletons and complex control conditions. Herein, we presented a simply electron-donor planar extension strategy to develop donor-acceptor-donor (D-A-D) type small molecules with charge-transfer (CT)-mediated J-aggregation for NIR-II PTT. By integrating ring-fused thiophene units in a benzo[1,2-'c:4,5-c']bis[1,2,5]thiadiazole (BBTDT) scaffold, we enabled tunable electrostatic and π-π interactions, promoting CT-mediated J-aggregate formation. The resulting BDTT nanoparticles showed an impressive light-harvesting capability (ɛ1064) of 2.92 × 104 M-1 cm-1 under 1064 nm excitation, yielding an exceptional photothermal performance (ɛ1064 × PCE = 1.99 × 104), which surpasses those of reported D-A-D type NIR-II-absorbing small molecules. This outstanding NIR-II photothermal property induced sufficient immunogenic cell death and amplified the final ablation of deep-seated tumor in conjunction with programmed cell death protein 1 (PD-1). Meanwhile, the fabricated BDTT nanoparticles also facilitated hyperthermia-triggered bacterial death. Together, this study provides valuable insights into developing NIR-II-absorbing J-aggregates based on D-A-D type small molecules, and offers critical potentials to treat malignant tumors and prevents postsurgical infections.
Collapse
Affiliation(s)
- Pengfei Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Liuliang He
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Kai Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Qiyong Pan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jie Rong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Qunbo Mei
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Pengfei Sun
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Chi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Daifeng Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
He W, Hu X, Ge M, Meng K. The central role of ferroptosis-induced therapy mediated by tenacissoside H in anaplastic thyroid cancer. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119908. [PMID: 40311717 DOI: 10.1016/j.jep.2025.119908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/20/2025] [Accepted: 04/29/2025] [Indexed: 05/03/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tenacissoside H(TDH), a natural compound extracted from the dried vine stems of Marsdenia tenacissima (Roxb.) Wight et Arn., is considered to have anti-tumor effects. However, the anti-tumor activity of TDH against ATC remains unknown. AIM OF THE STUDY Ferroptosis, a novel form of programmed cell death, presents a promising target for therapeutic intervention, particularly in overcoming drug resistance in anaplastic thyroid carcinoma (ATC). We investigated the inhibitory effects of TDH on ATC cells, elucidating its ferroptosis-inducing mechanism, which to our knowledge has not been explored before. RESULTS Our findings indicate that TDH exerts an effect on the survival, proliferation, and migration of ATC cells. The strength of effect is dependent on dosage. Notably, ferroptosis marker proteins (GPX4, xCT, HO-1, TFR) were significantly downregulated following TDH treatment, whereas GPX4 and xCT expressions were partially restored post treatment with ferrostatin-1. Furthermore, in vivo studies confirmed that TDH effectively inhibited tumor growth in xenografted 8505C cells. CONCLUSIONS TDH could be considered a potential agent against ATC via inducing ferroptosis, providing a novel pharmacological basis for treating ATC.
Collapse
Affiliation(s)
- Wanwan He
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Xiaotian Hu
- Shanghai First People's Hospital, Shanghai, 200080, China
| | - Minghua Ge
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Hangzhou, 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, 310014, China.
| | - Kexin Meng
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Hangzhou, 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, 310014, China.
| |
Collapse
|
3
|
Li J, Guo Y, Zhang W, Xia M, Liu G, Sun Y, Liu C, Zhong J. Cholesterol metabolism: A strategy for overcoming drug resistance in tumors. Biochem Pharmacol 2025; 238:116974. [PMID: 40348096 DOI: 10.1016/j.bcp.2025.116974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/17/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Despite significant advancements in targeted tumor therapies, the emergence of drug resistance remains a complex challenge. Cholesterol accumulation within tumor cells plays a crucial role in mediating drug resistance through various mechanisms, including altered membrane dynamics, enhanced drug efflux, and activation of survival signaling pathways. Targeting cholesterol metabolism presents an innovative strategy to enhance therapeutic sensitivity, particularly in breast cancer. Consequently, ongoing preclinical studies and clinical trials involving cholesterol-lowering agents indicate a promising direction for improving treatment outcomes in tumors. The combination of these agents with existing therapeutic regimens may lead to enhanced efficacy, highlighting the necessity for continued research in this vital area. This review examines the impact of cholesterol metabolism on drug resistance in tumors, particularly solid tumors, identifies therapeutic targets in this metabolic pathway (with a special focus on breast cancer), and discusses recent advances in cholesterol-lowering drugs in preclinical, as well as those that have entered clinical trials.
Collapse
Affiliation(s)
- Jiahui Li
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China; Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Yinping Guo
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China; Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Wenjie Zhang
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China; Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Min Xia
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China; Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Gaohua Liu
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China; Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Yan Sun
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China; Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Chang Liu
- Department of Endocrinology and Metabolism, The First People's Hospital of Chenzhou, The First Affiliated Clinical College, University of Xiangnan, 423000 Chenzhou, Hunan, China.
| | - Jing Zhong
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China; Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.
| |
Collapse
|
4
|
Mosoane B, McCabe M, Jackson BS, Dlamini Z. CD44 Variant Expression in Follicular Cell-Derived Thyroid Cancers: Implications for Overcoming Multidrug Resistance. Molecules 2025; 30:1899. [PMID: 40363706 PMCID: PMC12073131 DOI: 10.3390/molecules30091899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/22/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Thyroid cancer (TC) is a significant global health issue that exhibits notable heterogeneity in incidence and outcomes. In low-resource settings such as Africa, delayed diagnosis and limited healthcare access exacerbate mortality rates. Among follicular cell-derived thyroid cancers-including papillary (PTC), follicular (FTC), anaplastic (ATC), and poorly differentiated (PDTC) subtypes-the role of CD44 variants has emerged as a critical factor influencing tumor progression and multidrug resistance (MDR). CD44, a transmembrane glycoprotein, and its splice variants (CD44v) mediate cell adhesion, migration, and survival, contributing to cancer stem cell (CSC) maintenance and therapy resistance. Differential expression patterns of CD44 isoforms across TC subtypes have shown diagnostic, prognostic, and therapeutic implications. Specifically, CD44v6 expression in PTC has been correlated with metastasis and aggressive tumor behavior, while in FTC, its expression aids in distinguishing malignant from benign lesions. Furthermore, CD44 contributes to MDR through enhanced drug efflux via ABC transporters, apoptosis evasion, and CSC maintenance via the Wnt/β-catenin and PI3K/Akt pathways. Targeted therapies against CD44 such as monoclonal antibodies, hyaluronic acid-based nanocarriers, and gene-editing technologies hold promise in overcoming MDR. However, despite the mounting evidence supporting CD44-targeted strategies in various cancers, research on this therapeutic potential in TC remains limited. This review synthesizes existing knowledge on CD44 variant expression in follicular cell-derived thyroid cancers and highlights potential therapeutic strategies to mitigate MDR, particularly in high-burden regions, thereby improving patient outcomes and survival.
Collapse
Affiliation(s)
- Benny Mosoane
- Department of Anatomical Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
| | - Michelle McCabe
- Department of Anatomical Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
| | - Brandon S. Jackson
- Breast and Endocrine Unit, Department of General Surgery, University of Pretoria, Kalafong Provincial Tertiary Hospital, Pretoria 0001, South Africa;
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0001, South Africa
| |
Collapse
|
5
|
Yu ST, Sun BH, Ge JN, Wei ZG, Zhang ZC, Chen WS, Li TT, Lei ST. Anillin interacts with RhoA to promote tumor progression in anaplastic thyroid cancer by activating the PI3K/AKT pathway. Endocrine 2025; 88:211-222. [PMID: 39738892 DOI: 10.1007/s12020-024-04145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Anaplastic thyroid cancer (ATC) is the most aggressive thyroid malignancy and has an extremely poor prognosis, necessitating novel therapeutic strategies. This study investigated the role of anillin (ANLN) in ATC, focusing on its impact on tumor growth and metastasis through the RhoA/PI3K/AKT signaling pathway. METHODS TCGA and GEO datasets were analyzed to identify key molecular alterations in thyroid cancer. ANLN expression was assessed in clinical samples. Functional assays, including CCK-8, colony formation, scratch, and Transwell invasion assays, and mouse xenograft models, were conducted to evaluate the biological role of ANLN. Coimmunoprecipitation, immunofluorescence, and active Rho GTPase pull-down assays, as well as phosphorylation antibody arrays, were used to explore the underlying mechanisms. RESULTS Analysis of TCGA and GEO datasets revealed that ANLN is upregulated in thyroid cancers, including ATC and PTC, with higher ANLN expression correlating with worse survival outcomes. Functional studies demonstrated that ANLN promoted ATC cell proliferation, migration, and invasion. In vivo, ANLN knockdown inhibited tumor growth in xenograft models. Mechanistically, ANLN directly interacted with RhoA, facilitating its activation and subsequent stimulation of the PI3K/AKT signaling pathway. The tumorigenic effects of ANLN were suppressed by AKT inhibition with afuresertib or RhoA silencing. CONCLUSION ANLN plays a crucial role in ATC progression by activating the RhoA/PI3K/AKT pathway, suggesting its potential as a therapeutic target in ATC.
Collapse
Affiliation(s)
- Shi-Tong Yu
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Bai-Hui Sun
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jun-Na Ge
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhi-Gang Wei
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhi-Cheng Zhang
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Wei-Sheng Chen
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ting-Ting Li
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shang-Tong Lei
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
6
|
Jiang T, Guo C, Zhang Z, Li C, Xiang C, Xiang J, Yang X, Liu Y, Cai L, Gong P, Hu Y, Li C. Biomimetic NIR-II aggregation-induced emission nanoparticles for targeted photothermal therapy of ovarian cancer. J Mater Chem B 2025; 13:4094-4102. [PMID: 40047675 DOI: 10.1039/d4tb02855d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Photothermal therapy (PTT) is a cutting-edge technique that harnesses light energy and converts it into heat for precise tumor ablation. By employing photothermal agents to selectively generate heat and target cancer cells, PTT has emerged as a promising cancer treatment strategy. Notably, therapies conducted in the second near-infrared (NIR-II) window exhibit superior therapeutic outcomes, owing to deeper tissue penetration and reduced light scattering. In this study, we developed biomimetic NIR-II aggregation-induced emission (AIE) nanoparticles (2TB-NPs@TM) for high-efficiency NIR-II imaging and targeted phototherapy of ovarian cancer. The core nanoparticle aggregates (2TB-NPs) display strong NIR-II fluorescence and high photothermal conversion efficiency, while the outer tumor cell membrane coating facilitates active targeting and precise recognition of tumor tissues. This design imparts excellent biocompatibility and enhances drug delivery efficiency, leading to potent synergistic therapeutic effects. Our findings open new avenues for advancing targeted, high-performance phototherapy diagnostics in cancer treatment.
Collapse
Affiliation(s)
- Ting Jiang
- Peking University Shenzhen Hospital, No. 1120, Lianhua Road, 518036 Shenzhen, People's Republic of China.
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlei Guo
- Peking University Shenzhen Hospital, No. 1120, Lianhua Road, 518036 Shenzhen, People's Republic of China.
| | - Zhiwei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Li
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunbai Xiang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Xiang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Yang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Liu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yan Hu
- Peking University Shenzhen Hospital, No. 1120, Lianhua Road, 518036 Shenzhen, People's Republic of China.
| | - Changzhong Li
- Peking University Shenzhen Hospital, No. 1120, Lianhua Road, 518036 Shenzhen, People's Republic of China.
| |
Collapse
|
7
|
Ran XY, Wei YF, Wu YL, Dai LR, Xia WL, Zhou PZ, Li K. Xanthene-based NIR organic phototheranostics agents: design strategies and biomedical applications. J Mater Chem B 2025; 13:2952-2977. [PMID: 39898613 DOI: 10.1039/d4tb02480j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Fluorescence imaging and phototherapy in the near-infrared window (NIR, 650-1700 nm) have attracted great attention for biomedical applications due to their minimal invasiveness, ultra-low photon scattering and high spatial-temporal precision. Among NIR emitting/absorbing organic dyes, xanthene derivatives with controllable molecular structures and optical properties, excellent fluorescence quantum yields, high molar absorption coefficients and remarkable chemical stability have been extensively studied and explored in the field of biological theranostics. The present study was aimed at providing a comprehensive summary of the progress in the development and design strategies of xanthene derivative fluorophores for advanced biological phototheranostics. This study elucidated several representative controllable strategies, including electronic programming strategies, extension of conjugated backbones, and strategic establishment of activatable fluorophores, which enhance the NIR fluorescence of xanthene backbones. Subsequently, the development of xanthene nanoplatforms based on NIR fluorescence for biological applications was detailed. Overall, this work outlines future efforts and directions for improving NIR xanthene derivatives to meet evolving clinical needs. It is anticipated that this contribution could provide a viable reference for the strategic design of organic NIR fluorophores, thereby enhancing their potential clinical practice in future.
Collapse
Affiliation(s)
- Xiao-Yun Ran
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Yuan-Feng Wei
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan-Ling Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Li-Rui Dai
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wen-Li Xia
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Pei-Zhi Zhou
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
8
|
Li H, Jia MQ, Qin ZL, Lu C, Chu W, Zhang Z, Niu J, Song J, Zhang SY, Fu L. Discovery of novel 2,4-diarylaminopyrimidine hydrazone derivatives as potent anti-thyroid cancer agents capable of inhibiting FAK. J Enzyme Inhib Med Chem 2024; 39:2423875. [PMID: 39560175 DOI: 10.1080/14756366.2024.2423875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/20/2024] Open
Abstract
In this work, thirty 2,4-diarylaminopyrimidine-based hydrazones were designed, synthesised, and their anti-thyroid cancer activity were explored. The majority of compounds exhibit moderate to excellent cytotoxic activity against FAK overexpressing TPC-1 cells, with IC50 values ranging from 0.113 to 1.460 μM. Among them, compound 14f displayed exceptional anti-proliferative effect against TPC-1 cells (IC50 = 0.113 μM) and potent FAK inhibitory potency (IC50 = 35 nM). In silico studies indicated that compound 14f could well bind to FAK (Focal Adhesion Kinase) and have favourable pharmacokinetic profiles. In addition, compound 14f could inhibit the phosphorylation of FAK at Tyr397, Tyr576/577 and Tyr925, and did not affect the expression level of FAK in TPC-1 cells. Compound 14f was also effective in inhibiting the proliferation and migration of thyroid cancer cells TPC-1. Thus, these novel 4-arylaminopyrimidine hydrazone derivatives exhibited potent anti-thyroid cancer activities through the inhibition of FAK.
Collapse
Affiliation(s)
- Hongting Li
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Mei-Qi Jia
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhao-Long Qin
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development Key, Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, Henan Province, China
| | - Changliang Lu
- Zhengzhou Xingyuan Foreign Language High School, Zhengzhou, Henan Province, China
| | - Weili Chu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ze Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jinbo Niu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Lijun Fu
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
9
|
Sun H, Li L, Yan J, Huang T. Prioritization of drug targets for thyroid cancer: a multi-omics Mendelian randomization study. Endocrine 2024; 86:732-743. [PMID: 38896366 DOI: 10.1007/s12020-024-03933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVES Recurrence or tumor metastasis and drug resistance remain the major challenge in the treatment of thyroid cancer. It is needed to identify novel drug targets for thyroid cancer. METHODS Summary data-based Mendelian randomization (SMR) and colocalization analysis were performed to evaluate the associations between gene methylation, expression, protein levels with thyroid cancer. We additionally performed protein-protein interaction (PPI) network, gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analyses to further explore the potential roles of identified genes in thyroid cancer. RESULTS SDCCAG8 and VCAM1 genes were associated with risk of thyroid cancer with tier 1 evidence, while TCN2 gene was with tier 3 evidence. SDCCAG8 gene was associated with risk of papillary thyroid cancer with tier 1 evidence. At the level of circulating proteins, genetically predicted higher levels of SDCCAG8 (OR = 0.46, 95% CI 0.34-0.64) and VCAM1 (OR = 0.21, 95% CI 0.10-0.45) were inversely associated with thyroid cancer risk; higher level of TCN2 was associated with an increased risk of thyroid cancer (OR = 1.30, 95% CI 1.15-1.47); and the higher level of SDCCAG8 (OR = 0.40, 95% CI 0.28-0.58) was associated with a decreased risk of papillary thyroid cancer. The bioinformatics analysis showed that SDCCAG8, VCAM1 and TCN2 might play roles in immune-related pathways. CONCLUSION SDCCAG8, VCAM1 and TCN2 genes were associated with thyroid cancer risk with evidence at multi-omics levels. There were potential roles of SDCCAG8, VCAM1 and TCN2 in immune-related pathways. Our findings might improve the understanding of the pathogenesis of thyroid cancer and discovery of novel potential drug targets for this disease.
Collapse
Affiliation(s)
- Hong Sun
- Department of Pharmacy, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Ling Li
- Department of Pharmacy, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Jingchao Yan
- Department of Pharmacy, Eye & ENT Hospital, Fudan University, Shanghai, China.
| | - Taomin Huang
- Department of Pharmacy, Eye & ENT Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Basilotta R, Casili G, Mannino D, Filippone A, Lanza M, Capra AP, Giosa D, Forte S, Colarossi L, Sciacca D, Esposito E, Paterniti I. Benzyl isothiocyanate suppresses development of thyroid carcinoma by regulating both autophagy and apoptosis pathway. iScience 2024; 27:110796. [PMID: 39398237 PMCID: PMC11471196 DOI: 10.1016/j.isci.2024.110796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/09/2024] [Accepted: 08/20/2024] [Indexed: 10/15/2024] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is the most aggressive type of thyroid cancer, characterized by rapid growth and invasion and poor prognosis. Due to its rarity and aggressive nature, ATC is a difficult condition to treat, thus knowledge of the mechanisms underlying its progression represents important research challenges. Benzyl isothiocyanate (BITC) is a natural compound that has shown promising anticancer properties. The aim of this study was to evaluate the antitumor effect of BITC in ATC, highlighting signaling pathways involved in BITC mechanism of action. This work included in vitro and in vivo studies. Results obtained indicate that BITC, both in vitro and in vivo, has the potential to slow the progression of ATC through interactions with autophagy, reduction in epithelial-mesenchymal transition (EMT) and attenuation of inflammation. In conclusion, this study identifies BITC as a compound worth further investigation for the development of new treatment strategies for this aggressive form of thyroid cancer.
Collapse
Affiliation(s)
- Rossella Basilotta
- Departement of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Giovanna Casili
- Departement of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Deborah Mannino
- Departement of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Alessia Filippone
- Departement of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Marika Lanza
- Departement of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Anna Paola Capra
- Department of Clinical and Experimental Medicine, University of Messina, Viale Ferdinando Stagno D' Alcontres 31, 98166 Messina, ME, Italy
| | - Domenico Giosa
- Departement of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Stefano Forte
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Lorenzo Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Dorotea Sciacca
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Emanuela Esposito
- Departement of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Irene Paterniti
- Departement of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
11
|
Liu B, Peng Y, Su Y, Diao C, Qian J, Zhan X, Cheng R. Transcriptome and metabolome sequencing identifies glutamate and LPAR1 as potential factors of anlotinib resistance in thyroid cancer. Anticancer Drugs 2024; 35:741-751. [PMID: 38820067 DOI: 10.1097/cad.0000000000001626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
OBJECTIVE To explore the mechanism of anlotinib resistance in thyroid carcinoma. METHODS We constructed an anlotinib-resistant thyroid carcinoma cell line and observed the effect of drug resistance on the functional activity of these cell lines. Transcriptome sequencing and metabolomic sequencing combined with biosynthesis analysis were used to explore and screen possible drug resistance regulatory pathways. RESULTS Through transcriptomic sequencing analysis of drug-resistant cell lines, it was found that the differentially expressed genes of drug-resistant strains were enriched mainly in the interleukin 17, transforming growth factor-β, calcium, peroxisome proliferator activated receptor, and other key signaling pathways. A total of 354 differentially expressed metabolic ions were screened using liquid chromatography-mass spectrometry/mass spectrometry to determine the number of metabolic ions in the drug-resistant strains. The results of the Venn diagram correlation analysis showed that glutamate is closely related to multiple pathways and may be an important regulatory factor of anlotinib resistance in thyroid carcinoma. In addition, eight common differentially expressed genes were screened by comparing the gene expression profiling interactive analysis database and sequencing results. Further quantitative real time polymerase chain reaction verification, combined with reports in the literature, showed that LPAR1 may be an important potential target. CONCLUSION This is the first study in which the drug resistance of thyroid cancer to anlotinib was preliminarily discussed. We confirmed that anlotinib resistance in thyroid cancer promotes the progression of malignant biological behavior. We conclude that glutamate may be a potential factor for anlotinib resistance in thyroid cancer and that LPAR1 is also a potentially important target.
Collapse
Affiliation(s)
- Bin Liu
- Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University
- Kunming Medical University, the First Clinical Medical School of Kunming Medical University, Yunnan, China
| | - Ying Peng
- Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University
| | - Yanjun Su
- Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University
| | - Chang Diao
- Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University
| | - Jun Qian
- Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University
| | - Xiangxiang Zhan
- Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University
| | - Ruochuan Cheng
- Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University
| |
Collapse
|
12
|
Zhan F, Zhang R, Qiu L, Ren Y. ACAP3 negatively regulated by HDAC2 inhibits the malignant development of papillary thyroid carcinoma cells. Int J Biochem Cell Biol 2024; 174:106635. [PMID: 39098591 DOI: 10.1016/j.biocel.2024.106635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
ArfGAP with coiled-coil, ankyrin repeat and PH domains 3 (ACAP3) level has been confirmed to be downregulated in papillary thyroid carcinoma (PTC). Histone deacetylase inhibitors (HDACIs) have therapeutic effects on PTC. Accordingly, this study probed into the potential relation of histone deacetylase 2 (HDAC2) and ACAP3 in PTC. Expressions of ACAP3 and HDAC2 in PTC were investigated by quantitative real-time polymerase chain reaction (qRT-PCR). The relationship between HDAC2 and ACAP3 was predicted by Pearson analysis. Cell functional assays (cell counting kit-8, transwell, wound healing and flow cytometry assays) and rescue assay were carried out to determine the effects of HDAC2/ACAP3 axis on biological behaviors of PTC cells. Expressions of apoptosis-, epithelial-mesenchymal transition-, Protein Kinase B (AKT)-, and P53-related proteins were measured by Western blot. ACAP3 level was downregulated in PTC tissues and cells. ACAP3 overexpression (oe-ACAP3) suppressed viability, proliferation, migration and invasion of PTC cells, facilitated apoptosis, downregulated the expressions of Protein Kinase B (Bcl-2) and N-cadherin, upregulated the expressions of Bcl-2 associated protein X (Bax) and E-cadherin, diminished the p-AKT/AKT ratio and elevated the p-p53/p53 ratio; however, ACAP3 silencing or HDAC2 overexpression (oe-HDAC2) did the opposite. HDAC2 negatively correlated with ACAP3. The tumor-suppressing effect of oe-ACAP3 in PTC was reversed by oe-HDAC2. Collectively, ACAP3 negatively regulated by HDAC2 suppresses the proliferation and metastasis while facilitating apoptosis of PTC cells.
Collapse
Affiliation(s)
- Fenfen Zhan
- Endocrinology department, The Second Affiliated Hospital Zhejiang University School of Medicine, China; Endocrinology department, Sanmen People's Hospital, China
| | - Ronghui Zhang
- Pathology department, Sanmen People's Hospital, China
| | - Lanlan Qiu
- Pathology department, Sanmen People's Hospital, China
| | - Yuezhong Ren
- Endocrinology department, The Second Affiliated Hospital Zhejiang University School of Medicine, China.
| |
Collapse
|
13
|
Sánchez-Marín D, Silva-Cázares MB, González-Del Carmen M, Campos-Parra AD. Drug repositioning in thyroid cancer: from point mutations to gene fusions. Front Oncol 2024; 14:1407511. [PMID: 38779099 PMCID: PMC11109414 DOI: 10.3389/fonc.2024.1407511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
The diagnosis of thyroid cancer (TC) has increased dramatically in recent years. Papillary TC is the most frequent type and has shown a good prognosis. Conventional treatments for TC are surgery, hormonal therapy, radioactive iodine, chemotherapy, and targeted therapy. However, resistance to treatments is well documented in almost 20% of all cases. Genomic sequencing has provided valuable information to help identify variants that hinder the success of chemotherapy as well as to determine which of those represent potentially druggable targets. There is a plethora of targeted therapies for cancer, most of them directed toward point mutations; however, chromosomal rearrangements that generate fusion genes are becoming relevant in cancer but have been less explored in TC. Therefore, it is relevant to identify new potential inhibitors for genes that are recurrent in the formation of gene fusions. In this review, we focus on describing potentially druggable variants and propose both point variants and fusion genes as targets for drug repositioning in TC.
Collapse
Affiliation(s)
- David Sánchez-Marín
- Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de Mexico (UNAM), Ciudad de Mexico, Mexico
| | - Macrina Beatriz Silva-Cázares
- Unidad Académica Multidisciplinaria Región Altiplano, Universidad Autónoma de San Luis Potosí, (UASL), Matehuala, San Luis Potosí, Mexico
| | | | - Alma D. Campos-Parra
- Instituto de Salud Pública, Universidad Veracruzana (UV), Xalapa, Veracruz, Mexico
| |
Collapse
|
14
|
Liang J, Ran X, Liu Y, Yu X, Chen S, Li K. Rational design of type-I photosensitizer molecules for mitochondrion-targeted photodynamic therapy. J Mater Chem B 2024; 12:3686-3693. [PMID: 38563159 DOI: 10.1039/d4tb00099d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Photodynamic therapy (PDT) has emerged as a promising approach for tumor treatment. However, traditional type II PDT faces limitations due to its oxygen-dependent nature. Type-I photosensitizers (PSs) exhibit superiority over conventional type-II PSs owing to their diminished oxygen dependence. Nevertheless, designing effective type-I PSs remains a significant challenge. In this work, we provide a novel strategy to tune the PDT mechanism of an excited photosensitizer through aryl substituent engineering. Using S-rhodamine as the base structure, three PSs were synthesized by incorporating phenyl, furyl, or thienyl groups at the meso position. Interestingly, furyl- or thienyl-substituted S-rhodamine are type-I-dominated PSs that produce O2˙-, while phenyl S-rhodamine results in O2˙- and 1O2 through type-I and type-II mechanisms, respectively. Experimental analyses and theoretical calculations showed that the introduction of a five-membered heterocycle at the meso position promoted intersystem crossing (ISC) and electron transfer, facilitating the production of O2˙-. Furthermore, furyl- or thienyl-substituted S-rhodamine exhibited high phototoxicity at ultralow concentrations. Thienyl-substituted S-rhodamine showed promising PDT efficacy against hypoxic solid tumors. This innovative strategy provides an alternative approach to developing new type-I PSs without the necessity for creating entirely new skeletons.
Collapse
Affiliation(s)
- Jiaxin Liang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Xiaoyun Ran
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yanhong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Xiaoqi Yu
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Department of Chemistry, Xihua University, Chengdu, Sichuan 610064, China
| | - Shanyong Chen
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
15
|
Gong Z, Xue L, Li H, Fan S, van Hasselt CA, Li D, Zeng X, Tong MCF, Chen GG. Targeting Nrf2 to treat thyroid cancer. Biomed Pharmacother 2024; 173:116324. [PMID: 38422655 DOI: 10.1016/j.biopha.2024.116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Oxidative stress (OS) is recognized as a contributing factor in the development and progression of thyroid cancer. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal transcription factor involved in against OS generated by excessive reactive oxygen species (ROS). It governs the expression of a wide array of genes implicated in detoxification and antioxidant pathways. However, studies have demonstrated that the sustained activation of Nrf2 can contribute to tumor progression and drug resistance in cancers. The expression of Nrf2 was notably elevated in papillary thyroid cancer tissues compared to normal tissues, indicating that Nrf2 may play an oncogenic role in the development of papillary thyroid cancer. Nrf2 and its downstream targets are involved in the progression of thyroid cancer by impacting the prognosis and ferroptosis. Furthermore, the inhibition of Nrf2 can increase the sensitivity of target therapy in thyroid cancer. Therefore, Nrf2 appears to be a potential therapeutic target for the treatment of thyroid cancer. This review summarized current data on Nrf2 expression in thyroid cancer, discussed the function of Nrf2 in thyroid cancer, and analyzed various strategies to inhibit Nrf2.
Collapse
Affiliation(s)
- Zhongqin Gong
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China
| | - Lingbin Xue
- Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT Hospital, Shenzhen, China
| | - Huangcan Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China
| | - Simiao Fan
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China
| | - Charles Andrew van Hasselt
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China
| | - Dongcai Li
- Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT Hospital, Shenzhen, China
| | - Xianhai Zeng
- Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT Hospital, Shenzhen, China
| | - Michael Chi Fai Tong
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China.
| | - George Gong Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China.
| |
Collapse
|
16
|
Guo M, Sun Y, Wei Y, Xu J, Zhang C. Advances in targeted therapy and biomarker research in thyroid cancer. Front Endocrinol (Lausanne) 2024; 15:1372553. [PMID: 38501105 PMCID: PMC10944873 DOI: 10.3389/fendo.2024.1372553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Driven by the intricacy of the illness and the need for individualized treatments, targeted therapy and biomarker research in thyroid cancer represent an important frontier in oncology. The variety of genetic changes associated with thyroid cancer demand more investigation to elucidate molecular details. This research is clinically significant since it can be used to develop customized treatment plans. A more focused approach is provided by targeted therapies, which target certain molecular targets such as mutant BRAF or RET proteins. This strategy minimizes collateral harm to healthy tissues and may also reduce adverse effects. Simultaneously, patient categorization based on molecular profiles is made possible by biomarker exploration, which allows for customized therapy regimens and maximizes therapeutic results. The benefits of targeted therapy and biomarker research go beyond their immediate clinical impact to encompass the whole cancer landscape. Comprehending the genetic underpinnings of thyroid cancer facilitates the creation of novel treatments that specifically target aberrant molecules. This advances the treatment of thyroid cancer and advances precision medicine, paving the way for the treatment of other cancers. Taken simply, more study on thyroid cancer is promising for better patient care. The concepts discovered during this investigation have the potential to completely transform the way that care is provided, bringing in a new era of personalized, precision medicine. This paradigm shift could improve the prognosis and quality of life for individuals with thyroid cancer and act as an inspiration for advances in other cancer types.
Collapse
Affiliation(s)
- Mei Guo
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuqi Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuyao Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianxin Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chun Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
17
|
Hu Y, Wang Z, Dong L, Zhang L, Xiuyang L. The prognostic value of lymph node ratio for thyroid cancer: a meta-analysis. Front Oncol 2024; 14:1333094. [PMID: 38384804 PMCID: PMC10879587 DOI: 10.3389/fonc.2024.1333094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024] Open
Abstract
Background The prognostic value of lymph node ratio (LNR) has been proved in several cancers. However, the potential of LNR to be a prognostic factor for thyroid cancer has not been validated so far. This article evaluated the prognostic value of LNR for thyroid cancer through a meta-analysis. Methods A systematic search was conducted for eligible publications that study the prognostic values of LNR for thyroid cancer in the databases of PubMed, EMBASE, Cochrane, and Web of Science up until October 24, 2023. The quality of the eligible studies was evaluated by The Newcastle-Ottawa Assessment Scale of Cohort Study. The effect measure for meta-analysis was Hazard Ratio (HR). Random effect model was used to calculate the pooled HR and 95% confidence intervals. A sensitivity analysis was applied to assess the stability of the results. Subgroup analysis and a meta-regression were performed to explore the source of heterogeneity. And a funnel plot, Begg's and Egger's tests were used to evaluate publication bias. Results A total of 15,698 patients with thyroid cancer from 24 eligible studies whose quality were relatively high were included. The pooled HR was 4.74 (95% CI:3.67-6.11; P<0.05) and a moderate heterogeneity was shown (I2 = 40.8%). The results of meta-analysis were stable according to the sensitivity analysis. Similar outcome were shown in subgroup analysis that higher LNR was associated with poorer disease-free survival (DFS). Results from meta-regression indicated that a combination of 5 factors including country, treatment, type of thyroid cancer, year and whether studies control factors in design or analysis were the origin of heterogeneity. Conclusion Higher LNR was correlated to poorer disease free survival in thyroid cancer. LNR could be a potential prognostic indicator for thyroid cancer. More effort should be made to assess the potential of LNR to be included in the risk stratification systems for thyroid cancer. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=477135, identifier CRD42023477135.
Collapse
Affiliation(s)
- Yue Hu
- Qi-Huang Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiyi Wang
- Qi-Huang Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lishuo Dong
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lu Zhang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Xiuyang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Liang J, Deng Y, Zhang Y, Wu B, Zhou J. Identification and clinical value of a new ceRNA axis (TIMP3/hsa-miR-181b-5p/PAX8-AS1) in thyroid cancer. Health Sci Rep 2024; 7:e1859. [PMID: 38410497 PMCID: PMC10895078 DOI: 10.1002/hsr2.1859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
Background Thyroid cancer (TC) is a prevalent and increasingly common malignant tumor. In most cases, TC progresses slowly and runs a virtually benign course. However, challenges remain with the treatment of refractory TC, which does not respond to traditional management or is subject to relapse or metastasis. Therefore, new therapeutic regimens for TC patients with poor outcomes are urgently needed. Methods The differentially expressed RNAs were identified from the expression profile data of RNA from TC downloaded from The Cancer Genome Atlas database. Multiple databases were utilized to investigate the regulatory relationship among RNAs. Subsequently, a competitive endogenous RNA (ceRNA) network was established to elucidate the ceRNA axis that is responsible for the clinical prognosis of TC. To understand the potential mechanism of ceRNA axis in TC, location analysis, functional enrichment analysis, and immune-related analysis were conducted. Results A ceRNA network of TC was constructed, and the TIMP3/hsa-miR-181b-5p/PAX8-AS1 ceRNA axis associated with the prognosis of TC was successfully identified. Our results showed that the axis might influence the prognosis of TC through its regulation of regulating tumor immunity. Conclusions Our findings provide evidence that TIMP3/hsa-miR-181b-5p/PAX8-AS1 axis is significantly related to the prognosis of TC. The molecules involved in this axis may serve as novel therapeutic approaches for TC treatment.
Collapse
Affiliation(s)
- Jiamin Liang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yu Deng
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yubi Zhang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Bin Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jing Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Breast and Thyroid Surgery, People's Hospital of Dongxihu District Wuhan City and Union Dongxihu HospitalHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
19
|
Guo H, Liu R, Wu J, Li S, Yao W, Xu J, Zheng C, Lu Y, Zhang H. SRPX2 promotes cancer cell proliferation and migration of papillary thyroid cancer. Clin Exp Med 2023; 23:4825-4834. [PMID: 37306872 PMCID: PMC10725347 DOI: 10.1007/s10238-023-01113-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/29/2023] [Indexed: 06/13/2023]
Abstract
Thyroid cancer is the endocrine tumor with the highest incidence at present. It originates from the thyroid follicular epithelium or follicular paraepithelial cells. There is an increasing incidence of thyroid cancer all over the world. We found that SRPX2 expression level was higher in papillary thyroid tumors than in normal thyroid tissues, and SRPX2 expression was closely related to tumor grade and clinical prognosis. Previous reports showed that SRPX2 could function by activating PI3K/AKT signaling pathway. In addition, in vitro experiments showed that SRPX2 promoted the proliferation and migration of papillary thyroid cancer (PTC). In conclusion, SRPX2 could promote the malignant development of PTC. This may be a potential treatment target for PTC.
Collapse
Affiliation(s)
- Haiwei Guo
- Otolaryngology and Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Ruiqi Liu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Jiajun Wu
- Otolaryngology and Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shuang Li
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weiping Yao
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Jiajie Xu
- Otolaryngology and Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chuanming Zheng
- Otolaryngology and Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yanwei Lu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
20
|
Kim Y, Yun HJ, Choi KH, Kim CW, Lee JH, Weicker R, Kim SM, Park KC. Discovery of New Anti-Cancer Agents against Patient-Derived Sorafenib-Resistant Papillary Thyroid Cancer. Int J Mol Sci 2023; 24:16413. [PMID: 38003602 PMCID: PMC10671409 DOI: 10.3390/ijms242216413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Thyroid cancer is the most well-known type of endocrine cancer that is easily treatable and can be completely cured in most cases. Nonetheless, anti-cancer drug-resistant metastasis or recurrence may occur and lead to the failure of cancer therapy, which eventually leads to the death of a patient with cancer. This study aimed to detect novel thyroid cancer target candidates based on validating and identifying one of many anti-cancer drug-resistant targets in patient-derived sorafenib-resistant papillary thyroid cancer (PTC). We focused on targeting the sarco/endoplasmic reticulum calcium ATPase (SERCA) in patient-derived sorafenib-resistant PTC cells compared with patient-derived sorafenib-sensitive PTC cells. We discovered novel SERCA inhibitors (candidates 33 and 36) by virtual screening. These candidates are novel SERCA inhibitors that lead to remarkable tumor shrinkage in a xenograft tumor model of sorafenib-resistant patient-derived PTC cells. These results are clinically valuable for the progression of novel combinatorial strategies that facultatively and efficiently target extremely malignant cancer cells, such as anti-cancer drug-resistant PTC cells.
Collapse
Affiliation(s)
- Yuna Kim
- Department of Internal Medicine, Institute of Gastroenterology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonjuro, Gangnam-gu, Seoul 06273, Republic of Korea;
| | - Hyeok Jun Yun
- Department of Surgery, Thyroid Cancer Center, Institute of Refractory Thyroid Cancer, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea;
| | - Kyung Hwa Choi
- Department of Urology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea;
| | - Chan Wung Kim
- CKP Therapeutics, Inc., 110 Canal Street, Lowell, MA 01852, USA; (C.W.K.); (J.H.L.)
| | - Jae Ha Lee
- CKP Therapeutics, Inc., 110 Canal Street, Lowell, MA 01852, USA; (C.W.K.); (J.H.L.)
| | - Raymond Weicker
- CKP Therapeutics, Inc., 110 Canal Street, Lowell, MA 01852, USA; (C.W.K.); (J.H.L.)
| | - Seok-Mo Kim
- Department of Surgery, Thyroid Cancer Center, Institute of Refractory Thyroid Cancer, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea;
| | - Ki Cheong Park
- Department of Surgery, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
21
|
Xu X, Zhao J, Yang M, Han L, Yuan X, Chi W, Jiang J. The emerging roles of N6-methyladenosine RNA modifications in thyroid cancer. Eur J Med Res 2023; 28:475. [PMID: 37915103 PMCID: PMC10621220 DOI: 10.1186/s40001-023-01382-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/19/2023] [Indexed: 11/03/2023] Open
Abstract
Thyroid cancer (TC) is the most predominant malignancy of the endocrine system, with steadily growing occurrence and morbidity worldwide. Although diagnostic and therapeutic methods have been rapidly developed in recent years, the underlying molecular mechanisms in the pathogenesis of TC remain enigmatic. The N6-methyladenosine(m6A) RNA modification is designed to impact RNA metabolism and further gene regulation. This process is intricately regulated by a variety of regulators, such as methylases and demethylases. Aberrant m6A regulators expression is related to the occurrence and development of TC and play an important role in drug resistance. This review comprehensively analyzes the effect of m6A methylation on TC progression and the potential clinical value of m6A regulators as prognostic markers and therapeutic targets in this disease.
Collapse
Affiliation(s)
- Xiaoxin Xu
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Jiayao Zhao
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Mingyue Yang
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lutuo Han
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Xingxing Yuan
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, People's Republic of China
- Heilongjiang Academy of Traditional Chinese Medicine Science, No. 33 of West Dazhi Street, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Wencheng Chi
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, People's Republic of China.
- Heilongjiang Academy of Traditional Chinese Medicine Science, No. 33 of West Dazhi Street, Harbin, 150001, Heilongjiang, People's Republic of China.
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.
| | - Jiakang Jiang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, People's Republic of China.
- Heilongjiang Academy of Traditional Chinese Medicine Science, No. 33 of West Dazhi Street, Harbin, 150001, Heilongjiang, People's Republic of China.
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
22
|
Sajid A, Rahman H, Ambudkar SV. Advances in the structure, mechanism and targeting of chemoresistance-linked ABC transporters. Nat Rev Cancer 2023; 23:762-779. [PMID: 37714963 DOI: 10.1038/s41568-023-00612-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 09/17/2023]
Abstract
Cancer cells frequently display intrinsic or acquired resistance to chemically diverse anticancer drugs, limiting therapeutic success. Among the main mechanisms of this multidrug resistance is the overexpression of ATP-binding cassette (ABC) transporters that mediate drug efflux, and, specifically, ABCB1, ABCG2 and ABCC1 are known to cause cancer chemoresistance. High-resolution structures, biophysical and in silico studies have led to tremendous progress in understanding the mechanism of drug transport by these ABC transporters, and several promising therapies, including irradiation-based immune and thermal therapies, and nanomedicine have been used to overcome ABC transporter-mediated cancer chemoresistance. In this Review, we highlight the progress achieved in the past 5 years on the three transporters, ABCB1, ABCG2 and ABCC1, that are known to be of clinical importance. We address the molecular basis of their broad substrate specificity gleaned from structural information and discuss novel approaches to block the function of ABC transporters. Furthermore, genetic modification of ABC transporters by CRISPR-Cas9 and approaches to re-engineer amino acid sequences to change the direction of transport from efflux to import are briefly discussed. We suggest that current information regarding the structure, mechanism and regulation of ABC transporters should be used in clinical trials to improve the efficiency of chemotherapeutics for patients with cancer.
Collapse
Affiliation(s)
- Andaleeb Sajid
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hadiar Rahman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
23
|
Huang J, Shi J, Wu P, Sun W, Zhang D, Wang Z, Ji X, Lv C, Zhang T, Zhang P, Zhang H. Identification of a Novel Cuproptosis-Related Gene Signature and Integrative Analyses in Thyroid Cancer. J Clin Med 2023; 12:jcm12052014. [PMID: 36902801 PMCID: PMC10004009 DOI: 10.3390/jcm12052014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
Cuproptosis is a novel programmed cell death that depends on copper. The role and potential mechanism of cuproptosis-related genes (CRGs) in thyroid cancer (THCA) are still unclear. In our study, we randomly divided THCA patients from the TCGA database into a training set and a testing set. A cuproptosis-related signature consisting of six genes (SLC31A1, LIAS, DLD, MTF1, CDKN2A, and GCSH) was constructed using the training set to predict the prognosis of THCA and was verified with the testing set. All patients were classified into low- and high-risk groups according to risk score. Patients in the high-risk group had a poorer overall survival (OS) than those in the low-risk group. The area under the curve (AUC) values for 5 years, 8 years, and 10 years were 0.845, 0.885, and 0.898, respectively. The tumor immune cell infiltration and immune status were significantly higher in the low-risk group, which indicated a better response to immune checkpoint inhibitors (ICIs). The expression of six cuproptosis-related genes in our prognostic signature were verified by qRT-PCR in our THCA tissues, and the results were consistent with TCGA database. In summary, our cuproptosis-related risk signature has a good predictive ability regarding the prognosis of THCA patients. Targeting cuproptosis may be a better alternative for THCA patients.
Collapse
|
24
|
Ran XY, Chen P, Liu YZ, Shi L, Chen X, Liu YH, Zhang H, Zhang LN, Li K, Yu XQ. Rational Design of Polymethine Dyes with NIR-II Emission and High Photothermal Conversion Efficiency for Multimodal-Imaging-Guided Photo-Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210179. [PMID: 36630669 DOI: 10.1002/adma.202210179] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/30/2022] [Indexed: 05/16/2023]
Abstract
Phototheranostics have emerged and flourished as a promising pattern for cancer theranostics owing to their precise photoinduced diagnosis and therapeutic to meet the demands of precision medicine. The diagnosis information and therapeutic effect are directly determined by the fluorescence imaging ability and photothermal conversion efficiency (PCE) of phototheranostic agents. Hence, how to balance the competitive radiative and nonradiative processes of phototheranostic agents is the key factor to evaluate the phototheranostic effect. Herein, molecules named ICRs with high photostaibility are rationally designed, exhibiting fluorescence emission in the second near-infrared window (NIR-II, 1000-1700 nm) and high PCE, which are related to the strong donor-acceptor (D-A) interaction and high reorganization energy Noteworthily, ICR-Qu with stronger D-A interaction and a large-sized conjugated unit encapsulated in nanoparticles exhibits high PCE (81.1%). In addition, ICR-QuNPs are used for fluorescence imaging (FLI), photoacoustic imaging (PAI), and photothermal imaging (PTI) to guide deep-tissue photonic hyperthermia, achieving precise removal and inhibition of breast cancer. Furthermore, combined with α-PD-1, ICR-QuNPs show huge potential to be a facile and efficient tool for photo-immunotherapy. More importantly, this study not only reports an "all-in-one" polymethine-based phototheranostic agent, but also sheds light on the exploration of versatile organic molecules for future practical applications.
Collapse
Affiliation(s)
- Xiao-Yun Ran
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Ping Chen
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Yan-Zhao Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Lei Shi
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Xue Chen
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Hong Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Li-Na Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Department of Chemistry, Xihua University, Chengdu, 610039, P. R. China
| |
Collapse
|
25
|
Hu Y, Wen Q, Cai Y, Liu Y, Ma W, Li Q, Song F, Guo Y, Zhu L, Ge J, Zeng Q, Wang J, Yin C, Zheng G, Ge M. Alantolactone induces concurrent apoptosis and GSDME-dependent pyroptosis of anaplastic thyroid cancer through ROS mitochondria-dependent caspase pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154528. [PMID: 36343549 DOI: 10.1016/j.phymed.2022.154528] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/16/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Anaplastic thyroid cancer (ATC) is one of the fatal cancers and has not effective treatments. Alantolactone (ATL), a terpenoid extracted from traditional Chinese medicinal herb Inula helenium L., confers significant anti-inflammatory, antibacterial and antitumor activity. However, the activity and mechanisms of ATL in ATC remain unclear. PURPOSE To investigate the potential anti-ATC effects in vitro and in vivo and the mechanisms involved. METHODS The anti-proliferative activity of Alantolactone (ATL) against ATC cells was analyzed through CCK-8 and colony formation assays. Flow cytometry assay was performed to assess the cell cycle, cell apoptosis, ROS, and mitochondrial membrane potential (ΔΨm), whereas the cellular localization of cytochrome c and calreticulin were determined using cellular immunofluorescence assays. The lactate dehydrogenase (LDH) enzyme activity in the cell culture medium was measured using a commercial LDH kit, whereas ELISA was conducted to assess the secretory function of IL-1β. Western blot assays were conducted to determine the expression or regulation of proteins associated with apoptosis and pyroptosis. Subcutaneous tumor model of nude mice was established to evaluate the anticancer activity of ATL in vivo. The expression of Ki67, cyclin B1, cleaved-PARP, cleaved-caspase 3, and IL-1β in the animal tumor tissues was profiled using immunohistochemistry analyses. RESULTS Our data showed that ATL significantly inhibited the proliferation and colony formation activity of ATC cells. ATL induced ATC cell cycle arrest at G2/M phase, and downregulated the expression of cyclin B1 and CDC2. Furthermore, ATL induced concurrent apoptosis and pyroptosis in the ATC cells, and the cleavage of PARP and GSDME. It also significantly increased the release of LDH and IL-1β. Mechanically, ATL-mediated increase in ROS suppressed the Bcl-2/Bax ratio, downregulated the mitochondrial membrane potential and increased the release of cytochrome c, leading to caspase 9 and caspase 3 cleavage. We also found that ATL induced the translocation of an immunogenic cell death marker (calreticulin) to the cell membrane. In addition, it inhibited the growth of the ATC subcutaneous xenograft model, and activated proteins associated with apoptosis and pyroptosis, with a high safety profile. CONCLUSION Taken together, these results firstly demonstrated that ATL exerted an anti-ATC activity by inducing concurrent apoptosis and GSDME-dependent pyroptosis through ROS-mediated mitochondria-dependent caspase activation. Meanwhile, these cell deaths exhibited obvious characteristics of immunogenic cell death, which may synergistically increase the potential of cancer immunotherapy in ATC. Further studies are needed to explore deeper mechanisms for the anti- ATC activity of ATL.
Collapse
Affiliation(s)
- Yiqun Hu
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Qingliang Wen
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China; Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yefeng Cai
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China; Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yunye Liu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Wenli Ma
- Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Qinglin Li
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China; Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Fahuan Song
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China; Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou 310014, China
| | - Yawen Guo
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China; Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou 310014, China
| | - Lei Zhu
- Department of Thyroid Surgery, The Fifth Hospital Affiliated to Wenzhou Medical University, Lishui Central Hospital, Lishui City, Zhejiang Province 323000, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qian Zeng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiahui Wang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Changtian Yin
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou 310014, China.
| | - Guowan Zheng
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou 310014, China.
| | - Minghua Ge
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou 310014, China.
| |
Collapse
|
26
|
Wu W, Fang X, Li J, Zhang A, Zou Y, Zheng X. Application of dual-source computed tomography in the diagnosis of thyroid cancer and evaluation of biological behaviors. JOURNAL OF CLINICAL ULTRASOUND : JCU 2023; 51:195-202. [PMID: 36539919 DOI: 10.1002/jcu.23413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/23/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVE Thyroid cancer (TC) is an extremely prevailing malignant endocrine tumor. Therefore, effective diagnostic tools are necessary. This study explored the application value of dual-source computed tomography (DSCT) in TC diagnosis and biological behavior assessment. METHODS This study retrospectively selected 68 TC patients and another 74 benign patients with thyroid adenoma, nodular goiter, or adenomatous hyperplasia. All patients were confirmed by pathological examination and underwent DSCT examination. The iodine concentration (IC) obtained from plain computed tomography (CT) scanning and normalized iodine concentration (NIC) in the arterial phase and venous phase were recorded. The positive expression rates of estrogen receptor alpha (ERα), estrogen receptors beta (ERβ), and Ki67 in pathological tissues were determined by immunohistochemistry, and their correlation with IC in plain CT was assessed by Pearson correlation analysis, respectively. The diagnostic values of IC in plain CT and venous phase NIC in TC patients were evaluated using the receiver operating characteristic curve. RESULTS Malignant patients had lower IC in plain DSCT scanning, venous phase NIC, and ERβ, and higher ERα and Ki67 than benign patients. IC level in plain DSCT scanning was inversely-correlated with ERα and Ki-67 positive expression rates, but positively-related to ERβ to different degrees. For the diagnosis of TC patients, the AUC of IC level in plain DSCT was 0.771, with a cut-off value of 1.250 (97.06% sensitivity and 41.89% specificity), and the AUC of venous phase NIC was 0.738, with a cut-off value of 0.825 (100% sensitivity and 43.24% specificity). CONCLUSION The IC level obtained from DSCT scanning could assist in the differential diagnosis of malignant and benign thyroid nodules and evaluation of biological behaviors.
Collapse
Affiliation(s)
- Wenhui Wu
- Department of Radiology, Dongguan People's Hospital, Dongguan, China
| | - Xuewen Fang
- Department of Radiology, Dongguan People's Hospital, Dongguan, China
| | - Jianming Li
- Department of Radiology, Dongguan People's Hospital, Dongguan, China
| | - An Zhang
- Department of Radiology, Dongguan People's Hospital, Dongguan, China
| | - Yujian Zou
- Department of Radiology, Dongguan People's Hospital, Dongguan, China
| | - Xiaolin Zheng
- Department of Radiology, Kanghua Hospital, Dongguan, China
| |
Collapse
|