1
|
Thompson MD, Chidiac P, Jose PA, Hauser AS, Gorvin CM. Genetic variants of accessory proteins and G proteins in human genetic disease. Crit Rev Clin Lab Sci 2025; 62:113-134. [PMID: 39743506 PMCID: PMC11854058 DOI: 10.1080/10408363.2024.2431853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/14/2024] [Accepted: 11/16/2024] [Indexed: 01/04/2025]
Abstract
We present a series of three articles on the genetics and pharmacogenetics of G protein- coupled receptors (GPCR). In the first article, we discuss genetic variants of the G protein subunits and accessory proteins that are associated with human phenotypes; in the second article, we build upon this to discuss "G protein-coupled receptor (GPCR) gene variants and human genetic disease" and in the third article, we survey "G protein-coupled receptor pharmacogenomics". In the present article, we review the processes of ligand binding, GPCR activation, inactivation, and receptor trafficking to the membrane in the context of human genetic disease resulting from pathogenic variants of accessory proteins and G proteins. Pathogenic variants of the genes encoding G protein α and β subunits are examined in diverse phenotypes. Variants in the genes encoding accessory proteins that modify or organize G protein coupling have been associated with disease; these include the contribution of variants of the regulator of G protein signaling (RGS) to hypertension; the role of variants of activator of G protein signaling type III in phenotypes such as hypoxia; the contribution of variation at the RGS10 gene to short stature and immunological compromise; and the involvement of variants of G protein-coupled receptor kinases (GRKs), such as GRK4, in hypertension. Variation in genes that encode proteins involved in GPCR signaling are outlined in the context of the changes in structure and function that may be associated with human phenotypes.
Collapse
Affiliation(s)
- Miles D. Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Peter Chidiac
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Pedro A. Jose
- Division of Renal Diseases & Hypertension, Departments of Medicine and Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Alexander S. Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline M. Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, West Midlands, UK
| |
Collapse
|
2
|
Zhang L, Sahar AM, Li C, Chaudhary A, Yousaf I, Saeedah MA, Mubarak A, Haris M, Nawaz M, Reem MA, Ramadan FA, Mostafa AAM, Feng W, Hameed Y. A detailed multi-omics analysis of GNB2 gene in human cancers. BRAZ J BIOL 2024; 84:e260169. [DOI: 10.1590/1519-6984.260169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/07/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract The Guanine-nucleotide binding protein 2 (GNB2) encodes for β2 subunit (Gβ2) of the G-protein complex. Keeping in view the increased demand of reliable biomarkers in cancer, the current study was planned to extensively explored GNB2 expression variation and its roles in different cancers using online available databases and diverse methodology. In view of our results, the GNB2 was notably up-regulated relative to corresponding controls in twenty three cancer types. As well, the elevated expression of GNB2 was found to be associated with the reduced overall survival (OS) of the Liver Hepatocellular Carcinoma (LIHC) and Rectum Adenocarcinoma (READ) only out of all analyzed cancer types. This implies GNB2 plays vital role in the tumorigenesis of LIHC and READ. Several additional analysis also explored six critical pathways and few important correlations related to GNB2 expression and different other parameters such as promoter methylation, tumor purity, CD8+ T immune cells infiltration, and genetic alteration, and chemotherapeutic drugs. In conclusion, GNB2 gene has been identified in this study as a shared potential biomarker (diagnostic and prognostic) of LIHC and READ.
Collapse
Affiliation(s)
| | | | - C. Li
- Sichuan University, PR China
| | | | - I. Yousaf
- Government College University Faisalabad, Pakistan
| | | | | | - M. Haris
- Nowshera Medical College, Pakistan
| | | | | | | | | | - W. Feng
- Sichuan University, PR China
| | | |
Collapse
|
3
|
Wang S, Raza SHA, Zhang K, Mei C, Alamoudi MO, Aloufi BH, Alshammari AM, Zan L. Selection signatures of Qinchuan cattle based on whole-genome sequences. Anim Biotechnol 2023; 34:1483-1491. [PMID: 35152846 DOI: 10.1080/10495398.2022.2033252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Qinchuan cattle has gradually improved in body shape and growth rate in the long-term breeding process from the draft cattle to beef cattle. As the head of the five local yellow cattle in China, the Qinchuan cattle has been designated as a specialized beef cattle breed. We investigated the selection signatures using whole genome sequencing data in Qinchuan cattle. Based on Fst, we detected hundreds of candidate genes under selection across Qinchuan, Red Angus, and Japanese Black cattle. Through protein-protein interaction analysis and functional annotation of candidate genes, the results revealed that KMT2E, LTBP1 and NIPBL were related to brain size, body characteristics, and limb development, respectively, suggesting that these potential genes may affect the growth and development traits in Qinchuan cattle. ARIH2, DACT1 and DNM2, et al. are related to meat quality. Meanwhile, TBXA2R can be used as a gene associated with reproductive function, and USH2A affect coat color. This provided a glimpse into the formation of breeds and molecular genetic breeding. Our findings will promote genome-assisted breeding to improve animal production and health.
Collapse
Affiliation(s)
- Sihu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | | | - Ke Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chugang Mei
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Muna O Alamoudi
- Department of Biology, Faculty of Science, University of Hail, Hail, Saudi Arabia
| | - Bandar H Aloufi
- Department of Biology, Faculty of Science, University of Hail, Hail, Saudi Arabia
| | | | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- National Beef Cattle Improvement Center, Yangling, China
| |
Collapse
|
4
|
Zhang S, Zhang Q, Li X, Zhang R, Che H, Liu Z, Guo D, Yang F, Chen Y. Mutagenicity of PM 2.5 and Ethnic Susceptibility in Chengdu-Chongqing Economic Circle, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163022. [PMID: 36966844 DOI: 10.1016/j.scitotenv.2023.163022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/08/2023] [Accepted: 03/19/2023] [Indexed: 05/17/2023]
Abstract
PM2.5 seriously endangers human health, and its mutagenicity is considered an important pathogenic mechanism. However, the mutagenicity of PM2.5 is mainly determined by traditional bioassays, which are limited in the large-scale identification of mutation sites. Single nucleoside polymorphisms (SNPs) can be used for the large-scale analysis of DNA mutation sites but have not yet been used on the mutagenicity of PM2.5. The Chengdu-Chongqing Economic Circle is one of China's four major economic circles and five major urban agglomerations, and the relationship between the mutagenicity of PM2.5 and ethnic susceptibility in this circle remains unclear. In this study, the representative samples are PM2.5 from Chengdu in summer (CDSUM), Chengdu in winter (CDWIN), Chongqing in summer (CQSUM) and Chongqing in winter (CQWIN) respectively. PM2.5 from CDWIN, CDSUM and CQSUM induce the highest levels of mutation in the regions of exon/5'Utr, upstream/splice site and downstream/3'Utr respectively. PM2.5 from CQWIN, CDWIN and CDSUM induce the highest ratio of missense, nonsense and synonymous mutation respectively. PM2.5 from CQWIN and CDWIN induce the highest transition and transversion mutations respectively. The ability of PM2.5 from the four groups to induce disruptive mutation effects is similar. For ethnic susceptibility, PM2.5 in this economic circle is more likely to induce DNA mutation in Chinese Dai from Xishuangbanna among Chinese ethnic groups. PM2.5 from CDSUM, CDWIN, CQSUM and CQWIN may particularly tend to induce Southern Han Chinese, Dai in Xishuangbanna, Dai in Xishuangbanna and Southern Han Chinese respectively. These findings may assist in the development of a new method for analyzing the mutagenicity of PM2.5. Moreover, this study not only promotes attention to ethnic susceptibility to PM2.5, but also introduces public protection policies for the susceptible population.
Collapse
Affiliation(s)
- Shumin Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Qin Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Xiaomeng Li
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Ronghua Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Hanxiong Che
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Zhenzhong Liu
- School of Public Health, North Sichuan Medical College, Nanchong 637000, China
| | - Dongmei Guo
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Fumo Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yang Chen
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
5
|
Manoj P, Kim JA, Kim S, Li T, Sewani M, Chelu MG, Li N. Sinus node dysfunction: current understanding and future directions. Am J Physiol Heart Circ Physiol 2023; 324:H259-H278. [PMID: 36563014 PMCID: PMC9886352 DOI: 10.1152/ajpheart.00618.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The sinoatrial node (SAN) is the primary pacemaker of the heart. Normal SAN function is crucial in maintaining proper cardiac rhythm and contraction. Sinus node dysfunction (SND) is due to abnormalities within the SAN, which can affect the heartbeat frequency, regularity, and the propagation of electrical pulses through the cardiac conduction system. As a result, SND often increases the risk of cardiac arrhythmias. SND is most commonly seen as a disease of the elderly given the role of degenerative fibrosis as well as other age-dependent changes in its pathogenesis. Despite the prevalence of SND, current treatment is limited to pacemaker implantation, which is associated with substantial medical costs and complications. Emerging evidence has identified various genetic abnormalities that can cause SND, shedding light on the molecular underpinnings of SND. Identification of these molecular mechanisms and pathways implicated in the pathogenesis of SND is hoped to identify novel therapeutic targets for the development of more effective therapies for this disease. In this review article, we examine the anatomy of the SAN and the pathophysiology and epidemiology of SND. We then discuss in detail the most common genetic mutations correlated with SND and provide our perspectives on future research and therapeutic opportunities in this field.
Collapse
Affiliation(s)
- Pavan Manoj
- School of Public Health, Texas A&M University, College Station, Texas
| | - Jitae A Kim
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Stephanie Kim
- Department of BioSciences, Rice University, Houston, Texas
| | - Tingting Li
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Maham Sewani
- Department of BioSciences, Rice University, Houston, Texas
| | - Mihail G Chelu
- Division of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Na Li
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
6
|
Burglen L, Van Hoeymissen E, Qebibo L, Barth M, Belnap N, Boschann F, Depienne C, De Clercq K, Douglas AGL, Fitzgerald MP, Foulds N, Garel C, Helbig I, Held K, Horn D, Janssen A, Kaindl AM, Narayanan V, Prager C, Rupin-Mas M, Afenjar A, Zhao S, Ramaekers VT, Ruggiero SM, Thomas S, Valence S, Van Maldergem L, Rohacs T, Rodriguez D, Dyment D, Voets T, Vriens J. Gain-of-function variants in the ion channel gene TRPM3 underlie a spectrum of neurodevelopmental disorders. eLife 2023; 12:81032. [PMID: 36648066 PMCID: PMC9886277 DOI: 10.7554/elife.81032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/07/2022] [Indexed: 01/18/2023] Open
Abstract
TRPM3 is a temperature- and neurosteroid-sensitive plasma membrane cation channel expressed in a variety of neuronal and non-neuronal cells. Recently, rare de novo variants in TRPM3 were identified in individuals with developmental and epileptic encephalopathy, but the link between TRPM3 activity and neuronal disease remains poorly understood. We previously reported that two disease-associated variants in TRPM3 lead to a gain of channel function . Here, we report a further 10 patients carrying one of seven additional heterozygous TRPM3 missense variants. These patients present with a broad spectrum of neurodevelopmental symptoms, including global developmental delay, intellectual disability, epilepsy, musculo-skeletal anomalies, and altered pain perception. We describe a cerebellar phenotype with ataxia or severe hypotonia, nystagmus, and cerebellar atrophy in more than half of the patients. All disease-associated variants exhibited a robust gain-of-function phenotype, characterized by increased basal activity leading to cellular calcium overload and by enhanced responses to the neurosteroid ligand pregnenolone sulfate when co-expressed with wild-type TRPM3 in mammalian cells. The antiseizure medication primidone, a known TRPM3 antagonist, reduced the increased basal activity of all mutant channels. These findings establish gain-of-function of TRPM3 as the cause of a spectrum of autosomal dominant neurodevelopmental disorders with frequent cerebellar involvement in humans and provide support for the evaluation of TRPM3 antagonists as a potential therapy.
Collapse
Affiliation(s)
- Lydie Burglen
- Centre de référence des malformations et maladies congénitales du cervelet, Départementde Génétique, APHP, Sorbonne UniversityParisFrance
- Developmental Brain Disorders Laboratory, Imagine InstituteParisFrance
| | - Evelien Van Hoeymissen
- Laboratory of Ion Channel Research, Department of cellular and molecular medicine, University of LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department Development & Regeneration, University of LeuvenLeuvenBelgium
| | - Leila Qebibo
- Centre de référence des malformations et maladies congénitales du cervelet, Départementde Génétique, APHP, Sorbonne UniversityParisFrance
| | - Magalie Barth
- Department of Genetics, University Hospital of AngersAngersFrance
| | - Newell Belnap
- Translational Genomics Research Institute (TGen), Neurogenomics Division, Center for Rare Childhood DisordersPhoenixUnited States
| | - Felix Boschann
- Charité – Universitäts medizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Genetics and Human GeneticsBerlinGermany
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University Duisburg-EssenEssenGermany
| | - Katrien De Clercq
- Laboratory of Ion Channel Research, Department of cellular and molecular medicine, University of LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department Development & Regeneration, University of LeuvenLeuvenBelgium
| | - Andrew GL Douglas
- University Hospital Southampton NHS Foundation TrustSouthamptonUnited Kingdom
| | | | - Nicola Foulds
- Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation TrustSouthamptonUnited Kingdom
| | - Catherine Garel
- Centre de référence des malformations et maladies congénitales du cervelet, Départementde Génétique, APHP, Sorbonne UniversityParisFrance
- Service de Radiologie Pédiatrique, Hôpital Armand-Trousseau, Médecine Sorbonne UniversitéParisFrance
| | - Ingo Helbig
- Children's Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Katharina Held
- Laboratory of Ion Channel Research, Department of cellular and molecular medicine, University of LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department Development & Regeneration, University of LeuvenLeuvenBelgium
| | - Denise Horn
- Charité – Universitäts medizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Genetics and Human GeneticsBerlinGermany
| | - Annelies Janssen
- Laboratory of Ion Channel Research, Department of cellular and molecular medicine, University of LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Angela M Kaindl
- Institute of Cell Biology and Neurobiology, Charité - Universitäts medizin BerlinBerlinGermany
- Department of Pediatric Neurology, Charité - Universitäts medizin BerlinBerlinGermany
- Charité – Universitäts medizin Berlin, Center for Chronically Sick ChildrenBerlinGermany
| | - Vinodh Narayanan
- Translational Genomics Research Institute (TGen), Neurogenomics Division, Center for Rare Childhood DisordersPhoenixUnited States
| | - Christina Prager
- Department of Pediatric Neurology, Charité - Universitäts medizin BerlinBerlinGermany
- Charité – Universitäts medizin Berlin, Center for Chronically Sick ChildrenBerlinGermany
| | - Mailys Rupin-Mas
- Department of Neuropediatrics, University Hospital of AngersAngersFrance
| | - Alexandra Afenjar
- Centre de référence des malformations et maladies congénitales du cervelet, Départementde Génétique, APHP, Sorbonne UniversityParisFrance
| | - Siyuan Zhao
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New JerseyNewarkUnited States
| | | | | | - Simon Thomas
- Wessex Regional Genetics Laboratory, Salisbury District HospitalSalisburyUnited Kingdom
| | - Stéphanie Valence
- Centre de référence des malformations et maladies congénitales du cervelet, Départementde Génétique, APHP, Sorbonne UniversityParisFrance
- Sorbonne Université, Service de Neuropédiatrie, Hôpital Trousseau AP-HPParisFrance
| | - Lionel Van Maldergem
- Centre de Génétique Humaine, Université de Franche-Comté BesançonBesanconFrance
- Center of Clinical Investigation 1431, National Institute of Health and Medical ResearchBesanconFrance
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New JerseyNewarkUnited States
| | - Diana Rodriguez
- Centre de référence des malformations et maladies congénitales du cervelet, Départementde Génétique, APHP, Sorbonne UniversityParisFrance
- Sorbonne Université, Service de Neuropédiatrie, Hôpital Trousseau AP-HPParisFrance
| | - David Dyment
- Children's Hospital of Eastern Ontario Research Institute, University of OttawaOttawaCanada
| | - Thomas Voets
- Laboratory of Ion Channel Research, Department of cellular and molecular medicine, University of LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department Development & Regeneration, University of LeuvenLeuvenBelgium
| |
Collapse
|
7
|
GNB3 c.825C>T (rs5443) Polymorphism and Risk of Acute Cardiovascular Events after Renal Allograft Transplant. Int J Mol Sci 2022; 23:ijms23179783. [PMID: 36077181 PMCID: PMC9456448 DOI: 10.3390/ijms23179783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
The c.825C>T single-nucleotide polymorphism (rs5443) of the guanine nucleotide-binding protein subunit β3 (GNB3) results in increased intracellular signal transduction via G-proteins. The present study investigated the effect of the GNB3 c.825C>T polymorphism on cardiovascular events among renal allograft recipients posttransplant. Our retrospective study involved 436 renal allograft recipients who were followed up for up to 8 years after transplant. The GNB3 c.825C>T polymorphism was detected with restriction fragment length polymorphism (RFLP) polymerase chain reaction (PCR). The GNB3 TT genotype was detected in 43 (10%) of 436 recipients. Death due to an acute cardiovascular event occurred more frequently among recipients with the TT genotype (4 [9%]) than among those with the CC/CT genotypes (7 [2%]; p = 0.003). The rates of myocardial infarction (MI)−free survival (p = 0.003) and acute peripheral artery occlusive disease (PAOD)−free survival (p = 0.004) were significantly lower among T-homozygous patients. A multivariate analysis showed that homozygous GNB3 c.825C>T polymorphism exerted only a mild effect for the occurrence of myocardial infarction (relative risk, 2.2; p = 0.065) or acute PAOD (relative risk, 2.4; p = 0.05) after renal transplant. Our results suggest that the homozygous GNB3 T allele exerts noticeable effects on the risk of MI and acute PAOD only in the presence of additional nonheritable risk factors.
Collapse
|
8
|
Tan NB, Pagnamenta AT, Ferla MP, Gadian J, Chung BH, Chan MC, Fung JL, Cook E, Guter S, Boschann F, Heinen A, Schallner J, Mignot C, Keren B, Whalen S, Sarret C, Mittag D, Demmer L, Stapleton R, Saida K, Matsumoto N, Miyake N, Sheffer R, Mor-Shaked H, Barnett CP, Byrne AB, Scott HS, Kraus A, Cappuccio G, Brunetti-Pierri N, Iorio R, Di Dato F, Pais LS, Yeung A, Tan TY, Taylor JC, Christodoulou J, White SM. Recurrent de novo missense variants in GNB2 can cause syndromic intellectual disability. J Med Genet 2022; 59:511-516. [PMID: 34183358 DOI: 10.1136/jmedgenet-2020-107462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/25/2021] [Accepted: 04/23/2021] [Indexed: 11/04/2022]
Abstract
PURPOSE Binding proteins (G-proteins) mediate signalling pathways involved in diverse cellular functions and comprise Gα and Gβγ units. Human diseases have been reported for all five Gβ proteins. A de novo missense variant in GNB2 was recently reported in one individual with developmental delay/intellectual disability (DD/ID) and dysmorphism. We aim to confirm GNB2 as a neurodevelopmental disease gene, and elucidate the GNB2-associated neurodevelopmental phenotype in a patient cohort. METHODS We discovered a GNB2 variant in the index case via exome sequencing and sought individuals with GNB2 variants via international data-sharing initiatives. In silico modelling of the variants was assessed, along with multiple lines of evidence in keeping with American College of Medical Genetics and Genomics guidelines for interpretation of sequence variants. RESULTS We identified 12 unrelated individuals with five de novo missense variants in GNB2, four of which are recurrent: p.(Ala73Thr), p.(Gly77Arg), p.(Lys89Glu) and p.(Lys89Thr). All individuals have DD/ID with variable dysmorphism and extraneurologic features. The variants are located at the universally conserved shared interface with the Gα subunit, which modelling suggests weaken this interaction. CONCLUSION Missense variants in GNB2 cause a congenital neurodevelopmental disorder with variable syndromic features, broadening the spectrum of multisystem phenotypes associated with variants in genes encoding G-proteins.
Collapse
Affiliation(s)
- Natalie B Tan
- Victorian Clinical Genetics Services, Parkville, Victoria 3052, Australia
- Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Victoria, Australia
| | - Alistair T Pagnamenta
- NIHR Oxford BRC, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Matteo P Ferla
- NIHR Oxford BRC, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jonathan Gadian
- Department of Paediatric Neurology, John Radcliffe Hospital, Oxford, UK
| | - Brian Hy Chung
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Marcus Cy Chan
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Jasmine Lf Fung
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Edwin Cook
- Institute for Juvenile Research, Department of Psychiatry, University of Illinois at Chicago, Chicago 60608, Illinois, USA
| | - Stephen Guter
- Institute for Juvenile Research, Department of Psychiatry, University of Illinois at Chicago, Chicago 60608, Illinois, USA
| | - Felix Boschann
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Andre Heinen
- Carl Gustav Carus Faculty of Medicine, Children's Hospital, Technical University Dresden, Dresden, Germany
| | - Jens Schallner
- Department of Neuropediatrics, Carl Gustav Carus Faculty of Medicine, Children's Hospital, Technical University Dresden, Dresden, Germany
| | - Cyril Mignot
- Département de Génétique, Hôpital Pitié-Salpêtrière, APHP.Sorbonne Université, Paris, France
| | - Boris Keren
- Département de Génétique, Hôpital Pitié-Salpêtrière, APHP.Sorbonne Université, Paris, France
| | - Sandra Whalen
- UF de Génétique Clinique, Centre de Référence Maladies Rares Anomalies du développement et syndromes malformatifs, APHP.Sorbonne Université, Hôpital Armand Trousseau, Paris, France
| | - Catherine Sarret
- Service de génétique médicale, Hôpital Estaing, Centre hospitalo-universitaire de Clermont-Ferrand, 63003 Clermont-Ferrand, France
| | - Dana Mittag
- Division of Genetics, Levine Children's Hospital, Carolinas Medical Center, Atrium Health, Charlotte 28232-2861, North Carolina, USA
| | - Laurie Demmer
- Division of Genetics, Levine Children's Hospital, Carolinas Medical Center, Atrium Health, Charlotte 28232-2861, North Carolina, USA
| | - Rachel Stapleton
- Genetic Health Service NZ, Christchurch Hospital, Christchurch 8140, New Zealand
| | - Ken Saida
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Ruth Sheffer
- Department of Human Genetics, Hadassah University Hospital, Jerusalem, Israel
| | - Hagar Mor-Shaked
- Department of Human Genetics, Hadassah University Hospital, Jerusalem, Israel
| | - Christopher P Barnett
- South Australian Clinical Genetics Service, Women's and Children's Hospital, North Adelaide 5006, South Australia, Australia
| | - Alicia B Byrne
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, Adelaide, South Australia, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Hamish S Scott
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, Adelaide, South Australia, Australia
| | - Alison Kraus
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds 0113 392 4455, UK
- Castle Hill Hospital, Cottingham, Hull 01482 622470, UK
| | - Gerarda Cappuccio
- Department of Translational Medicine, Section of Pediatrics, Federico II University Hospital, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Section of Pediatrics, Federico II University Hospital, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Raffaele Iorio
- Department of Translational Medicine, Section of Pediatrics, Federico II University Hospital, Naples, Italy
| | - Fabiola Di Dato
- Department of Translational Medicine, Section of Pediatrics, Federico II University Hospital, Naples, Italy
| | - Lynn S Pais
- Center for Mendelian Genomics, Eli and Edythe L Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Alison Yeung
- Victorian Clinical Genetics Services, Parkville, Victoria 3052, Australia
- Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Victoria, Australia
| | - Tiong Y Tan
- Victorian Clinical Genetics Services, Parkville, Victoria 3052, Australia
- Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Victoria, Australia
| | - Jenny C Taylor
- NIHR Oxford BRC, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - John Christodoulou
- Victorian Clinical Genetics Services, Parkville, Victoria 3052, Australia
- Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Victoria, Australia
| | - Susan M White
- Victorian Clinical Genetics Services, Parkville, Victoria 3052, Australia
- Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Victoria, Australia
| |
Collapse
|
9
|
Hauser AS. Personalized Medicine Through GPCR Pharmacogenomics. COMPREHENSIVE PHARMACOLOGY 2022:191-219. [DOI: 10.1016/b978-0-12-820472-6.00100-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
De Nittis P, Efthymiou S, Sarre A, Guex N, Chrast J, Putoux A, Sultan T, Raza Alvi J, Ur Rahman Z, Zafar F, Rana N, Rahman F, Anwar N, Maqbool S, Zaki MS, Gleeson JG, Murphy D, Galehdari H, Shariati G, Mazaheri N, Sedaghat A, Lesca G, Chatron N, Salpietro V, Christoforou M, Houlden H, Simonds WF, Pedrazzini T, Maroofian R, Reymond A. Inhibition of G-protein signalling in cardiac dysfunction of intellectual developmental disorder with cardiac arrhythmia (IDDCA) syndrome. J Med Genet 2021; 58:815-831. [PMID: 33172956 PMCID: PMC8639930 DOI: 10.1136/jmedgenet-2020-107015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/30/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pathogenic variants of GNB5 encoding the β5 subunit of the guanine nucleotide-binding protein cause IDDCA syndrome, an autosomal recessive neurodevelopmental disorder associated with cognitive disability and cardiac arrhythmia, particularly severe bradycardia. METHODS We used echocardiography and telemetric ECG recordings to investigate consequences of Gnb5 loss in mouse. RESULTS We delineated a key role of Gnb5 in heart sinus conduction and showed that Gnb5-inhibitory signalling is essential for parasympathetic control of heart rate (HR) and maintenance of the sympathovagal balance. Gnb5-/- mice were smaller and had a smaller heart than Gnb5+/+ and Gnb5+/- , but exhibited better cardiac function. Lower autonomic nervous system modulation through diminished parasympathetic control and greater sympathetic regulation resulted in a higher baseline HR in Gnb5-/- mice. In contrast, Gnb5-/- mice exhibited profound bradycardia on treatment with carbachol, while sympathetic modulation of the cardiac stimulation was not altered. Concordantly, transcriptome study pinpointed altered expression of genes involved in cardiac muscle contractility in atria and ventricles of knocked-out mice. Homozygous Gnb5 loss resulted in significantly higher frequencies of sinus arrhythmias. Moreover, we described 13 affected individuals, increasing the IDDCA cohort to 44 patients. CONCLUSIONS Our data demonstrate that loss of negative regulation of the inhibitory G-protein signalling causes HR perturbations in Gnb5-/- mice, an effect mainly driven by impaired parasympathetic activity. We anticipate that unravelling the mechanism of Gnb5 signalling in the autonomic control of the heart will pave the way for future drug screening.
Collapse
Affiliation(s)
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Alexandre Sarre
- Cardiovascular Assessment Facility, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | - Jacqueline Chrast
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Audrey Putoux
- Service de Génétique, Hopital Femme Mere Enfant, Bron, France
| | - Tipu Sultan
- Department of Pediatric Neurology, The Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Javeria Raza Alvi
- Department of Pediatric Neurology, The Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Zia Ur Rahman
- Department of Pediatric Neurology, The Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Faisal Zafar
- Department of Paediatric Neurology, Children's Hospital and Institute of Child Health, Multan, Pakistan
| | - Nuzhat Rana
- Department of Paediatric Neurology, Children's Hospital and Institute of Child Health, Multan, Pakistan
| | - Fatima Rahman
- Department of Developmental-Behavioural Paediatrics, The Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Najwa Anwar
- Department of Developmental-Behavioural Paediatrics, The Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Shazia Maqbool
- Department of Developmental-Behavioural Paediatrics, The Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Joseph G Gleeson
- Department of Neuroscience and Pediatrics, Howard Hughes Medical Institute, La Jolla, California, USA
| | - David Murphy
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Hamid Galehdari
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahwaz, Iran (the Islamic Republic of)
| | - Gholamreza Shariati
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jondishapour University of Medical Sciences, Ahvaz, Iran (the Islamic Republic of)
| | - Neda Mazaheri
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahwaz, Iran (the Islamic Republic of)
| | - Alireza Sedaghat
- Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of medical Sciences, Ahvaz, Iran (the Islamic Republic of)
| | - Gaetan Lesca
- Service de Genetique, Hospices Civils de Lyon, Lyon, France
| | - Nicolas Chatron
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Service de Genetique, Hospices Civils de Lyon, Lyon, France
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Marilena Christoforou
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - William F Simonds
- Metabolic Diseases Branch/NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne, Lausanne, Switzerland
| | - Reza Maroofian
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Tennakoon M, Senarath K, Kankanamge D, Ratnayake K, Wijayaratna D, Olupothage K, Ubeysinghe S, Martins-Cannavino K, Hébert TE, Karunarathne A. Subtype-dependent regulation of Gβγ signalling. Cell Signal 2021; 82:109947. [PMID: 33582184 PMCID: PMC8026654 DOI: 10.1016/j.cellsig.2021.109947] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 01/04/2023]
Abstract
G protein-coupled receptors (GPCRs) transmit information to the cell interior by transducing external signals to heterotrimeric G protein subunits, Gα and Gβγ subunits, localized on the inner leaflet of the plasma membrane. Though the initial focus was mainly on Gα-mediated events, Gβγ subunits were later identified as major contributors to GPCR-G protein signalling. A broad functional array of Gβγ signalling has recently been attributed to Gβ and Gγ subtype diversity, comprising 5 Gβ and 12 Gγ subtypes, respectively. In addition to displaying selectivity towards each other to form the Gβγ dimer, numerous studies have identified preferences of distinct Gβγ combinations for specific GPCRs, Gα subtypes and effector molecules. Importantly, Gβ and Gγ subtype-dependent regulation of downstream effectors, representing a diverse range of signalling pathways and physiological functions have been found. Here, we review the literature on the repercussions of Gβ and Gγ subtype diversity on direct and indirect regulation of GPCR/G protein signalling events and their physiological outcomes. Our discussion additionally provides perspective in understanding the intricacies underlying molecular regulation of subtype-specific roles of Gβγ signalling and associated diseases.
Collapse
Affiliation(s)
- Mithila Tennakoon
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Kanishka Senarath
- Genetics and Molecular Biology Unit, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Dinesh Kankanamge
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Kasun Ratnayake
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dhanushan Wijayaratna
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Koshala Olupothage
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Sithurandi Ubeysinghe
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | | | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada.
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
12
|
Lansdon LA, Fleming EA, Viso FD, Sullivan BR, Saunders CJ. Second patient with GNB2-related neurodevelopmental disease: Further evidence for a gene-disease association. Eur J Med Genet 2021; 64:104243. [PMID: 33971351 DOI: 10.1016/j.ejmg.2021.104243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 11/30/2022]
Abstract
G-proteins are ubiquitously expressed heterotrimeric proteins consisting of α, β and γ subunits and mediate G-protein coupled receptor signalling cascades. The β subunit is encoded by one of five highly similar paralogs (GNB1-GNB5, accordingly). The developmental importance of G-proteins is highlighted by the clinical relevance of variants in genes such as GNB1, which cause severe neurodevelopmental disease (NDD). Recently the candidacy of GNB2 was raised in association with NDD in an individual with a de novo variant affecting a codon conserved across paralogs and recurrently mutated in GNB1-related disease, c.229G>A p.(Gly77Arg), in association with global developmental delay, intellectual disability and dysmorphic features. Here, we report a patient with strikingly similar facial features and NDD in association with a de novo GNB2 variant affecting the same codon, c.229G>T p.(Gly77Trp). In addition, this individual has epilepsy and overgrowth. Our report is the second to implicate a de novo GNB2 variant with a severe yet variable NDD.
Collapse
Affiliation(s)
- Lisa A Lansdon
- Department of Pathology and Laboratory Medicine, Children's Mercy-Kansas City, 2401 Gillham Road, Kansas City, MO, USA; Genomic Medicine Center, Children's Mercy-Kansas City, 2401 Gillham Road, Kansas City, MO, USA
| | - Emily A Fleming
- Division of Clinical Genetics, Children's Mercy-Kansas City, 2401 Gillham Road, Kansas City, MO, USA
| | - Florencia Del Viso
- Department of Pathology and Laboratory Medicine, Children's Mercy-Kansas City, 2401 Gillham Road, Kansas City, MO, USA; Genomic Medicine Center, Children's Mercy-Kansas City, 2401 Gillham Road, Kansas City, MO, USA
| | - Bonnie R Sullivan
- Division of Clinical Genetics, Children's Mercy-Kansas City, 2401 Gillham Road, Kansas City, MO, USA; University of Missouri-Kansas City, School of Medicine, 2411 Holmes Street, Kansas City, MO, USA
| | - Carol J Saunders
- Department of Pathology and Laboratory Medicine, Children's Mercy-Kansas City, 2401 Gillham Road, Kansas City, MO, USA; Genomic Medicine Center, Children's Mercy-Kansas City, 2401 Gillham Road, Kansas City, MO, USA; University of Missouri-Kansas City, School of Medicine, 2411 Holmes Street, Kansas City, MO, USA.
| |
Collapse
|
13
|
Wallace MJ, El Refaey M, Mesirca P, Hund TJ, Mangoni ME, Mohler PJ. Genetic Complexity of Sinoatrial Node Dysfunction. Front Genet 2021; 12:654925. [PMID: 33868385 PMCID: PMC8047474 DOI: 10.3389/fgene.2021.654925] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The pacemaker cells of the cardiac sinoatrial node (SAN) are essential for normal cardiac automaticity. Dysfunction in cardiac pacemaking results in human sinoatrial node dysfunction (SND). SND more generally occurs in the elderly population and is associated with impaired pacemaker function causing abnormal heart rhythm. Individuals with SND have a variety of symptoms including sinus bradycardia, sinus arrest, SAN block, bradycardia/tachycardia syndrome, and syncope. Importantly, individuals with SND report chronotropic incompetence in response to stress and/or exercise. SND may be genetic or secondary to systemic or cardiovascular conditions. Current management of patients with SND is limited to the relief of arrhythmia symptoms and pacemaker implantation if indicated. Lack of effective therapeutic measures that target the underlying causes of SND renders management of these patients challenging due to its progressive nature and has highlighted a critical need to improve our understanding of its underlying mechanistic basis of SND. This review focuses on current information on the genetics underlying SND, followed by future implications of this knowledge in the management of individuals with SND.
Collapse
Affiliation(s)
- Michael J. Wallace
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Mona El Refaey
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Pietro Mesirca
- CNRS, INSERM, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, France
- Laboratory of Excellence ICST, Montpellier, France
| | - Thomas J. Hund
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - Matteo E. Mangoni
- CNRS, INSERM, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, France
- Laboratory of Excellence ICST, Montpellier, France
| | - Peter J. Mohler
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
14
|
Hiraide T, Yamoto K, Masunaga Y, Asahina M, Endoh Y, Ohkubo Y, Matsubayashi T, Tsurui S, Yamada H, Yanagi K, Nakashima M, Hirano K, Sugimura H, Fukuda T, Ogata T, Saitsu H. Genetic and phenotypic analysis of 101 patients with developmental delay or intellectual disability using whole-exome sequencing. Clin Genet 2021; 100:40-50. [PMID: 33644862 DOI: 10.1111/cge.13951] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 12/20/2022]
Abstract
Whole-exome sequencing (WES) enables identification of pathogenic variants, including copy number variants (CNVs). In this study, we performed WES in 101 Japanese patients with unexplained developmental delay (DD) or intellectual disability (ID) (63 males and 38 females), 98 of them with trio-WES. Pathogenic variants were identified in 54 cases (53.5%), including four cases with pathogenic CNVs. In one case, a pathogenic variant was identified by reanalysis of exome data; and in two cases, two molecular diagnoses were identified. Among 58 pathogenic variants, 49 variants occurred de novo in 48 patients, including two somatic variants. The accompanying autism spectrum disorder and external ear anomalies were associated with detection of pathogenic variants with odds ratios of 11.88 (95% confidence interval [CI] 2.52-56.00) and 3.46 (95% CI 1.23-9.73), respectively. These findings revealed the importance of reanalysis of WES data and detection of CNVs and somatic variants in increasing the diagnostic yield for unexplained DD/ID. In addition, genetic testing is recommended when patients suffer from the autism spectrum disorder or external ear anomalies, which potentially suggests the involvement of genetic factors associated with gene expression regulation.
Collapse
Affiliation(s)
- Takuya Hiraide
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kaori Yamoto
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yohei Masunaga
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Miki Asahina
- Department of Pediatrics, Hamamatsu City Welfare and Medical Center for Development, Hamamatsu, Japan
| | - Yusaku Endoh
- Department of Pediatrics, Hamamatsu City Welfare and Medical Center for Development, Hamamatsu, Japan
| | - Yumiko Ohkubo
- Department of Pediatrics, Shizuoka Saiseikai Hospital, Shizuoka, Japan
| | - Tomoko Matsubayashi
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Pediatric Neurology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Satoshi Tsurui
- Department of Pediatrics, Seirei-Numazu Hospital, Numazu, Japan
| | - Hidetaka Yamada
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kumiko Yanagi
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kouichi Hirano
- Department of Pediatrics, Hamamatsu City Welfare and Medical Center for Development, Hamamatsu, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tokiko Fukuda
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
15
|
Lu X, Arbab AAI, Zhang Z, Fan Y, Han Z, Gao Q, Sun Y, Yang Z. Comparative Transcriptomic Analysis of the Pituitary Gland between Cattle Breeds Differing in Growth: Yunling Cattle and Leiqiong Cattle. Animals (Basel) 2020; 10:E1271. [PMID: 32722439 PMCID: PMC7460210 DOI: 10.3390/ani10081271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
The hypothalamic-pituitary-thyroid (HPT) axis hormones regulate the growth and development of ruminants, and the pituitary gland plays a decisive role in this process. In order to identify pivotal genes in the pituitary gland that could affect the growth of cattle by regulating the secretion of hormones, we detected the content of six HPT hormones related to growth in the plasma of two cattle breeds (Yunling and Leiqiong cattle, both also known as the zebu cattle) with great differences in growth and compared the transcriptome data of their pituitary glands. Our study found that the contents of GH, IGF, TSH, thyroxine, triiodothyronine, and insulin were significantly different between the two breeds, which was the main cause of the difference in growth; 175 genes were identified as differentially expressed genes (DEGs). Functional association analyses revealed that DEGs were mainly involved in the process of transcription and signal transduction. Combining the enrichment analysis and protein interaction analysis, eight DEGs were predicted to control the growth of cattle by affecting the expression of growth-related hormones in the pituitary gland. In summary, our results suggested that SLC38A1, SLC38A3, DGKH, GNB4, GNAQ, ESR1, NPY, and GAL are candidates in the pituitary gland for regulating the growth of Yunling and Leiqiong cattle by regulating the secretion of growth-related hormones. This study may help researchers further understand the growth mechanisms and improve the artificial selection of zebu cattle.
Collapse
Affiliation(s)
- Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (A.A.I.A.); (Z.Z.); (Y.F.); (Z.H.); (Q.G.)
| | - Abdelaziz Adam Idriss Arbab
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (A.A.I.A.); (Z.Z.); (Y.F.); (Z.H.); (Q.G.)
| | - Zhipeng Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (A.A.I.A.); (Z.Z.); (Y.F.); (Z.H.); (Q.G.)
| | - Yongliang Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (A.A.I.A.); (Z.Z.); (Y.F.); (Z.H.); (Q.G.)
| | - Ziyin Han
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (A.A.I.A.); (Z.Z.); (Y.F.); (Z.H.); (Q.G.)
| | - Qisong Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (A.A.I.A.); (Z.Z.); (Y.F.); (Z.H.); (Q.G.)
| | - Yujia Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China;
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (A.A.I.A.); (Z.Z.); (Y.F.); (Z.H.); (Q.G.)
| |
Collapse
|
16
|
Malerba N, De Nittis P, Merla G. The Emerging Role of Gβ Subunits in Human Genetic Diseases. Cells 2019; 8:E1567. [PMID: 31817184 PMCID: PMC6952978 DOI: 10.3390/cells8121567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/23/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022] Open
Abstract
Environmental stimuli are perceived and transduced inside the cell through the activation of signaling pathways. One common type of cell signaling transduction network is initiated by G-proteins. G-proteins are activated by G-protein-coupled receptors (GPCRs) and transmit signals from hormones, neurotransmitters, and other signaling factors, thus controlling a number of biological processes that include synaptic transmission, visual photoreception, hormone and growth factors release, regulation of cell contraction and migration, as well as cell growth and differentiation. G-proteins mainly act as heterotrimeric complexes, composed of alpha, beta, and gamma subunits. In the last few years, whole exome sequencing and biochemical studies have shown causality of disease-causing variants in genes encoding G-proteins and human genetic diseases. This review focuses on the G-protein β subunits and their emerging role in the etiology of genetically inherited rare diseases in humans.
Collapse
Affiliation(s)
- Natascia Malerba
- Division of Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, 71013 San Giovanni Rotondo (FG), Italy;
| | - Pasquelena De Nittis
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland;
| | - Giuseppe Merla
- Division of Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, 71013 San Giovanni Rotondo (FG), Italy;
| |
Collapse
|