1
|
Elewa M, Shehda M, Hanna PA, Said MM, Ramadan S, Barakat A, Abdel Aziz YM. Development of a selective COX-2 inhibitor: from synthesis to enhanced efficacy via nano-formulation. RSC Adv 2024; 14:32721-32732. [PMID: 39429925 PMCID: PMC11484160 DOI: 10.1039/d4ra06295g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Non-steroidal anti-inflammatory drugs NSAIDs are widely used for managing various conditions including pain, inflammation, arthritis and many musculoskeletal disorders. NSAIDs exert their biological effects by inhibiting the cyclooxygenase (COX) enzyme, which has two main isoforms COX-1 and COX-2. The COX-2 isoform is believed to be directly related to inflammation. Based on structure-activity relationship (SAR) studies of known selective COX-2 inhibitors, our aim is to design and synthesize a novel series of 2-benzamido-N-(4-substituted phenyl)thiophene-3-carboxamide derivatives. These derivatives are intended to be selective COX-2 inhibitors through structural modification of diclofenac and celecoxib. The compound 2-benzamido-5-ethyl-N-(4-fluorophenyl)thiophene-3-carboxamide VIIa demonstrated selective COX-2 inhibition with an IC50 value of 0.29 μM and a selectivity index 67.24. This is compared to celecoxib, which has an IC50 value of 0.42 μM and a selectivity index 33.8. Molecular docking studies for compound VIIa displayed high binding affinity toward COX-2. Additionally, the suppression of protein denaturation with respect to albumin was performed as an indicative measure of the potential anti-inflammatory efficacy of the novel compounds. Compound VIIa showed potent anti-inflammatory activity with 93% inhibition and an IC50 value 0.54 μM. In comparison, celecoxib achieved 94% inhibition with an IC50 value 0.89 μM. Although molecule VIIa demonstrated significant in vitro anti-inflammatory activity, adhered to Lipinski's "five rules" (RO5) and exhibited promising drug-like properties, it showed indications of poor in vivo activity. This limitation is likely due to poor aqueous solubility, which impacts its bioavailability. This issue could be addressed by incorporating the drug in niosomal nanocarrier. Niosomes were prepared using the thin-film hydration technique. These niosomes exhibited a particle size of less than 200 nm, high entrapment efficiency, and an appropriate drug loading percentage. Transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) studies revealed that the niosomes were spherical and demonstrated compatibility of all of its components. The drug release study indicated that the pure drug had limited practicality for in vivo use. However, incorporating the drug into niosomes significantly improved its release profile, making it more suitable for practical use.
Collapse
Affiliation(s)
- Marwa Elewa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia Egypt
| | - Mohamed Shehda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt New Damietta Egypt
| | - Pierre A Hanna
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Mohamed M Said
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia Egypt
| | - Sherif Ramadan
- Chemistry Department, Michigan State University East Lansing MI 48824 USA
- Department of Chemistry, Benha University Benha Egypt
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Yasmine M Abdel Aziz
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia Egypt
| |
Collapse
|
2
|
Kietrungruang K, Sookkree S, Sangboonruang S, Semakul N, Poomanee W, Kitidee K, Tragoolpua Y, Tragoolpua K. Ethanolic Extract Propolis-Loaded Niosomes Diminish Phospholipase B1, Biofilm Formation, and Intracellular Replication of Cryptococcus neoformans in Macrophages. Molecules 2023; 28:6224. [PMID: 37687052 PMCID: PMC10488685 DOI: 10.3390/molecules28176224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Secretory phospholipase B1 (PLB1) and biofilms act as microbial virulence factors and play an important role in pulmonary cryptococcosis. This study aims to formulate the ethanolic extract of propolis-loaded niosomes (Nio-EEP) and evaluate the biological activities occurring during PLB1 production and biofilm formation of Cryptococcus neoformans. Some physicochemical characterizations of niosomes include a mean diameter of 270 nm in a spherical shape, a zeta-potential of -10.54 ± 1.37 mV, and 88.13 ± 0.01% entrapment efficiency. Nio-EEP can release EEP in a sustained manner and retains consistent physicochemical properties for a month. Nio-EEP has the capability to permeate the cellular membranes of C. neoformans, causing a significant decrease in the mRNA expression level of PLB1. Interestingly, biofilm formation, biofilm thickness, and the expression level of biofilm-related genes (UGD1 and UXS1) were also significantly reduced. Pre-treating with Nio-EEP prior to yeast infection reduced the intracellular replication of C. neoformans in alveolar macrophages by 47%. In conclusion, Nio-EEP mediates as an anti-virulence agent to inhibit PLB1 and biofilm production for preventing fungal colonization on lung epithelial cells and also decreases the intracellular replication of phagocytosed cryptococci. This nano-based EEP delivery might be a potential therapeutic strategy in the prophylaxis and treatment of pulmonary cryptococcosis in the future.
Collapse
Affiliation(s)
- Kritapat Kietrungruang
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (S.S.); (S.S.)
| | - Sanonthinee Sookkree
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (S.S.); (S.S.)
| | - Sirikwan Sangboonruang
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (S.S.); (S.S.)
| | - Natthawat Semakul
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Worrapan Poomanee
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kuntida Kitidee
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand;
| | - Yingmanee Tragoolpua
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Khajornsak Tragoolpua
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (S.S.); (S.S.)
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
3
|
Bach H, Lorenzo-Leal AC. Use of niosomes for the treatment of intracellular pathogens infecting the lungs. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1891. [PMID: 37032602 DOI: 10.1002/wnan.1891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/24/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
The delivery of drugs in an encapsulated environment is designed to precisely target specific tissues, avoiding a systemic circulation of the drug. Lungs are organs exposed to the environment with multiple defense barriers. However, many pathogens can still colonize and infect the airways bypassing the hostile environment of the lungs. In more complicated situations, some pathogens have developed strategies to multiply and survive within macrophages, one of the first immune cell responses to clearing infections in mammals. Niosomes are artificial vesicles that can be loaded with drugs, offering an alternative strategy to treat intracellular pathogens as nanocarriers. Members of the mycobacteria genus are intracellular pathogens that have evolved to escape the immunological response, specifically in macrophages, the white cells responsible for the clearance of pathogens. This review analyzed the state-of-the-art niosome synthesis aimed at tackling the problem of intracellular pathogen therapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Horacio Bach
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ana C Lorenzo-Leal
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Virmani T, Kumar G, Virmani R, Sharma A, Pathak K. Nanocarrier-based approaches to combat chronic obstructive pulmonary disease. Nanomedicine (Lond) 2022; 17:1833-1854. [PMID: 35856251 DOI: 10.2217/nnm-2021-0403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abnormalities in airway mucus lead to chronic disorders in the pulmonary system such as asthma, fibrosis and chronic obstructive pulmonary disease (COPD). Among these, COPD is more prominent worldwide. Various conventional approaches are available in the market for the treatment of COPD, but the delivery of drugs to the target site remains a challenge with conventional approaches. Nanocarrier-based approaches are considered the best due to their sustained release properties to the target site, smaller size, high surface-to-volume ratio, patient compliance, overcoming airway defenses and improved pharmacotherapy. This article provides updated information about the treatment of COPD along with nanocarrier-based approaches as well as the potential of gene therapy and stem cell therapy to combat the COPD.
Collapse
Affiliation(s)
- Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Haryana, 121102, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Haryana, 121102, India
| | - Reshu Virmani
- School of Pharmaceutical Sciences, MVN University, Haryana, 121102, India
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Haryana, 121102, India
| | - Kamla Pathak
- Uttar Pradesh University of Medical Sciences, Etawah, Uttar Pradesh, 206001, India
| |
Collapse
|
5
|
Tehrani Fateh S, Moradi L, Kohan E, Hamblin MR, Shiralizadeh Dezfuli A. Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:808-862. [PMID: 34476167 PMCID: PMC8372309 DOI: 10.3762/bjnano.12.64] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/15/2021] [Indexed: 05/03/2023]
Abstract
The field of theranostics has been rapidly growing in recent years and nanotechnology has played a major role in this growth. Nanomaterials can be constructed to respond to a variety of different stimuli which can be internal (enzyme activity, redox potential, pH changes, temperature changes) or external (light, heat, magnetic fields, ultrasound). Theranostic nanomaterials can respond by producing an imaging signal and/or a therapeutic effect, which frequently involves cell death. Since ultrasound (US) is already well established as a clinical imaging modality, it is attractive to combine it with rationally designed nanoparticles for theranostics. The mechanisms of US interactions include cavitation microbubbles (MBs), acoustic droplet vaporization, acoustic radiation force, localized thermal effects, reactive oxygen species generation, sonoluminescence, and sonoporation. These effects can result in the release of encapsulated drugs or genes at the site of interest as well as cell death and considerable image enhancement. The present review discusses US-responsive theranostic nanomaterials under the following categories: MBs, micelles, liposomes (conventional and echogenic), niosomes, nanoemulsions, polymeric nanoparticles, chitosan nanocapsules, dendrimers, hydrogels, nanogels, gold nanoparticles, titania nanostructures, carbon nanostructures, mesoporous silica nanoparticles, fuel-free nano/micromotors.
Collapse
Affiliation(s)
- Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lida Moradi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Kohan
- Department of Science, University of Kurdistan, Kurdistan, Sanandaj, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | | |
Collapse
|
6
|
Zhou Y, Zhao Y, Niu B, Luo Q, Zhang Y, Quan G, Pan X, Wu C. Cyclodextrin-based metal-organic frameworks for pulmonary delivery of curcumin with improved solubility and fine aerodynamic performance. Int J Pharm 2020; 588:119777. [PMID: 32805383 DOI: 10.1016/j.ijpharm.2020.119777] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 01/27/2023]
Abstract
Pulmonary drug delivery has attracted considerable attention in recent years. However, it is still a major challenge to deliver poorly water-soluble drugs to lungs with good solubility and fine aerodynamic performance. In this study, curcumin was loaded into cyclodextrin-based metal-organic frameworks (CD-MOFs) for pulmonary delivery. Compared with micronized curcumin prepared by jet milling, curcumin-loaded CD-MOFs (Cur-CD-MOFs) exhibited excellent aerodynamic performance, which was attributed to the unique porous structure and lower density of CD-MOFs. The dissolution test showed that the drug release rate of Cur-CD-MOFs was much faster than that of micronized curcumin. The all-atom molecular dynamic simulation showed that curcumin molecules were loaded into the hydrophobic cavities of CD-MOFs or entered into the large hydrophilic cavities to form nanoclusters. The elevated wettability of Cur-CD-MOFs and the unique spatial distribution feature of curcumin in porous interior of CD-MOFs might be favorable for the improved dissolution rate. The DPPH radical scavenging test showed that Cur-CD-MOFs had prominent antioxidant activities. Therefore, CD-MOFs were expected to be promising carriers for pulmonary delivery of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Yixian Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yiting Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Boyi Niu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qiaorong Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yue Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
7
|
Bhardwaj P, Tripathi P, Gupta R, Pandey S. Niosomes: A review on niosomal research in the last decade. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101581] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Interactions between microbiome and lungs: Paving new paths for microbiome based bio-engineered drug delivery systems in chronic respiratory diseases. Chem Biol Interact 2019; 310:108732. [DOI: 10.1016/j.cbi.2019.108732] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/18/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022]
|
9
|
Gharbavi M, Amani J, Kheiri-Manjili H, Danafar H, Sharafi A. Niosome: A Promising Nanocarrier for Natural Drug Delivery through Blood-Brain Barrier. Adv Pharmacol Sci 2018; 2018:6847971. [PMID: 30651728 PMCID: PMC6311792 DOI: 10.1155/2018/6847971] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/15/2018] [Indexed: 01/25/2023] Open
Abstract
Niosomes (the nonionic surfactant vesicles), considered as novel drug delivery systems, can improve the solubility and stability of natural pharmaceutical molecules. They are established to provide targeting and controlled release of natural pharmaceutical compounds. Many factors can influence on niosome construction such as the preparation method, type and amount of surfactant, drug entrapment, temperature of lipids hydration, and the packing factor. The present review discusses about the most important features of niosomes such as their diverse structures, the different preparation approaches, characterization techniques, factors that affect their stability, their use by various routes of administration, their therapeutic applications in comparison with natural drugs, and specially the brain targeting with niosomes-ligand conjugation. It also provides recent data about the various types of ligand agents which make available active targeting drug delivery to the central neuron system. This system has an optimistic upcoming in pharmaceutical uses, mostly with the improving availability of innovative schemes to overcome blood-brain barrier and targeting the niosomes to the brain.
Collapse
Affiliation(s)
- Mahmoud Gharbavi
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Hossein Danafar
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Sharafi
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
10
|
Wyszogrodzka G, Dorożyński P, Gil B, Roth WJ, Strzempek M, Marszałek B, Węglarz WP, Menaszek E, Strzempek W, Kulinowski P. Iron-Based Metal-Organic Frameworks as a Theranostic Carrier for Local Tuberculosis Therapy. Pharm Res 2018; 35:144. [PMID: 29777389 PMCID: PMC5960001 DOI: 10.1007/s11095-018-2425-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/03/2018] [Indexed: 11/13/2022]
Abstract
PURPOSE The purpose of the study was initial evaluation of applicability of metal organic framework (MOF) Fe-MIL-101-NH2 as a theranostic carrier of antituberculous drug in terms of its functionality, i.e. drug loading, drug dissolution, magnetic resonance imaging (MRI) contrast and cytotoxic safety. METHODS Fe-MIL-101-NH2 was characterized using X-ray powder diffraction, FTIR spectrometry and scanning electron microscopy. The particle size analysis was determined using laser diffraction. Magnetic resonance relaxometry and MRI were carried out on phantoms of the MOF system suspended in polymer solution. Drug dissolution studies were conducted using Franz cells. For MOF cytotoxicity, commercially available fibroblasts L929 were cultured in Eagle's Minimum Essential Medium supplemented with 10% fetal bovine serum. RESULTS MOF particles were loaded with 12% of isoniazid. The particle size (3.37-6.45 μm) depended on the micronization method used. The proposed drug delivery system can also serve as the MRI contrast agent. The drug dissolution showed extended release of isoniazid. MOF particles accumulated in the L929 fibroblast cytoplasmic area, suggesting MOF release the drug inside the cells. The cytotoxicity confirmed safety of MOF system. CONCLUSIONS The application of MOF for extended release inhalable system proposes the novel strategy for delivery of standard antimycobacterial agents combined with monitoring of their distribution within the lung tissue.
Collapse
Affiliation(s)
- Gabriela Wyszogrodzka
- Faculty of Pharmacy, Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-068, Kraków, Poland
| | | | - Barbara Gil
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387, Kraków, Poland
| | - Wieslaw J Roth
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387, Kraków, Poland
| | - Maciej Strzempek
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387, Kraków, Poland
| | - Bartosz Marszałek
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387, Kraków, Poland
| | - Władysław P Węglarz
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Kraków, Poland
| | - Elżbieta Menaszek
- Faculty of Pharmacy, Department of Cytobiology, Jagiellonian University Medical College, Medyczna 9, 30-068, Kraków, Poland
| | - Weronika Strzempek
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387, Kraków, Poland
| | - Piotr Kulinowski
- Faculty of Mathematics, Physics and Technical Science, Institute of Technology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Kraków, Poland
| |
Collapse
|
11
|
Kamalov MI, Đặng T, Petrova NV, Laikov AV, Luong D, Akhmadishina RA, Lukashkin AN, Abdullin TI. Self-assembled nanoformulation of methylprednisolone succinate with carboxylated block copolymer for local glucocorticoid therapy. Colloids Surf B Biointerfaces 2018; 164:78-88. [DOI: 10.1016/j.colsurfb.2018.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 02/07/2023]
|
12
|
Yeo PL, Lim CL, Chye SM, Kiong Ling AP, Koh RY. Niosomes: a review of their structure, properties, methods of preparation, and medical applications. ASIAN BIOMED 2018. [DOI: 10.1515/abm-2018-0002] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstract
Target-specific drug-delivery systems for the administration of pharmaceutical compounds enable the localization of drugs to diseased sites. Various types of drug-delivery systems utilize carriers, such as immunoglobulins, serum proteins, synthetic polymers, liposomes, and microspheres. The vesicular system of niosomes, with their bilayer structure assembled by nonionic surfactants, is able to enhance the bioavailability of a drug to a predetermined area for a period. The amphiphilic nature of niosomes promotes their efficiency in encapsulating lipophilic or hydrophilic drugs. Other additives, such as cholesterol, can be used to maintain the rigidity of the niosomes’ structure. This narrative review describes fundamental aspects of niosomes, including their structural components, methods of preparation, limitations, and current applications to various diseases.
Collapse
Affiliation(s)
- Pei Ling Yeo
- Division of Applied Biomedical Science and Biotechnology , International Medical University , No. 126, Jalan Jalil Perkasa 19 , Bukit Jalil , 57000 Kuala Lumpur , Malaysia
| | - Chooi Ling Lim
- Division of Applied Biomedical Science and Biotechnology , International Medical University , No. 126, Jalan Jalil Perkasa 19 , Bukit Jalil , 57000 Kuala Lumpur , Malaysia
| | - Soi Moi Chye
- Division of Applied Biomedical Science and Biotechnology , International Medical University , No. 126, Jalan Jalil Perkasa 19 , Bukit Jalil , 57000 Kuala Lumpur , Malaysia
| | - Anna Pick Kiong Ling
- Division of Applied Biomedical Science and Biotechnology , International Medical University , No. 126, Jalan Jalil Perkasa 19 , Bukit Jalil , 57000 Kuala Lumpur , Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Science and Biotechnology , International Medical University , No. 126, Jalan Jalil Perkasa 19 , Bukit Jalil , 57000 Kuala Lumpur , Malaysia
| |
Collapse
|
13
|
Khan I, Yousaf S, Subramanian S, Alhnan MA, Ahmed W, Elhissi A. Proliposome Powders for the Generation of Liposomes: the Influence of Carbohydrate Carrier and Separation Conditions on Crystallinity and Entrapment of a Model Antiasthma Steroid. AAPS PharmSciTech 2018; 19:262-274. [PMID: 28698930 DOI: 10.1208/s12249-017-0793-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 04/24/2017] [Indexed: 11/30/2022] Open
Abstract
Formulation effects on the entrapment of beclometasone dipropionate (BDP) in liposomes generated by hydration of proliposomes were studied, using the high-density dispersion medium deuterium oxide in comparison to deionized water (DW). Proliposomes incorporating BDP (2 mol% of the lipid phase consisting of soya phosphatidylcholine (SPC) and cholesterol; 1:1) were manufactured, using lactose monohydrate (LMH), sorbitol or D-mannitol as carbohydrate carriers (1:5 w/w lipid to carrier). Following hydration of proliposomes, separation of BDP-entrapped liposomes from the unentrapped (free) BDP at an optimized centrifugation duration of 90 min and a centrifugation force of 15,500g were identified. The dispersion medium was found to have a major influence on separation of BDP-entrapped liposomes from the unentrapped drug. Entrapment efficiency values were higher than 95% as estimated when DW was used. By contrast, the entrapment efficiency was 19.69 ± 5.88, 28.78 ± 4.69 and 34.84 ± 3.62% upon using D2O as a dispersion medium (for LMH-, sorbitol- and D-mannitol-based proliposomes, respectively). The similarity in size of liposomes and BDP crystals was found to be responsible for co-sedimentation of liposomes and free BDP crystals upon centrifugation in DW, giving rise to the falsely high entrapment values estimated. This was remedied by the use of D2O as confirmed by light microscopy, nuclear magnetic resonance (1HNMR), X-ray diffraction (XRD) and entrapment studies. This study showed that carrier type has a significant influence on the entrapment of BDP in liposomes generated from proliposomes, and using D2O is essential for accurate determination of steroid entrapment in the vesicles.
Collapse
|
14
|
Triolo D, Craparo E, Porsio B, Fiorica C, Giammona G, Cavallaro G. Polymeric drug delivery micelle-like nanocarriers for pulmonary administration of beclomethasone dipropionate. Colloids Surf B Biointerfaces 2017; 151:206-214. [DOI: 10.1016/j.colsurfb.2016.11.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/10/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022]
|
15
|
|
16
|
Marianecci C, Petralito S, Rinaldi F, Hanieh PN, Carafa M. Some recent advances on liposomal and niosomal vesicular carriers. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2015.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Maestrelli F, Bragagni M, Mura P. Advanced formulations for improving therapies with anti-inflammatory or anaesthetic drugs: A review. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2015.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Ali ME, McConville JT, Lamprecht A. Pulmonary delivery of anti-inflammatory agents. Expert Opin Drug Deliv 2014; 12:929-45. [DOI: 10.1517/17425247.2015.993968] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Bondì ML, Ferraro M, Di Vincenzo S, Gerbino S, Cavallaro G, Giammona G, Botto C, Gjomarkaj M, Pace E. Effects in cigarette smoke stimulated bronchial epithelial cells of a corticosteroid entrapped into nanostructured lipid carriers. J Nanobiotechnology 2014; 12:46. [PMID: 25432702 PMCID: PMC4275945 DOI: 10.1186/s12951-014-0046-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nanomedicine studies have showed a great potential for drug delivery into the lung. In this manuscript nanostructured lipid carriers (NLC) containing Fluticasone propionate (FP) were prepared and their biocompatibility and effects in a human bronchial epithelial cell line (16-HBE) stimulated with cigarette smoke extracts (CSE) were tested. RESULTS Biocompatibility studies showed that the NLC did not induce cell necrosis or apoptosis. Moreover, it was confirmed that CSE increased intracellular ROS production and TLR4 expression in bronchial epithelial cells and that FP-loaded NLC were more effective than free drug in modulating these processes. Finally, the nanoparticles increased GSH levels improving cell protection against oxidative stress. CONCLUSIONS The present study shows that NLC may be considered a promising strategy to improve corticosteroid mediated effects in cellular models associated to corticosteroid resistance. The NLC containing FP can be considered good systems for dosage forms useful for increasing the effectiveness of fluticasone decreasing its side effects.
Collapse
Affiliation(s)
- Maria Luisa Bondì
- Istituto per lo Studio dei Materiali Nanostrutturati- U.O.S. di Palermo-Consiglio Nazionale delle Ricerche-via Ugo La Malfa, 153 90146, Palermo, Italy.
| | - Maria Ferraro
- Istituto di Biomedicina e Immunologia Molecolare-Consiglio Nazionale delle Ricerche - via Ugo La Malfa, 153 90146, Palermo, Italy.
| | - Serena Di Vincenzo
- Istituto di Biomedicina e Immunologia Molecolare-Consiglio Nazionale delle Ricerche - via Ugo La Malfa, 153 90146, Palermo, Italy.
| | - Stefania Gerbino
- Istituto di Biomedicina e Immunologia Molecolare-Consiglio Nazionale delle Ricerche - via Ugo La Malfa, 153 90146, Palermo, Italy.
| | - Gennara Cavallaro
- Laboratory of Biocompatible Polymers-Dipartimento di Scienze e Tecnologie, Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo -via Archirafi, 32-90123, Palermo, Italy.
| | - Gaetano Giammona
- Laboratory of Biocompatible Polymers-Dipartimento di Scienze e Tecnologie, Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo -via Archirafi, 32-90123, Palermo, Italy.
| | - Chiara Botto
- Laboratory of Biocompatible Polymers-Dipartimento di Scienze e Tecnologie, Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo -via Archirafi, 32-90123, Palermo, Italy.
| | - Mark Gjomarkaj
- Istituto di Biomedicina e Immunologia Molecolare-Consiglio Nazionale delle Ricerche - via Ugo La Malfa, 153 90146, Palermo, Italy.
| | - Elisabetta Pace
- Istituto di Biomedicina e Immunologia Molecolare-Consiglio Nazionale delle Ricerche - via Ugo La Malfa, 153 90146, Palermo, Italy.
| |
Collapse
|
20
|
Menon JU, Ravikumar P, Pise A, Gyawali D, Hsia CCW, Nguyen KT. Polymeric nanoparticles for pulmonary protein and DNA delivery. Acta Biomater 2014; 10:2643-52. [PMID: 24512977 DOI: 10.1016/j.actbio.2014.01.033] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/16/2014] [Accepted: 01/30/2014] [Indexed: 12/17/2022]
Abstract
Polymeric nanoparticles (NPs) are promising carriers of biological agents to the lung due to advantages including biocompatibility, ease of surface modification, localized action and reduced systemic toxicity. However, there have been no studies extensively characterizing and comparing the behavior of polymeric NPs for pulmonary protein/DNA delivery both in vitro and in vitro. We screened six polymeric NPs: gelatin, chitosan, alginate, poly(lactic-co-glycolic) acid (PLGA), PLGA-chitosan and PLGA-poly(ethylene glycol) (PEG), for inhalational protein/DNA delivery. All NPs except PLGA-PEG and alginate were <300nm in size with a bi-phasic core compound release profile. Gelatin, PLGA NPs and PLGA-PEG NPs remained stable in deionized water, serum, saline and simulated lung fluid (Gamble's solution) over 5days. PLGA-based NPs and natural polymer NPs exhibited the highest cytocompatibility and dose-dependent in vitro uptake, respectively, by human alveolar type-1 epithelial cells. Based on these profiles, gelatin and PLGA NPs were used to encapsulate plasmid DNA encoding yellow fluorescent protein (YFP) or rhodamine-conjugated erythropoietin (EPO) for inhalational delivery to rats. Following a single inhalation, widespread pulmonary EPO distribution persisted for up to 10days while increasing YFP expression was observed for at least 7days for both NPs. The overall results support both PLGA and gelatin NPs as promising carriers for pulmonary protein/DNA delivery.
Collapse
Affiliation(s)
- Jyothi U Menon
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, USA; Graduate Biomedical Engineering Program, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Priya Ravikumar
- Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Amruta Pise
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, USA; Graduate Biomedical Engineering Program, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Dipendra Gyawali
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, USA; Graduate Biomedical Engineering Program, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Connie C W Hsia
- Graduate Biomedical Engineering Program, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA; Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.
| | - Kytai T Nguyen
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, USA; Graduate Biomedical Engineering Program, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.
| |
Collapse
|
21
|
Cipolla D, Wu H, Gonda I, Eastman S, Redelmeier T, Chan HK. Modifying the release properties of liposomes toward personalized medicine. J Pharm Sci 2014; 103:1851-62. [PMID: 24715635 DOI: 10.1002/jps.23969] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/17/2014] [Accepted: 03/17/2014] [Indexed: 12/25/2022]
Abstract
Surfactant-liposome interactions have historically been investigated as a simplified model of solubilization and breakdown of biological membranes by surfactants. In contrast, our goal was to utilize surfactants to modify the encapsulation and release properties of liposomes. The ability to manufacture one liposomal formulation, which could be modified by the addition of a surfactant to support a wide range of release profiles, would provide greater flexibility than manufacturing multiple batches of liposomes, each differing in composition and with its own specific release profile. A liposomal ciprofloxacin formulation was modified by the addition of various surfactants. These formulations were characterized in terms of liposome structure by cryo-TEM imaging, vesicle size by dynamic light scattering, drug encapsulation by centrifugation-filtration, and in vitro release (IVR) performance. The addition of polysorbate 20 or polysorbate 80 to liposomal ciprofloxacin, in a hypotonic environment, resulted in a concentration-dependent loss of encapsulated drug, and above 0.4% polysorbate 20, or 0.2% polysorbate 80, a modified IVR profile as well. This study demonstrates that the encapsulation and release properties of a liposomal formulation can be modified postmanufacture by the addition of judiciously chosen surfactants in combination with osmotic swelling of the liposomes and may support a personalized approach to treating patients.
Collapse
Affiliation(s)
- David Cipolla
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia; Aradigm Corporation, Hayward, California, 94545
| | | | | | | | | | | |
Collapse
|
22
|
Niosomes from 80s to present: the state of the art. Adv Colloid Interface Sci 2014; 205:187-206. [PMID: 24369107 DOI: 10.1016/j.cis.2013.11.018] [Citation(s) in RCA: 309] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/26/2013] [Indexed: 01/14/2023]
Abstract
Efficient and safe drug delivery has always been a challenge in medicine. The use of nanotechnology, such as the development of nanocarriers for drug delivery, has received great attention owing to the potential that nanocarriers can theoretically act as "magic bullets" and selectively target affected organs and cells while sparing normal tissues. During the last decades the formulation of surfactant vesicles, as a tool to improve drug delivery, brought an ever increasing interest among the scientists working in the area of drug delivery systems. Niosomes are self assembled vesicular nanocarriers obtained by hydration of synthetic surfactants and appropriate amounts of cholesterol or other amphiphilic molecules. Just like liposomes, niosomes can be unilamellar or multilamellar, are suitable as carriers of both hydrophilic and lipophilic drugs and are able to deliver drugs to the target site. Furthermore, niosomal vesicles, that are usually non-toxic, require less production costs and are stable over a longer period of time in different conditions, so overcoming some drawbacks of liposomes. The niosome properties are specifically dictated by size, shape, and surface chemistry which are able to modify the drug's intrinsic pharmacokinetics and eventual drug targeting to the areas of pathology. This up-to-date review deals with composition, preparation, characterization/evaluation, advantages, disadvantages and application of niosomes.
Collapse
|
23
|
Marianecci C, Rinaldi F, Di Marzio L, Mastriota M, Pieretti S, Celia C, Paolino D, Iannone M, Fresta M, Carafa M. Ammonium glycyrrhizinate-loaded niosomes as a potential nanotherapeutic system for anti-inflammatory activity in murine models. Int J Nanomedicine 2014; 9:635-51. [PMID: 24493924 PMCID: PMC3908944 DOI: 10.2147/ijn.s55066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Liquorice extracts demonstrate therapeutic efficacy in treating dermatitis, eczema, and psoriasis when compared with corticosteroids. In this work, nonionic surfactant vesicles (niosomes, NSVs) containing polysorbate 20 (Tween 20), cholesterol, and cholesteryl hemisuccinate at different molar concentrations were used to prepare monoammonium glycyrrhizinate (AG)-loaded NSVs. The anti-inflammatory properties of AG-loaded NSVs were investigated in murine models. METHODS The physicochemical properties of the NSVs were characterized using dynamic light scattering. The fluidity of the lipid bilayer was evaluated by measuring the fluorescence intensity of diphenylhexatriene. The drug entrapment efficiency of AG was assessed using high-performance liquid chromatography. The physicochemical stability of the NSVs was evaluated as a function of time using dynamic light scattering combined with Turbiscan Lab Expert analysis. Serum stability was determined by incubating the NSVs with 10% v/v fetal bovine serum. The cytotoxic effects of the NSVs were investigated in human dermal fibroblasts using the Trypan blue dye exclusion assay (for cell mortality) and an MTT assay (for cell viability). Release profiles for the AG-loaded NSVs were studied in vitro using cellulose membranes. NSVs showing the most desirable physicochemical properties were selected to test for in vivo anti-inflammatory activity in murine models. The anti-inflammatory activity of the NSVs was investigated by measuring edema and nociception in mice stimulated with chemical agents. RESULTS NSVs showed favorable physicochemical properties for in vitro and in vivo administration. In addition, they demonstrated long-term stability based on Turbiscan Lab Expert analysis. The membrane fluidity of the NSVs was not affected by self-assembling of the surfactants into colloidal structures. Fluorescence anisotropy was found to be independent of the molar ratios of cholesteryl hemisuccinate and/or cholesterol during preparation of the NSVs. The anti-inflammatory AG drug showed no effect on the stability of the NSVs. In vivo experiments demonstrated that AG-loaded NSVs decreased edema and nociceptive responses when compared with AG alone and empty NSVs. In vitro and in vivo results demonstrated that pH sensitive and neutral NSVs show no statistical significant difference. CONCLUSION NSVs were nontoxic and showed features favorable for potential administration in vivo. In addition, neutral NSVs showed signs of increased anti-inflammatory and antinociceptive responses when compared with AG.
Collapse
Affiliation(s)
- Carlotta Marianecci
- Department of Drug Chemistry and Technologies, University Sapienza of Rome, Rome, Italy
| | - Federica Rinaldi
- Department of Drug Chemistry and Technologies, University Sapienza of Rome, Rome, Italy
| | - Luisa Di Marzio
- Department of Pharmacy, University G d’Annunzio of Chieti of Pescara, Chieti, Italy
| | - Marica Mastriota
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Pieretti
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Christian Celia
- Department of Pharmacy, University G d’Annunzio of Chieti of Pescara, Chieti, Italy
- Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX, USA
| | - Donatella Paolino
- Department of Health Sciences, University Magna Graecia of Catanzaro, University Campus S Venuta, Building of BioSciences, Germaneto, Italy
| | - Michelangelo Iannone
- ARPA Calabria, Environmental Epidemiology Center, Italy
- CNR, Neuroscience Institute, Pharmacology Section, Complesso “Nini Barbieri”, Roccelletta di Borgia, Italy
| | - Massimo Fresta
- Department of Health Sciences, University Magna Graecia of Catanzaro, University Campus S Venuta, Building of BioSciences, Germaneto, Italy
| | - Maria Carafa
- Department of Drug Chemistry and Technologies, University Sapienza of Rome, Rome, Italy
| |
Collapse
|
24
|
Cipolla D, Wu H, Eastman S, Redelmeier T, Gonda I, Chan H. Development and Characterization of an In Vitro Release Assay for Liposomal Ciprofloxacin for Inhalation. J Pharm Sci 2014. [DOI: 10.1002/jps.23795] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Marianecci C, Rinaldi F, Di Marzio L, Pozzi D, Caracciolo G, Manno D, Dini L, Paolino D, Celia C, Carafa M. Interaction of pH-sensitive non-phospholipid liposomes with cellular mimetic membranes. Biomed Microdevices 2013; 15:299-309. [PMID: 23239124 DOI: 10.1007/s10544-012-9731-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Surfactant nanocarriers have received considerable attention in the last several years as interesting alternative to classic liposomes. Different pH-sensitive vesicular colloidal carriers based on Tween 20 derivatives, obtained after functionalization of the head groups of the surfactant with natural, or simply modified, amino acids, were proposed as drug nanocarriers. Dynamic light scattering, Small Angle X-ray Scattering, Trasmission Electron Microscopy and fluorescence studies were used for the physico-chemical characterization of vesicles and mean size, size distribution, zeta potential, vesicle morphology and bilayer properties were evaluated. The pH-sensitivity and the stability of formulations, in absence and in presence of foetal bovine serum, were also evaluated. Moreover, the contact between surfactant vesicles and liposomes designed to model the cellular membrane was investigated by fluorescence studies to preliminary explore the potential interaction between vesicle and cell membranes. Experimental findings showed that physico-chemical and technological features of pH-sensitive vesicles were influenced by the composition of the carriers. Furthermore, proposed carriers are able to interact with mimetic cell membrane and it is reasonable to attribute the observed differences in interaction to the architectural/structural properties of Tween 20 derivatives. The findings reported in this investigation showed that a deep and extensive physico-chemical characterization of the carrier is a fundamental step, according to the evidence that the knowledge of nanocarrier properties is necessary to translate its potentiality to in vitro/in vivo applications.
Collapse
Affiliation(s)
- Carlotta Marianecci
- Department of Drug Chemistry and Technologies, University of Rome "Sapienza", Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Elhissi A, Hidayat K, Phoenix DA, Mwesigwa E, Crean S, Ahmed W, Faheem A, Taylor KM. Air-jet and vibrating-mesh nebulization of niosomes generated using a particulate-based proniosome technology. Int J Pharm 2013; 444:193-9. [DOI: 10.1016/j.ijpharm.2012.12.040] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 12/25/2012] [Accepted: 12/29/2012] [Indexed: 10/27/2022]
|
27
|
Jin Y, Wen J, Garg S, Liu D, Zhou Y, Teng L, Zhang W. Development of a novel niosomal system for oral delivery of Ginkgo biloba extract. Int J Nanomedicine 2013; 8:421-30. [PMID: 23378764 PMCID: PMC3559077 DOI: 10.2147/ijn.s37984] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The aim of this study was to develop an optimal niosomal system to deliver Ginkgo biloba extract (GbE) with improved oral bioavailability and to replace the conventional GbE tablets. Methods In this study, the film dispersion-homogenization method was used to prepare GbE niosomes. The resulting GbE niosome suspension was freeze-dried or spray-dried to improve the stability of the niosomes. GbE-loaded niosomes were formulated and characterized in terms of their morphology, particle size, zeta potential, entrapment efficiency, and angle of repose, and differential scanning calorimetry analysis was performed. In vitro release and in vivo distribution studies were also carried out. Results The particle size of the optimal delivery system prepared with Tween 80, Span 80, and cholesterol was about 141 nm. There was a significant difference (P < 0.05) in drug entrapment efficiency between the spray-drying method (about 77.5%) and the freeze-drying method (about 50.1%). The stability study revealed no significant change in drug entrapment efficiency for the GbE niosomes at 4°C and 25°C after 3 months. The in vitro release study suggested that GbE niosomes can prolong the release of flavonoid glycosides in phosphate-buffered solution (pH 6.8) for up to 48 hours. The in vivo distribution study showed that the flavonoid glycoside content in the heart, lung, kidney, brain, and blood of rats treated with the GbE niosome carrier system was greater than in the rats treated with the oral GbE tablet (P < 0.01). No flavonoid glycosides were detected in the brain tissue of rats given the oral GbE tablets, but they were detected in the brain tissue of rats given the GbE niosomes. Conclusion Niosomes are a promising oral system for delivery of GbE to the brain.
Collapse
Affiliation(s)
- Ye Jin
- College of Life Science, Jilin University, Jilin, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
28
|
Mahale NB, Thakkar PD, Mali RG, Walunj DR, Chaudhari SR. Niosomes: novel sustained release nonionic stable vesicular systems--an overview. Adv Colloid Interface Sci 2012; 183-184:46-54. [PMID: 22947187 DOI: 10.1016/j.cis.2012.08.002] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 08/07/2012] [Accepted: 08/07/2012] [Indexed: 01/19/2023]
Abstract
Vesicular systems are novel means of delivering drug in controlled manner to enhance bioavailability and get therapeutic effect over a longer period of time. Niosomes are such hydrated vesicular systems containing nonionic surfactants along with cholesterol or other lipids delivering drug to targeted site which are non toxic, requiring less production cost, stable over a longer period of time in different conditions, so overcomes drawbacks of liposome. Present review describes history, all factors affecting niosome formulation, manufacturing conditions, characterization, stability, administration routes and also their comparison with liposome. This review also gives relevant information regarding various applications of niosomes in gene delivery, vaccine delivery, anticancer drug delivery, etc.
Collapse
Affiliation(s)
- N B Mahale
- Amrutvahini College of Pharmacy, Sangamner-422608, Dist. Ahmednagar, Maharshtra, India.
| | | | | | | | | |
Collapse
|
29
|
Anti-inflammatory activity of novel ammonium glycyrrhizinate/niosomes delivery system: Human and murine models. J Control Release 2012; 164:17-25. [DOI: 10.1016/j.jconrel.2012.09.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 09/05/2012] [Accepted: 09/18/2012] [Indexed: 01/07/2023]
|
30
|
Sahib MN, Darwis Y, Peh KK, Abdulameer SA, Fung Tan YT. Incorporation of Beclomethasone Dipropionate into Polyethylene Glycol-Diacyl Lipid Micelles as a Pulmonary Delivery System. Drug Dev Res 2012. [DOI: 10.1002/ddr.21000] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mohanad Naji Sahib
- School of Pharmaceutical Sciences; Universiti Sains Malaysia; Penang; Malaysia
| | - Yusrida Darwis
- School of Pharmaceutical Sciences; Universiti Sains Malaysia; Penang; Malaysia
| | - Kok Khiang Peh
- School of Pharmaceutical Sciences; Universiti Sains Malaysia; Penang; Malaysia
| | | | - Yvonne Tze Fung Tan
- School of Pharmaceutical Sciences; Universiti Sains Malaysia; Penang; Malaysia
| |
Collapse
|
31
|
Manca ML, Manconi M, Valenti D, Lai F, Loy G, Matricardi P, Fadda AM. Liposomes Coated with Chitosan–Xanthan Gum (Chitosomes) as Potential Carriers for Pulmonary Delivery of Rifampicin. J Pharm Sci 2012; 101:566-75. [DOI: 10.1002/jps.22775] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 08/05/2011] [Accepted: 09/08/2011] [Indexed: 12/20/2022]
|
32
|
Kumar GP, Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharm Sin B 2011. [DOI: 10.1016/j.apsb.2011.09.002] [Citation(s) in RCA: 340] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
33
|
Amani A, Amini MA, Ali HSM, York P. Alternatives to conventional suspensions for pulmonary drug delivery by nebulisers: a review. J Pharm Sci 2011; 100:4563-70. [PMID: 21671227 DOI: 10.1002/jps.22665] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 04/09/2011] [Accepted: 05/24/2011] [Indexed: 01/31/2023]
Abstract
This review discusses the reports of alternative dosage forms to suspension formulations of hydrophobic drugs for nebulisers. Suspensions for nebulisers, although widely used over recent years, have several limitations which have led to pharmaceutical researchers looking for alternative, better performing preparations. Particular attention has been directed towards the use of nanoparticles as carriers of hydrophobic active ingredients. Several nanoformulations have been prepared and compared in vitro and/or in vivo with the corresponding microsuspension formulation. It is also clear that future studies in this field should address the parallel important aspects of safety and economical aspects of nanoparticualte formulations.
Collapse
Affiliation(s)
- Amir Amani
- Department of Medical Nanotechnology, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran 1417614411, Iran.
| | | | | | | |
Collapse
|
34
|
Marianecci C, Marzio LD, Rinaldi F, Carafa M, Alhaique F. Pulmonary Delivery: Innovative Approaches and Perspectives. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/jbnb.2011.225068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Zaru M, Sinico C, De Logu A, Caddeo C, Lai F, Manca ML, Fadda AM. Rifampicin-loaded liposomes for the passive targeting to alveolar macrophages: in vitro and in vivo evaluation. J Liposome Res 2009; 19:68-76. [PMID: 19515009 DOI: 10.1080/08982100802610835] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Mycobacterium avium complex (MAC), the most frequent cause of opportunistic nontuberculous pulmonary infection, is made up of a group of intracellular pathogens that are able to survive and multiply inside lung alveolar macrophages. As nebulized liposomes are reported to be effective to target antibacterial agents to macrophages, in this work we have prepared and characterized re-dispersible freeze-dried rifampicin (RFP)-loaded vesicles by using soy lecithin (SL) and a commercial, enriched mixture of soy phosphatidylcholine (Phospholipon 90, P90) with or without cholesterol. The obtained results showed that RFP could be loaded stably in SL vesicles only when cholesterol was not present in the film preparation, whereas with P90 vesicles, the highest stability was obtained with formulations prepared with P90/cholesterol 7:1 or 4:1 molar ratios. RFP-liposome aerosols were generated using an efficient high-output continuous-flow nebulizer, driven by a compressor. After the experiments, nebulization efficiency (NE%) and nebulization efficiency of the encapsulated drug (NEED%) were evaluated. The results of our study indicated that nebulization properties and viscosity of formulations prepared with the low-transition-temperature phospholipids, SL and P90, are affected by vesicle composition. However, all formulations showed a good stability during nebulization and they were able to retain more than 65% of the incorporated drug. The effect of liposome encapsulation on lung levels of RFP following aerosol inhalation was determined in rats. The in vitro intracellular activity of RFP-loaded liposomes against MAC residing in macrophage-like J774 cells was also evaluated. Results indicated that liposomes are able to inhibit the growth of MAC in infected macrophages and to reach the lower airways in rats.
Collapse
Affiliation(s)
- Marco Zaru
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Cagliari, Cagliari, Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
The overall adhesion-spreading process of liposomes on a mercury electrode is controlled by a mixed diffusion and reaction kinetics mechanism. J Solid State Electrochem 2008. [DOI: 10.1007/s10008-008-0639-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Muzzalupo R, Nicoletta FP, Trombino S, Cassano R, Iemma F, Picci N. A new crown ether as vesicular carrier for 5-fluoruracil: synthesis, characterization and drug delivery evaluation. Colloids Surf B Biointerfaces 2007; 58:197-202. [PMID: 17434295 DOI: 10.1016/j.colsurfb.2007.03.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 03/09/2007] [Accepted: 03/09/2007] [Indexed: 10/23/2022]
Abstract
Niosomes have shown promise as cheap and chemically stable drug delivery systems. In this paper a novel crown ether amphiphile, 1,16-hexadecanoyl-bis-(2-aminomethyl)-18-crown-6 (Bola A-16), has been synthesized with the aim of developing a long time stable controlled release system. Niosomes have been prepared with different molar ratios of amphiphile and cholesterol and their morphological properties have been determined by quasi-elastic light scattering and transmission electron microscopy. The composition of niosomes affects the entrapment efficiency and the release rate of 5-fluorouracil, a well-known antineoplastic molecule. In addition, other two known azacrown ether amphiphiles (4,7,10,13-pentaoxa-16-aza-cyclooctadecane)-hexadecanedioc acid diamide (Bola D-16) and alpha,omega-(4,7,10,13-pentaoxa-16-aza-cyclooctadecane)-hexadecane (Bola C-16), have been synthesized and the obtained vesicles have been characterized for comparison. Furthermore, the release profile of 5-fluorouracil in vitro, from these niosomes, has been studied over a period of 6h in order to simulate a hematic adsorption.
Collapse
Affiliation(s)
- Rita Muzzalupo
- Dipartimento di Scienze Farmaceutiche, Università della Calabria, Via P. Bucci, Ed. Polifunzionale, Arcavacata di Rende, 87030 Rende, CS, Italy.
| | | | | | | | | | | |
Collapse
|