1
|
VIJAYARANI K, SUDHA S, ABIRAMI B, PRIYADHARSHINI CV, KUMANAN K. Immunogenicity of chitosan coupled heat killed and fusion protein vaccine of Mycobacterium avium subsp. paratuberculosis. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v91i6.115446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In search for better vaccine candidates for Johne's disease, chitosan nanoparticle coupled heat killed whole cell and fusion protein (Antigen 85A+85B) vaccines were developed using a local isolate of Mycobacterium avium subsp. paratuberculosis. Immunization studies in goats indicated that the heat killed whole cell vaccine and the fusion protein vaccine were found to be safe and resulted in Th1 and Th2 responses. Antibody response was significantly higher in the heat killed whole cell immunized animals than those received the fusion protein. Significant increase in heat killed whole cell MAP and fusion protein specific IFN-γ gene expression was detected in the immunized animals in contrast to the controls. The response was significantly higher with the heat killed whole cell MAP than the fusion protein. The adjuvant effect of chitosan nanoparticles was clearly evident in the second trial wherein the animals were observed for a longer period of 24 weeks. With increased IFN-γ and antibody levels, vaccinated animals responded well as compared to the control ones and the response was better in heat killed whole cell vaccine.
Collapse
|
2
|
Prime Vaccination with Chitosan-Coated Phipps BCG and Boosting with CFP-PLGA against Tuberculosis in a Goat Model. Animals (Basel) 2021; 11:ani11041046. [PMID: 33917739 PMCID: PMC8068168 DOI: 10.3390/ani11041046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Bovine tuberculosis is a disease that affects cattle and other animal species worldwide and represents a risk to public health. Even though there is a vaccine that has been used to control tuberculosis in humans for almost 100 years, up to now, it has not been used in animals. The reason is that vaccination interferes with the tuberculin test, the current test to diagnose tuberculosis in the field, and shows an inconsistent efficacy in animals. Recent studies report that prime vaccinating with BCG and boosting with proteins vaccinations perform better. In addition, there are reports that some polymers increase the immune response against various infectious diseases; therefore, testing a vaccine formula with polymers sounds like a wise thing to do. In this study, we showed that priming with BCG and boosting with a culture filtrate protein, alone or in combination with a polymer, the number of animals with lesions, the number of lesions per animal, and the size of the lesions in vaccinated animals, compared with those not vaccinated or those vaccinated with BCG alone, are significantly reduced. Our results mean that a vaccination used as a complement of actual tuberculosis control programs in animal populations can be useful to reduce tuberculosis dissemination. Abstract Attempts to improve the immune response and efficacy of vaccines against tuberculosis in cattle, goats, and other animal species have been the focus of research in this field during the last two decades. Improving the vaccine efficacy is essential prior to running long-lasting and expensive field trials. Studies have shown that vaccine protocols utilizing boosting with proteins improve the vaccine efficacy. The use of polymers such as chitosan and PolyLactic-co-Glycolic Acid (PLGA) improves the immune response against different diseases by improving the interaction of antigens with the cellular immune system and modulating the host immune response. This study shows that the prime BCG vaccination, boosted with a culture filtrate protein (CFP), alone or in combination with chitosan and PolyLactic-co-Glycolic Acid (PLGA), have the potential to reduce tuberculosis (TB) dissemination by reducing the number of animals with lesions, the number of lesions per animal, and the size of the lesions in vaccinated animals, compared with those not vaccinated or those vaccinated with BCG alone. The vaccinated groups showed significantly higher Interferon-γ levels in the blood compared to the control, nonvaccinated group after vaccination, after boosting, and after the challenge with the wild-type Mycobacterium bovis strain.
Collapse
|
3
|
Yousefi S, Abbassi-Daloii T, Tahmoorespur M, Sekhavati MH. Nanoparticle or conventional adjuvants: which one improves immune response against Brucellosis? IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:360-366. [PMID: 31168339 PMCID: PMC6535204 DOI: 10.22038/ijbms.2019.31748.7642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objective(s): Brucellosis is a common infectious disease among animals and humans. While subunit vaccines could be used as an efficient strategy against pathogens, they usually seem to be less immunogenic than live or killed vaccines. However, the use of a suitable adjuvant accompanied by subunit vaccines can be a good alternative to enhance the immune response. Materials and Methods: To find a proper adjuvant against Brucellosis, the immune response of induced mice by Aluminum Hydroxide (AH), Incomplete Freund (IFA), and Chitosan Nanoparticle (CS) adjuvants in individuals and in combination with CS were assessed. Results: Immunization with CS stimulated higher interferon gamma (IFN-γ) immunity, while there were no significant differences between rOMP25 (IFA), rOMP25 (AH), rOMP25 (AH-CS) and rOMP25 (IFA-CS) recombinant proteins. Tumor necrosis factor alpha (TNF-α) analysis revealed there were no significant differencesbetween immunized groups and the positive control group, except for the treatment formulated in single IFA. Furthermore, unlike IFN-γ, there was a reverse interleukin-4 (IL-4) immune response trend for treatments, as rOMP25 (CS) displayed the lowest response. rOMP25 (CS) induced higher titer of total antibody than the other ones. Although the recombinant proteins emulsified in different adjuvants induced similar titer of IgG1 antibody, the ones that were formulated in CS, IFA and IFA-CS showed a higher titer of IgG2a. The cell proliferation assay demonstrating the antigen-specific cell proliferative response could be promoted after immunization with CS. Conclusion: CS whether single or in combination with IF adjuvants has potential to improve Th1-Th2 responses.
Collapse
Affiliation(s)
- Soheil Yousefi
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | | | | |
Collapse
|
4
|
Khademi F, Taheri RA, Yousefi Avarvand A, Vaez H, Momtazi-Borojeni AA, Soleimanpour S. Are chitosan natural polymers suitable as adjuvant/delivery system for anti-tuberculosis vaccines? Microb Pathog 2018; 121:218-223. [DOI: 10.1016/j.micpath.2018.05.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/08/2018] [Accepted: 05/22/2018] [Indexed: 02/08/2023]
|
5
|
Mokhtar H, Biffar L, Somavarapu S, Frossard JP, McGowan S, Pedrera M, Strong R, Edwards JC, Garcia-Durán M, Rodriguez MJ, Stewart GR, Steinbach F, Graham SP. Evaluation of hydrophobic chitosan-based particulate formulations of porcine reproductive and respiratory syndrome virus vaccine candidate T cell antigens. Vet Microbiol 2017; 209:66-74. [PMID: 28228336 DOI: 10.1016/j.vetmic.2017.01.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/21/2016] [Accepted: 01/30/2017] [Indexed: 01/06/2023]
Abstract
PRRS control is hampered by the inadequacies of existing vaccines to combat the extreme diversity of circulating viruses. Since immune clearance of PRRSV infection may not be dependent on the development of neutralising antibodies and the identification of broadly-neutralising antibody epitopes have proven elusive, we hypothesised that conserved T cell antigens represent potential candidates for development of a novel PRRS vaccine. Previously we had identified the M and NSP5 proteins as well-conserved targets of polyfunctional CD8 and CD4 T cells. To assess their vaccine potential, peptides representing M and NSP5 were encapsulated in hydrophobically-modified chitosan particles adjuvanted by incorporation of a synthetic multi-TLR2/TLR7 agonist and coated with a model B cell PRRSV antigen. For comparison, empty particles and adjuvanted particles encapsulating inactivated PRRSV-1 were prepared. Vaccination with the particulate formulations induced antigen-specific antibody responses, which were most pronounced following booster immunisation. M and NSP5-specific CD4, but not CD8, T cell IFN-γ reactivity was measurable following the booster immunisation in a proportion of animals vaccinated with peptide-loaded particles. Upon challenge, CD4 and CD8 T cell reactivity was detected in all groups, with the greatest responses being detected in the peptide vaccinated group but with limited evidence of an enhanced control of viraemia. Analysis of the lungs during the resolution of infection showed significant M/NSP5 specific IFN-γ responses from CD8 rather than CD4 T cells. Vaccine primed CD8 T cell responses may therefore be required for protection and future work should focus on enhancing the cross-presentation of M/NSP5 to CD8 T cells.
Collapse
Affiliation(s)
- Helen Mokhtar
- Virology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, United Kingdom; Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Lucia Biffar
- Virology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, United Kingdom
| | - Satyanarayana Somavarapu
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Jean-Pierre Frossard
- Virology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, United Kingdom
| | - Sarah McGowan
- Virology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, United Kingdom
| | - Miriam Pedrera
- Virology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, United Kingdom
| | - Rebecca Strong
- Virology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, United Kingdom
| | - Jane C Edwards
- Virology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, United Kingdom
| | | | | | - Graham R Stewart
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Falko Steinbach
- Virology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, United Kingdom; Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Simon P Graham
- Virology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, United Kingdom; Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom.
| |
Collapse
|
6
|
Kumar V, Leekha A, Tyagi A, Kaul A, Mishra AK, Verma AK. Preparation and evaluation of biopolymeric nanoparticles as drug delivery system in effective treatment of rheumatoid arthritis. Pharm Res 2017; 34:654-667. [DOI: 10.1007/s11095-016-2094-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/28/2016] [Indexed: 12/16/2022]
|
7
|
Benito-Miguel M, Blanco MD, Gómez C. Assessment of sequential combination of 5-fluorouracil-loaded-chitosan-nanoparticles and ALA-photodynamic therapy on HeLa cell line. Photodiagnosis Photodyn Ther 2015; 12:466-75. [PMID: 25976508 DOI: 10.1016/j.pdpdt.2015.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/29/2015] [Accepted: 05/04/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Natural polymers are used as components of nanoparticles (NPs) for drug delivery, as they provide targeted, sustained release and biodegradability. The purpose of this study was to increase the efficacy of the photodynamic therapy (PDT) by the combination of 5-aminolevulinic acid (ALA) with 5-fluorouracil-loaded-chitosan-nanoparticles (5-Fu-CNPs). METHODS Nanoparticles based on chitosan (CNPs) were synthesized by the ionic crosslinking method via the TPP addition. 5-Fluorouracil (5-Fu), a first-line anticancer drug, was loaded into these 5Fu-CNPs, and they were assayed as controlled delivery formulation. HeLa cells were incubated in the presence of 5Fu-CNPs for 24h, next ALA was added to the culture medium and 4h later, to complete the PDT, light irradiation took place. Analysis of cell viability, reactive oxygen species (ROS) production, observation of the apoptosis by fluorescence microscopy followed by analysis of caspase-3 activity were carried out. RESULTS Spherical 5Fu-CNPs with a mean diameter of 324±43nm, were successfully synthesized and characterized by TEM and DLS. 5-Fu incorporation was achieved successfully (12.3μg 5Fu/mg CNP) and the maximum 5-Fu release took place at 2h. The combined administration of 5Fu-CNPs and PDT mediated by ALA (ALA-PDT) led to an improved efficacy of the antineoplastic treatment by generation of great cytotoxicity inducted through an increased ROS production. HeLa cells were destroyed by apoptosis through activation of caspase pathway. CONCLUSIONS This study proves that combination therapy (photodynamic "ALA"+chemical "5-Fu"+immunoadjuvant "chitosan") may be an effective approach for the treatment of cancer.
Collapse
Affiliation(s)
- Marta Benito-Miguel
- Centro Universitario San Rafael-Nebrija, Madrid, Spain; Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, UCM, Madrid, Spain
| | - M Dolores Blanco
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, UCM, Madrid, Spain
| | - Clara Gómez
- Departamento de Sistemas de Baja Dimensionalidad, Superficies y Materia Condensada, Instituto de Química Física Rocasolano, CSIC, Madrid, Spain.
| |
Collapse
|
8
|
Ganguly K, Chaturvedi K, More UA, Nadagouda MN, Aminabhavi TM. Polysaccharide-based micro/nanohydrogels for delivering macromolecular therapeutics. J Control Release 2014; 193:162-73. [DOI: 10.1016/j.jconrel.2014.05.014] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 01/01/2023]
|
9
|
Garg NK, Dwivedi P, Jain A, Tyagi S, Sahu T, Tyagi RK. Development of novel carrier(s) mediated tuberculosis vaccine: more than a tour de force. Eur J Pharm Sci 2014; 62:227-242. [PMID: 24909731 DOI: 10.1016/j.ejps.2014.05.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/05/2014] [Accepted: 05/28/2014] [Indexed: 02/07/2023]
Abstract
Despite worldwide availability of the vaccines against most of the infectious diseases, BCG and various programs such as Directly Observed Treatment Short course (DOTS) to prevent tuberculosis still remains one of the most deadly forms of the disease affecting millions of people globally. The evolution of multi drug resistant strains (MDR) has increased the complexity further. Although currently available marketed BCG vaccine has shown sufficient protection against childhood tuberculosis, it has failed to prevent the most common form of disease i.e., pulmonary tuberculosis in adults. However, various vaccine candidates have already entered phase I clinical trials and have shown promising outcomes. The most prominent amongst them is the heterologous prime-boost approach, which shows a great promise towards designing and development of a new efficacious tuberculosis vaccine. It has also been shown that the use of various viral and non-viral vectors as carriers for the potential vaccine candidates will further boost their effect on subsequent immunization. In this review, we briefly summarize the potential of a few novel nano-carriers for developing effective vaccination strategies against tuberculosis.
Collapse
Affiliation(s)
- Neeraj K Garg
- Drug Delivery Research Group, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, 160 014 Chandigarh, India; Department of Pharmaceutical Sciences, Dr. H.S. Gour University, Sagar 470 003, MP, India.
| | - Priya Dwivedi
- Department of Biotechnology, TRS College, Rewa 486001, MP, India
| | - Ashay Jain
- Drug Delivery Research Group, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, 160 014 Chandigarh, India; Department of Pharmaceutical Sciences, Dr. H.S. Gour University, Sagar 470 003, MP, India
| | - Shikha Tyagi
- Department of Biotechnology, IMS Engineering College, Ghaziabad, UP Technical University, UP, India
| | - Tejram Sahu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, TW3/3W15, 12735 Twinbrook Pkwy, Rockville, MD, USA
| | - Rajeev K Tyagi
- Department of Periodontics, College of Dental Medicine, Georgia Regents University, Augusta, GA, USA.
| |
Collapse
|
10
|
Li N, Cao N, Niu YD, Bai XH, Lu J, Sun Y, Yu M, Sun LX, Duan XS. Effects of the polysaccharide nucleic acid fraction of bacillus Calmette-Guérin on the production of interleukin-2 and interleukin-10 in the peripheral blood lymphocytes of patients with chronic idiopathic urticaria. Biomed Rep 2013; 1:713-718. [PMID: 24649015 DOI: 10.3892/br.2013.130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/03/2013] [Indexed: 11/05/2022] Open
Abstract
Urticaria is one of the most frequent dermatoses and its prevalence in the general population is estimated to be ~20%, whereas a substantial percentage of the cases may be classified as chronic idiopathic urticaria (CIU). The inflammatory response presenting with spontaneous wheals exhibits pro-inflammatory characteristics, involving a prominent role for lymphocytes with a mixed Th1/Th2 response in which interleukin (IL)-2 and IL-10 are prominently secreted by Th1 and Th2 cells, respectively. In CIU patients, it was demonstrated that IL-10 production was elevated and IL-2 reduced compared to controls. Therefore, inhibition of IL-10 and promotion of IL-2 production by the lymphocytes, indicating Th2 inhibition and Th1 promotion, may facilitate the treatment of CIU. Whether the polysaccharide nucleic acid fraction of bacillus Calmette-Guérin (BCG-PSN), which possesses multiple immunomodulatory properties, has that potential, remains to be elucidated. In this study, BCG-PSN was used on lymphocytes isolated from CIU patients, with healthy donors used as controls. Immunocytochemistry and ELISA were used to detect IL-2 and IL-10 production. It was demonstrated that the IL-2 production by the lymphocytes in the CIU group was significantly lower compared to that in the healthy control group and it increased sequentially with the increase of the concentration of BCG-PSN used. By contrast, the IL-10 production by the lymphocytes in the CIU group was significantly higher compared to that in the healthy control group and decreased sequentially with the increase of the concentration of BCG-PSN used. Thus, it may be concluded that the BCG-PSN has the potential to promote IL-2 and inhibit IL-10 production in the lymphocytes of CIU patients, facilitating the treatment of CIU.
Collapse
Affiliation(s)
- Na Li
- Central Laboratory, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Na Cao
- Department of Dermatology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Yan-Dong Niu
- Department of Dermatology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Xiu-Hui Bai
- Department of Dermatology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Jie Lu
- Department of Dermatology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Yu Sun
- Central Laboratory, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Min Yu
- Central Laboratory, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Li-Xin Sun
- Central Laboratory, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Xin-Suo Duan
- Department of Dermatology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
11
|
Meerak J, Wanichwecharungruang SP, Palaga T. Enhancement of immune response to a DNA vaccine against Mycobacterium tuberculosis Ag85B by incorporation of an autophagy inducing system. Vaccine 2013; 31:784-90. [DOI: 10.1016/j.vaccine.2012.11.075] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 11/20/2012] [Accepted: 11/26/2012] [Indexed: 01/07/2023]
|
12
|
Rocha Soares KS, Cardozo Fonseca JL, Oliveira Bitencourt MA, Santos KS, Silva-Júnior AA, Fernandes-Pedrosa MF. Serum production against Tityus serrulatus scorpion venom using cross-linked chitosan nanoparticles as immunoadjuvant. Toxicon 2012; 60:1349-54. [DOI: 10.1016/j.toxicon.2012.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 09/11/2012] [Indexed: 11/28/2022]
|
13
|
Kammona O, Kiparissides C. Recent advances in nanocarrier-based mucosal delivery of biomolecules. J Control Release 2012; 161:781-94. [PMID: 22659331 DOI: 10.1016/j.jconrel.2012.05.040] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 05/21/2012] [Accepted: 05/22/2012] [Indexed: 01/20/2023]
Abstract
This review highlights the recent developments in the area of nanocarrier-based mucosal delivery of therapeutic biomolecules and antigens. Macromolecular drugs have the unique power to tackle challenging diseases but their structure, physicochemical properties, stability, pharmacodynamics, and pharmacokinetics place stringent demands on the way they are delivered into the body (e.g., inability to cross mucosal surfaces and biological membranes). Carrier-based drug delivery systems can diminish the toxicity of therapeutic biomolecules, improve their bioavailability and make possible their administration via less-invasive routes (e.g., oral, nasal, pulmonary, etc.). Thus, the development of functionalized nanocarriers and nanoparticle-based microcarriers for the delivery of macromolecular drugs is considered an important scientific challenge and at the same time a business breakthrough for the biopharmaceutical industry. In order to be translated to the clinic the nanocarriers need to be biocompatible, biodegradable, stable in biological media, non-toxic and non-immunogenic, to exhibit mucoadhesive properties, to cross mucosal barriers and to protect their sensitive payload and deliver it to its target site in a controlled manner, thus increasing significantly its bioavailability and efficacy.
Collapse
Affiliation(s)
- Olga Kammona
- Chemical Process Engineering Research Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece
| | | |
Collapse
|
14
|
Büyüktimkin B, Wang Q, Kiptoo P, Stewart JM, Berkland C, Siahaan TJ. Vaccine-like controlled-release delivery of an immunomodulating peptide to treat experimental autoimmune encephalomyelitis. Mol Pharm 2012; 9:979-85. [PMID: 22375937 DOI: 10.1021/mp200614q] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The objective of this work is to use colloidal gel from alginate-chitosan-PLGA complex to deliver Ac-PLP-BPI-NH₂-2 peptide in a controlled-release manner as a vaccine-like therapeutic to suppress experimental autoimmune encephalomyelitis (EAE) in the mouse model. Oppositely charged PLGA nanoparticles were prepared by a solvent diffusion method. The carboxyl group of the alginate and the amine group of the chitosan coated the nanoparticles with negative and positive charges, respectively. The peptide (Ac-PLP-BPI-NH₂-2), designed to bind to MHC-II and ICAM-1 simultaneously, was formulated into the colloidal gel by physical mixture. Vaccine-like administration of the peptide-loaded colloidal gel (Ac-PLP-BPI-NH₂-2-NP) was achieved by subcutaneous (sc) injection to EAE mice. Disease severity was measured using clinical scoring and percent change in body weight. Cytokine production was determined using the splenocytes from Ac-PLP-BPI-NH₂-2-NP-treated mice and compared to that of controls. Ac-PLP-BPI-NH₂-2-NP suppressed and delayed the onset of EAE as well as Ac-PLP-BPI-NH₂-2 when delivered in a vaccine-like manner. IL-6 and IL-17 levels were significantly lower in the Ac-PLP-BPI-NH₂-2-NP-treated mice compared to the mouse group treated with blank colloidal gel, suggesting that the mechanism of suppression of EAE is due to a shift in the immune response away from Th17 production. The results of this study suggest that a one-time sc administration of Ac-PLP-BPI-NH₂-2 formulated in a colloidal gel can produce long-term suppression of EAE by reducing Th17 proliferation.
Collapse
Affiliation(s)
- Barlas Büyüktimkin
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas , Lawrence, Kansas, USA
| | | | | | | | | | | |
Collapse
|
15
|
Luo Y, Jiang W, Da Z, Wang B, Hu L, Zhang Y, An R, Yu H, Sun H, Tang K, Tang Z, Wang Y, Jing T, Zhu B. Subunit Vaccine Candidate AMM Down-Regulated the Regulatory T Cells and Enhanced the Protective Immunity of BCG on a Suitable Schedule. Scand J Immunol 2012; 75:293-300. [DOI: 10.1111/j.1365-3083.2011.02666.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Sharma S, Mukkur TK, Benson HA, Chen Y. Enhanced Immune Response Against Pertussis Toxoid by IgA-Loaded Chitosan–Dextran Sulfate Nanoparticles. J Pharm Sci 2012; 101:233-44. [DOI: 10.1002/jps.22763] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/12/2011] [Accepted: 08/30/2011] [Indexed: 12/11/2022]
|
17
|
Li Q, Yu H, Zhang Y, Wang B, Jiang W, Da Z, Xian Q, Wang Y, Liu X, Zhu B. Immunogenicity and protective efficacy of a fusion protein vaccine consisting of antigen Ag85B and HspX against Mycobacterium tuberculosis infection in mice. Scand J Immunol 2011; 73:568-76. [PMID: 21323695 DOI: 10.1111/j.1365-3083.2011.02531.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Subunit vaccines have the potential advantage to boost Mycobacterium bovis Bacillus Calmette-Guérin (BCG)-primed immunity in adults. However, most candidates are antigens highly expressed in replicating bacilli but not in dormant or persisting bacilli, which exist during Mycobacterium tuberculosis infection. We constructed M. tuberculosis fusion protein Ag85B-Mpt64(190-198) -HspX (AMH) and Ag85B-Mpt64(190-198) -Mtb8.4 (AMM), which consist of Ag85B, the 190-198 peptide of Mpt64, HspX (Rv2031c) and Mtb8.4 (Rv1174c), respectively. AMH and/or AMM were mixed with adjuvants composed of dimethyl-dioctyldecyl ammonium bromide and BCG polysaccharide nucleic acid (DDA-BCG PSN) to construct subunit vaccines. Mice were immunized thrice with Ag85B, AMH and AMM vaccines and the immunogenicity of the fusion protein vaccines was determined. Then, mice were primed with BCG and boosted twice with Ag85B, AMH, AMM and AMM + AMH vaccines, respectively, followed by challenging with M. tuberculosis virulent strain H37Rv, and the immune responses and protective effects were measured. It was found that mice immunized with AMH vaccine generated high levels of antigen-specific cell-mediated responses. Compared with the group injected only with BCG, the mice boosted with AMM, AMH and AMM + AMH produced higher levels of Ag85B-specific IgG1 and IgG2a and IFN-γ-secreting T cells upon Ag85B and Mycobacterium tuberculosis purified protein derivative (PPD) stimulation. It is interesting that only mice boosted with AMM + AMH had significantly lower bacterial count in the lungs than those receiving BCG, whereas mice boosted with AMH or AMM did not. The results suggest that AMH consisting of HspX, the antigen highly expressed in dormant bacilli, could be combined with antigens from replicating bacilli to enhance BCG primed immunity so as to provide better protection against both growing and non-growing bacteria that occur during the infection process.
Collapse
Affiliation(s)
- Q Li
- Lanzhou Center for Tuberculosis Research and Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chitosan nanoparticles act as an adjuvant to promote both Th1 and Th2 immune responses induced by ovalbumin in mice. Mar Drugs 2011; 9:1038-1055. [PMID: 21747747 PMCID: PMC3131560 DOI: 10.3390/md9061038] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 05/25/2011] [Accepted: 06/07/2011] [Indexed: 12/21/2022] Open
Abstract
The study was conducted to investigate the promoted immune response to ovalbumin in mice by chitosan nanoparticles (CNP) and its toxicity. CNP did not cause any mortality or side effects when mice were administered subcutaneously twice with a dose of 1.5 mg at 7-day intervals. Institute of Cancer Research (ICR) mice were immunized subcutaneously with 25 μg ovalbumin (OVA) alone or with 25 μg OVA dissolved in saline containing Quil A (10 μg), chitosan (CS) (50 μg) or CNP (12.5, 50 or 200 μg) on days 1 and 15. Two weeks after the secondary immunization, serum OVA-specific antibody titers, splenocyte proliferation, natural killer (NK) cell activity, and production and mRNA expression of cytokines from splenocytes were measured. The serum OVA-specific IgG, IgG1, IgG2a, and IgG2b antibody titers and Con A-, LPS-, and OVA-induced splenocyte proliferation were significantly enhanced by CNP (P < 0.05) as compared with OVA and CS groups. CNP also significantly promoted the production of Th1 (IL-2 and IFN-γ) and Th2 (IL-10) cytokines and up-regulated the mRNA expression of IL-2, IFN-γ and IL-10 cytokines in splenocytes from the immunized mice compared with OVA and CS groups. Besides, CNP remarkably increased the killing activities of NK cells activity (P < 0.05). The results suggested that CNP had a strong potential to increase both cellular and humoral immune responses and elicited a balanced Th1/Th2 response, and that CNP may be a safe and efficacious adjuvant candidate suitable for a wide spectrum of prophylactic and therapeutic vaccines.
Collapse
|
19
|
Nayak UY, Gopal S, Mutalik S, Ranjith AK, Reddy MS, Gupta P, Udupa N. Glutaraldehyde cross-linked chitosan microspheres for controlled delivery of zidovudine. J Microencapsul 2011; 26:214-22. [PMID: 18819029 DOI: 10.1080/02652040802246325] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Zidovudine-Chitosan microspheres were prepared by a suspension cross-linking method. The chitosan was dissolved in 2% acetic acid solution and this solution was dispersed in the light liquid paraffin. Span-80 was used as an emulsifier and glutaraldehyde as cross-linking agent. The prepared microspheres were slight yellow, free flowing and characterized by drug loading, infrared spectroscopy (IR), differential scanning colorimetry (DSC) and scanning electron microscopy (SEM). The in-vitro release studies are performed in pH 7.4 buffer solution. Microspheres produced are spherical and have smooth surfaces, with sizes ranging between 60-210 µm, as evidenced by SEM and particle size analysis. The drug loaded microspheres showed up to 60% of entrapment and release was extended up to 18-24 h. Among all the systems studied, the 35% Glutaraldehyde crosslinked, microspheres with 1 : 6 drug/chitosan ratio showed 75% release at 12 h. The infrared spectra and DSC thermograms showed stable character of zidovudine in the drug loaded microspheres and revealed the absence of drug-polymer interactions. Data obtained from in vitro release were fitted to various kinetic models and high correlation was obtained in the Higuchi model. The drug release was found to be diffusion controlled.
Collapse
Affiliation(s)
- Usha Yogendra Nayak
- Manipal College of Pharmaceutical Sciences, Manipal, Karnataka-576104, India.
| | | | | | | | | | | | | |
Collapse
|
20
|
Danesh-Bahreini MA, Shokri J, Samiei A, Kamali-Sarvestani E, Barzegar-Jalali M, Mohammadi-Samani S. Nanovaccine for leishmaniasis: preparation of chitosan nanoparticles containing Leishmania superoxide dismutase and evaluation of its immunogenicity in BALB/c mice. Int J Nanomedicine 2011; 6:835-42. [PMID: 21589651 PMCID: PMC3090280 DOI: 10.2147/ijn.s16805] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Indexed: 11/23/2022] Open
Abstract
Background: Leishmaniasis is a protozoan disease, affecting 12 million people in different regions of the world with a wide spectrum of diseases. Although several chemotherapeutic agents have been used for treating the disease, long-term therapy, limited efficacy and the development of drug-resistant parasites remain the major limitations. Methods: To develop a new nanovaccine for leishmaniasis, recombinant Leishmania superoxide dismutase (SODB1) was loaded onto chitosan nanoparticles by the ionotropic gelation method. Size and loading efficiency of the nanoparticles were evaluated and optimized, and an immunization study was undertaken on BALB/c mice. The mice received phosphate buffer saline (PBS), superoxide dismutase B1 (SODB1) in PBS and nanoparticles via subcutaneous injection. Soluble Leishmania Antigens (SLA) and complete Freund’s adjuvant (CFA) were also injected subcutaneously three times every three weeks (some groups received only a single dose). Three weeks after the last injection, blood samples were collected and assessed with ELISA to detect IgG2a and IgG1. Results: Immunological analysis showed that in single and triple doses of SODB1 nanoparticles, IgG2a and IgG2a/IgG1 were significantly higher than the other groups (P<0.05). Conclusion: The results revealed that formulations of SODB1 in biodegradable and stable chitosan nanoparticles can increase the immunogenicity toward cell-mediated immunity (TH1 cells producing IgG2a in mice) that is effective in Leishmania eradication and could be presented as a single dose nanovaccine for leishmaniasis.
Collapse
|
21
|
Chaudhury A, Das S. Recent advancement of chitosan-based nanoparticles for oral controlled delivery of insulin and other therapeutic agents. AAPS PharmSciTech 2011; 12:10-20. [PMID: 21153572 DOI: 10.1208/s12249-010-9561-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 11/30/2010] [Indexed: 01/04/2023] Open
Abstract
Nanoparticles composed of naturally occurring biodegradable polymers have emerged as potential carriers of various therapeutic agents for controlled drug delivery through the oral route. Chitosan, a cationic polysaccharide, is one of such biodegradable polymers, which has been extensively exploited for the preparation of nanoparticles for oral controlled delivery of several therapeutic agents. In recent years, the area of focus has shifted from chitosan to chitosan derivatized polymers for the preparation of oral nanoparticles due to its vastly improved properties, such as better drug retention capability, improved permeation, enhanced mucoadhesion and sustained release of therapeutic agents. Chitosan derivatized polymers are primarily the quaternized chitosan derivatives, chitosan cyclodextrin complexes, thiolated chitosan, pegylated chitosan and chitosan combined with other peptides. The current review focuses on the recent advancements in the field of oral controlled release via chitosan nanoparticles and discusses about its in vitro and in vivo implications.
Collapse
|
22
|
Şenel S. Chitosan-Based Particulate Systems for Non-Invasive Vaccine Delivery. ADVANCES IN POLYMER SCIENCE 2011. [DOI: 10.1007/12_2011_120] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
Sui Z, Chen Q, Fang F, Zheng M, Chen Z. Cross-protection against influenza virus infection by intranasal administration of M1-based vaccine with chitosan as an adjuvant. Vaccine 2010; 28:7690-8. [DOI: 10.1016/j.vaccine.2010.09.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 09/08/2010] [Accepted: 09/09/2010] [Indexed: 01/01/2023]
|
24
|
Sui Z, Chen Q, Wu R, Zhang H, Zheng M, Wang H, Chen Z. Cross-protection against influenza virus infection by intranasal administration of M2-based vaccine with chitosan as an adjuvant. Arch Virol 2010; 155:535-44. [DOI: 10.1007/s00705-010-0621-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 01/01/2010] [Indexed: 10/19/2022]
|
25
|
Amidi M, Mastrobattista E, Jiskoot W, Hennink WE. Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev 2010; 62:59-82. [PMID: 19925837 DOI: 10.1016/j.addr.2009.11.009] [Citation(s) in RCA: 409] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 10/16/2009] [Accepted: 11/04/2009] [Indexed: 11/28/2022]
Abstract
Therapeutic peptides/proteins and protein-based antigens are chemically and structurally labile compounds, which are almost exclusively administered by parenteral injections. Recently, non-invasive mucosal routes have attracted interest for administration of these biotherapeutics. Chitosan-based delivery systems enhance the absorption and/or cellular uptake of peptides/proteins across mucosal sites and have immunoadjuvant properties. Chitosan is a mucoadhesive polysaccharide capable of opening the tight junctions between epithelial cells and it has functional groups for chemical modifications, which has resulted in a large variety of chitosan derivatives with tunable properties for the aimed applications. This review provides an overview of chitosan-based polymers for preparation of both therapeutic peptides/protein and antigen formulations. The physicochemical properties of these carrier systems as well as their applications in protein and antigen delivery through parenteral and mucosal (particularly nasal and pulmonary) administrations are summarized and discussed.
Collapse
Affiliation(s)
- Maryam Amidi
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
26
|
|
27
|
Ficht TA, Kahl-McDonagh MM, Arenas-Gamboa AM, Rice-Ficht AC. Brucellosis: the case for live, attenuated vaccines. Vaccine 2009; 27 Suppl 4:D40-3. [PMID: 19837284 PMCID: PMC2780424 DOI: 10.1016/j.vaccine.2009.08.058] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 08/11/2009] [Indexed: 10/20/2022]
Abstract
The successful control of animal brucellosis and associated reduction in human exposure has limited the development of human brucellosis vaccines. However, the potential use of Brucella in bioterrorism or biowarfare suggests that direct intervention strategies are warranted. Although the dominant approach has explored the use of live attenuated vaccines, side effects associated with their use has prevented widespread use in humans. Development of live, attenuated Brucella vaccines that are safe for use in humans has focused on the deletion of important genes required for survival. However, the enhanced safety of deletion mutants is most often associated with reduced efficacy. For this reason recent efforts have sought to combine the optimal features of a attenuated live vaccine that is safe, free of side effects and efficacious in humans with enhanced immune stimulation through microencapsulation. The competitive advantages and innovations of this approach are: (1) use of highly attenuated, safe, gene knockout, live Brucella mutants; (2) manufacturing with unique disposable closed system technologies, and (3) oral/intranasal delivery in a novel microencapsulation-mediated controlled release formula to optimally provide the long term mucosal immunostimulation required for protective immunity. Based upon preliminary data, it is postulated that such vaccine delivery systems can be storage stable, administered orally or intranasally, and generally applicable to a number of agents.
Collapse
Affiliation(s)
- Thomas A Ficht
- Department of Veterinary Pathobiology, Texas A&M University and TX AgriLife Research, College Station, TX 77843-4467, USA.
| | | | | | | |
Collapse
|
28
|
Luo Y, Wang B, Hu L, Yu H, Da Z, Jiang W, Song N, Qie Y, Wang H, Tang Z, Xian Q, Zhang Y, Zhu B. Fusion protein Ag85B-MPT64190–198-Mtb8.4 has higher immunogenicity than Ag85B with capacity to boost BCG-primed immunity against Mycobacterium tuberculosis in mice. Vaccine 2009; 27:6179-85. [DOI: 10.1016/j.vaccine.2009.08.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/27/2009] [Accepted: 08/06/2009] [Indexed: 11/24/2022]
|
29
|
Ahmad Z, Khuller GK. Alginate-based sustained release drug delivery systems for tuberculosis. Expert Opin Drug Deliv 2008; 5:1323-34. [DOI: 10.1517/17425240802600662] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
30
|
Wang J, Qie Y, Zhang H, Zhu B, Xu Y, Liu W, Chen J, Wang H. PPE protein (Rv3425) from DNA segment RD11 of Mycobacterium tuberculosis: a novel immunodominant antigen of Mycobacterium tuberculosis induces humoral and cellular immune responses in mice. Microbiol Immunol 2008; 52:224-30. [PMID: 18426397 DOI: 10.1111/j.1348-0421.2008.00029.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Subtractive DNA hybridization of pathogenic M. bovis and BCG, and comparative genome-wide DNA microarray analysis of M. tuberculosis H37Rv and BCG identified several RD, designated as RD1 to RD16, between M. tuberculosis and M. bovis on the one hand and BCG on the other. These regions cover 108 ORF of M. tuberculosis H37Rv, and are deleted from all 13 BCG sub-strains currently used as anti-tuberculosis vaccines in different parts of the world. In this study, we evaluated cellular and humoral immune response in C57BL/6 mice immunized with the PPE protein Rv3425, encoded by an ORF found in RD11 of M. tuberculosis. Rv3425 protein induced an increased Th1/Th2 type immune response in mice, characterized by an elevated concentration of IFN-gamma in antigen stimulated splenocyte culture and a strong IgG(1) antibody response. These results provide evidence on the immunogenicity of the PPE protein Rv3425 which, together with its reported immunodominant characteristics, imply that it may be a candidate for development of a vaccine for the control of TB.
Collapse
Affiliation(s)
- Jiuling Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Qie YQ, Wang JL, Zhu BD, Xu Y, Wang QZ, Chen JZ, Wang HH. Evaluation of a new Recombinant BCG which Contains Mycobacterial Antigen ag85B-mpt64190-198-mtb8.4 in C57/BL6 Mice. Scand J Immunol 2008; 67:133-9. [DOI: 10.1111/j.1365-3083.2007.02048.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Xie Y, Zhou NJ, Gong YF, Zhou XJ, Chen J, Hu SJ, Lu NH, Hou XH. Th immune response induced by H pylori vaccine with chitosan as adjuvant and its relation to immune protection. World J Gastroenterol 2007; 13:1547-1553. [PMID: 17461447 PMCID: PMC4146897 DOI: 10.3748/wjg.v13.i10.1547] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2006] [Revised: 12/28/2006] [Accepted: 02/27/2007] [Indexed: 02/06/2023] Open
Abstract
AIM To study the immunological protective effect of H pylori vaccine with chitosan as an adjuvant and its mechanism. METHODS Female BALB/c mice were randomly divided into seven groups and orally immunized respectively with PBS, chitosan solution, chitosan particles, H pylori antigen, H pylori antigen plus cholera toxin (CT), H pylori antigen plus chitosan solution, H pylori antigen plus chitosan particles once a week for four weeks. Four weeks after the last immunization, the mice were challenged twice by alive H pylori (1 x 10(9) CFU/mL) and sacrificed. Part of the gastric mucosa was embedded in paraffin, cut into sections and assayed with Giemsa staining. Part of the gastric mucosa was used to quantitatively culture H pylori. ELISA was used to detect cytokine level in gastric mucosa and anti- H pylori IgG1, IgG2a levels in serum. RESULTS In the groups with chitosan as an adjuvant, immunological protection was achieved in 60% mice, which was significantly higher than in groups with H pylori antigen alone and without H pylori antigen (P < 0.05 or 0.001). Before challenge, the level of IFN and IL-12 in gastric mucosa was significantly higher in the groups with chitosan as an adjuvant than in the control group and the group without adjuvant (P < 0.05 or 0.005). After challenge, the level of IFN and IL-12 was significantly higher in the groups with adjuvant than in the groups without adjuvant and antigen (P < 0.05 or 0.001). Before challenge, the level of IL-2 in gastric mucosa was not different among different groups. After challenge the level of IL-2 was significantly higher in the groups with adjuvant than in the control group (P < 0.05 or 0.001). Before challenge, the level of IL-10 in gastric mucosa was significantly higher in the groups with chitosan as an adjuvant than in other groups without adjuvant (P < 0.05 or 0.01). After challenge, the level of IL-10 was not different among different groups. Before challenge, the level of IL-4 in gastric mucosa was significantly higher in the groups with chitosan as an adjuvant than in other groups without adjuvant (P < 0.05). After challenge, the level of IL-4 was significantly higher in the groups with chitosan particles as an adjuvant than in the group with CT as an adjuvant (P < 0.05), and in the group with chitosan solution as an adjuvant, the level of IL-4 was significantly higher than that in control group, non-adjuvant group and the groups with CT (P < 0.05 or 0.001). The ratio of anti- H pylori IgG2a/IgG1 in serum was significantly lower in the groups with chitosan as an adjuvant than in the groups with CT as an adjuvant or without adjuvant (P < 0.01). CONCLUSION H pylori vaccine with chitosan as an adjuvant can protect against H pylori infection and induce both Th1 and Th2 type immune response.
Collapse
Affiliation(s)
- Yong Xie
- Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | | | | | | | | | | | | | | |
Collapse
|