1
|
Topçu İnce B, Guieu S, Timur SS, Reçber T, Nemutlu E, Vaz Fernandes MH, Eroğlu H. Design and characterization of memantine and donepezil loaded 3D scaffolds. Pharm Dev Technol 2025; 30:488-504. [PMID: 40237315 DOI: 10.1080/10837450.2025.2493256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/27/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
Memantine HCl (MEM) and Donepezil HCl (DON) are widely used separately and in combination to treat Alzheimer's disease, and some studies suggest that these drugs may also prevent bone fractures and promote bone regeneration. For this purpose, we formulated fiber-based 3D scaffolds for local delivery of MEM/DON to improve the regeneration process of bone fractures. First, Poly (ε-caprolactone) (PCL)-based MEM/DON-loaded nanofibrous membranes were produced by electrospinning, and then these nanofibrous membranes were transformed into 3D scaffolds using the thermally induced self-agglomeration (TISA) method. Encapsulation efficiency after these two steps was found to be around 20%. Analyses confirmed that the 3D scaffolds have a morphology similar to the extracellular matrix, and that their hydrophilicity, swelling ratio, porosity, and degradation rate were adequate for bone tissue regeneration. Release studies show that the scaffolds provide an initial burst release of the drugs, followed by a sustained release for 21 days. These 3D scaffolds did not show any cytotoxic effect on the L-929 cell line, and increased cell viability over time indicates that they can be used in tissue engineering applications.
Collapse
Affiliation(s)
- Betül Topçu İnce
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Hacettepe University, Ankara, Turkey
| | - Samuel Guieu
- CICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, Aveiro, Portugal
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Selin Seda Timur
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Hacettepe University, Ankara, Turkey
| | - Tuba Reçber
- Faculty of Pharmacy, Department of Analytical Chemistry, Hacettepe University, Ankara, Turkey
| | - Emirhan Nemutlu
- Faculty of Pharmacy, Department of Analytical Chemistry, Hacettepe University, Ankara, Turkey
| | - Maria Helena Vaz Fernandes
- CICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, Aveiro, Portugal
| | - Hakan Eroğlu
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
2
|
Hlawa I, Reske T, Chabanovska O, Scholz M, Vasudevan P, Oschatz S, Grabow N, Lang H. In Vitro Release Dynamics of Atorvastatin-Loaded Alginate Particles for Enhanced Periodontal Treatment. Polymers (Basel) 2025; 17:427. [PMID: 39940629 PMCID: PMC11820141 DOI: 10.3390/polym17030427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Periodontitis is a chronic inflammatory condition of the periodontium, which often leads to tooth loss. Recently, statins have emerged as potent anti-inflammatory agents with pleiotropic effects that can potentially outperform conventional periodontal treatments. However, the clinical application of statins is limited by the lack of suitable drug carriers that fit the periodontal region and provide a controlled local drug release. In this study, we address the critical gap in localized periodontal drug delivery and introduce an ultrasound-assisted technique to encapsulate atorvastatin within alginate microparticles (10-400 µm in diameter)-a simple, scalable, and biocompatible solution. While ultrasound is widely used in polymer synthesis, its application in alginate polymerization remains underexplored. To mimic physiological conditions, particles were incubated in artificial saliva at 37 °C, with drug release being analyzed via high-performance liquid chromatography. A methylcellulose-based hydrogel served as a conventional reference product. Results revealed that alginate particles exhibited at least a 10-fold increase in mean dissolution time compared to the methylcellulose gel, indicating superior stability. Increasing atorvastatin concentration extended the time interval needed for 50% of the drug to be released (t50%) from 1 h to 11 h, maintaining the overall drug diffusion level for several days. Further analysis showed that covalent cross-linking of alginate with divinyl sulfone significantly delayed the initial drug release by 3 h (p < 0.05) due to the additional molecular stabilization. These findings underscore the utility of ultrasonic atomization for the processing of alginate-based formulations. Given the ease of production, biocompatibility, and small size, successfully fabricated alginate particles represent a promising carrier for delivery of statins or other related drugs in clinical dentistry.
Collapse
Affiliation(s)
- Imke Hlawa
- Department of Operative Dentistry and Periodontology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Thomas Reske
- Institute for Implant Technology and Biomaterials e.V., 18119 Rostock-Warnemünde, Germany
| | - Oleksandra Chabanovska
- Department of Operative Dentistry and Periodontology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Malte Scholz
- Department of Operative Dentistry and Periodontology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Praveen Vasudevan
- Department of Operative Dentistry and Periodontology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Stefan Oschatz
- Institute for Biomedical Engineering, Rostock University Medical Center, 18119 Rostock, Germany
| | - Niels Grabow
- Institute for Biomedical Engineering, Rostock University Medical Center, 18119 Rostock, Germany
| | - Hermann Lang
- Department of Operative Dentistry and Periodontology, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
3
|
Mohamad Rauf KM, Alzubaidee AF, Hamonari NH. Evaluation of the Effect of Topically Applied Melatonin and Vitamin C in the Non-surgical Treatment of Chronic Periodontitis: A Triple-Blind Randomized Clinical Trial. Cureus 2024; 16:e76676. [PMID: 39886720 PMCID: PMC11781506 DOI: 10.7759/cureus.76676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2024] [Indexed: 02/01/2025] Open
Abstract
AIM This study aimed to evaluate the impact of using melatonin and vitamin C as adjuncts to the non-surgical treatment of chronic periodontitis. MATERIALS AND METHODS This triple-blind randomized clinical trial involved 100 participants with chronic periodontitis. Subjects were randomly assigned to three groups: (1) non-surgical periodontal therapy (NSPT) alone (n = 33); (2) NSPT with melatonin (n = 33); and (3) NSPT with melatonin and vitamin C (n = 34). Clinical parameters, including gingival index (GI), probing depth (PD), and clinical attachment loss (CAL), were assessed at baseline and at one week, one month, and three months post treatment. Statistical significance was set at p ≤ 0.05. RESULTS Compared to baseline, all groups showed significant improvements in periodontal parameters (p ≤ 0.001). At three months, the group receiving both melatonin and vitamin C demonstrated the greatest reduction in PD (mean reduction: 1.96 mm, p ≤ 0.001) and CAL (mean reduction: 1.87 mm, p ≤ 0.001). This group also achieved the most significant improvement in GI (mean reduction: 1.74, p ≤ 0.001). CONCLUSIONS The combined adjunctive therapy of melatonin and vitamin C demonstrated superior improvements in periodontal indices compared to NSPT alone, supporting its potential as an effective adjunctive treatment for chronic periodontitis.
Collapse
Affiliation(s)
- Kani M Mohamad Rauf
- Dental Public Health, Kurdistan Higher Council of Medical Specialties, Erbil, IRQ
| | - Ali F Alzubaidee
- Oral Medicine, Kurdistan Higher Council of Medical Specialties, Erbil, IRQ
| | - Nasreen H Hamonari
- Community Medicine/Preventive Dentistry, Dental Public Health Center, Kurdistan Higher Council of Medical Specialties, Erbil, IRQ
| |
Collapse
|
4
|
Garg U, Dua T, Kaul S, Jain N, Pandey M, Nagaich U. Enhancing periodontal defences with nanofiber treatment: recent advances and future prospects. J Drug Target 2024; 32:470-484. [PMID: 38404239 DOI: 10.1080/1061186x.2024.2321372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/14/2024] [Indexed: 02/27/2024]
Abstract
The term periodontal disease is used to define diseases characterised by inflammation and regeneration of the gums, cementum, supporting bone, and periodontal ligament. The conventional treatment involves the combination of scaling, root planning, and surgical approaches which are invasive and can pose certain challenges. Intrapocket administration of nanofibers can be used for overcoming challenges which can help in speeding up the wound repair process and can also be used to promote osteogenesis. To help make drug delivery more effective, nanofibers are an interesting solution. Nanofibers are nanosized 3D structures that can fill the pockets and have excellent mucoadhesion which prolongs their retention time on the target site. Moreover, their structure mimics the natural extracellular matrix which enables nanomaterials to sense local biological conditions and start cellular-level reprogramming to produce the necessary therapeutic efficacy. In this review, the significance of intrapocket administration of nanofibers using recent research for the management of periodontitis has been discussed in detail. Furthermore, we have discussed polymers used for the preparation of nanofibers, nanofiber production methods, and the patents associated with these developments. This comprehensive compilation of data serves as a valuable resource, consolidating recent developments in nanofiber applications for periodontitis management into one accessible platform.
Collapse
Affiliation(s)
- Unnati Garg
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, UP, India
| | - Tanya Dua
- Department of Periodontology, Inderprastha Dental College and Hospital, Atal Bihari Vajpayee Medical University, Lucknow, UP, India
| | - Shreya Kaul
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, UP, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, UP, India
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, India
| | - Upendra Nagaich
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, UP, India
| |
Collapse
|
5
|
Téllez Corral MA, Villamil Poveda JC, Roa Molina NS, Otero L, Rivera Monroy ZJ, García Castañeda J, Parra Giraldo CM, Cortés ME. In-vitro antibiofilm activity of polycaprolactone- poly (lactic-co-glycolic acid) nanofibers loaded amphotericin B, antimicrobial peptide LfcinB (21–25)Pal and zinc oxide for local treatment of periodontitis associated with obstructive sleep apnea. J Drug Deliv Sci Technol 2024; 94:105522. [DOI: 10.1016/j.jddst.2024.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Ferreira JO, Zambuzi GC, Camargos CHM, Carvalho ACW, Ferreira MP, Rezende CA, de Freitas O, Francisco KR. Zein and hydroxypropyl methylcellulose acetate succinate microfibers combined with metronidazole benzoate and/or metronidazole-incorporated cellulose nanofibrils for potential periodontal treatment. Int J Biol Macromol 2024; 261:129701. [PMID: 38280709 DOI: 10.1016/j.ijbiomac.2024.129701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
The development of flexible and porous materials to control antibacterial delivery is a pivotal endeavor in medical science. In this study, we aimed to produce long and defect-free fibers made of zein and hydroxypropyl methylcellulose acetate succinate (HPMCAS) to be used as a platform for the release of metronidazole (MDZ) and metronidazole benzoate (BMDZ) to be potentially used in periodontal treatment. Microfibers prepared via electrospinning under a 2:3 (w/w) zein to HPMCAS ratio, containing 0.5 % (w/w) poly(ethylene oxide) (PEO) and 1 % (w/w) cellulose nanofibril (CNF) were loaded with 40 % (w/w) MDZ, 40 % (w/w) BMDZ, or a combination of 20 % (w/w) of each drug. The addition of CNF improved the electrospinning process, resulting in long fibers with reduced MDZ and BMDZ surface crystallization. MDZ- and BMDZ-incorporated fibers were semicrystalline and displayed commendable compatibility among drugs, nanocellulose and polymeric chains. Release tests showed that zein/HPMCAS/PEO fibers without CNF and with 20 % (w/w) MDZ/ 20 % (w/w) BMDZ released the drug at a slower and more sustained rate compared to other samples over extended periods (up to 5 days), which is a favorable aspect concerning periodontitis treatment.
Collapse
Affiliation(s)
- João O Ferreira
- Science and Technology Center for Sustainability, Federal University of São Carlos, Rod. SP-264, km 110, Sorocaba 18052-780, SP, Brazil
| | - Giovana C Zambuzi
- Science and Technology Center for Sustainability, Federal University of São Carlos, Rod. SP-264, km 110, Sorocaba 18052-780, SP, Brazil
| | - Camilla H M Camargos
- Department of Physical Chemistry, Institute of Chemistry, University of Campinas, 13083-970 Campinas, SP, Brazil; School of Fine Arts, Federal University of Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Ana C W Carvalho
- Department of Pharmaceutical Sciences, Faculty of Pharmaceuticals Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Maíra P Ferreira
- Department of Pharmaceutical Sciences, Faculty of Pharmaceuticals Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Camila A Rezende
- Department of Physical Chemistry, Institute of Chemistry, University of Campinas, 13083-970 Campinas, SP, Brazil
| | - Osvaldo de Freitas
- Department of Pharmaceutical Sciences, Faculty of Pharmaceuticals Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Kelly R Francisco
- Science and Technology Center for Sustainability, Federal University of São Carlos, Rod. SP-264, km 110, Sorocaba 18052-780, SP, Brazil; Department of Natural Science, Mathematics and Education, Federal University of São Carlos-UFSCar, Araras 13604-900, SP, Brazil.
| |
Collapse
|
7
|
Ozkendir O, Karaca I, Cullu S, Erdoğan OC, Yaşar HN, Dikici S, Owen R, Aldemir Dikici B. Engineering periodontal tissue interfaces using multiphasic scaffolds and membranes for guided bone and tissue regeneration. BIOMATERIALS ADVANCES 2024; 157:213732. [PMID: 38134730 DOI: 10.1016/j.bioadv.2023.213732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Periodontal diseases are one of the greatest healthcare burdens worldwide. The periodontal tissue compartment is an anatomical tissue interface formed from the periodontal ligament, gingiva, cementum, and bone. This multifaceted composition makes tissue engineering strategies challenging to develop due to the interface of hard and soft tissues requiring multiphase scaffolds to recreate the native tissue architecture. Multilayer constructs can better mimic tissue interfaces due to the individually tuneable layers. They have different characteristics in each layer, with modulation of mechanical properties, material type, porosity, pore size, morphology, degradation properties, and drug-releasing profile all possible. The greatest challenge of multilayer constructs is to mechanically integrate consecutive layers to avoid delamination, especially when using multiple manufacturing processes. Here, we review the development of multilayer scaffolds that aim to recapitulate native periodontal tissue interfaces in terms of physical, chemical, and biological characteristics. Important properties of multiphasic biodegradable scaffolds are highlighted and summarised, with design requirements, biomaterials, and fabrication methods, as well as post-treatment and drug/growth factor incorporation discussed.
Collapse
Affiliation(s)
- Ozgu Ozkendir
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Ilayda Karaca
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Selin Cullu
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Oğul Can Erdoğan
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Hüsniye Nur Yaşar
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Serkan Dikici
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Robert Owen
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Betül Aldemir Dikici
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey.
| |
Collapse
|
8
|
Ulker Turan C, Derviscemaloglu M, Guvenilir Y. Herbal active ingredient-loaded poly(ω-pentadecalactone-co-δ-valerolactone)/gelatin nanofibrous membranes. Eur J Pharm Biopharm 2024; 194:62-73. [PMID: 38042509 DOI: 10.1016/j.ejpb.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
Recently, there has been an accelerating interest in novel biocompatible wound dressings made of nano-sized materials, especially nanofibers. Electrospun nanofibers provide high surface area and mimic the extracellular matrix which enhances biocompatibility. Besides, nanofibrous structures have high active ingredient loading capacity as a result of their high surface-to-volume ratio and porosity. In the present study, curcumin-loaded poly(ω-pentadecalactone-co-δ-valerolactone)/gelatin (PDL-VL/Gel) nanofibrous membranes were fabricated to be used for healing skin wounds. Poly(ω-pentadecalactone-co-δ-valerolactone) copolymer has been enzymatically synthesized in previous studies, thus it improves the originality of the membrane. It was aimed to obtain a synergetic effect and increase the novelty of the work by blending synthetic and natural polymers. Moreover, it was preferred to provide antibacterial activity by the incorporation of a herbal ingredient (curcumin) as a natural alternative to commercial antibiotics. Varied amounts of curcumin (5-25 %, w:v) were electrospun together with PDL-VL/Gel (equal volume ratio) polymer blend (fiber diameters ranged between 554 and 1074 nm) and several characterizations (morphological and molecular structure, wettability characteristics, and thermal behavior) were applied to examine the curcumin incorporation. Afterwards, in vitro curcumin release studies were carried out and mathematical modeling was applied to release data to clarify the transport mechanism. Curcumin release profiles comprised of an initial burst release in the first hour followed by a sustained release through 24 h. Based on the antibacterial activity test results, 15 % curcumin loading ratio was found to be sufficient for the treatment of skin wounds infected by Gram-negative (E. coli) and Gram-positive (S. aureus and B. subtilis) bacteria. Additionally, nanofibrous membranes did not lead to cytotoxicity, and curcumin content further enhanced the viability of fibroblasts. Thus, the presented antibacterial nanofibrous membrane is suggested to be applied for the treatment of wound infections and accelerating the healing process.
Collapse
Affiliation(s)
- Cansu Ulker Turan
- Gebze Technical University, Department of Bioengineering, Kocaeli 41400, Turkey.
| | - Mete Derviscemaloglu
- Istanbul Technical University, Department of Molecular Biology and Genetics, Istanbul 34369, Turkey
| | - Yuksel Guvenilir
- Istanbul Technical University, Department of Chemical Engineering, Istanbul 34369, Turkey
| |
Collapse
|
9
|
Ramesh VH, Goudanavar P, Ramesh B, Naveen NR, Gowthami B. Pharmaceutical/Biomedical Applications of Electrospun Nanofibers - Comprehensive Review, Attentive to Process Parameters and Patent Landscape. Pharm Nanotechnol 2024; 12:412-427. [PMID: 37702161 DOI: 10.2174/2211738511666230911163249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 09/14/2023]
Abstract
Nanotechnology is a new science and business endeavour with worldwide economic benefits. Growing knowledge of nanomaterial fabrication techniques has increased the focus on nanomaterial preparation for various purposes. Nanofibers are one-dimensional nanomaterials having distinct physicochemical properties and characteristics. Nanofibers are nanomaterial types with a cross-sectional dimension of tens to hundreds of nanometres. They may create high porosity mesh networks with significant interconnections among pores, making them suitable for advanced applications. Electrospinning stands out for its ease of use, flexibility, low cost, and variety among the approaches described in the literature. The most common method for making nanofibers is electrospinning. This article extensively describes and summarizes the impact of various process variables on the fabrication of nanofibers. Special attention has been given to scientific and patent prospection to confirm the research interests in nanofibers.
Collapse
Affiliation(s)
- Varshini Hemmanahalli Ramesh
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Karnataka, 571448, India
| | - Prakash Goudanavar
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Karnataka, 571448, India
| | - Bevenahalli Ramesh
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Karnataka, 571448, India
| | - Nimbagal Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Karnataka, 571448, India
| | - Buduru Gowthami
- Department of Pharmaceutics, Annamacharya College of Pharmacy, New Boyanapalli, Rajampet, 516126, Andhra Pradesh, India
| |
Collapse
|
10
|
Geng Y, Williams GR. Developing and scaling up captopril-loaded electrospun ethyl cellulose fibers for sustained-release floating drug delivery. Int J Pharm 2023; 648:123557. [PMID: 39491226 DOI: 10.1016/j.ijpharm.2023.123557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
In this work ethyl cellulose (EC) was used as the matrix polymer and loaded with captopril, with the goal to fabricate electrospun fibers as potential sustained-release floating gastro-retentive drug delivery systems. Fibers were prepared with monoaxial and coaxial electrospinning, and both bench-top and scaled-up (needle-based) methods were explored. With monoaxial electrospinning, EC-based fibers in the shape of cylinders and with smooth surfaces were obtained both at 1 and 20 mL/h. For coaxial electrospinning, the drug was encapsulated in the core end fibers generated with core/shell feeding rates of 0.5/1 and 5/10 mL/h. The fibers were cylindrical in shape with a wrinkled surface, and confocal microscopy suggested them to have a core/shell structure. X-ray diffraction and differential scanning calorimetry results showed that all the fibers were amorphous. The encapsulation efficiency of all the formulations was almost 100%. Release studies in simulated gastric fluid indicated that the monoaxial electrospun fibers gave slower release profiles compared with a physical mixture of captopril and EC, but there was still an initial "burst" of release at the start of the experiment. Fibers with low drug-loading (9.09% w/w) showed a slower release than fibers with high loading (23.08% w/w). The coaxial fibers exhibited sustained release profiles with reduced initial burst release. Both monoaxial and coaxial fibers could float on the surface of simulated gastric fluid for over 24 hours at 37 °C. After storage under ambient conditions (19-21°C, relative humidity 30-40%) for 8 weeks, all the fibers remained amorphous and the release profiles had no significant changes compared with fresh fibers. This work thus highlights the potential of coaxial electrospinning for fabricating a sustained-release floating gastro-retentive drug delivery system for captopril.
Collapse
Affiliation(s)
- Yuhao Geng
- UCL School of Pharmacy, 29 - 39 Brunswick Square, London, WC1N 1AX
| | | |
Collapse
|
11
|
Altun E, Bayram C, Gultekinoglu M, Matharu R, Delbusso A, Homer-Vanniasinkam S, Edirisinghe M. Pressure-Spun Fibrous Surgical Sutures for Localized Antibacterial Delivery: Development, Characterization, and In Vitro Evaluation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45561-45573. [PMID: 37729472 PMCID: PMC10561146 DOI: 10.1021/acsami.3c07956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023]
Abstract
Surgical sutures designed to prevent infection are critical in addressing antibiotic-resistant pathogens that cause surgical site infections. Instead of antibiotics, alternative materials such as biocides have been assessed for coating commercially used sutures due to emerging antibiotic resistance concerns worldwide. This study has a new approach to the development of fibrous surgical sutures with the ability to deliver localized antibacterial agents. A new manufacturing process based on pressure spinning was used for the first time in the production of fibrous surgical sutures by physically blending antibacterial triclosan (Tri) agent with poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene oxide) (PEO) polymers. Fibrous surgical sutures with virgin PLGA, virgin PEO, different ratios of PLGA-PEO, and different ratios of Tri-loaded PLGA-PEO fibrous sutures were produced to mimic the FDA- and NICE-approved PLGA-based sutures available in the market and compared for their characteristics. They were also tested simultaneously with commercially available sutures to compare their in vitro biodegradation, antibacterial, drug release, and cytotoxicity properties. After in vitro antibacterial testing for 24 h, sutures having 285 ± 12 μg/mg Tri loading were selected as a model for further testing as they exhibited antibacterial activity against all tested bacteria strains. The selected model of antibacterial fibrous sutures exhibited an initial burst of Tri release within 24 h, followed by a sustained release for the remaining time until the sutures completely degraded within 21 days. The cell viability assay showed that these surgical sutures had no cytotoxic effect on mammalian cells.
Collapse
Affiliation(s)
- Esra Altun
- Department
of Mechanical Engineering, University College
London (UCL), Torrington Place, London WC1E 7JE, U.K.
| | - Cem Bayram
- Department
of Nanotechnology and Nanomedicine, Graduate School of Science and
Engineering, Hacettepe University, Ankara 06800, Turkey
| | - Merve Gultekinoglu
- Department
of Nanotechnology and Nanomedicine, Graduate School of Science and
Engineering, Hacettepe University, Ankara 06800, Turkey
| | - Rupy Matharu
- Department
of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London WC1E
6BT, U.K.
| | - Angelo Delbusso
- Department
of Mechanical Engineering, University College
London (UCL), Torrington Place, London WC1E 7JE, U.K.
| | | | - Mohan Edirisinghe
- Department
of Mechanical Engineering, University College
London (UCL), Torrington Place, London WC1E 7JE, U.K.
| |
Collapse
|
12
|
Salim SA, Badawi NM, El-Moslamy SH, Kamoun EA, Daihom BA. Novel long-acting brimonidine tartrate loaded-PCL/PVP nanofibers for versatile biomedical applications: fabrication, characterization and antimicrobial evaluation. RSC Adv 2023; 13:14943-14957. [PMID: 37200698 PMCID: PMC10186146 DOI: 10.1039/d3ra02244g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023] Open
Abstract
The global state of antibiotic resistance highlights the necessity for new drugs that can treat a wide range of microbial infections. Drug repurposing has several advantages, including lower costs and improved safety compared to developing a new compound. The aim of the current study is to evaluate the repurposed antimicrobial activity of Brimonidine tartrate (BT), a well-known antiglaucoma drug, and to potentiate its antimicrobial effect by using electrospun nanofibrous scaffolds. BT-loaded nanofibers were fabricated in different drug concentrations (1.5, 3, 6, and 9%) via the electrospinning technique using two biopolymers (PCL and PVP). Then, the prepared nanofibers were characterized by SEM, XRD, FTIR, swelling ratio, and in vitro drug release. Afterward, the antimicrobial activities of the prepared nanofibers were investigated in vitro using different methods against several human pathogens and compared to the free BT. The results showed that all nanofibers were prepared successfully with a smooth surface. The diameters of nanofibers were reduced after loading of BT compared to the unloaded ones. In addition, scaffolds showed controlled-drug release profiles that were maintained for more than 7 days. The in vitro antimicrobial assessments revealed good activities for all scaffolds against most of the investigated human pathogens, particularly the one prepared with 9% BT which showed superiority in the antimicrobial effect over other scaffolds. To conclude, our findings proved the capability of nanofibers in loading BT and improving its repurposed antimicrobial efficacy. Therefore, it could be a promising carrier for BT to be used in combating numerous human pathogens.
Collapse
Affiliation(s)
- Samar A Salim
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE) Cairo 11837 Egypt
| | - Noha M Badawi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE) Cairo 11837 Egypt
| | - Shahira H El-Moslamy
- Bioprocess Development Department (BID), Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City) New Borg El-Arab City Alexandria 21934 Egypt
- Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City) Alexandria 21934 Egypt
| | - Elbadawy A Kamoun
- Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City) Alexandria 21934 Egypt
- Biomaterials for Medical and Pharmaceutical Applications Research Group, Nanotechnology Research Center (NTRC), The British University in Egypt (BUE) Cairo 11837 Egypt
| | - Baher A Daihom
- Department of Pharmaceutics and Industrial Pharmacy, Cairo University Cairo Egypt
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin 78712 USA
| |
Collapse
|
13
|
Alemomen M, Taymouri S, Saberi S, Varshosaz J. Preparation, optimization, and in vitro-in vivo evaluation of sorafenib-loaded polycaprolactone and cellulose acetate nanofibers for the treatment of cutaneous leishmaniasis. Drug Deliv Transl Res 2023; 13:862-882. [PMID: 36223030 DOI: 10.1007/s13346-022-01250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 02/04/2023]
Abstract
The most common form of leishmaniasis is cutaneous leishmaniasis (CL). The major difficulties in the treatment of leishmaniasis include emergence of resistance, toxicity, long-term treatment, and the high cost of the current drugs. Although the therapeutic effect of sorafenib (SF) has been demonstrated in both in vitro and in vivo models of Leishmania infection, the therapeutic applications are limited due to severe drug-related toxicity; this is, in turn, due to non-specific distribution in the body. Thus, topical delivery has the advantage of the site directed delivery of SF. This research study evaluated SF-loaded hybrid nanofibers (NFs) which were composed of polycaprolactone (PCL) and cellulose acetate (CA) for the CL topical treatment. Accordingly, SF-loaded hybrid NFs were prepared using the electrospinning method. Formulation variables including total polymer concentration, drug/polymer ratio, and CA concentration were optimized using a full factorial design. The prepared SF-loaded NFs were then characterized for morphology, diameter, encapsulation efficiency (EE)%, drug loading (DL) %, and percentage of release efficiency during a 24-h period (RE24h%); the mechanical characteristics were also considered. The physical state of the drug in the optimized NF was evaluated by the X-ray diffraction analysis. Finally, its in vivo efficacy was determined in L. major-infected mice. The optimized formulation had a smooth, cylindrical, non-beaded shape fiber with a diameter of 281.44 nm, EE of 97.96%, DL of 7.48%, RE of 51.05%, ultimate tensile strength of 1.08 MPa, and Young's moduli of 74.96 MPa. The XRD analysis also demonstrated the amorphous state of SF in NF. Further, the in vivo results displayed the higher anti-leishmanial activity of the SF-loaded hybrid NF by efficiently healing lesion and successfully reducing the parasite burden. This, thus, indicated the potential of the clinical capability of the SF-loaded hybrid NF for the effective treatment of CL.
Collapse
Affiliation(s)
- Mahsa Alemomen
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, PO Box 81745-359, Isfahan, Iran
| | - Somayeh Taymouri
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, PO Box 81745-359, Isfahan, Iran.
| | - Sedigheh Saberi
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, PO Box 81745-359, Isfahan, Iran
| |
Collapse
|
14
|
Tahir R, Albargi HB, Ahmad A, Qadir MB, Khaliq Z, Nazir A, Khalid T, Batool M, Arshad SN, Jalalah M, Alsareii SA, Harraz FA. Development of Sustainable Hydrophilic Azadirachta indica Loaded PVA Nanomembranes for Cosmetic Facemask Applications. MEMBRANES 2023; 13:156. [PMID: 36837659 PMCID: PMC9959350 DOI: 10.3390/membranes13020156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Nanofiber-based facial masks have attracted the attention of modern cosmetic applications due to their controlled drug release, biocompatibility, and better efficiency. In this work, Azadirachta indica extract (AI) incorporated electrospun polyvinyl alcohol (PVA) nanofiber membrane was prepared to obtain a sustainable and hydrophilic facial mask. The electrospun AI incorporated PVA nanofiber membranes were characterized by scanning electron microscope, Ultraviolet-visible spectroscopy (UV-Vis) drug release, water absorption analysis, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging, and antibacterial activity (qualitative and quantitative) at different PVA and AI concentrations. The optimized nanofiber of 376 ± 75 nm diameter was obtained at 8 wt/wt% PVA concentration and 100% AI extract. The AI nanoparticles of size range 50~250 nm in the extract were examined through a zeta sizer. The water absorption rate of ~660% and 17.24° water contact angle shows good hydrophilic nature and water absorbency of the nanofiber membrane. The UV-Vis also analyzed fast drug release of >70% in 5 min. The prepared membrane also exhibits 99.9% antibacterial activity against Staphylococcus aureus and has 79% antioxidant activity. Moreover, the membrane also had good mechanical properties (tensile strength 1.67 N, elongation 48%) and breathability (air permeability 15.24 mm/s). AI-incorporated nanofiber membrane can effectively be used for facial mask application.
Collapse
Affiliation(s)
- Rizwan Tahir
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan
| | - Hasan B. Albargi
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Physics, Faculty of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - Adnan Ahmad
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan
| | - Muhammad Bilal Qadir
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan
| | - Zubair Khaliq
- Department of Materials, National Textile University, Faisalabad 37610, Pakistan
| | - Ahsan Nazir
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan
| | - Tanzeela Khalid
- Department of Dermatology, The University of Faisalabad, Faisalabad 38000, Pakistan
| | - Misbah Batool
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Salman Noshear Arshad
- Department of Chemistry and Chemical Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Electrical Engineering Department, College of Engineering, Najran University, Najran 11001, Saudi Arabia
| | - Saeed A. Alsareii
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Surgery, College of Medicine, Najran University, Najran 11001, Saudi Arabia
| | - Farid A. Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Najran 11001, Saudi Arabia
| |
Collapse
|
15
|
Reise M, Kranz S, Guellmar A, Wyrwa R, Rosenbaum T, Weisser J, Jurke A, Schnabelrauch M, Heyder M, Watts DC, Sigusch BW. Coaxial electrospun nanofibers as drug delivery system for local treatment of periodontitis. Dent Mater 2023; 39:132-139. [PMID: 36604256 DOI: 10.1016/j.dental.2022.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/15/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVES The aim of the present study was to prepare resorbable polylactide fibers for periodontitis treatment using coaxial electrospinning to optimize the release of metronidazole (MNA) by reducing the initial burst effect. METHODS Poly(L-lactide-co-D,L-lactide) (PLA) fibers mats with different distributions of metronidazole (MNA) were manufactured by coaxial electrospinning (COAX). By COAX spinning the central core of the fiber was enriched with 40% MNA (m/m), while the sheath of the fiber consisted of PLA only (test group). In contrast, fibers of the control group were prepared by conventional electrospinning with the same amount of MNA but with a homogenous drug distribution (HDD - homogenously distributed drug). The release of MNA was determined by analyzing aliquots from the fiber mats using UV-VIS spectroscopy. Agar diffusion tests were carried out to determine the antibacterial effect on periodontopathogenic bacteria. Biocompatibility was tested in direct contact to human gingival fibroblasts (HGF) for two days. RESULTS The COAX mats showed a retarded drug release compared to the conventional HDD fibers. After 24 h, 64% of total MNA was released cumulatively from the COAX fibers while 90% of the MNA was released from the HDD fibers (controls). The antibacterial effect of COAX fibers was significantly higher after 24 h compared to the HDD fibers. Cell cultivation revealed significant higher numbers of vital cells among the COAX mats. SIGNIFICANCE COAX fibers showed improved sustained MNA release compared to conventional fibers and can be seen as potential drug delivery systems in local periodontitis treatment.
Collapse
Affiliation(s)
- Markus Reise
- Department of Conservative Dentistry and Periodontology, Jena University Hospital, An der alten Post 4, 07743 Jena, Germany
| | - Stefan Kranz
- Department of Conservative Dentistry and Periodontology, Jena University Hospital, An der alten Post 4, 07743 Jena, Germany.
| | - André Guellmar
- Department of Conservative Dentistry and Periodontology, Jena University Hospital, An der alten Post 4, 07743 Jena, Germany
| | - Ralf Wyrwa
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Michael-Faraday-Str. 1, 07629 Hermsdorf, Germany
| | - Tobias Rosenbaum
- Department of Conservative Dentistry and Periodontology, Jena University Hospital, An der alten Post 4, 07743 Jena, Germany
| | - Jürgen Weisser
- Department of Biomaterials, INNOVENT e.V., Prüssingstr. 27b, 07745 Jena, Germany
| | - Aileen Jurke
- Department of Biomaterials, INNOVENT e.V., Prüssingstr. 27b, 07745 Jena, Germany
| | | | - Markus Heyder
- Department of Conservative Dentistry and Periodontology, Jena University Hospital, An der alten Post 4, 07743 Jena, Germany
| | - David C Watts
- University of Manchester, School of Medical Sciences, Oxford Road, M13 9PL Manchester, UK
| | - Bernd W Sigusch
- Department of Conservative Dentistry and Periodontology, Jena University Hospital, An der alten Post 4, 07743 Jena, Germany
| |
Collapse
|
16
|
Krysiak ZJ, Stachewicz U. Electrospun fibers as carriers for topical drug delivery and release in skin bandages and patches for atopic dermatitis treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1829. [PMID: 35817463 DOI: 10.1002/wnan.1829] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 01/31/2023]
Abstract
The skin is a complex layer system and the most important barrier between the environment and the organism. In this review, we describe some widespread skin problems, with a focus on eczema, which are affecting more and more people all over the world. Most of treatment methods for atopic dermatitis (AD) are focused on increasing skin moisture and protecting from bacterial infection and external irritation. Topical and transdermal treatments have specific requirements for drug delivery. Breathability, flexibility, good mechanical properties, biocompatibility, and efficacy are important for the patches used for skin. Up to today, electrospun fibers are mostly used for wound dressing. Their properties, however, meet the requirements for skin patches for the treatment of AD. Active agents can be incorporated into fibers by blending, coaxial or side-by-side electrospinning, and also by physical absorption post-processing. Drug release from the electrospun membranes is affected by drug and polymer properties and the technique used to combine them into the patch. We describe in detail the in vitro release mechanisms, parameters affecting the drug transport, and their kinetics, including theoretical approaches. In addition, we present the current research on skin patch design. This review summarizes the current extensive know-how on electrospun fibers as skin drug delivery systems, while underlining the advantages in their prospective use as patches for atopic dermatitis. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Zuzanna J Krysiak
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Krakow, Poland
| | - Urszula Stachewicz
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Krakow, Poland
| |
Collapse
|
17
|
Choommongkol V, Ruangsuriya J, Suttiarporn P, Punyodom W, Thapsukhon B. Polyester-releasing sesamin by electrospinning technique for the application of bone tissue engineering. Des Monomers Polym 2022; 25:231-244. [PMID: 35979198 PMCID: PMC9377240 DOI: 10.1080/15685551.2022.2111857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Sesamin, a significant lignin compound isolated from sesame (Sesamum indicum Linn), is well known for its antioxidant, anti-inflammatory, and tissue growth promotion properties. Bioabsorbable poly(ε-caprolactone) (PCL) is also a well-known polymer applied to various fields of medicine as biomaterials. The main objective of this research was to produce a prototype material from PCL and sesamin by electrospinning technique for bone tissue engineering applications. Dichloromethane and dimethylformamide (7:3) mixture was used as the solvent system for fabrication of PCL nanofiber with different loads of sesamin concentrations (1–6 wt%). The crystallinity levels decreasing and the entrapment efficiency increasing (86.87%–93.97%) were observed while sesamin concentrations were increased. The infrared spectra of electrospun mats confirmed that sesamin corporated into fibrous networks. The sesamin-loaded PCL nanofibrous membranes showed a significant release of sesamin in the range of 1.28–8.16 μg/mL within 10 weeks. The release data were fitted to zero order, first order, Higuchi and Korsmeyer-Peppas models to evaluate sesamin-releasing mechanisms and kinetics. The releasing kinetics of sesamin followed the Fickian diffusion mechanism of Korsmeyer-Peppas (R2 = 0.99). In vitro experiments with an osteosarcoma cell line (MG-63) revealed cell attachment, biocompatibility, and promotion of bone marker expression, the alkaline phosphatase (ALP) activity were studied. The electrospun PCL nanofiber loaded with sesamin had the potential as a scaffold for sesamin delivery to bone cells and applications in biomedicine.
Collapse
Affiliation(s)
- Vachira Choommongkol
- Department of Chemistry, Faculty of Science, Maejo University, Chiang Mai, Thailand
| | - Jetsada Ruangsuriya
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Panawan Suttiarporn
- Faculty of Science, Energy and Environment, King Mongkut’s University of Technology North Bangkok, Thailand
| | - Winita Punyodom
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | | |
Collapse
|
18
|
Peidavosi N, Azami M, Beheshtizadeh N, Ramazani Saadatabadi A. Piezoelectric conductive electrospun nanocomposite PCL/Polyaniline/Barium Titanate scaffold for tissue engineering applications. Sci Rep 2022; 12:20828. [PMID: 36460783 PMCID: PMC9718788 DOI: 10.1038/s41598-022-25332-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Recent trends in tissue engineering technology have switched to electrical potentials generated through bioactive scaffolds regarding their appropriate effects on cell behaviors. Preparing a piezo-electrical stimuli scaffold with high electrical conductivity for bone and cartilage tissue regeneration is the ultimate goal of the present study. Here, Barium Titanate nanoparticles (BaTiO3 NPs) were used as piezoelectric material and highly conductive binary doped Polyaniline nanoparticles (PANI NPs) were synthesized by oxidative polymerization. Polycaprolactone (PCL) was applied as carrier substrate polymer and conductive spun nanofibrous scaffolds of PCL/PANI composites were prepared in two different amounts of PANI (3 and 5 wt.%). The conductivity of PCL/PANI nanofibers has been analyzed by standard four probes test. Based on the obtained results, the PCL/PANI5 (with 5 wt.% PANI) was selected due to the superior electrical conductivity of 8.06 × 10-4 s cm - 1. Moreover, the piezoelectric nanofibrous scaffolds of PCL/BT composite were electrospun in three different amounts of BT (20, 30, and 40 wt.%). To investigate the synergic effect of conductive PANI and piezoelectric BT, ternary nanocomposite scaffolds of PCL/PANI/BT were prepared using the dual jet electrospinning technique. The piezoelectric properties have been analyzed by determining the produced voltage. The morphological assessment, contact angle, mechanical test, and MTT assay have been conducted to evaluate other properties including biocompatibility of nanofibrous scaffolds. The PCL/PANI5/BT40 composite resulted in an unprecedented voltage of 1.9 Volt. SEM results confirm that BT NPs have been distributed and embedded inside PCL fibers quite appropriately. Also, the chosen scaffolds were homogeneously intertwined and possessed an average fiber diameter of 288 ± 180 nm, and a contact angle of 92 ± 7°, making it a desirable surface for cell attachment and protein interactions. Moreover, Young's modulus, ultimate tensile stress, and elongation were obtained as 11 ± 1 MPa, 5 ± 0.6 MPa, and 109 ± 15% respectively. Obtained results assert the novel potential of piezo-electrical stimuli conductive nanocomposite scaffold for tissue engineering applications.
Collapse
Affiliation(s)
- Naeemeh Peidavosi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
19
|
Electrospun Fibers: Versatile Approaches for Controlled Release Applications. INT J POLYM SCI 2022. [DOI: 10.1155/2022/9116168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Electrospinning has been one of the most attractive methods of fiber fabrication in the last century. A lot of studies have been conducted, especially in tissue engineering and drug delivery using electrospun fibers. Loading many different drugs and bioactive agents on or within these fibers potentiates the efficacy of such systems; however, there are still no commercial products with this technology available in the market. Various methods have been developed to improve the mechanical and physicochemical behavior of structures toward more controllable delivery systems in terms of time, place, or quantity of release. In this study, most frequent methods used for the fabrication of controlled release electrospun fibers have been reviewed. Although there are a lot of achievements in the fabrication of controlled release fibers, there are still many challenges to be solved to reach a qualified, reproducible system applicable in the pharmaceutical industry.
Collapse
|
20
|
Poly(L-lactic acid)/poly(ethylene oxide) based composite electrospun fibers loaded with magnesium-aluminum layered double hydroxide nanoparticles. Int J Biol Macromol 2022; 217:562-571. [PMID: 35839957 DOI: 10.1016/j.ijbiomac.2022.07.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022]
Abstract
Two types of MgAl layered double hydroxide nanoparticles, MgAl LDH, at Mg:Al ratio of 2:1 and 3:1were prepared and used as inorganic fillers to improve the mechanical properties of poly(lactic acid)/poly(ethylene oxide) (PLA/PEO) electrospun composite fibers. Their detailed structural characterization was performed using X-ray diffraction (XRD) and transmission electron spectroscopy (TEM) techniques. Spectroscopic, thermal, mechanical, and morphological properties of the electrospun composite fibers, and cell proliferation on their surface, were examined. XRD and TEM analyses showed that the LDH nanoparticles were 50 nm in size and the Mg:Al ratio did not affect the average spacing between crystal layers. Fourier transform infrared (FTIR) and thermal analyses (TA) revealed the compatibility of the filler and the polymer matrix. The nanoparticles considerably improved the mechanical properties of the electrospun mats. The tensile strength and elongation at break values of the composite samples increased from 0.22 MPA to 0.40 MPa and 12.2 % to 45.66 %, respectively, resulting from the interaction between LDH and the polymer matrix. Scanning electron microscopy (SEM) and MTT analyses demonstrated that the electrospun composite fibers supported the SaOS-2 cells attachment and proliferation on the fiber surfaces, along with their suitable cytocompatibility.
Collapse
|
21
|
Basko AV, Lebedeva TN, Yurov MY, Pochivalov KV. The Effect of Physical State of Thymol on the Duration of Its Release from the Mixture with a Semicrystalline Polymer: Thermodynamic Aspects and Kinetics of the Process. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Homaeigohar S, Boccaccini AR. Nature-Derived and Synthetic Additives to poly(ɛ-Caprolactone) Nanofibrous Systems for Biomedicine; an Updated Overview. Front Chem 2022; 9:809676. [PMID: 35127651 PMCID: PMC8807494 DOI: 10.3389/fchem.2021.809676] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
As a low cost, biocompatible, and bioresorbable synthetic polymer, poly (ɛ-caprolactone) (PCL) is widely used for different biomedical applications including drug delivery, wound dressing, and tissue engineering. An extensive range of in vitro and in vivo tests has proven the favourable applicability of PCL in biomedicine, bringing about the FDA approval for a plethora of PCL made medical or drug delivery systems. This popular polymer, widely researched since the 1970s, can be readily processed through various techniques such as 3D printing and electrospinning to create biomimetic and customized medical products. However, low mechanical strength, insufficient number of cellular recognition sites, poor bioactivity, and hydrophobicity are main shortcomings of PCL limiting its broader use for biomedical applications. To maintain and benefit from the high potential of PCL, yet addressing its physicochemical and biological challenges, blending with nature-derived (bio)polymers and incorporation of nanofillers have been extensively investigated. Here, we discuss novel additives that have been meant for enhancement of PCL nanofiber properties and thus for further extension of the PCL nanofiber application domain. The most recent researches (since 2017) have been covered and an updated overview about hybrid PCL nanofibers is presented with focus on those including nature-derived additives, e.g., polysaccharides and proteins, and synthetic additives, e.g., inorganic and carbon nanomaterials.
Collapse
Affiliation(s)
- Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
23
|
Reactive Magnetron Plasma Modification of Electrospun PLLA Scaffolds with Incorporated Chloramphenicol for Controlled Drug Release. Polymers (Basel) 2022; 14:polym14030373. [PMID: 35160362 PMCID: PMC8839200 DOI: 10.3390/polym14030373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Surface modification with the plasma of the direct current reactive magnetron sputtering has demonstrated its efficacy as a tool for enhancing the biocompatibility of polymeric electrospun scaffolds. Improvement of the surface wettability of materials with water, as well as the formation of active chemical bonds in the near-surface layers, are the main reasons for the described effect. These surface effects are also known to increase the release rate of drugs incorporated in fibers. Herein, we investigated the effect of plasma modification on the chloramphenicol release from electrospun poly (lactic acid) fibrous scaffolds. Scaffolds with high-50 wt./wt.%-drug content were obtained. It was shown that plasma modification leads to an increase in the drug release rate and drug diffusion coefficient, while not deteriorating surface morphology and mechanical properties of scaffolds. The materials' antibacterial activity was observed to increase in the first day of the experiment, while remaining on the same level as the unmodified group during the next six days. The proposed technique for modifying the surface of scaffolds will be useful for obtaining drug delivery systems with controlled accelerated release, which can expand the possibilities of local applications of antibiotics and other drugs.
Collapse
|
24
|
Wang Y, Liu Y, Zhang X, Liu N, Yu X, Gao M, Wang W, Wu T. Engineering Electrospun Nanofibers for the Treatment of Oral Diseases. Front Chem 2022; 9:797523. [PMID: 34988063 PMCID: PMC8721107 DOI: 10.3389/fchem.2021.797523] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
With the increase of consumption of high-sugar foods, beverages, tobacco, and alcohol, the incidence rate of oral diseases has been increasing year by year. Statistics showed that the prevalence of oral diseases such as dental caries, dental pulpal disease, and periodontal disease has reached as high as 97% in 2015 in China. It is thus urgent to develop functional materials or products for the treatment of oral diseases. Electrospinning has been a widely used technology that is capable of utilizing polymer solution to generate micro/nano fibers under an appropriate high voltage condition. Owing to their excellent structures and biological performances, materials prepared by electrospinning technology have been used for a wide range of oral-related applications, such as tissue restoration, controlled drug release, anti-cancer, etc. In this regard, this article reviews the application and progress of electrospun nanofibers to various oral diseases in recent years. Firstly, engineering strategies of a variety of nanofiber structures together with their resultant functions will be introduced. Then, biological functions of electrospun nanofibers as well as their applications in the treatment of oral diseases are summarized and demonstrated. Finally, the development viewpoint of functional nanofibers is prospected, which is expected to lay the foundation and propose the direction for further clinical application.
Collapse
Affiliation(s)
- Yuanfei Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yingnan Liu
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
| | - Xiaopei Zhang
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China.,Qingdao Medical College, Qingdao University, Qingdao, China
| | - Na Liu
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China.,Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xixi Yu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Meihua Gao
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Wanchun Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Tong Wu
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China.,Qingdao Medical College, Qingdao University, Qingdao, China.,Department of Cosmetic and Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
25
|
Ulker Turan C, Guvenilir Y. Electrospun poly(ω-pentadecalactone-co-ε-caprolactone)/gelatin/chitosan ternary nanofibers with antibacterial activity for treatment of skin infections. Eur J Pharm Sci 2022; 170:106113. [PMID: 34986416 DOI: 10.1016/j.ejps.2021.106113] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 11/26/2022]
Abstract
In recent years, there is an increasing attention on biocompatible electrospun nanofibers for drug delivery applications since they provide high surface area, controlled and sustained drug release, and they mimic the extracellular matrix. In the present study, tetracycline hydrochloride (TCH) antibiotic loaded poly(ω-pentadecalactone-co-ε-caprolactone)/gelatin/chitosan nanofibrous membranes were fabricated as a controlled drug delivery system. Poly(ω-pentadecalactone-co-ε-caprolactone) copolymer has been enzymatically synthesized in previous studies, thus it provides an originality to the membrane. Combination of a synthetic polymer, a protein, and a polysaccharide in order to obtain a synergetic effect is another novelty of this work and there exists limited examples for such electrospun membrane. Varied amounts of TCH was electrospun together with poly(ω-pentadecalactone-co-ε-caprolactone)/gelatin/chitosan (50/40/10 vol ratio) polymer blend (fiber diameters ranged between 85.7-225.2 nm) and several characterizations (morphological and molecular structure, wettability characteristics, and thermal behavior) were applied to examine the drug incorporation. Subsequently, in vitro drug release studies were conducted and mathematical modeling was applied for the detection of transport mechanism of drug. TCH release proceeded 14 days through an initial burst release in first hour and followed by a sustained release. 1% TCH-loaded sample was shown as optimal preparation with 96.5% total drug release and 11.8% initial burst release. TCH-loaded preparations demonstrated a good antibacterial activity against Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacteria and a limited effect (no inhibition zone observed below 3% TCH concentration) against Gram-negative (Escherichia coli) bacterium. Thus, TCH concentrations of ≥ 3% could be preferred to obtain a wide-spectrum effectiveness. The presented drug delivery system is suggested to be applied for treatment of skin infections as a wound dressing device.
Collapse
Affiliation(s)
- Cansu Ulker Turan
- Istanbul Technical University, Department of Chemical Engineering, Istanbul, Turkey.
| | - Yuksel Guvenilir
- Istanbul Technical University, Department of Chemical Engineering, Istanbul, Turkey
| |
Collapse
|
26
|
Pinzón-García AD, Sinisterra R, Cortes M, Mesa F, Ramírez-Clavijo S. Polycaprolactone nanofibers as an adjuvant strategy for Tamoxifen release and their cytotoxicity on breast cancer cells. PeerJ 2021; 9:e12124. [PMID: 34760343 PMCID: PMC8556714 DOI: 10.7717/peerj.12124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the second leading cause of death in women, and tamoxifen citrate (TMX) is accepted widely for the treatment of hormone receptor-positive breast cancers. Several local drug-delivery systems, including nanofibers, have been developed for antitumor treatment. Nanofibers are biomaterials that mimic the natural extracellular matrix, and they have been used as controlled release devices because they enable highly efficient drug loading. The purpose of the present study was to develop polycaprolactone (PCL) nanofibers incorporating TMX for use in the treatment of breast tumors. Pristine PCL and PCL-TMX nanofibers were produced by electrospinning and characterized physiochemically using different techniques. In addition, an in vitro study of TMX release from the nanofibers was performed. The PCL-TMX nanofibers showed sustained TMX release up to 14 h, releasing 100% of the TMX. The Resazurin reduction assay was used to evaluate the TMX cytotoxicity on MCF-7 breast cancer cell line and PBMCs human. The PCL-TMX nanofiber was cytotoxic toPBMCs and MCF-7. Based on these results, the PCL-TMX nanofibers developed have potential as an alternative for local chronic TMX use for breast cancer treatment, however tissue tests must be done.
Collapse
Affiliation(s)
- Ana D Pinzón-García
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ruben Sinisterra
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Cortes
- Restorative Dentistry Department, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fredy Mesa
- Faculty of Natural Sciences, Department of Biology, Universidad del Rosario, Bogotá, Colombia
| | - Sandra Ramírez-Clavijo
- Faculty of Natural Sciences, Department of Biology, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
27
|
Buie TW, Whiteley M, McCune J, Lan Z, Jose A, Balakrishnan A, Wenke J, Cosgriff-Hernandez E. Comparative efficacy of resorbable fiber wraps loaded with gentamicin sulfate or gallium maltolate in the treatment of osteomyelitis. J Biomed Mater Res A 2021; 109:2255-2268. [PMID: 33950552 PMCID: PMC10641742 DOI: 10.1002/jbm.a.37210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/05/2022]
Abstract
The high incidence of osteomyelitis associated with critical-sized bone defects raises clinical challenges in fracture healing. Clinical use of antibiotic-loaded bone cement as an adjunct therapy is limited by incompatibility with many antimicrobials, sub-optimal release kinetics, and requirement of surgical removal. Furthermore, overuse of antibiotics can lead to bacterial modifications that increase efflux, decrease binding, or cause inactivation of the antibiotics. Herein, we compared the efficacy of gallium maltolate, a new metal-based antimicrobial, to gentamicin sulfate released from electrospun poly(lactic-co-glycolic) acid (PLGA) wraps in the treatment of osteomyelitis. In vitro evaluation demonstrated sustained release of each antimicrobial up to 14 days. A Kirby Bauer assay indicated that the gentamicin sulfate-loaded wrap inhibited the growth of osteomyelitis-derived isolates, comparable to the gentamicin sulfate powder control. In contrast, the gallium maltolate-loaded wrap did not inhibit bacteria growth. Subsequent microdilution assays indicated a lower than expected sensitivity of the osteomyelitis strain to the gallium maltolate with release concentrations below the threshold for bactericidal activity. A comparison of the selectivity indices indicated that gentamicin sulfate was less toxic and more efficacious than gallium maltolate. A pilot study in a contaminated femoral defect model confirmed that the sustained release of gentamicin sulfate from the electrospun wrap resulted in bacteria density reduction on the surrounding bone, muscle, and hardware below the threshold that impedes healing. Overall, these findings demonstrate the efficacy of a resorbable, antimicrobial wrap that can be used as an adjunct or stand-alone therapy for controlled release of antimicrobials in the treatment of osteomyelitis.
Collapse
Affiliation(s)
- Taneidra W. Buie
- Department of Biomedical Engineering, The University of Texas, Austin, Texas, 78712
| | - Michael Whiteley
- Department of Orthopaedic Trauma, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, 78234
| | - Joshua McCune
- Department of Biomedical Engineering, The University of Texas, Austin, Texas, 78712
| | - Ziyang Lan
- Department of Biomedical Engineering, The University of Texas, Austin, Texas, 78712
| | - Anupriya Jose
- Department of Biomedical Engineering, The University of Texas, Austin, Texas, 78712
| | - Annika Balakrishnan
- Department of Biomedical Engineering, The University of Texas, Austin, Texas, 78712
| | - Joseph Wenke
- Department of Orthopaedic Trauma, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, 78234
| | | |
Collapse
|
28
|
Domínguez-Robles J, Shen T, Cornelius VA, Corduas F, Mancuso E, Donnelly RF, Margariti A, Lamprou DA, Larrañeta E. Development of drug loaded cardiovascular prosthesis for thrombosis prevention using 3D printing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112375. [PMID: 34579894 PMCID: PMC8505756 DOI: 10.1016/j.msec.2021.112375] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/22/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease (CVD) is a general term for conditions which are the leading cause of death in the world. Quick restoration of tissue perfusion is a key factor to combat these diseases and improve the quality and duration of patients' life. Revascularization techniques include angioplasty, placement of a stent, or surgical bypass grafting. For the latter technique, autologous vessels remain the best clinical option; however, many patients lack suitable autogenous due to previous operations and they are often unsuitable. Therefore, synthetic vascular grafts providing antithrombosis, neointimal hyperplasia inhibition and fast endothelialization are still needed. To address these limitations, 3D printed dipyridamole (DIP) loaded biodegradable vascular grafts were developed. Polycaprolactone (PCL) and DIP were successfully mixed without solvents and then vascular grafts were 3D printed. A mixture of high and low molecular weight PCL was used to better ensure the integration of DIP, which would offer the biological functions required above. Moreover, 3D printing technology provides the ability to fabricate structures of precise geometries from a 3D model, enabling to customize the vascular grafts' shape or size. The produced vascular grafts were fully characterized through multiple techniques and the last step was to evaluate their drug release, antiplatelet effect and cytocompatibility. The results suggested that DIP was properly mixed and integrated within the PCL matrix. Moreover, these materials can provide a sustained and linear drug release without any obvious burst release, or any faster initial release rates for 30 days. Compared to PCL alone, a clear reduced platelet deposition in all the DIP-loaded vascular grafts was evidenced. The hemolysis percentage of both materials PCL alone and PCL containing 20% DIP were lower than 4%. Moreover, PCL and 20% DIP loaded grafts were able to provide a supportive environment for cellular attachment, viability, and growth.
Collapse
Affiliation(s)
- Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Tingjun Shen
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Victoria A Cornelius
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Francesca Corduas
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus, Newtownabbey BT37 0QB, UK
| | - Elena Mancuso
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus, Newtownabbey BT37 0QB, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Andriana Margariti
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK.
| |
Collapse
|
29
|
Zhao B, Chen J, Zhao L, Deng J, Li Q. A simvastatin-releasing scaffold with periodontal ligament stem cell sheets for periodontal regeneration. J Appl Biomater Funct Mater 2021; 18:2280800019900094. [PMID: 32931350 DOI: 10.1177/2280800019900094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Simvastatin (SIM) has been documented to induce the osteogenic differentiation of periodontal ligament stem cells (PDLSCs). To establish an efficient release system for periodontal regeneration, a polycaprolactone (PCL) membrane scaffold containing SIM was electrospun and evaluated. The obtained PCL-SIM membrane scaffold showed sustained release up to 28 days, without deleterious effect on proliferation of PDLSCs on the scaffolds. PDLSCs were seeded onto scaffolds and their osteogenic differentiation was evaluated. After 21 days, expressions of collagen type I, alkaline phosphatase and bone sialoprotein genes were significantly upregulated and mineralized matrix formation was increased on the PCL-SIM scaffolds compared with the PCL scaffolds. In a heterotopic periodontal regeneration model, a cell sheet-scaffold construct was assembled by placement of multilayers of PDLSC sheets on PCL or PCL-SIM scaffolds, and these were then placed between dentin and ceramic bovine bone for subcutaneous implantation in athymic mice. After 8 weeks, the PCL-SIM membrane showed formation of significantly more ectopic cementum-like mineral on the dentin surface. These findings demonstrated that the PCL-SIM membrane scaffold promotes cementum-like tissue formation by sustained drug release, suggesting the feasibility of its therapeutic use with PDLSC sheets to improve periodontal regeneration.
Collapse
Affiliation(s)
- Bingjiao Zhao
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Jing Chen
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Liru Zhao
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- Department of Orthodontics, School of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Jiajia Deng
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Qiang Li
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Srithep Y, Akkaprasa T, Pholharn D, Morris J, Liu SJ, Patrojanasophon P, Ngawhirunpat T. Metronidazole-loaded polylactide stereocomplex electrospun nanofiber mats for treatment of periodontal disease. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Lam LRW, Schilling K, Romas S, Misra R, Zhou Z, Caton JG, Zhang X. Electrospun core-shell nanofibers with encapsulated enamel matrix derivative for guided periodontal tissue regeneration. Dent Mater J 2021; 40:1208-1216. [PMID: 34121026 DOI: 10.4012/dmj.2020-412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The osteogenic effect of a composite electrospun core-shell nanofiber membrane encapsulated with Emdogain® (EMD) was evaluated. The membrane was developed through coaxial electrospinning using polycaprolactone as the shell and polyethylene glycol as the core. The effects of the membrane on the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) were examined using Alizarin Red S staining and qRT-PCR. Characterization of the nanofiber membrane demonstrated core-shell morphology with a mean diameter of ~1 µm. Examination of the release of fluorescein isothiocyanate-conjugated bovine serum albumin (FITC-BSA) from core-shell nanofibers over a 22-day period showed improved release profile of encapsulated proteins as compared to solid nanofibers. When cultured on EMD-containing core-shell nanofibers, PDLSCs showed significantly improved osteogenic differentiation with increased Alizarin Red S staining and enhanced osteogenic gene expression, namely OCN, RUNX2, ALP, and OPN. Core-shell nanofiber membranes may improve outcomes in periodontal regenerative therapy through simultaneous mechanical barrier and controlled drug delivery function.
Collapse
Affiliation(s)
- Linda R Wang Lam
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry.,Department of Periodontology, Eastman Institute for Oral Health, University of Rochester, School of Medicine and Dentistry
| | - Kevin Schilling
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry.,Department of Biomedical Engineering, University of Rochester
| | - Stephen Romas
- Department of Pediatrics, University of Rochester, School of Medicine and Dentistry
| | - Ravi Misra
- Department of Pediatrics, University of Rochester, School of Medicine and Dentistry
| | - Zhuang Zhou
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry
| | - Jack G Caton
- Department of Periodontology, Eastman Institute for Oral Health, University of Rochester, School of Medicine and Dentistry
| | - Xinping Zhang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry
| |
Collapse
|
32
|
Ahmad Wsoo M, Izwan Abd Razak S, Shahir S, Ahmed Abdullah Al‐Moalemi H, Rafiq Abdul Kadir M, Hasraf Mat Nayan N. Development of prolonged drug delivery system using electrospun cellulose acetate/polycaprolactone nanofibers: Future subcutaneous implantation. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mohammed Ahmad Wsoo
- Department of Biosciences, Faculty of Science Universiti Teknologi Malaysia Skudai Malaysia
- Department of Chemistry, College of Science University of Raparin Rania Iraq
| | - Saiful Izwan Abd Razak
- BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering Universiti Teknologi Malaysia Skudai Malaysia
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia Skudai Malaysia
| | - Shafinaz Shahir
- Department of Biosciences, Faculty of Science Universiti Teknologi Malaysia Skudai Malaysia
| | | | - Mohammed Rafiq Abdul Kadir
- BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering Universiti Teknologi Malaysia Skudai Malaysia
| | | |
Collapse
|
33
|
Pardini F, Iregui Á, Faccia P, Amalvy J, González A, Irusta L. Development and characterization of electrosprayed microcaspules of poly ε-caprolactone with citronella oil for mosquito-repellent application. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2021. [DOI: 10.1080/1023666x.2021.1916726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Francisco Pardini
- Grupo (Nano)Materiales Poliméricos - Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (CCT La Plata CONICET - Universidad Nacional de La Plata), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina
- Centro de Investigación y Desarrollo en Ciencia y Tecnología de Materiales (CITEMA - UTN/CIC), Buenos Aires, Argentina
| | - Álvaro Iregui
- POLYMAT, Department of Polymer Science and Technology, University of the Basque Country UPV-EHU, Donostia, Spain
| | - Paula Faccia
- Grupo (Nano)Materiales Poliméricos - Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (CCT La Plata CONICET - Universidad Nacional de La Plata), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina
| | - Javier Amalvy
- Grupo (Nano)Materiales Poliméricos - Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (CCT La Plata CONICET - Universidad Nacional de La Plata), La Plata, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), La Plata, Argentina
- Centro de Investigación y Desarrollo en Ciencia y Tecnología de Materiales (CITEMA - UTN/CIC), Buenos Aires, Argentina
| | - Alba González
- POLYMAT, Department of Polymer Science and Technology, University of the Basque Country UPV-EHU, Donostia, Spain
| | - Lourdes Irusta
- POLYMAT, Department of Polymer Science and Technology, University of the Basque Country UPV-EHU, Donostia, Spain
| |
Collapse
|
34
|
Chandrashekhar P, Minooei F, Arreguin W, Masigol M, Steinbach-Rankins JM. Perspectives on Existing and Novel Alternative Intravaginal Probiotic Delivery Methods in the Context of Bacterial Vaginosis Infection. AAPS J 2021; 23:66. [PMID: 33973067 PMCID: PMC8356663 DOI: 10.1208/s12248-021-00602-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/27/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial vaginosis (BV) is one of the most common vaginal infections that affects hundreds of millions of women of reproductive age, worldwide. Traditional treatment strategies, such as oral and topical antibiotics, have shown efficacy against BV, but frequent recurrence of infection and the development of antibiotic-resistant bacteria remain as significant challenges. Alternatively, recent progress in understanding immune, microbiological, and metabolic interactions in the vaginal microbiota has prompted the consideration of administering probiotic organisms to restore and maintain vaginal health within the context of BV prevention and treatment. Given this, the objective of this review is to discuss existing and potential alternative approaches to deliver, and to potentially sustain the delivery of probiotics, to prevent and/or treat BV infections. First, a brief overview is provided regarding the probiotic species and combinatorial probiotic strategies that have shown promise in the treatment of BV and in restoring female reproductive health. Additionally, the advantages and challenges associated with current oral and intravaginal probiotic delivery platforms are discussed. Lastly, we present emerging and promising alternative dosage forms, such as electrospun fibers and 3D bioprinted scaffolds, that may be adapted as new strategies to intravaginally deliver probiotic organisms. Graphical abstract.
Collapse
Affiliation(s)
| | - Farnaz Minooei
- Department of Chemical Engineering, University of Louisville Speed School of Engineering, Louisville, Kentucky, USA
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Wenndy Arreguin
- Department of Bioengineering, University of Louisville Speed School of Engineering, 505 S. Hancock St., Room 623, Louisville, Kentucky, 40202, USA
| | - Mohammadali Masigol
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Bioengineering, University of Louisville Speed School of Engineering, 505 S. Hancock St., Room 623, Louisville, Kentucky, 40202, USA
| | - Jill M Steinbach-Rankins
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA.
- Department of Bioengineering, University of Louisville Speed School of Engineering, 505 S. Hancock St., Room 623, Louisville, Kentucky, 40202, USA.
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA.
| |
Collapse
|
35
|
Abasalta M, Asefnejad A, Khorasani MT, Saadatabadi AR. Fabrication of carboxymethyl chitosan/poly(ε-caprolactone)/doxorubicin/nickel ferrite core-shell fibers for controlled release of doxorubicin against breast cancer. Carbohydr Polym 2021; 257:117631. [PMID: 33541657 DOI: 10.1016/j.carbpol.2021.117631] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/26/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023]
Abstract
The coaxial electrospinning for producing core-shell nanofibers due to control the release profile of drug by the shell layer has been developed. N-carboxymethyl chitosan (CMC)-polyvinyl alcohol (core)/poly(ε-caprolactone) (PCL) (shell) nanofibers were produced via coaxial electrospinning. Doxorubicin (DOX) and nickel ferrite nanoparticles were incorporated into the nanofibers for controlled release of DOX against MCF-7 breast cancer. The minimum CMC/PCL fiber diameter was found to be 300 nm by optimizing of three variables including voltage to distance ratio (1.5-2.5 kV/cm), CMC concentration (4-6 wt.%) and PCL concentration (8-12 wt.%). The synthesized core-shell fibers were characterized using FTIR, XRD, SEM, and TEM analysis. The extended release and controlled release of DOX from core-shell nanofibers were achieved under physiological pH without external magnetic field (EMF) and acidic pH with EMF during 25 and 7 days, respectively. The maximum cytotoxicity of MCF-7 breast cancer cells was about 83 % using CMC/PCL/nickel ferrite 10 % nanofibers and EMF.
Collapse
Affiliation(s)
- Mahdi Abasalta
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azadeh Asefnejad
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mohammad Taghi Khorasani
- Biomaterials Department of Iran Polymer and Petrochemical Institute, P.O. Box 14965/159, Tehran, Iran
| | - Ahmad Ramazani Saadatabadi
- Chemical and Petroleum Engineering Department, Sharif University of Technology, P.O. Box 11365-9465, Tehran, Iran
| |
Collapse
|
36
|
Gholami Z, Hasanpour S, Sadigh S, Johari S, Shahveghar Z, Ataei K, Javari E, Amani M, Javadi Kia L, Delir Akbari Z, Nazari Z, Maleki Dizaj S, Rezaei Y. Antibacterial agent-releasing scaffolds in dental tissue engineering. JOURNAL OF ADVANCED PERIODONTOLOGY & IMPLANT DENTISTRY 2021; 13:43-47. [PMID: 35919917 PMCID: PMC9327489 DOI: 10.34172/japid.2021.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/27/2021] [Indexed: 11/22/2022]
Abstract
It seems quite challenging in tissue engineering to synthesize a base material with a range of essential activities, including biocompatibility, nontoxicity, and antimicrobial activities. Various types of materials are synthesized to solve the problem. This study aimed to provide the latest relevant information for practitioners about antibacterial scaffolds in dental tissue engineering. The PubMed search engine was used to review the relevant studies with a combination of the following terms as search queries: tissue engineering, scaffolds, antimicrobial, dentistry, dental stem cells, and oral diseases. It is noteworthy to state that only the terms related to tissue engineering in dentistry were considered. The antimicrobial scaffolds support the local tissue regeneration and prevent adverse inflammatory reactions; however, not all scaffolds have such positive characteristics. To resolve this potential defect, different antimicrobial agents are used during the synthesis process. Innovative methods in guided tissue engineering are actively working towards new ways to control oral and periodontal diseases.
Collapse
Affiliation(s)
- Zahra Gholami
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Hasanpour
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Sadigh
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sana Johari
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Shahveghar
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kosar Ataei
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Eelahe Javari
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Amani
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Javadi Kia
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Delir Akbari
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Nazari
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yashar Rezaei
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
Vitamin D 3-loaded electrospun cellulose acetate/polycaprolactone nanofibers: Characterization, in-vitro drug release and cytotoxicity studies. Int J Biol Macromol 2021; 181:82-98. [PMID: 33771547 DOI: 10.1016/j.ijbiomac.2021.03.108] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 01/19/2023]
Abstract
Vitamin D deficiency is now a global health problem; despite several drug delivery systems for carrying vitamin D due to low bioavailability and loss bioactivity. Developing a new drug delivery system to deliver vitamin D3 is a strong incentive in the current study. Hence, an implantable drug delivery system (IDDS) was developed from the electrospun cellulose acetate (CA) and ε-polycaprolactone (PCL) nanofibrous membrane, in which the core of implants consists of vitamin D3-loaded CA nanofiber (CAVD) and enclosed in a thin layer of the PCL membrane (CAVD/PCL). CA nanofibrous mat loaded with vitamin D3 at the concentrations of 6, 12, and 20% (w/w) of vitamin D3 were produced using electrospinning. The smooth and bead-free fibers with diameters ranged from 324 to 428 nm were obtained. The fiber diameters increased with an increase in vitamin D3 content. The controlled drug release profile was observed over 30-days, which fit with the zero-order model (R2 > 0.96) in the first stage. The mechanical properties of IDDS were improved. Young's modulus and tensile strength of CAVD/PCL (dry) were161 ± 14 and 13.07 ± 2.5 MPa, respectively. CA and PCL nanofibers are non-cytotoxic based on the results of the in-vitro cytotoxicity studies. This study can further broaden in-vivo study and provide a reference for developing a new IDDS to carry vitamin D3 in the future.
Collapse
|
38
|
Ulker Turan C, Metin A, Guvenilir Y. Controlled release of tetracycline hydrochloride from poly(ω-pentadecalactone-co-ε-caprolactone)/gelatin nanofibers. Eur J Pharm Biopharm 2021; 162:59-69. [PMID: 33727142 DOI: 10.1016/j.ejpb.2021.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/02/2021] [Accepted: 02/18/2021] [Indexed: 01/08/2023]
Abstract
Development of drug delivery systems is an extensively researched area in biomedical field. In recent years, there is an increasing interest on fabrication of biocompatible nanofibrous drug delivery systems. In the present study, poly(ω-pentadecalactone-co-ε-caprolactone)/gelatin nanofibrous membranes were fabricated for the controlled delivery and release of tetracycline hydrochloride (TCH) antibiotic. Poly(ω-pentadecalactone-co-ε-caprolactone) content provides an originality to the membrane, since it has been synthesized enzymatically previously. Varied amounts of tetracycline hydrochloride including poly(ω-pentadecalactone-co-ε-caprolactone)/gelatin (1:1, v:v) binary polymer blend was electrospun and characterizations (morphological and molecular structure, wettability characteristics, and thermal behavior) were applied to investigate the incorporation of drug molecule. Afterwards, in vitro drug release studies were carried out and mathematical modelling was applied to drug release data in order to clarify the transport mechanism of drug. TCH release profile comprised of an initial burst release in first hour and followed by a sustained release through 14 days which allowed sufficient antibacterial activity against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacteria. The presented drug delivery system may be applied as an antibacterial wound dressing device for skin infections.
Collapse
Affiliation(s)
- Cansu Ulker Turan
- Istanbul Technical University, Department of Chemical Engineering, Istanbul, Turkey.
| | - Ayse Metin
- Istanbul Technical University, Polymer Science and Technology, Istanbul, Turkey
| | - Yuksel Guvenilir
- Istanbul Technical University, Department of Chemical Engineering, Istanbul, Turkey
| |
Collapse
|
39
|
Narayanan V, Alam M, Ahmad N, Balakrishnan SB, Ganesan V, Shanmugasundaram E, Rajagopal B, Thambusamy S. Electrospun poly (vinyl alcohol) nanofibers incorporating caffeic acid/cyclodextrins through the supramolecular assembly for antibacterial activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119308. [PMID: 33360058 DOI: 10.1016/j.saa.2020.119308] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Here, we prepared the solid inclusion complexes between Caffeic acid (CA) and Cyclodextrins (β- and γ-CDs) (CA/CDs) that were effectively embedded into Poly (vinyl alcohol) (PVA) electrospun nanofibers via electrospinning technique to enhanced solubility and antibacterial activity. In tested Cyclodextrins are β-and γ-CDs with CA in the ratio of 1:1 resulting in the formation of CA/CDs by co-precipitation method. The physical properties of CA/CDs were examined by FT-IR, UV, and Raman Spectroscopy. The phase solubility test showed a much higher solubility of CA due to inclusion complexes (ICs). Furthermore, CA/β-CD and CA/γ-CD perfected achieved 0.70:1 and 0.80:1 the molar ratio of ICs, confirmed by NMR studies. The fiber size distribution, average diameter, and morphology features were evaluated by SEM analysis. The dissolution profile of PVA/CA and PVA/CA/CDs were tested within 150 min, resulting in CA dissolved in PVA/CA/CDs slightly higher than PVA/CA nanofibers due to enhanced solubility of ICs. Moreover, PVA/CA/CDs exhibit high antibacterial activity against gram-positive bacteria of E-Coli and gram-negative bacteria of S. aureus. Finally, these results suggest that PVA/CA/CDs may be promising materials for active food packaging applications.
Collapse
Affiliation(s)
- Vimalasruthi Narayanan
- Department of Industrial Chemistry, Alagappa University, Karaikudi 630002, Tamil Nadu, India
| | - Manawwer Alam
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Vigneshkumar Ganesan
- Department of Industrial Chemistry, Alagappa University, Karaikudi 630002, Tamil Nadu, India
| | | | - Brindha Rajagopal
- Department of Industrial Chemistry, Alagappa University, Karaikudi 630002, Tamil Nadu, India
| | - Stalin Thambusamy
- Department of Industrial Chemistry, Alagappa University, Karaikudi 630002, Tamil Nadu, India.
| |
Collapse
|
40
|
Noor N, Gani A, Gani A, Shah A, Ashraf ZU. Exploitation of polyphenols and proteins using nanoencapsulation for anti-viral and brain boosting properties - Evoking a synergistic strategy to combat COVID-19 pandemic. Int J Biol Macromol 2021; 180:375-384. [PMID: 33716131 PMCID: PMC7946821 DOI: 10.1016/j.ijbiomac.2021.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/31/2021] [Accepted: 03/04/2021] [Indexed: 12/16/2022]
Abstract
The world is currently under the threat of COVID pandemic and has focused every dimension of research in finding a cure to this novel disease. In this current situation, people are facing mental stress, agony, fear, depression and other associated symptoms which are taking a toll on their overall mental health. Nanoencapsulation of certain brain boosting polyphenols including quercetin, caffeine, cocoa flavanols and proteins like lectins can become new area of interest in the present scenario. Besides the brain boosting benefits, we have also highlighted the anti- viral activities of these compounds which we assume can play a possible role in combating COVID-19 given to their previous history of action against certain viruses. This review outlines the nanoencapsulation approaches of such synergistic compounds as a novel strategy to take the ongoing research a step ahead and also provides a new insight in bringing the role of nanotechnology in addressing the issues related to COVID pandemic.
Collapse
Affiliation(s)
- Nairah Noor
- Laboratory of Functional Food and Nutraceuticals, Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Adil Gani
- Laboratory of Functional Food and Nutraceuticals, Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India; Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, United States.
| | - Asir Gani
- Laboratory of Functional Food and Nutraceuticals, Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Asima Shah
- Laboratory of Functional Food and Nutraceuticals, Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Zanoor Ul Ashraf
- Laboratory of Functional Food and Nutraceuticals, Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
41
|
Lan X, Wang H, Bai J, Miao X, Lin Q, Zheng J, Ding S, Li X, Tang Y. Multidrug-loaded electrospun micro/nanofibrous membranes: Fabrication strategies, release behaviors and applications in regenerative medicine. J Control Release 2021; 330:1264-1287. [PMID: 33232749 DOI: 10.1016/j.jconrel.2020.11.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 01/02/2023]
Abstract
Electrospun micro/nanofibrous membranes (EFMs) have been widely investigated as local drug delivery systems. Multiple drugs can be simultaneously incorporated into one EFM to create synergistic effects, reduce side effects, and play their respective roles in the complex physiological processes of tissue regeneration and postoperative adhesion prevention. Due to the versatile electrospinning techniques, sustained and programmed release behaviors of multiple drugs could be achieved by modulating the structure of the EFMs and the location of the drugs. In this review, various multidrug incorporation approaches based on electrospinning are overviewed. In particular, the advantages and limitations of each drug incorporation technique, the methods to control drug release and the effect of one drug release on another are discussed. Then the applications of multidrug-loaded EFMs in regenerative medicine, including wound healing, bone regeneration, vascular tissue engineering, nerve regeneration, periodontal regeneration and adhesion prevention are comprehensively reviewed. Finally, the future perspectives and challenges in the research of multidrug-loaded EFMs are discussed.
Collapse
Affiliation(s)
- Xingzi Lan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Han Wang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianfu Bai
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaomin Miao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Quan Lin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianpei Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Shukai Ding
- Materials Institute of Atomic and Molecular Science, ShaanXi University of Science and Technology, Xi'an 710021, China
| | - Xiaoran Li
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Yadong Tang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
42
|
Ulker Turan C, Guvenilir Y. Fabrication and characterization of electrospun biopolyester/gelatin nanofibers. J Biomed Mater Res B Appl Biomater 2021; 109:1478-1487. [PMID: 33527679 DOI: 10.1002/jbm.b.34807] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/16/2022]
Abstract
Poly(ω-pentadecalactone-co-ε-caprolactone) copolymer (PDL-CL) is an enzymatically synthesized aliphatic biopolyester, which has been participated in a nanofibrous structure for the first time. Electrospinning of this synthetic polymer by blending with a natural polymer such as gelatin (Gel) could provide new characteristics that are significant for biomedical applications, such as drug delivery, wound healing, and tissue engineering. In the present study, PDL-CL/Gel nanofibrous membranes were successfully produced and characterized. The average diameter of nanofibers was 305.0 ± 45.5 nm that may be beneficial in applications mentioned above. In order to increase hydrolytic resistance, cross-linking with glutaraldehyde vapor was applied. Cross-linking for 2 h was enough to obtain a nanofibrous membrane that was able to resist in pH 7.4 phosphate buffered saline for 30 days. In addition, contact angle measurement results had shown that, cross-linked nanofibrous membrane had good wettability, which is a required specification to be applied in biomedical field. Hence, this study provides an overview on fabrication of fine PDL-CL/Gel nanofibers, which may have potential to be used in biomedical area.
Collapse
Affiliation(s)
- Cansu Ulker Turan
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Yuksel Guvenilir
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
43
|
Budai-Szűcs M, Ruggeri M, Faccendini A, Léber A, Rossi S, Varga G, Bonferoni MC, Vályi P, Burián K, Csányi E, Sandri G, Ferrari F. Electrospun Scaffolds in Periodontal Wound Healing. Polymers (Basel) 2021; 13:307. [PMID: 33478155 PMCID: PMC7835852 DOI: 10.3390/polym13020307] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/25/2023] Open
Abstract
Periodontitis is a set of inflammatory conditions affecting the tissues surrounding the teeth predominantly sustained by bacterial infections. The aim of the work was the design and the development of scaffolds based on biopolymers to be inserted in the periodontal pocket to restore tissue integrity and to treat bacterial infections. Nanofibrous scaffolds were prepared by means of electrospinning. Gelatin was considered as base component and was associated to low and high molecular weight chitosans and alginate. The scaffolds were characterized by chemico-physical properties (morphology, solid state-FTIR and differential scanning calorimetry (DSC)-surface zeta potential and contact angle), and mechanical properties. Moreover, preclinical properties (cytocompatibility, fibroblast and osteoblast adhesion and proliferation and antimicrobial properties) were assessed. All the scaffolds were based on cylindrical and smooth nanofibers and preserved their nanofibrous structure upon hydration independently of their composition. They possessed a high degree of hydrophilicity and negative zeta potentials in a physiological environment, suitable surface properties to enhance cell adhesion and proliferation and to inhibit bacteria attachment. The scaffold based on gelatin and low molecular weight chitosan proved to be effective in vitro to support both fibroblasts and osteoblasts adhesion and proliferation and to impair the proliferation of Streptococcus mutans and Aggregatibacter actinomycetemcomitans, both pathogens involved in periodontitis.
Collapse
Affiliation(s)
- Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (M.B.-S.); (A.L.); (E.C.)
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (A.F.); (S.R.); (M.C.B.); (F.F.)
| | - Angela Faccendini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (A.F.); (S.R.); (M.C.B.); (F.F.)
| | - Attila Léber
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (M.B.-S.); (A.L.); (E.C.)
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (A.F.); (S.R.); (M.C.B.); (F.F.)
| | - Gábor Varga
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary;
| | - Maria Cristina Bonferoni
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (A.F.); (S.R.); (M.C.B.); (F.F.)
| | - Péter Vályi
- Department of Periodontology, Faculty of Dentistry, University of Szeged, H-6720 Szeged, Hungary;
| | - Katalin Burián
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary;
| | - Erzsébet Csányi
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (M.B.-S.); (A.L.); (E.C.)
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (A.F.); (S.R.); (M.C.B.); (F.F.)
| | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (A.F.); (S.R.); (M.C.B.); (F.F.)
| |
Collapse
|
44
|
<i>In Vitro</i> Characterization of Polyurethane-Carbon Nanotube Drug Eluting Composite Scaffold for Dental Tissue Engineering Application. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2020. [DOI: 10.4028/www.scientific.net/jbbbe.47.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tooth loss due to periodontal disease, dental caries, trauma or a variety of genetic disorders causes an adverse inability in adult’s lives. It is proved that biodegradable composite scaffolds in dental tissue engineering could play crucial role. To inhibit bacterial colonization in dental structure noticeable research concerning the drug delivery approach has been administrated. Nanostructures retain and release drug molecules more efficiently and continuously than other microstructure. In the present research, composite electrospun nanofibers of polyurethane-Single-walled carbon nanotube (SWNT) by the different mass ratios of metronidazole benzoate were prepared. Physico-chemical characterization of scaffolds including Scanning electron microscopy (SEM), uniaxial tensile testing and Ultraviolet-Visible (UV-Vis) spectroscopy analysis was operated. Culture of dental pulp stem cells (DPSCs) to evaluate cells behavior was carried out. The role of nanofiber diameters and drug content on releasing profile of the scaffolds was investigated. The median diameter of the nanofibrous scaffold was reduced from 330 ± 4 to 120 ± 4 nm. Ultimate stress and Young modulus of the scaffolds by enhancement of drug content increased from 0.28 ± 0.05 up to the 1.8 ± 0.05 MPa and 0.87 ± 0.05 up to the 4.4 ± 0.05 Mpa respectively. According to the result, prolonged and continuous releasing profile of the drug molecules was achieved. As the content of the drug increased, the drug was released continuously. It means that two parameters of fiber's diameter and drug ratio affected the releasing behavior of composite structures. Polyurethane-SWNT scaffolds contained metronidazole benzoate presented appropriate support of DPSCs adhesion and proliferation and biomimetic architecture like the structure of dental ECM.
Collapse
|
45
|
Iacob AT, Drăgan M, Ionescu OM, Profire L, Ficai A, Andronescu E, Confederat LG, Lupașcu D. An Overview of Biopolymeric Electrospun Nanofibers Based on Polysaccharides for Wound Healing Management. Pharmaceutics 2020; 12:E983. [PMID: 33080849 PMCID: PMC7589858 DOI: 10.3390/pharmaceutics12100983] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Currently, despite the thoroughgoing scientific research carried out in the area of wound healing management, the treatment of skin injuries, regardless of etiology remains a big provocation for health care professionals. An optimal wound dressing should be nontoxic, non-adherent, non-allergenic, should also maintain a humid medium at the wound interfacing, and be easily removed without trauma. For the development of functional and bioactive dressings, they must meet different conditions such as: The ability to remove excess exudates, to allow gaseous interchange, to behave as a barrier to microbes and to external physical or chemical aggressions, and at the same time to have the capacity of promoting the process of healing by stimulating other intricate processes such as differentiation, cell adhesion, and proliferation. Over the past several years, various types of wound dressings including hydrogels, hydrocolloids, films, foams, sponges, and micro/nanofibers have been formulated, and among them, the electrospun nanofibrous mats received an increased interest from researchers due to the numerous advantages and their intrinsic properties. The drug-embedded nanofibers are the potential candidates for wound dressing application by virtue of: Superior surface area-to volume ratio, enormous porosity (can allow oxy-permeability) or reticular nano-porosity (can inhibit the microorganisms'adhesion), structural similitude to the skin extracellular matrix, and progressive electrospinning methodology, which promotes a prolonged drug release. The reason that we chose to review the formulation of electrospun nanofibers based on polysaccharides as dressings useful in wound healing was based on the ever-growing research in this field, research that highlighted many advantages of the nanofibrillary network, but also a marked versatility in terms of numerous active substances that can be incorporated for rapid and infection-free tissue regeneration. In this review, we have extensively discussed the recent advancements performed on electrospun nanofibers (eNFs) formulation methodology as wound dressings, and we focused as well on the entrapment of different active biomolecules that have been incorporated on polysaccharides-based nanofibers, highlighting those bioagents capable of improving the healing process. In addition, in vivo tests performed to support their increased efficacy were also listed, and the advantages of the polysaccharide nanofiber-based wound dressings compared to the traditional ones were emphasized.
Collapse
Affiliation(s)
- Andreea-Teodora Iacob
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Maria Drăgan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Oana-Maria Ionescu
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Lenuța Profire
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucuresti, Romania;
- Academy of Romanian Scientists, Ilfov st 3, 050085 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucuresti, Romania;
- Academy of Romanian Scientists, Ilfov st 3, 050085 Bucharest, Romania
| | - Luminița Georgeta Confederat
- Department of Preventive Medicine and Interdisciplinarity, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania;
| | - Dan Lupașcu
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| |
Collapse
|
46
|
Costa Salles TH, Volpe-Zanutto F, de Oliveira Sousa IM, Machado D, Zanatta AC, Vilegas W, Lancellotti M, Foglio MA, d'Ávila MA. Electrospun PCL-based nanofibers Arrabidaea chica Verlot - Pterodon pubescens Benth loaded: synergic effect in fibroblast formation. Biomed Mater 2020; 15:065001. [PMID: 32955022 DOI: 10.1088/1748-605x/ab9bb1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The guided tissue regeneration (GTR) technique can be applied in dentistry and other medical specializations, such as orthopedics. In modern dentistry, GTR has been used in periodontics and implantology to treat periodontal defects, to reconstruct lost, damaged and atrophied bone tissue in dental implant procedures, and to preserve alveolar bases after tooth extraction. In order to create and improve new therapies and to develop new biomaterials that restore, improve and prevent aggravation of compromised tissue function, poly (ϵ-caprolactone) (PCL) polymer membranes were obtained by the electrospinning process and were associated with two plant extracts: Pterodon pubescens Benth (P. pubescens) and Arrabidaea chica Verlot (A. chica) which are characterized by their pharmacological activities of anti-inflammatory and healing actions, respectively. Fiber morphology was analyzed using scanning electron microscopy (SEM), where fiber average diameter was measured from SEM images. Contact angle measurements were performed in order to evaluate the hydrophilicity of electrospun membranes containing vegetal extract. High-performance liquid chromatography was used to evaluate the ability to release active ingredients. Cytotoxicity and cell proliferation assays were performed in vitro on NIH-3T3 cells for 1, 3 and 7 d. Electrospun PCL membranes associated with plant extracts P. pubescens and/or A. chica presented a controlled release profile of the active compounds induced fibroblast formation, suggesting that they are promising and suitable for applications in GTR.
Collapse
Affiliation(s)
- Tais Helena Costa Salles
- Department of Manufacturing and Materials Engineering, School of Mechanical Engineering, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Fabiana Volpe-Zanutto
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
- Graduate School of Bioscience and Technology of Bioactive Products, Biology Institute, University at Campinas, Brazil
| | | | - Daisy Machado
- Faculty of Pharmaceutical Science, University at Campinas, Brazil
| | - Ana Caroline Zanatta
- Instituto de Biociências, Univ Estadual Paulista, UNESP-, São Vicente, SP, Brazil
| | - Wagner Vilegas
- Instituto de Biociências, Univ Estadual Paulista, UNESP-, São Vicente, SP, Brazil
| | | | - Mary Ann Foglio
- Faculty of Pharmaceutical Science, University at Campinas, Brazil
| | - Marcos Akira d'Ávila
- Department of Manufacturing and Materials Engineering, School of Mechanical Engineering, University of Campinas - UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
47
|
Arbade GK, Dongardive V, Rath SK, Tripathi V, Patro TU. Effect of poly(ethylene glycol) on drug delivery, antibacterial, biocompatible, physico-chemical and thermo-mechanical properties of PCL-chloramphenicol electrospun nanofiber scaffolds. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1817020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Gajanan Kashinathrao Arbade
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Pune- 411025, Maharashtra, India
| | - Vikas Dongardive
- National Centre for Cell Science, Pune- 411007, Maharashtra, India
| | - Sangram K. Rath
- Department of Polymer Science and Technology Directorate, Naval Materials Research Laboratory, Ambernath- 421506, Maharashtra, India
| | - Vidisha Tripathi
- National Centre for Cell Science, Pune- 411007, Maharashtra, India
| | - T. Umasankar Patro
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Pune- 411025, Maharashtra, India
| |
Collapse
|
48
|
Zięba M, Chaber P, Duale K, Martinka Maksymiak M, Basczok M, Kowalczuk M, Adamus G. Polymeric Carriers for Delivery Systems in the Treatment of Chronic Periodontal Disease. Polymers (Basel) 2020; 12:E1574. [PMID: 32679893 PMCID: PMC7407295 DOI: 10.3390/polym12071574] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
Periodontitis (PD) is a chronic inflammatory disease of periodontal tissues caused by pathogenic microorganisms and characterized by disruption of the tooth-supporting structures. Conventional drug administration pathways in periodontal disease treatment have many drawbacks such as poor biodistribution, low selectivity of the therapeutic effect, burst release of the drug, and damage to healthy cells. To overcome this limitation, controlled drug delivery systems have been developed as a potential method to address oral infectious disease ailments. The use of drug delivery devices proves to be an excellent auxiliary method in improving the quality and effectiveness in periodontitis treatment, which includes inaccessible periodontal pockets. This review explores the current state of knowledge regarding the applications of various polymer-based delivery systems such as hydrogels, liposomes, micro-, and nanoparticles in the treatment of chronic periodontal disease. Furthermore, to present a more comprehensive understanding of the difficulties concerning the treatment of PD, a brief description of the mechanism and development of the disease is outlined.
Collapse
Affiliation(s)
- Magdalena Zięba
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. C. Skłodowska St., 41-800 Zabrze, Poland; (P.C.); (K.D.); (M.M.M.); (M.K.)
| | - Paweł Chaber
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. C. Skłodowska St., 41-800 Zabrze, Poland; (P.C.); (K.D.); (M.M.M.); (M.K.)
| | - Khadar Duale
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. C. Skłodowska St., 41-800 Zabrze, Poland; (P.C.); (K.D.); (M.M.M.); (M.K.)
| | - Magdalena Martinka Maksymiak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. C. Skłodowska St., 41-800 Zabrze, Poland; (P.C.); (K.D.); (M.M.M.); (M.K.)
| | - Maciej Basczok
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 6 Uniwersytetu Poznańskiego St., 61-614 Poznań, Poland;
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. C. Skłodowska St., 41-800 Zabrze, Poland; (P.C.); (K.D.); (M.M.M.); (M.K.)
| | - Grazyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. C. Skłodowska St., 41-800 Zabrze, Poland; (P.C.); (K.D.); (M.M.M.); (M.K.)
| |
Collapse
|
49
|
Tuğcu-Demiröz F, Saar S, Tort S, Acartürk F. Electrospun metronidazole-loaded nanofibers for vaginal drug delivery. Drug Dev Ind Pharm 2020; 46:1015-1025. [DOI: 10.1080/03639045.2020.1767125] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fatmanur Tuğcu-Demiröz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Sinem Saar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Serdar Tort
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Füsun Acartürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
50
|
Filippi M, Born G, Chaaban M, Scherberich A. Natural Polymeric Scaffolds in Bone Regeneration. Front Bioeng Biotechnol 2020; 8:474. [PMID: 32509754 PMCID: PMC7253672 DOI: 10.3389/fbioe.2020.00474] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
Despite considerable advances in microsurgical techniques over the past decades, bone tissue remains a challenging arena to obtain a satisfying functional and structural restoration after damage. Through the production of substituting materials mimicking the physical and biological properties of the healthy tissue, tissue engineering strategies address an urgent clinical need for therapeutic alternatives to bone autografts. By virtue of their structural versatility, polymers have a predominant role in generating the biodegradable matrices that hold the cells in situ to sustain the growth of new tissue until integration into the transplantation area (i.e., scaffolds). As compared to synthetic ones, polymers of natural origin generally present superior biocompatibility and bioactivity. Their assembly and further engineering give rise to a wide plethora of advanced supporting materials, accounting for systems based on hydrogels or scaffolds with either fibrous or porous architecture. The present review offers an overview of the various types of natural polymers currently adopted in bone tissue engineering, describing their manufacturing techniques and procedures of functionalization with active biomolecules, and listing the advantages and disadvantages in their respective use in order to critically compare their actual applicability potential. Their combination to other classes of materials (such as micro and nanomaterials) and other innovative strategies to reproduce physiological bone microenvironments in a more faithful way are also illustrated. The regeneration outcomes achieved in vitro and in vivo when the scaffolds are enriched with different cell types, as well as the preliminary clinical applications are presented, before the prospects in this research field are finally discussed. The collection of studies herein considered confirms that advances in natural polymer research will be determinant in designing translatable materials for efficient tissue regeneration with forthcoming impact expected in the treatment of bone defects.
Collapse
Affiliation(s)
- Miriam Filippi
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Gordian Born
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Mansoor Chaaban
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Arnaud Scherberich
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|