1
|
Nikolić I, Đoković J, Mehn D, Guerrini G, Savić S, Jordan O, Borchard G. When conventional approach in toxicity assays falls short for nanomedicines: a case study with nanoemulsions. Drug Deliv Transl Res 2025:10.1007/s13346-024-01776-7. [PMID: 39779651 DOI: 10.1007/s13346-024-01776-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
The aim of this study was to assess the critical quality attributes of parenteral nanoemulsion formulations by measuring several physicochemical parameters and linking them to their in vitro performance, illustrating how simplistic and routinely used approaches are insufficient for understanding a potential nanomedicine. Physicochemical characterization should encompass size and size distribution through at least two orthogonal techniques, such as dynamic light scattering (DLS) and electron microscopy, with added value from analytical ultracentrifugation. In vitro toxicity assessment was performed using three different assays to determine mitochondrial activity (WST-1), membrane integrity (lactate dehydrogenase release (LDH) assay), and cell viability (propidium iodide (PI) staining). Special focus was placed on estimating appropriate incubation times for relevant results in biological investigations. All formulations had an average diameter of around 100 nm. Conclusions regarding in vitro safety were assay-dependent: LDH and PI-based assays showed good correlation, while the WST-1 assay indicated that the non-PEGylated formulation altered mitochondrial activity more significantly compared to the PEGylated ones. The study underlined that the selection of appropriate cytotoxicity assays should be based on the possible mechanism of cellular perturbation. Alternatively, different aspects of cellular toxicity should be tested. Additionally, there is a need for well-designed controls to overcome nanoparticle scattering effects and avoid potentially false high toxicity results, which was demonstrated. Combining orthogonal, well-designed physicochemical and biological assays in a standardized manner as an initial step in the reliable preclinical characterization of nanomedicines is suggested. This represents a key aspect of new methodologies in nanomedicine characterization.
Collapse
Affiliation(s)
- Ines Nikolić
- Faculty of Science, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology, University of Belgrade, Belgrade, Serbia
| | - Jelena Đoković
- Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology, University of Belgrade, Belgrade, Serbia
| | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Snežana Savić
- Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology, University of Belgrade, Belgrade, Serbia
| | - Olivier Jordan
- Faculty of Science, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Gerrit Borchard
- Faculty of Science, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
2
|
Nishal S, Kumar V, Phaugat P, Kumar D, Khatri N, Singh G. A Systematic Review and Meta-Analysis of the Metal Nano-Particles Loaded with Herbal Drugs Moieties Against Breast Cancer. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:120-130. [PMID: 37691225 DOI: 10.2174/1872210518666230907115056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Breast cancer is the most prevalent cancer among women. About 685K deaths were globally listed in 2020 by the World Health Organization. Nowadays, scientists prefer to use herbal medicines due to their low toxicity. Herbal medicines are used to overcome the toxicity effects of surgical removal, radio-chemo therapy and medication, which have a lot of risk of damaging the healthy tissues. To overcome this, enhance bioavailability and target specify, nano-formulation chemotherapy was introduced using herbal moiety for anticancer activity. The use of metallic nanoparticles (MNPs), particularly those made of silver, cobalt, zinc, and gold as contrast, antibacterial, anticancer, and drug delivery agents has revolutionised the medicinal field. Although MNPs can be made via exacting physical and chemical processes, a biological method utilising natural materials has been established recently. OBJECTIVES This patent review article will offer a succinct explanation of the use of MNPs and its potential impact on herbal medicines in the future. METHODS Using PRISMA principles, this review systematically examines studies that concentrate on metal nanoparticles loaded with herbal compounds for the treatment of breast cancer. Various Databases were studied: PubMed, Elsevier, ScienceDirect, SpringerLink, Taylor & Francis Online, ACS Publications, Publishing Royal Society of Chemistry, and Future Medicines. Studies were selected if they were peer-reviewed primary studies published in the past 10 years. RESULTS We found that many herbal nano-formulations are more effective in breast cancer treatment than other types of formulations. Efficacy, safety and drug stability are also enhanced using nanoformulations. CONCLUSION Nano-formulation is found to be more effective in the treatment of breast cancer.
Collapse
Affiliation(s)
- Suchitra Nishal
- College of Pharmacy, Pt. B.D. Sharma University of Health Sciences, Rohtak, India
| | - Virender Kumar
- College of Pharmacy, Pt. B.D. Sharma University of Health Sciences, Rohtak, India
| | - Parmita Phaugat
- College of Pharmacy, Pt. B.D. Sharma University of Health Sciences, Rohtak, India
| | - Davinder Kumar
- College of Pharmacy, Pt. B.D. Sharma University of Health Sciences, Rohtak, India
| | - Naveen Khatri
- College of Pharmacy, Pt. B.D. Sharma University of Health Sciences, Rohtak, India
| | - Gajendra Singh
- College of Pharmacy, Pt. B.D. Sharma University of Health Sciences, Rohtak, India
| |
Collapse
|
3
|
Rajoo A, Siva SP, Sia CS, Chan ES, Tey BT, Low LE. Transitioning from Pickering emulsions to Pickering emulsion hydrogels: A potential advancement in cosmeceuticals. Eur J Pharm Biopharm 2024; 205:114572. [PMID: 39486631 DOI: 10.1016/j.ejpb.2024.114572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Cosmeceuticals, focusing on enhancing skin health and appearance, heavily rely on emulsions as one of the common mediums. These emulsions pose a challenge due to their dependence on surfactants which are essential for stability but are causing concerns about environmental impact as well as evolving consumer preferences. This has led to research focused on Pickering emulsions (PEs), which are colloidal particle-based emulsion alternatives. Compared to conventional emulsions, PEs offer enhanced stability and functionality in addition to serving as a sustainable alternative but still pose challenges such as rheological control and requiring further improvement in long-term stability, whereby the limitations could be addressed through the introduction of a hydrogel network. In this review, we first highlight the strategies and considerations to optimize active ingredient (AI) absorption and penetration in a PE-based formulation. We then delve into a comprehensive overview of the potential of Pickering-based cosmeceutical emulsions including their attractive features, the various Pickering particles that can be employed, past studies and their limitations. Further, PE hydrogels (PEHs), which combines the features between PE and hydrogel as an innovative solution to address challenges posed by both conventional emulsions and PEs in the cosmeceutical industry is explored. Moreover, concerns related to toxicity and biocompatibility are critically examined, alongside considerations of scalability and commercial viability, providing a forward-looking perspective on potential future research directions centered on the application of PEHs in the cosmeceutical field.
Collapse
Affiliation(s)
- Akashni Rajoo
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Sangeetaprivya P Siva
- Centre for Sustainable Design, Modelling and Simulation, Faculty of Engineering, Built Environment and IT, SEGi University, 47810 Petaling Jaya, Malaysia
| | - Chin Siew Sia
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Eng-Seng Chan
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Beng Ti Tey
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Liang Ee Low
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Medical Engineering and Technology (MET) Hub, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
4
|
Llaguno-Munive M, Vazquez-Lopez MI, Garcia-Lopez P. Solid Lipid Nanoparticles, an Alternative for the Treatment of Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:10712. [PMID: 39409041 PMCID: PMC11476567 DOI: 10.3390/ijms251910712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Within the field of nanomedicine, which is revolutionizing cancer treatment, solid lipid nanoparticles (SLNs) have shown advantages over conventional chemotherapy when tested on cancer cells in preclinical studies. SLNs have proven to be an innovative strategy for the treatment of triple-negative breast cancer cells, providing greater efficiency than existing treatments in various studies. The encapsulation of antineoplastic drugs in SLNs has facilitated a sustained, controlled, and targeted release, which enhances therapeutic efficiency and reduces adverse effects. Moreover, the surface of SLNs can be modified to increase efficiency. For instance, the coating of these particles with polyethylene glycol (PEG) decreases their opsonization, resulting in a longer life in the circulatory system. The creation of positively charged cationic SLNs (cSLNs), achieved by the utilization of surfactants or ionic lipids with positively charged structural groups, increases their affinity for cell membranes and plasma proteins. Hyaluronic acid has been added to SLNs so that the distinct pH of tumor cells would stimulate the release of the drug and/or genetic material. The current review summarizes the recent research on SLNs, focusing on the encapsulation and transport of therapeutic agents with a cytotoxic effect on triple-negative breast cancer.
Collapse
Affiliation(s)
- Monserrat Llaguno-Munive
- Laboratorio de Física Médica, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico;
| | - Maria Ines Vazquez-Lopez
- Laboratorio de Fármaco-Oncología y Nanomedicina, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico;
| | - Patricia Garcia-Lopez
- Laboratorio de Fármaco-Oncología y Nanomedicina, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico;
| |
Collapse
|
5
|
Shaji SG, Patel P, Mamani UF, Guo Y, Koirala S, Lin CY, Alahmari M, Omoscharka E, Cheng K. Delivery of a STING Agonist Using Lipid Nanoparticles Inhibits Pancreatic Cancer Growth. Int J Nanomedicine 2024; 19:8769-8778. [PMID: 39220196 PMCID: PMC11365503 DOI: 10.2147/ijn.s462213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction The tumor microenvironment (TME) of pancreatic cancer is highly immunosuppressive and characterized by a large number of cancer-associated fibroblasts, myeloid-derived suppressor cells, and regulatory T cells. Stimulator of interferon genes (STING) is an endoplasmic reticulum receptor that plays a critical role in immunity. STING agonists have demonstrated the ability to inflame the TME, reduce tumor burden, and confer anti-tumor activity in mouse models. 2'3' cyclic guanosine monophosphate adenosine monophosphate (2'3'-cGAMP) is a high-affinity endogenous ligand of STING. However, delivering cGAMP to antigen-presenting cells and tumor cells within the cytosol remains challenging due to membrane impermeability and poor stability. Methods In this study, we encapsulated 2'3'-cGAMP in a lipid nanoparticle (cGAMP-LNP) designed for efficient cellular delivery. We assessed the properties of the nanoparticles using a series of in-vitro studies designed to evaluate their cellular uptake, cytosolic release, and minimal cytotoxicity. Furthermore, we examined the nanoparticle's anti-tumor effect in a syngeneic mouse model of pancreatic cancer. Results The lipid platform significantly increased the cellular uptake of 2'3'-cGAMP. cGAMP-LNP exhibited promising antitumor activity in the syngeneic mouse model of pancreatic cancer. Discussion The LNP platform shows promise for delivering exogenous 2'3'-cGAMP or its derivatives in cancer therapy.
Collapse
Affiliation(s)
- Sherin George Shaji
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Pratikkumar Patel
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Umar-Farouk Mamani
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Yuhan Guo
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Sushil Koirala
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Chien-Yu Lin
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Mohammed Alahmari
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Evanthia Omoscharka
- Department of Pathology, University Health/Truman Medical Center, School of Medicine, University of Missouri-Kansas City, Kansas, MO, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
6
|
Heyns I, Faunce AF, Mumba MN, Kumar MNVR, Arora M. Nanotechnology-Enhanced Naloxone and Alternative Treatments for Opioid Addiction. ACS Pharmacol Transl Sci 2024; 7:2237-2250. [PMID: 39144549 PMCID: PMC11320732 DOI: 10.1021/acsptsci.4c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 08/16/2024]
Abstract
Opioids are commonly prescribed to address intense, ongoing pain associated with cancer, as well as long-lasting noncancer-related pain when alternative methods have proven ineffective. Individuals who exhibit both chronic pain and misuse of opioids face a significant danger of experiencing adverse health outcomes and the potential loss of life related to opioid use. Thus, there is a current movement to prescribe naloxone to those considered high-risk for opioid overdose. Naloxone has been explored as an antidote to reverse acute respiratory depression. Conversely, naloxone can give rise to other problems, including hypertension and cardiac arrhythmias. Thus, the importance of nanotechnology-enabled drug delivery strategies and their role in mitigating naloxone side-effects are significant. In this review, we explore the latest advancements in nanotechnology-enabled naloxone and alternative methods for addressing the opioid crisis through the utilization of non-opioid natural alternatives for chronic pain management.
Collapse
Affiliation(s)
- Ingrid
Marie Heyns
- The
Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35401, United States
- Department
of Translational Science and Medicine, College of Community Health
Sciences, The University of Alabama, Tuscaloosa, Alabama 35401, United States
- Alabama
Life Research Institute, The University
of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Alina Farah Faunce
- Research
Department, Alabama College of Osteopathic
Medicine, Dothan, Alabama 36303, United States
| | - Mercy Ngosa Mumba
- Center
for Substance Use Research and Related Conditions, Capstone College
of Nursing, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - M. N. V. Ravi Kumar
- The
Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35401, United States
- Department
of Translational Science and Medicine, College of Community Health
Sciences, The University of Alabama, Tuscaloosa, Alabama 35401, United States
- Alabama
Life Research Institute, The University
of Alabama, Tuscaloosa, Alabama 35401, United States
- Department
of Biological Sciences, The University of
Alabama, Tuscaloosa, Alabama 35487, United States
- Chemical
and Biological Engineering, University of
Alabama, Tuscaloosa, Alabama 35487, United States
- Center for
Free Radical Biology, University of Alabama
at Birmingham, Birmingham, Alabama 35294, United States
- Nephrology
Research and Training Center, Division of Nephrology, Department of
Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Meenakshi Arora
- The
Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35401, United States
- Department
of Translational Science and Medicine, College of Community Health
Sciences, The University of Alabama, Tuscaloosa, Alabama 35401, United States
- Alabama
Life Research Institute, The University
of Alabama, Tuscaloosa, Alabama 35401, United States
- Department
of Biological Sciences, The University of
Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
7
|
Liao J, Yuan Z, Wang X, Chen T, Qian K, Cui Y, Rong A, Zheng C, Liu Y, Wang D, Pan L. Magnesium oxide nanoparticles reduce clubroot by regulating plant defense response and rhizosphere microbial community of tumorous stem mustard ( Brassica juncea var. tumida). Front Microbiol 2024; 15:1370427. [PMID: 38572228 PMCID: PMC10989686 DOI: 10.3389/fmicb.2024.1370427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024] Open
Abstract
Clubroot, caused by Plasmodiophora brassicae, is a major disease that significantly impairs the yield of cruciferous crops and causes significant economic losses across the globe. The prevention of clubroot, especially in tumorous stem mustard (without resistant varieties), are is limited and primarily relies on fungicides. Engineered nanoparticles have opened up new avenues for the management of plant diseases, but there is no report on their application in the prevention of clubroot. The results showed that the control efficacy of 500 mg/L MgO NPs against clubroot was 54.92%. However, when the concentration was increased to 1,500 and 2,500 mg/L, there was no significant change in the control effect. Compared with CK, the average fresh and dry weight of the aerial part of plants treated with MgO NPs increased by 392.83 and 240.81%, respectively. Compared with the F1000 treatment, increases were observed in the content of soil available phosphorus (+16.72%), potassium (+9.82%), exchangeable magnesium (+24.20%), and water-soluble magnesium (+20.64%) in the 1,500 mg/L MgO NPs treatment. The enzyme-linked immune sorbent assay (ELISA) results showed that the application of MgO NPs significantly increased soil peroxidase (POD, +52.69%), alkaline protease (AP, +41.21%), alkaline phosphatase (ALP, +79.26%), urease (+52.69%), and sucrase (+56.88%) activities; And also increased plant L-phenylalanine ammonla-lyase (PAL, +70.49%), polyphenol oxidase (PPO, +36.77%), POD (+38.30%), guaiacol peroxidase (POX, +55.46%) activities and salicylic acid (SA, +59.86%) content. However, soil and plant catalase (CAT, -27.22 and - 19.89%, respectively), and plant super oxidase dismutase (SOD, -36.33%) activities were significantly decreased after the application of MgO NPs. The metagenomic sequencing analysis showed that the MgO NPs treatments significantly improved the α-diversity of the rhizosphere soil microbial community. The relative abundance of beneficial bacteria genera in the rhizosphere soil, including Pseudomonas, Sphingopyxis, Acidovorax, Variovorax, and Bosea, was significantly increased. Soil metabolic functions, such as oxidative phosphorylation (ko00190), carbon fixation pathways in prokaryotes (ko00720), indole alkaloid biosynthesis (ko00901), and biosynthesis of various antibiotics (ko00998) were significantly enriched. These results suggested that MgO NPs might control clubroot by promoting the transformation and utilization of soil nutrients, stimulating plant defense responses, and enriching soil beneficial bacteria.
Collapse
Affiliation(s)
- Jingjing Liao
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Zitong Yuan
- College of Plant Protection, Southwest University, Chongqing, China
| | - Xiangmei Wang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Tingting Chen
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Kun Qian
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yuanyuan Cui
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Anping Rong
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Chunyang Zheng
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Yuanxiu Liu
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Diandong Wang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Limei Pan
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| |
Collapse
|
8
|
Sahoo L, Tripathy NS, Dilnawaz F. Naringenin Nanoformulations for Neurodegenerative Diseases. Curr Pharm Biotechnol 2024; 25:2108-2124. [PMID: 38347794 DOI: 10.2174/0113892010281459240118091137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 09/10/2024]
Abstract
Glioblastoma (GBM) is a grade-IV astrocytoma, which is the most common and aggressive type of brain tumor, spreads rapidly and has a life-threatening catastrophic effect. GBM mostly occurs in adults with an average survival time of 15 to 18 months, and the overall mortality rate is 5%. Significant invasion and drug resistance activity cause the poor diagnosis of GBM. Naringenin (NRG) is a plant secondary metabolite byproduct of the flavanone subgroup. NRG can cross the blood-brain barrier and deliver drugs into the central nervous system when conjugated with appropriate nanocarriers to overcome the challenges associated with gliomas through naringenin-loaded nanoformulations. Here, we discuss several nanocarriers employed that are as delivery systems, such as polymeric nanoparticles, micelles, liposomes, solid lipid nanoparticles (SLNs), nanosuspensions, and nanoemulsions. These naringenin-loaded nanoformulations have been tested in various in vitro and in vivo models as a potential treatment for brain disorders. This review nanoformulations of NRG can a possible therapeutic alternative for the treatment of neurological diseases are discussed.
Collapse
Affiliation(s)
- Liza Sahoo
- Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management, Jatni, 752050, Bhubaneswar, Odisha, India
| | - Nigam Sekhar Tripathy
- Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management, Jatni, 752050, Bhubaneswar, Odisha, India
| | - Fahima Dilnawaz
- Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management, Jatni, 752050, Bhubaneswar, Odisha, India
| |
Collapse
|
9
|
Sabir IA, Manzoor MA, Shah IH, Ahmad Z, Liu X, Alam P, Wang Y, Sun W, Wang J, Liu R, Jiu S, Zhang C. Unveiling the effect of gibberellin-induced iron oxide nanoparticles on bud dormancy release in sweet cherry (Prunus avium L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108222. [PMID: 38016371 DOI: 10.1016/j.plaphy.2023.108222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Hydrogen cyanide has been extensively used worldwide for bud dormancy break in fruit trees, consequently enhancing fruit production via expedited cultivation, especially in areas with controlled environments or warmer regions. A novel and safety nanotechnology was developed since the hazard of hydrogen cyanide for the operators and environments, there is an urgent need for the development of novel and safety approaches to replace it to break bud dormancy for fruit trees. In current study, we have systematically explored the potential of iron oxide nanoparticles, specifically α-Fe2O3, to modulate bud dormancy in sweet cherry (Prunus avium). The synthesized iron oxide nanoparticles underwent meticulous characterization and assessment using various techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and ultraviolet-visible infrared (UV-Vis) spectroscopy. Remarkably, when applied at a concentration of 10 mg L-1 alongside gibberellin (GA4+7), these iron oxide nanoparticles exhibited a substantial 57% enhancement in bud dormancy release compared to control groups, all achieved within a remarkably short time span of 4 days. Our RNA-seq analyses further unveiled that 2757 genes within the sweet cherry buds were significantly up-regulated when treated with 10 mg L-1 α-Fe2O3 nanoparticles in combination with GA, while 4748 genes related to dormancy regulation were downregulated in comparison to the control. Moreover, we discovered an array of 58 transcription factor families among the crucial differentially expressed genes (DEGs). Through hormonal quantification, we established that the increased bud burst was accompanied by a reduced concentration of abscisic acid (ABA) at 761.3 ng/g fresh weight in the iron oxide treatment group, coupled with higher levels of gibberellins (GAs) in comparison to the control. Comprehensive transcriptomic and metabolomic analyses unveiled significant alterations in hormone contents and gene expression during the bud dormancy-breaking process when α-Fe2O3 nanoparticles were combined with GA. In conclusion, our findings provide valuable insights into the intricate molecular mechanisms underlying the impact of iron oxide nanoparticles on achieving uniform bud dormancy break in sweet cherry trees.
Collapse
Affiliation(s)
- Irfan Ali Sabir
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Iftikhar Hussain Shah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zishan Ahmad
- Bambo Research Institute, Nanjing Forestry University, Nanjing, 210037, China
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pravej Alam
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, 11942, Saudi Arabia
| | - Yuxuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanxia Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiyuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ruie Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
10
|
Abu-Huwaij R, Alkarawi A, Salman D, Alkarawi F. Exploring the use of niosomes in cosmetics for efficient dermal drug delivery. Pharm Dev Technol 2023; 28:708-718. [PMID: 37448342 DOI: 10.1080/10837450.2023.2233613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023]
Abstract
Dermal drug delivery has emerged as a promising alternative to traditional methods of drug administration due to its non-invasive nature and ease of use. However, the stratum corneum, the outermost layer of the skin, presents a significant barrier to drug penetration. Niosomes, self-assembled vesicular structures composed of nonionic surfactants and cholesterol, have been extensively investigated as a means of overcoming this barrier and improving the efficacy of dermal drug delivery. This review summarizes the current state of research on the use of niosomes in dermal drug delivery in cosmetics, with a particular focus on their formulation, characterization, and application in the delivery of various drug classes. The review highlights the advantages of niosomes over conventional drug delivery methods, including improved solubility and stability of drugs, controlled release, and enhanced skin permeation. The review also discusses the challenges associated with niosome-based drug delivery, such as their complex formulation and optimization, and the need for further studies on their long-term safety and toxicity.
Collapse
Affiliation(s)
| | - Adian Alkarawi
- College of Pharmacy, Amman Arab University, Mubis, Jordan
| | - Dima Salman
- College of Pharmacy, Amman Arab University, Mubis, Jordan
| | | |
Collapse
|
11
|
Tosta Pérez M, Herrera Belén L, Letelier P, Calle Y, Pessoa A, Farías JG. L-Asparaginase as the gold standard in the treatment of acute lymphoblastic leukemia: a comprehensive review. Med Oncol 2023; 40:150. [PMID: 37060469 DOI: 10.1007/s12032-023-02014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/28/2023] [Indexed: 04/16/2023]
Abstract
L-Asparaginase is an antileukemic drug long approved for clinical use to treat childhood acute lymphoblastic leukemia, the most common cancer in this population worldwide. However, the efficacy and its use as a drug have been subject to debate due to the variety of adverse effects that patients treated with it present, as well as the prompt elimination in plasma, the need for multiple administrations, and high rates of allergic reactions. For this reason, the search for new, less immunogenic variants has long been the subject of study. This review presents the main aspects of the L-asparaginase enzyme from a structural, pharmacological, and clinical point of view, from the perspective of its use in chemotherapy protocols in conjunction with other drugs in the different treatment phases.
Collapse
Affiliation(s)
- María Tosta Pérez
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile
| | - Lisandra Herrera Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago de Chile, Chile
| | - Pablo Letelier
- Precision Health Research Laboratory, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de La Salud, Universidad Católica de Temuco, Temuco, Chile
| | - Yolanda Calle
- Department of Life Sciences, Whitelands College, University of Roehampton, London, UK
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Jorge G Farías
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
12
|
Arafat EA, El-Sayed DS, Hussein HK, Flaven-Pouchon J, Moussian B, El-Samad LM, El Wakil A, Hassan MA. Entomotherapeutic Role of Periplaneta americana Extract in Alleviating Aluminum Oxide Nanoparticles-Induced Testicular Oxidative Impairment in Migratory Locusts ( Locusta migratoria) as an Ecotoxicological Model. Antioxidants (Basel) 2023; 12:653. [PMID: 36978901 PMCID: PMC10045266 DOI: 10.3390/antiox12030653] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
In this study, we shed light for the first time on the usage of migratory locusts (Locusta migratoria) as an insect model to investigate the nanotoxicological influence of aluminum oxide (Al2O3) nanoparticles at low doses on testes, and evaluate the capacity of a whole-body extract of American cockroaches (Periplaneta americana) (PAE) to attenuate Al2O3 NPs-induced toxicity. Energy dispersive X-ray microanalyzer (EDX) analysis verified the bioaccumulation of Al in testicular tissues due to its liberation from Al2O3 NPs, implying their penetration into the blood-testis barrier. Remarkably, toxicity with Al engendered disorders of antioxidant and stress biomarkers associated with substantial DNA damage and cell apoptosis. Furthermore, histopathological and ultrastructural analyses manifested significant aberrations in the testicular tissues from the group exposed to Al2O3 NPs, indicating the overproduction of reactive oxygen species (ROS). Molecular docking analysis emphasized the antioxidant capacity of some compounds derived from PAE. Thus, pretreatment with PAE counteracted the detrimental effects of Al in the testes, revealing antioxidant properties and thwarting DNA impairment and cell apoptosis. Moreover, histological and ultrastructural examinations revealed no anomalies in the testes. Overall, these findings substantiate the potential applications of PAE in preventing the testicular impairment of L. migratoria and the conceivable utilization of locusts for nanotoxicology studies.
Collapse
Affiliation(s)
- Esraa A. Arafat
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Doaa S. El-Sayed
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Hussein K. Hussein
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Justin Flaven-Pouchon
- Interfaculty Institute for Cell Biology, Eberhard-Karls Universität Tübingen, 37073 Tübingen, Germany
| | | | - Lamia M. El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Abeer El Wakil
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria 21526, Egypt
| | - Mohamed A. Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Egypt
- University Medical Center Göttingen, Georg-August-University, 37073 Göttingen, Germany
| |
Collapse
|
13
|
Enhancement of stability and dermal delivery of Carissa carandas Linn. leaf extract by liquid crystals. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
14
|
Prasanthan P, Kishore N. HSA nanoparticles in drug recognition: mechanistic insights with naproxen, diclofenac and methimazole. J Biomol Struct Dyn 2022; 40:11057-11069. [PMID: 34296662 DOI: 10.1080/07391102.2021.1953605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Protein-based nanoparticles offer a suitable targeted delivery platform to drugs in terms of biocompatibility, biodegradability and abundance in nature. Physicochemical understanding of drug encapsulation by protein nanoparticles and their impact on protein aggregation is essential. In this work, we have examined quantitative aspects of encapsulation of non-steroidal anti-inflammatory drugs naproxen and diclofenac sodium, and anti-thyroid drug methimazole in nanoparticles of human serum albumin (HSA NPs) by using ultrasensitive calorimetry. Thermodynamic signatures accompanying the interactions revealed that the partitioning of all these drugs in HSA NPs is primarily driven via contributions from desolvation of highly hydrated nanoparticles surface. Furthermore, the effect of these nanoparticles on fibrillation of HSA has also been studied. HSA NPs are determined to be ineffective towards inhibition of fibrillation under employed conditions. However, the extent of inhibition by HSA NPs varies depending upon the structural characteristics of the drugs. Such studies help to gain mechanistic aspects on drug loading into protein-based nanoparticles and are expected to provide useful insights into improving existing nano-drug carriers and their efficiency in preventing protein fibrillation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pooja Prasanthan
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
15
|
Carboxymethyl-Dextran-Coated Superparamagnetic Iron Oxide Nanoparticles for Drug Delivery: Influence of the Coating Thickness on the Particle Properties. Int J Mol Sci 2022; 23:ijms232314743. [PMID: 36499070 PMCID: PMC9740466 DOI: 10.3390/ijms232314743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Carboxymethyl-dextran (CMD)-coated iron oxide nanoparticles (IONs) are of great interest in nanomedicine, especially for applications in drug delivery. To develop a magnetically controlled drug delivery system, many factors must be considered, including the composition, surface properties, size and agglomeration, magnetization, cytocompatibility, and drug activity. This study reveals how the CMD coating thickness can influence these particle properties. ION@CMD are synthesized by co-precipitation. A higher quantity of CMD leads to a thicker coating and a reduced superparamagnetic core size with decreasing magnetization. Above 12.5−25.0 g L−1 of CMD, the particles are colloidally stable. All the particles show hydrodynamic diameters < 100 nm and a good cell viability in contact with smooth muscle cells, fulfilling two of the most critical characteristics of drug delivery systems. New insights into the significant impact of agglomeration on the magnetophoretic behavior are shown. Remarkable drug loadings (62%) with the antimicrobial peptide lasioglossin and an excellent efficiency (82.3%) were obtained by covalent coupling with the EDC/NHS (N-ethyl-N′-(3-(dimethylamino)propyl)carbodiimide/N-hydroxysuccinimide) method in comparison with the adsorption method (24% drug loading, 28% efficiency). The systems showed high antimicrobial activity with a minimal inhibitory concentration of 1.13 µM (adsorption) and 1.70 µM (covalent). This system successfully combines an antimicrobial peptide with a magnetically controllable drug carrier.
Collapse
|
16
|
Tarannum N, Pooja K. Recent trends and applications in the research and development activities of redispersible powder: a vision of twenty-first century. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03928-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Yang Q, Yang J, Sun S, Zhao J, Liang S, Feng Y, Liu M, Zhang J. Rhodojaponin III-Loaded Chitosan Derivatives-Modified Solid Lipid Nanoparticles for Multimodal Antinociceptive Effects in vivo. Int J Nanomedicine 2022; 17:3633-3653. [PMID: 35996527 PMCID: PMC9392492 DOI: 10.2147/ijn.s362443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/04/2022] [Indexed: 12/28/2022] Open
Abstract
Background Rhodojaponin III (RJ-III) is a bioactive diterpenoid, which is mainly found in Rhododendron molle G. Don (Ericaceae), a potent analgesia in traditional Chinese medicine with several years of clinical applications in the country. However, its clinical use is limited by its acute toxicity and poor pharmacokinetic profiles. To reduce such limitations, the current study incorporated RJ-III into the colloidal drug delivery system of hydroxypropyl trimethyl ammonium chloride chitosan (HACC)-modified solid lipid nanoparticles (SLNs) to improve its sustained release and antinociceptive effects in vivo for oral delivery. Results The optimized RJ-III@HACC-SLNs were close to spherical, approximately 134 nm in size, and with a positive zeta potential. In vitro experiments showed that RJ-III@HACC-SLNs were stable in the simulated gastric fluid and had a prolonged release in PBS (pH = 6.8). Pharmacokinetic results showed that after intragastric administration in mice, the relative bioavailability of RJ-III@HACC-SLNs was 87.9%. Further, it was evident that the peak time, half-time, and mean retention time of RJ-III@HACC-SLNs were improved than RJ-III after the administration. In addition, pharmacodynamic studies revealed that RJ-III@HACC-SLNs markedly reduced the acetic acid, hot, and formalin-induced nociceptive responses in mice (P < 0.001), and notably increased the analgesic time (P < 0.01). Moreover, RJ-III@HACC-SLNs not only showed good biocompatibility with Caco-2 cells in vitro but its LD50 value was also increased by 1.8-fold as compared with that of RJ-III in vivo. Conclusion These results demonstrated that RJ-III@HACC-SLNs improved the pharmacokinetic characteristics of the RJ-III, thereby exhibiting toxicity-attenuating potential and antinociceptive enhancing properties. Consequently, HACC-SLNs loaded with RJ-III could become a promising oral formulation for pain management that deserves further investigation in the future.
Collapse
Affiliation(s)
- Qingyun Yang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jian Yang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Shuigen Sun
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jingyi Zhao
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Shuang Liang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Minchen Liu
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jiquan Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| |
Collapse
|
18
|
Scioli-Montoto S, Sbaraglini ML, Cisneros JS, Chain CY, Ferretti V, León IE, Alvarez VA, Castro GR, Islan GA, Talevi A, Ruiz ME. Novel Phenobarbital-Loaded Nanostructured Lipid Carriers for Epilepsy Treatment: From QbD to In Vivo Evaluation. Front Chem 2022; 10:908386. [PMID: 36059881 PMCID: PMC9428247 DOI: 10.3389/fchem.2022.908386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Pharmacological treatments of central nervous system diseases are always challenging due to the restrictions imposed by the blood–brain barrier: while some drugs can effectively cross it, many others, some antiepileptic drugs among them, display permeability issues to reach the site of action and exert their pharmacological effects. The development of last-generation therapeutic nanosystems capable of enhancing drug biodistribution has gained ground in the past few years. Lipid-based nanoparticles are promising systems aimed to improve or facilitate the passage of drugs through biological barriers, which have demonstrated their effectiveness in various therapeutic fields, without signs of associated toxicity. In the present work, nanostructured lipid carriers (NLCs) containing the antiepileptic drug phenobarbital were designed and optimized by a quality by design approach (QbD). The optimized formulation was characterized by its entrapment efficiency, particle size, polydispersity index, and Z potential. Thermal properties were analyzed by DSC and TGA, and morphology and crystal properties were analyzed by AFM, TEM, and XRD. Drug localization and possible interactions between the drug and the formulation components were evaluated using FTIR. In vitro release kinetic, cytotoxicity on non-tumoral mouse fibroblasts L929, and in vivo anticonvulsant activity in an animal model of acute seizures were studied as well. The optimized formulation resulted in spherical particles with a mean size of ca. 178 nm and 98.2% of entrapment efficiency, physically stable for more than a month. Results obtained from the physicochemical and in vitro release characterization suggested that the drug was incorporated into the lipid matrix losing its crystalline structure after the synthesis process and was then released following a slower kinetic in comparison with the conventional immediate-release formulation. The NLC was non-toxic against the selected cell line and capable of delivering the drug to the site of action in an adequate amount and time for therapeutic effects, with no appreciable neurotoxicity. Therefore, the developed system represents a promising alternative for the treatment of one of the most prevalent neurological diseases, epilepsy.
Collapse
Affiliation(s)
- Sebastian Scioli-Montoto
- Laboratory of Bioactive Compounds Research and Development, Department of Biological Sciences, School of Exact Sciences, National University of La Plata, La Plata, Argentina
- National Council for Scientific and Technical Research (CONICET), La Plata, Argentina
| | - Maria Laura Sbaraglini
- Laboratory of Bioactive Compounds Research and Development, Department of Biological Sciences, School of Exact Sciences, National University of La Plata, La Plata, Argentina
- National Council for Scientific and Technical Research (CONICET), La Plata, Argentina
| | - Jose Sebastian Cisneros
- National Council for Scientific and Technical Research (CONICET), La Plata, Argentina
- Research Institute of Theoretical and Applied Physical Chemistry (INIFTA—CONICET—UNLP), Department of Chemistry, School of Exact Sciences, National University of La Plata, La Plata, Argentina
| | - Cecilia Yamil Chain
- National Council for Scientific and Technical Research (CONICET), La Plata, Argentina
- Research Institute of Theoretical and Applied Physical Chemistry (INIFTA—CONICET—UNLP), Department of Chemistry, School of Exact Sciences, National University of La Plata, La Plata, Argentina
| | - Valeria Ferretti
- Inorganic Chemistry Center (CEQUINOR—CONICET—UNLP), Department of Chemistry, School of Exact Sciences, National University of La Plata, La Plata, Argentina
| | - Ignacio Esteban León
- National Council for Scientific and Technical Research (CONICET), La Plata, Argentina
- Inorganic Chemistry Center (CEQUINOR—CONICET—UNLP), Department of Chemistry, School of Exact Sciences, National University of La Plata, La Plata, Argentina
- Physiopathology Chair, Biological Sciences Department, School of Exact Sciences, National University of La Plata, La Plata, Argentina
| | - Vera Alejandra Alvarez
- National Council for Scientific and Technical Research (CONICET), La Plata, Argentina
- Institute of Materials Science and Technology Research (INTEMA—CONICET—UNMdP), Mar del Plata, Argentina
| | - Guillermo Raul Castro
- Nanomedicine Research Unit (Nanomed), Federal University of ABC (UFABC), Santo André, Brazil
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG), Center for Interdisciplinary Studies (CEI—CONICET), National University of Rosario, Rosario, Argentina
| | - German Abel Islan
- National Council for Scientific and Technical Research (CONICET), La Plata, Argentina
- Nanobiomaterials Laboratory, Center for Research and Development of Industrial Fermentations (CINDEFI—CONICET—UNLP), School of Exact Sciences, National University of La Plata, La Plata, Argentina
| | - Alan Talevi
- Laboratory of Bioactive Compounds Research and Development, Department of Biological Sciences, School of Exact Sciences, National University of La Plata, La Plata, Argentina
- National Council for Scientific and Technical Research (CONICET), La Plata, Argentina
| | - Maria Esperanza Ruiz
- Laboratory of Bioactive Compounds Research and Development, Department of Biological Sciences, School of Exact Sciences, National University of La Plata, La Plata, Argentina
- National Council for Scientific and Technical Research (CONICET), La Plata, Argentina
- *Correspondence: Maria Esperanza Ruiz, ,
| |
Collapse
|
19
|
MR S, Nallamuthu I, Dongzagin S, Anand T. Toxicological evaluation of PLA/PVA-Naringenin nanoparticles: in vitro and in vivo studies. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Javed S, Mangla B, Ahsan W. From propolis to nanopropolis: An exemplary journey and a paradigm shift of a resinous substance produced by bees. Phytother Res 2022; 36:2016-2041. [PMID: 35259776 DOI: 10.1002/ptr.7435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022]
Abstract
Propolis, a natural resinous mixture produced by honey bees is poised with diverse biological activities. Owing to the presence of flavonoids, phenolic acids, terpenes, and sesquiterpenes, propolis has garnered versatile applications in pharmaceutical industry. The biopharmaceutical issues associated with propolis often beset its use as being too hydrophobic in nature; it is not absorbed in the body well. To combat the problem, various nanotechnological approaches for the development of novel drug delivery systems are generally applied to improve its bioavailability. This paradigm shift and transition of conventional propolis to nanopropolis are evident from the literature wherein a multitude of studies are available on nanopropolis with improved bioavailability profile. These approaches include preparation of gold nanoparticles, silver nanoparticles, magnetic nanoparticles, liposomes, liquid crystalline formulations, solid lipid nanoparticles, mesoporous silica nanoparticles, etc. Nanopropolis has further been explored to assess the potential benefits of propolis for the development of futuristic useful products such as sunscreens, creams, mouthwashes, toothpastes, and nutritional supplements with improved solubility, bioavailability, and penetration profiles. However, more high-quality clinical studies assessing the effects of propolis either alone or in combination with synthetic drugs as well as natural products are warranted and its safety needs to be firmly established.
Collapse
Affiliation(s)
- Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
21
|
García-Medina S, Galar-Martínez M, Cano-Viveros S, Ruiz-Lara K, Gómez-Oliván LM, Islas-Flores H, Gasca-Pérez E, Pérez-Pastén-Borja R, Arredondo-Tamayo B, Hernández-Varela J, Chanona-Pérez JJ. Bioaccumulation and oxidative stress caused by aluminium nanoparticles and the integrated biomarker responses in the common carp (Cyprinus carpio). CHEMOSPHERE 2022; 288:132462. [PMID: 34626656 DOI: 10.1016/j.chemosphere.2021.132462] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
The use of nanoparticles (NPs) in various industries has experienced significant growth due to the advantages they offer, so the increase in their use has generated the continuous discharge of these products in numerous water bodies, which can affect the organisms that inhabit them. Previous studies have shown that Al is capable of producing oxidative stress in aquatic organisms; however, so far the impact of AlNP on hydrobionts is limited. Therefore, the objective of this work was to determine the oxidative stress produced by AlNP in liver, gill and blood of Cyprinus carpio, as well as their bioconcentration factor (BCF) in various tissues. For this purpose, the organisms were exposed to 50 μg L-1 AlNP for 12-96 h. Subsequently, the tissues were obtained and the activity of antioxidant enzymes, oxidative damage to lipids and proteins were determined, and the BCF was calculated for liver, brain, gill and muscle. The results showed alterations in the activity of antioxidant enzymes and increased levels of lipoperoxidation, hydroperoxides and oxidized proteins. When establishing the integrated biomarker response, it was observed that the liver is the most affected organ and these effects are related to the Al content in the tissue. Finally, it was observed that muscle and gills presented a higher BCF, compared to brain and liver. These findings show that AlNP are capable of generating oxidative stress in carp, affecting tissue function and accumulating, which represents an important risk for the health of fish such as common carp.
Collapse
Affiliation(s)
- Sandra García-Medina
- Laboratorio de Toxicología Acuática, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Esq. Manuel L. Stampa s/n, Gustavo A. Madero, Ciudad de México, 07738, Mexico.
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Esq. Manuel L. Stampa s/n, Gustavo A. Madero, Ciudad de México, 07738, Mexico.
| | - Selene Cano-Viveros
- Laboratorio de Toxicología Acuática, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Esq. Manuel L. Stampa s/n, Gustavo A. Madero, Ciudad de México, 07738, Mexico
| | - Karina Ruiz-Lara
- Laboratorio de Toxicología Acuática, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Esq. Manuel L. Stampa s/n, Gustavo A. Madero, Ciudad de México, 07738, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col, Residencial Colón, Toluca, Estado de México, 50120, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col, Residencial Colón, Toluca, Estado de México, 50120, Mexico
| | - Eloy Gasca-Pérez
- Cátedra CONACYT, Laboratorio de Toxicología Acuática, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Esq. Manuel L. Stampa s/n, Gustavo A. Madero, Ciudad de México, 07738, Mexico
| | - Ricardo Pérez-Pastén-Borja
- Laboratorio de Toxicología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Esq. Manuel L. Stampa s/n, Gustavo A. Madero, Ciudad de México, 07738, Mexico
| | - Benjamín Arredondo-Tamayo
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Esq. Manuel L. Stampa s/n, Gustavo A. Madero, Ciudad de México, 07738, Mexico
| | - Josué Hernández-Varela
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Esq. Manuel L. Stampa s/n, Gustavo A. Madero, Ciudad de México, 07738, Mexico
| | - José Jorge Chanona-Pérez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Esq. Manuel L. Stampa s/n, Gustavo A. Madero, Ciudad de México, 07738, Mexico
| |
Collapse
|
22
|
Recent development in nanocrystal based drug delivery for neurodegenerative diseases: Scope, challenges, current and future prospects. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Peito S, Peixoto D, Ferreira-Faria I, Margarida Martins A, Margarida Ribeiro H, Veiga F, Marto J, Cláudia Santos A. Nano- and microparticle-stabilized Pickering emulsions designed for topical therapeutics and cosmetic applications. Int J Pharm 2022; 615:121455. [PMID: 35031412 DOI: 10.1016/j.ijpharm.2022.121455] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/16/2022]
Abstract
Pickering emulsions are systems composed of two immiscible fluids, which are stabilized by solid organic or inorganic particles. These solid particles include a broad range of particles that can be used to stabilize Pickering emulsions. An improved resistance against coalescence and lower toxicity, against conventional emulsions stabilized by surfactants, make Pickering emulsions suitable candidates for numerous applications, such as catalysis, food, oil recovery, cosmetics, and pharmaceutical industries. In this article, we give an overview of Pickering emulsions focusing on topical applications. First, we reference the parameters that influence the stabilization of Pickering emulsions. Second, we discuss some of the already investigated topical applications of nano- and microparticles used to stabilize Pickering emulsions. Afterwards, we consider some of the most promising stabilizers of Pickering emulsions for topical applications. Ultimately, we carried out a brief analysis of toxicity and advances in future perspectives, highlighting the promising use of these emulsions in cosmetics and dermopharmaceutical formulations.
Collapse
Affiliation(s)
- Sofia Peito
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Inês Ferreira-Faria
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Ana Margarida Martins
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Helena Margarida Ribeiro
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Joana Marto
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Ana Cláudia Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
24
|
Sindhu R, Manonmani HK. L-asparaginase mediated therapy in L-asparagine auxotrophic cancers: A review. Anticancer Agents Med Chem 2022; 22:2393-2410. [PMID: 34994334 DOI: 10.2174/1871520622666220106103336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/28/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
Microbial L-asparaginase is the most effective first-line therapeutic used in the treatment protocols of paediatric and adult leukemia. Leukemic cell's auxotrophy for L-asparagine is exploited as a therapeutic strategy to mediate cell death through metabolic blockade of L-asparagine using L-asparaginase. Escherichia coli and Erwinia chrysanthemi serve as the major enzyme deriving sources accepted in clinical practise and the enzyme has bestowed improvements in patient outcomes over the last 40 years. However, an array of side effects generated by the native enzymes due to glutamine co-catalysis and short serum stays augmenting frequent dosages, intended a therapeutic switch towards the development of biobetter alternatives for the enzyme including the formulations resulting in sustained local depletion of L-asparagine. In addition, the treatment with L-asparaginase in few cancer types has proven to elicit drug-induced cytoprotective autophagy mechanisms and therefore warrants concern. Although the off-target glutamine hydrolysis has been viewed in contributing the drug-induced secondary responses in cells deficient with asparagine synthetase machinery, the beneficial role of glutaminase-asparaginase in proliferative regulation of asparagine prototrophic cells has been looked forward. The current review provides an overview on the enzyme's clinical applications in leukemia and possible therapeutic implications in other solid tumours, recent advancements in drug formulations, and discusses the aspects of two-sided roles of glutaminase-asparaginases and drug-induced cytoprotective autophagy mechanisms.
Collapse
Affiliation(s)
- Sindhu R
- Department of Microbiology, Faculty of Life Sciences, JSS-AHER, Mysuru-570015, Karnataka, India
| | - H K Manonmani
- Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute, Mysuru-570020, Karnataka, India
| |
Collapse
|
25
|
Challenges in Nanomaterial Characterization – From Definition to Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:3-17. [DOI: 10.1007/978-3-030-88071-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Raza F, Zafar H, Khan MW, Ullah A, Khan AU, Baseer A, Fareed R, Sohail M. Recent advances in the targeted delivery of paclitaxel nanomedicine for cancer therapy. MATERIALS ADVANCES 2022; 3:2268-2290. [DOI: 10.1039/d1ma00961c] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cancer cases have reached an all-time high in the current era.
Collapse
Affiliation(s)
- Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | | | - Aftab Ullah
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, P. R. China
| | | | - Abdul Baseer
- Department of Pharmacy, Abasyn University, Peshawar, Pakistan
| | - Rameesha Fareed
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad, Pakistan
| | - Muhammad Sohail
- School of Pharmacy, Yantai University, Shandong, 264005, China
| |
Collapse
|
27
|
Assali M, Zaid AN. Features, applications, and sustainability of lipid nanoparticles in cosmeceuticals. Saudi Pharm J 2022; 30:53-65. [PMID: 35241963 PMCID: PMC8864531 DOI: 10.1016/j.jsps.2021.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/27/2021] [Indexed: 12/22/2022] Open
Abstract
Cosmeceuticals are a branch of cosmetic products that forms a bridge between cosmetic and drug products. It is a fast-growing branch of the cosmetic industry, especially after the introduction of novel formulation and manufacturing techniques such as lipid nanoparticles (LNPs). These LNPs-based cosmeceutical products offer several advantages such as enhanced bioavailability of cosmeceutical active ingredients (CAIs), improved aesthetic appeal, and stability of the final products. However, the use of these LNPs may raise some concerns about possible side effects of these LNPs and potential hazards to the customer's health. Accordingly, an update that focuses on the use of this important branch of nanoparticles is necessary since most review papers are dealing with all types of nanocarriers in the same review with little focus on LNPs. Therefore, in the current review, a detailed analysis of the advantages and disadvantages of LNPs in this field was highlighted, to emphasize the LNPs-based cosmeceuticals on the market, as well as the potential risk posed by LNPs on exposure and recently introduced regulatory guidelines to address them. In addition, if these products can be a candidate as products that meet the sustainable development goals raised by the UN are discussed.
Collapse
Affiliation(s)
- Mohyeddin Assali
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Abdel-Naser Zaid
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
28
|
Abdel-Mageed HM, Abd El Aziz AE, Mohamed SA, AbuelEzz NZ. The Tiny Big World of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: An Updated Review. J Microencapsul 2021; 39:72-94. [PMID: 34958628 DOI: 10.1080/02652048.2021.2021307] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nanotechnology is currently a field of endeavor that has reached a maturation phase beyond the initial hypotheses with an undercurrent challenge to optimize the safety, and scalability for production and clinical trials. Lipid-based nanoparticles (LNP), namely solid lipid nanoparticles (SLN) and nanostructured lipid (NLC), carriers are presently among the most attractive and fast-growing areas of research. SLN and NLC are safe, biocompatible nanotechnology-enabled platforms with ubiquitous applications. This review presents a modern vision that starts with a brief description of characteristics, preparation strategies, and composition ingredients, benefits, and limitations. Next, a discussion of applications and functionalization approaches for the delivery of therapeutics via different routes of delivery. Additionally, the review presents a concise perspective into limitations and future advances. A brief recap on the prospects of molecular dynamics simulations in better understanding NP bio-interface interactions is provided. Finally, the alliance between 3D printing and nanomaterials is presented here as well.
Collapse
Affiliation(s)
| | - Amira E Abd El Aziz
- Centre of Excellence, Arab Academy for Science and Technology and Maritime Transport, Alexandria, Egypt
| | - Saleh A Mohamed
- Molecular Biology Department, National Research Centre, Cairo, Dokki, Egypt
| | - Nermeen Z AbuelEzz
- Biochemistry Department, College of Pharmaceutical Sciences & Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| |
Collapse
|
29
|
Kim E, Lim EK, Park G, Park C, Lim JW, Lee H, Na W, Yeom M, Kim J, Song D, Haam S. Advanced Nanomaterials for Preparedness Against (Re-)Emerging Viral Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005927. [PMID: 33586180 DOI: 10.1002/adma.202005927] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Indexed: 05/24/2023]
Abstract
While the coronavirus disease (COVID-19) accounts for the current global pandemic, the emergence of other unknown pathogens, named "Disease X," remains a serious concern in the future. Emerging or re-emerging pathogens continue to pose significant challenges to global public health. In response, the scientific community has been urged to create advanced platform technologies to meet the ever-increasing needs presented by these devastating diseases with pandemic potential. This review aims to bring new insights to allow for the application of advanced nanomaterials in future diagnostics, vaccines, and antiviral therapies, thereby addressing the challenges associated with the current preparedness strategies in clinical settings against viruses. The application of nanomaterials has advanced medicine and provided cutting-edge solutions for unmet needs. Herein, an overview of the currently available nanotechnologies is presented, highlighting the significant features that enable them to control infectious diseases, and identifying the challenges that remain to be addressed for the commercial production of nano-based products is presented. Finally, to conclude, the development of a nanomaterial-based system using a "One Health" approach is suggested. This strategy would require a transdisciplinary collaboration and communication between all stakeholders throughout the entire process spanning across research and development, as well as the preclinical, clinical, and manufacturing phases.
Collapse
Affiliation(s)
- Eunjung Kim
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Eun-Kyung Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon, 34113, Republic of Korea
| | - Geunseon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Chaewon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Jong-Woo Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Hyo Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Woonsung Na
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Minjoo Yeom
- College of Pharmacy, Korea University, Sejong-ro, Sejong, 30019, Republic of Korea
| | - Jinyoung Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Daesub Song
- College of Pharmacy, Korea University, Sejong-ro, Sejong, 30019, Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| |
Collapse
|
30
|
Burgos-Panadero R, El Moukhtari SH, Noguera I, Rodríguez-Nogales C, Martín-Vañó S, Vicente-Munuera P, Cañete A, Navarro S, Blanco-Prieto MJ, Noguera R. Unraveling the extracellular matrix-tumor cell interactions to aid better targeted therapies for neuroblastoma. Int J Pharm 2021; 608:121058. [PMID: 34461172 DOI: 10.1016/j.ijpharm.2021.121058] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022]
Abstract
Treatment in children with high-risk neuroblastoma remains largely unsuccessful due to the development of metastases and drug resistance. The biological complexity of these tumors and their microenvironment represent one of the many challenges to face. Matrix glycoproteins such as vitronectin act as bridge elements between extracellular matrix and tumor cells and can promote tumor cell spreading. In this study, we established through a clinical cohort and preclinical models that the interaction of vitronectin and its ligands, such as αv integrins, are related to the stiffness of the extracellular matrix in high-risk neuroblastoma. These marked alterations found in the matrix led us to specifically target tumor cells within these altered matrices by employing nanomedicine and combination therapy. Loading the conventional cytotoxic drug etoposide into nanoparticles significantly increased its efficacy in neuroblastoma cells. We noted high synergy between etoposide and cilengitide, a high-affinity cyclic pentapeptide αv integrin antagonist. The results of this study highlight the need to characterize cell-extracellular matrix interactions, to improve patient care in high-risk neuroblastoma.
Collapse
Affiliation(s)
- Rebeca Burgos-Panadero
- Department of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, 46010 Valencia, Spain; Low Prevalence Tumors, Centro de investigación biomédica en red de cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Souhaila H El Moukhtari
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Inmaculada Noguera
- Central Support Service for Experimental Research (SCSIE), University of Valencia, Burjassot, Valencia, Spain.
| | - Carlos Rodríguez-Nogales
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Susana Martín-Vañó
- Department of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, 46010 Valencia, Spain; Low Prevalence Tumors, Centro de investigación biomédica en red de cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Pablo Vicente-Munuera
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, Seville 41013, Spain.
| | - Adela Cañete
- Pediatric Oncology, La Fe Hospital, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain.
| | - Samuel Navarro
- Department of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, 46010 Valencia, Spain; Low Prevalence Tumors, Centro de investigación biomédica en red de cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - María J Blanco-Prieto
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, 46010 Valencia, Spain; Low Prevalence Tumors, Centro de investigación biomédica en red de cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
31
|
Kleynhans J, Sathekge M, Ebenhan T. Obstacles and Recommendations for Clinical Translation of Nanoparticle System-Based Targeted Alpha-Particle Therapy. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4784. [PMID: 34500873 PMCID: PMC8432563 DOI: 10.3390/ma14174784] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/31/2022]
Abstract
The rationale for application of nanotechnology in targeted alpha therapy (TAT) is sound. However, the translational strategy requires attention. Formulation of TAT in nanoparticulate drug delivery systems has the potential to resolve many of the issues currently experienced. As α-particle emitters are more cytotoxic compared to beta-minus-emitting agents, the results of poor biodistribution are more dangerous. Formulation in nanotechnology is also suggested to be the ideal solution for containing the recoil daughters emitted by actinium-225, radium-223, and thorium-227. Nanoparticle-based TAT is likely to increase stability, enhance radiation dosimetry profiles, and increase therapeutic efficacy. Unfortunately, nanoparticles have their own unique barriers towards clinical translation. A major obstacle is accumulation in critical organs such as the spleen, liver, and lungs. Furthermore, inflammation, necrosis, reactive oxidative species, and apoptosis are key mechanisms through which nanoparticle-mediated toxicity takes place. It is important at this stage of the technology's readiness level that focus is shifted to clinical translation. The relative scarcity of α-particle emitters also contributes to slow-moving research in the field of TAT nanotechnology. This review describes approaches and solutions which may overcome obstacles impeding nanoparticle-based TAT and enhance clinical translation. In addition, an in-depth discussion of relevant issues and a view on technical and regulatory barriers are presented.
Collapse
Affiliation(s)
- Janke Kleynhans
- Division of Nuclear Medicine, Tygerberg Hospital, Stellenbosch University, Cape Town 8000, South Africa;
| | - Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Nuclear Medicine Research Infrastructure NPC, Pretoria 0001, South Africa
| | - Thomas Ebenhan
- Nuclear Medicine Research Infrastructure NPC, Pretoria 0001, South Africa
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa
| |
Collapse
|
32
|
Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021; 121:9243-9358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research related to the development and application of luminescent nanoparticles (LNPs) for chemical and biological analysis and imaging is flourishing. Novel materials and new applications continue to be reported after two decades of research. This review provides a comprehensive and heuristic overview of this field. It is targeted to both newcomers and experts who are interested in a critical assessment of LNP materials, their properties, strengths and weaknesses, and prospective applications. Numerous LNP materials are cataloged by fundamental descriptions of their chemical identities and physical morphology, quantitative photoluminescence (PL) properties, PL mechanisms, and surface chemistry. These materials include various semiconductor quantum dots, carbon nanotubes, graphene derivatives, carbon dots, nanodiamonds, luminescent metal nanoclusters, lanthanide-doped upconversion nanoparticles and downshifting nanoparticles, triplet-triplet annihilation nanoparticles, persistent-luminescence nanoparticles, conjugated polymer nanoparticles and semiconducting polymer dots, multi-nanoparticle assemblies, and doped and labeled nanoparticles, including but not limited to those based on polymers and silica. As an exercise in the critical assessment of LNP properties, these materials are ranked by several application-related functional criteria. Additional sections highlight recent examples of advances in chemical and biological analysis, point-of-care diagnostics, and cellular, tissue, and in vivo imaging and theranostics. These examples are drawn from the recent literature and organized by both LNP material and the particular properties that are leveraged to an advantage. Finally, a perspective on what comes next for the field is offered.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rehan Higgins
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Zhujun Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelsi Lix
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hyungki Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
33
|
Li H, Wang Y, Tang Q, Yin D, Tang C, He E, Zou L, Peng Q. The protein corona and its effects on nanoparticle-based drug delivery systems. Acta Biomater 2021; 129:57-72. [PMID: 34048973 DOI: 10.1016/j.actbio.2021.05.019] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/25/2021] [Accepted: 05/18/2021] [Indexed: 02/04/2023]
Abstract
In most cases, once nanoparticles (NPs) enter the blood, their surface is covered by biological molecules, especially proteins, forming a so-called protein corona (PC). As a result, what the cells of the body "see" is not the NPs as formulated by the chemists, but the PC. In this way, the PC can influence the effects of the NPs and even mask the desired effects of the NP components. While this can argue for trying to inhibit protein-nanomaterial interactions, encapsulating NPs in an endogenous PC may increase their clinical usefulness. In this review, we briefly introduce the concept of the PC, its formation and its effects on the behavior of NPs. We also discuss how to reduce the formation of PCs or exploit them to enhance NP functions. Studying the interactions between proteins and NPs will provide insights into their clinical activity in health and disease. STATEMENT OF SIGNIFICANCE: The formation of protein corona (PC) will affect the operation of nanoparticles (NPs) in vivo. Since there are many proteins in the blood, it is impossible to completely overcome the formation of PC. Therefore, the use of PCs to deliver drug is the best choice. De-opsonins adsorbed on NPs can reduce macrophage phagocytosis and cytotoxicity of NPs, and prolong their circulation in blood. Albumin, apolipoprotein and transferrin are typical de-opsonins. In present review, we mainly discuss how to optimize the delivery of nanoparticles through the formation of albumin corona, transferrin corona and apolipoprotein corona in vivo or in vitro.
Collapse
Affiliation(s)
- Hanmei Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu university, Chengdu 610106, China
| | - Yao Wang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Qi Tang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Dan Yin
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Chuane Tang
- School of Mechanical Engineering, Chengdu university, Chengdu 610106, China
| | - En He
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu university, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu university, Chengdu 610106, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
34
|
El Moukhtari SH, Rodríguez-Nogales C, Blanco-Prieto MJ. Oral lipid nanomedicines: Current status and future perspectives in cancer treatment. Adv Drug Deliv Rev 2021; 173:238-251. [PMID: 33774117 DOI: 10.1016/j.addr.2021.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
Oral anticancer drugs have earned a seat at the table, as the need for homecare treatment in oncology has increased. Interest in this field is growing as a result of their proven efficacy, lower costs and positive patient uptake. However, the gastrointestinal barrier is still the main obstacle to surmount in chemotherapeutic oral delivery. Anticancer nanomedicines have been proposed to solve this quandary. Among these, lipid nanoparticles are described to be efficiently absorbed while protecting drugs from early degradation in hostile environments. Their intestinal lymphatic tropism or mucoadhesive/penetrative properties give them unique characteristics for oral administration. Considering that chronic cancer cases are increasing over time, it is important to be able to provide treatments with low toxicity and low prices. The challenges, opportunities and therapeutic perspectives of lipid nanoparticles in this area will be discussed in this review, taking into consideration the pre-clinical and clinical progress made in the last decade.
Collapse
|
35
|
Souza LRR, Corrêa TZ, Bruni AT, da Veiga MAMS. The effects of solubility of silver nanoparticles, accumulation, and toxicity to the aquatic plant Lemna minor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:16720-16733. [PMID: 33398747 DOI: 10.1007/s11356-020-11862-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
The use of silver nanoparticles (AgNPs) in commercial products has increased due to their antibacterial properties and their impacts on the environment must be investigated. This scenario has motivated the conduction of this study, which relates different factors that affect the toxicity of AgNPs to the aquatic plant Lemna minor such as size, accumulation, concentration, and dissolution of AgNPs. To this end, synthesized AgNPs measuring 30, 85, and 110 nm were added into the culture medium to observe toxicity for 30 days. The mapping by SEM showed that the smallest AgNPs can translocate from roots to leaves due to its mobility and internalization. As predicted by the Ostwald equation, the solubility for 30-nm AgNPs increased almost 3 times at the end of 30 days, while for 85 and 110 nm size nanoparticles, after 7 days, the solubility decreased due to "Ostwald ripening" process. Plant mortality was assessed and, after 1 month, the size of 30 nm was the most toxic with negative growth in all studied concentrations, with 60% mortality in the worst case. The concentration of 50 μg mL-1 was toxic in all sizes with negative growth in the period. Therefore, the investigation of AgNPs' toxicity needs to consider a different factor to better understand their effects on aquatic plants and the environment.
Collapse
Affiliation(s)
- Lilian R R Souza
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-900, Brazil.
| | - Tuany Z Corrêa
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-900, Brazil
| | - Aline Thaís Bruni
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-900, Brazil
| | - Márcia A M S da Veiga
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-900, Brazil
| |
Collapse
|
36
|
Dobreva M, Stefanov S, Andonova V. Natural Lipids as Structural Components of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Topical Delivery. Curr Pharm Des 2021; 26:4524-4535. [PMID: 32410552 DOI: 10.2174/1381612826666200514221649] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/15/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) are useful drug delivery systems for dermal application. Thanks to their biocompatible and biodegradable profile, these carriers offer many advantages such as enhanced bioavailability, low toxicity, viable drug targeting and controlled release. SLN and NLC are composed of well-tolerated lipids, including natural fats and oils that are successfully used in the pharmaceutical and cosmetic dermal formulation. OBJECTIVE This article presents an overview of the benefits of selecting natural fats and oils as structural components of SLN and NLC for topical application. METHODS This review is based on data published over the past 20 years about the development of stable and nontoxic lipid nanoparticles with natural lipids. We shed light on the role of natural fats in skin restoration, as well as on the contributed penetration and occlusive properties of SLN and NLC. RESULTS The deliberate selection of excipients (type and lipid ratio) influences the quality of the final dermal formulation. Natural lipids show good compatibility with different active molecules and are able to create stable lipid matrices that facilitate the biopharmaceutical properties of lipid nanoparticles. Patents involving natural fats and oils in SLN and NLC composition are listed, yet it is important to note that the approved marketed formulations are mainly cosmetic, not pharmaceutical, products. CONCLUSION Natural lipids can enhance topical drug delivery by adding their ability of improving skin penetration and hydration to the permeation and occlusion properties of SLN and NLC.
Collapse
Affiliation(s)
- Mirena Dobreva
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, Varna, Bulgaria
| | - Stefan Stefanov
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, Varna, Bulgaria
| | - Velichka Andonova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, Varna, Bulgaria
| |
Collapse
|
37
|
Scioli Montoto S, Muraca G, Ruiz ME. Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects. Front Mol Biosci 2020; 7:587997. [PMID: 33195435 PMCID: PMC7662460 DOI: 10.3389/fmolb.2020.587997] [Citation(s) in RCA: 292] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
In the golden age of pharmaceutical nanocarriers, we are witnessing a maturation stage of the original concepts and ideas. There is no doubt that nanoformulations are extremely valuable tools for drug delivery applications; the current challenge is how to optimize them to ensure that they are safe, effective and scalable, so that they can be manufactured at an industrial level and advance to clinical use. In this context, lipid nanoparticles have gained ground, since they are generally regarded as non-toxic, biocompatible and easy-to-produce formulations. Pharmaceutical applications of lipid nanocarriers are a burgeoning field for the transport and delivery of a diversity of therapeutic agents, from biotechnological products to small drug molecules. This review starts with a brief overview of the characteristics of solid lipid nanoparticles and discusses the relevancy of performing systematic preformulation studies. The main applications, as well as the advantages that this type of nanovehicles offers in certain therapeutic scenarios are discussed. Next, pharmacokinetic aspects are described, such as routes of administration, absorption after oral administration, distribution in the organism (including brain penetration) and elimination processes. Safety and toxicity issues are also addressed. Our work presents an original point of view, addressing the biopharmaceutical aspects of these nanovehicles by means of descriptive statistics of the state-of-the-art of solid lipid nanoparticles research. All the presented results, trends, graphs and discussions are based in a systematic (and reproducible) bibliographic search that considered only original papers in the subject, covering a 7 years range (2013-today), a period that accounts for more than 60% of the total number of publications in the topic in the main bibliographic databases and search engines. Focus was placed on the therapeutic fields of application, absorption and distribution processes and current efforts for the translation into the clinical practice of lipid-based nanoparticles. For this, the currently active clinical trials on lipid nanoparticles were reviewed, with a brief discussion on what achievements or milestones are still to be reached, as a way of understanding the reasons for the scarce number of solid lipid nanoparticles undergoing clinical trials.
Collapse
Affiliation(s)
- Sebastián Scioli Montoto
- Laboratorio de Investigación y Desarrollo de Bioactivos, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Giuliana Muraca
- Laboratorio de Investigación y Desarrollo de Bioactivos, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- Instituto Nacional de Medicamentos (INAME, ANMAT), Buenos Aires, Argentina
| | - María Esperanza Ruiz
- Laboratorio de Investigación y Desarrollo de Bioactivos, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
38
|
Pereira-Silva M, Jarak I, Santos AC, Veiga F, Figueiras A. Micelleplex-based nucleic acid therapeutics: From targeted stimuli-responsiveness to nanotoxicity and regulation. Eur J Pharm Sci 2020; 153:105461. [DOI: 10.1016/j.ejps.2020.105461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
|
39
|
Ezhilarasu H, Vishalli D, Dheen ST, Bay BH, Srinivasan DK. Nanoparticle-Based Therapeutic Approach for Diabetic Wound Healing. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1234. [PMID: 32630377 PMCID: PMC7353122 DOI: 10.3390/nano10061234] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is a common endocrine disease characterized by a state of hyperglycemia (higher level of glucose in the blood than usual). DM and its complications can lead to diabetic foot ulcer (DFU). DFU is associated with impaired wound healing, due to inappropriate cellular and cytokines response, infection, poor vascularization, and neuropathy. Effective therapeutic strategies for the management of impaired wound could be attained through a better insight of molecular mechanism and pathophysiology of diabetic wound healing. Nanotherapeutics-based agents engineered within 1-100 nm levels, which include nanoparticles and nanoscaffolds, are recent promising treatment strategies for accelerating diabetic wound healing. Nanoparticles are smaller in size and have high surface area to volume ratio that increases the likelihood of biological interaction and penetration at wound site. They are ideal for topical delivery of drugs in a sustained manner, eliciting cell-to-cell interactions, cell proliferation, vascularization, cell signaling, and elaboration of biomolecules necessary for effective wound healing. Furthermore, nanoparticles have the ability to deliver one or more therapeutic drug molecules, such as growth factors, nucleic acids, antibiotics, and antioxidants, which can be released in a sustained manner within the target tissue. This review focuses on recent approaches in the development of nanoparticle-based therapeutics for enhancing diabetic wound healing.
Collapse
Affiliation(s)
- Hariharan Ezhilarasu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (H.E.); (S.T.D.); (B.-H.B.)
| | - Dinesh Vishalli
- Faculty of Medical Sciences, Krishna Institute of Medical Sciences “Deemed to be University”, Karad, Maharashtra 415539, India;
| | - S. Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (H.E.); (S.T.D.); (B.-H.B.)
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (H.E.); (S.T.D.); (B.-H.B.)
| | - Dinesh Kumar Srinivasan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (H.E.); (S.T.D.); (B.-H.B.)
| |
Collapse
|
40
|
Ammar HO, Ghorab MM, Mostafa DM, Abd El-Alim SH, Kassem AA, Salah S, Shalaby ES. Development of folic acid-loaded nanostructured lipid carriers for topical delivery: preparation, characterisation and ex vivo investigation. J Microencapsul 2020; 37:366-383. [PMID: 32338149 DOI: 10.1080/02652048.2020.1761904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The present work is designed to achieve efficient localised skin delivery of folic acid (FA)-loaded nanostructured lipid carriers (NLCs) to infer efficient treatment of skin photoageing conditions induced via excessive exposure to ultraviolet (UV) radiation. FA NLCs were prepared by high-speed homogenisation followed by ultrasonication. The obtained NLCs revealed high encapsulation efficiencies (89.42-99.26%) with nanometric particle sizes (27.06-85.36 nm) of monodisperse distribution (PDI = 0.137-0.442), zeta potential values >|27| mV, pseudoplastic rheological behaviour, good spreadability (2.25-3.30 cm) and promoted occlusive properties throughout 48 h. Optimised NLC formulations appeared as sphere-shaped particles using transmission electron microscopy, showed improved photostability of FA and prolonged in vitro release profile best fitted to Higuchi diffusion model. Ex vivo permeation and deposition of FA, employing Wistar rat skins, depicted enhanced permeability and existence of FA in skin layers after 6 h. Based on the obtained results, FA-loaded NLC formulations demonstrate a promising modality for anti-photoageing therapy.
Collapse
Affiliation(s)
- Hussein Osman Ammar
- Pharmaceutical Technology Department, National Research Centre, Cairo, Egypt.,Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University, New Cairo, Egypt
| | - Mahmoud Mohamed Ghorab
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | | | - Ahmed Alaa Kassem
- Pharmaceutical Technology Department, National Research Centre, Cairo, Egypt
| | - Salwa Salah
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Eman Samy Shalaby
- Pharmaceutical Technology Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
41
|
El Rabey HA, Almutairi FM, Alalawy AI, Al-Duais MA, Sakran MI, Zidan NS, Tayel AA. Augmented control of drug-resistant Candida spp. via fluconazole loading into fungal chitosan nanoparticles. Int J Biol Macromol 2019; 141:511-516. [PMID: 31499111 DOI: 10.1016/j.ijbiomac.2019.09.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 10/26/2022]
Abstract
Fungal chitosan (ACT) extraction from Amylomyces rouxii, its transforming into nano-form, loading with fluconazole (Flu) and evaluation of synthesized nanoconjugates against drug-resistant (DR) Candida spp., were investigated. The produced ACT was characterized with 112.4 kDa molecular weight and 88.7% deacetylation degree. Synthesis of chitosan nanoparticles (NACT), and loading them with Flu were succeeded, using ionic gelation protocol, to generate stable Flu/NACT nanoconjugate' particles with mean size of 82 nm and zeta potential of +3.36 mV. The NACT entrapment efficiency was 78.7% and the drug loading capacity was 60.2%. Flu slowly released from NACT during the first 5 h, then release dramatically increased to the maximum (94.8%) after 12 h. The infra-red spectrum of Flu/NACT nanoconjugates confirmed the strong cross-linkage between their molecules. The antimycotic activity of NACT and Flu/NACT was proved against DR strains of C. albicans (2 strains), C. parapsilosis and C. glabrata, using qualitative and quantitative assays; Flu/NACT exhibited significant powerful activity, which was confirmed via observations with scanning microscopy. Finished cotton textiles with Flu/NACT had augmented potentiality for inhibiting challenged DR Candida spp., using in vitro assay. Accordingly, the synthesis and application of Flu/NACT nanoconjugates was astoundingly recommended for controlling DR Candida spp.
Collapse
Affiliation(s)
- Haddad A El Rabey
- Biochemistry Department, Faculty of Science, University of Tabuk, Saudi Arabia; Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt.
| | - Fahad M Almutairi
- Biochemistry Department, Faculty of Science, University of Tabuk, Saudi Arabia
| | - Adel I Alalawy
- Biochemistry Department, Faculty of Science, University of Tabuk, Saudi Arabia
| | - Mohammed A Al-Duais
- Biochemistry Department, Faculty of Science, University of Tabuk, Saudi Arabia; Chemistry Department, Faculty of Science, Ibb University, Yemen
| | - Mohamed I Sakran
- Biochemistry Department, Faculty of Science, University of Tabuk, Saudi Arabia; Biochemistry Section, Chemistry Department, Faculty of Science, Tanta University, Egypt
| | - Nahla S Zidan
- Department of Nutrition and Food Science, Faculty of Home Economics, University of Tabuk, Saudi Arabia; Department of Home Economics, Faculty of Specific Education, Kafrelsheikh University, Egypt
| | - Ahmed A Tayel
- Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Egypt.
| |
Collapse
|
42
|
Souza LRR, Bernardes LE, Barbetta MFS, da Veiga MAMS. Iron oxide nanoparticle phytotoxicity to the aquatic plant Lemna minor: effect on reactive oxygen species (ROS) production and chlorophyll a/chlorophyll b ratio. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:24121-24131. [PMID: 31228067 DOI: 10.1007/s11356-019-05713-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
Although iron oxide occurs naturally in the environment, iron oxide nanoparticles have distinct mobility, reactivity, and toxicity, which can harm the human health and nature. This scenario has motivated the investigation of the toxic effects of iron oxide nanoparticles (akaganeite predominance + hematite) on the aquatic plant Lemna minor. First, nanoparticles were synthesized and characterized; then, different iron oxide NP concentrations were added to Lemna minor culture. After 7 days, all the Lemna minor leaves died, irrespective of the added NP concentration. The iron oxide NP impact on the plant was evaluated based on malondialdehyde (MDA) production from thiobarbituric acid reactive substances (TBARS), which was dose-dependent; i.e., lipid peroxidation in the plant increased with rising iron oxide NP concentration. The chlorophyll content decreased at high iron oxide NP concentrations, which disrupted the light absorption mechanism. Fe accumulation in Lemna minor roots also occurred, which can harm nutrient uptake. Therefore, the iron oxide NP toxic impact on plants and related ecosystems requires further studies in order to prevent environmental damage.
Collapse
Affiliation(s)
- Lilian Rodrigues Rosa Souza
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Monte Alegre, Ribeirão Preto, SP, 14040-901, Brazil
| | - Luís Eduardo Bernardes
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Monte Alegre, Ribeirão Preto, SP, 14040-901, Brazil
| | - Maike Felipe Santos Barbetta
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Monte Alegre, Ribeirão Preto, SP, 14040-901, Brazil
| | - Márcia Andreia Mesquita Silva da Veiga
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Monte Alegre, Ribeirão Preto, SP, 14040-901, Brazil.
| |
Collapse
|
43
|
Alshubaily FA, Al-Zahrani MH. Appliance of fungal chitosan/ceftriaxone nano-composite to strengthen and sustain their antimicrobial potentiality against drug resistant bacteria. Int J Biol Macromol 2019; 135:1246-1251. [PMID: 31181276 DOI: 10.1016/j.ijbiomac.2019.06.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 12/27/2022]
Abstract
Nano-biopolymers could be employed for the delivery of active compounds to increase their stability, bioavailability, efficacy and sustainability. The bioactive chitosan polymer (Cts) was extracted from grown fungus, Cunninghamella elegans, and used for loading ceftriaxone (CFT) and forming the nano-conjugates using tripolyphosphate (TPP) - ionic crosslinking method. The characterization of synthesized CFT/chitosan nanoparticles (NCT) revealed that they chemically crosslinked and had particles' size mean of 56 nm. The CFT loading capacity onto NCT was 54.37%, while its entrapment efficiency was apparently high (79.43%); the maximum released of CFT was 78% from NCT composite after 90 h from dialysis. The CFT/NCT antibacterial activity was confirmed against 3 strains of Staphylococcus aureus (methicillin resistants), using disc diffusion and scanning images of electron microscope, which elucidate that CFT/NCT nano-composite had a vigorous action toward bacterial cells; most cells were ruptured and exploded after 6 h of exposure and entirely lysed after 9 h. The formulation of CFT/NCT nano-composite is exceedingly recommended for enhancing drug biocidal activity, especially against resistant bacterial strains.
Collapse
Affiliation(s)
- Fawzia A Alshubaily
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Maryam H Al-Zahrani
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
44
|
Comprehensive quality by design approach for stable nanocrystalline drug products. Int J Pharm 2019; 564:426-460. [DOI: 10.1016/j.ijpharm.2019.04.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
|
45
|
Şeker Ş. Comparative evaluation of nano and bulk tin dioxide cytotoxicity on dermal fibroblasts by real-time impedance-based and conventional methods. Turk J Biol 2019; 42:435-446. [PMID: 30930627 PMCID: PMC6438124 DOI: 10.3906/biy-1802-97] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In this study, the possible cellular effects of tin dioxide (SnO2) nanoparticles, together with its bulk form, on mouse dermal fibroblasts (DFs) were revealed using in vitro assays. Particle characterizations were carried out with AFM, Braun-Emmet-Teller, and DLS analyses. The cells were treated with nano and bulk SnO2 at concentrations of 0.1, 1, 10, 50, and 100 μg/mL for 6, 24, and 48 h. At the end of the exposure periods, the morphology, viability, particle uptake, and membrane leakage statuses of the cells were evaluated. Furthermore, real-time monitoring of cell responses was performed by using an impedance-based label-free system. Findings showed that at concentrations of 0.1-10 μg/mL, cells had similar doubling time to that of control cells (20.4 ± 2.6 h), while the doubling time of cells exposed to 100 μg/mL of nano and bulk SnO2 increased slightly (P ˃ 0.05) to 25.1 ± 3.9 h and 26.2 ± 5.9 h, respectively. The results indicated that DFs exhibited a similar toxicity response to nano and bulk SnO2; thus, 50 and 100 μg/mL of nano and bulk SnO2 had mild toxic effects on DFs. In conclusion, this study provides information and insight necessary for the safe use of SnO2 in medical and consumer products.
Collapse
Affiliation(s)
- Şükran Şeker
- Ankara University, Stem Cell Institute , Ankara , Turkey.,Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Faculty of Science, Ankara University , Ankara , Turkey
| |
Collapse
|
46
|
Brumano LP, da Silva FVS, Costa-Silva TA, Apolinário AC, Santos JHPM, Kleingesinds EK, Monteiro G, Rangel-Yagui CDO, Benyahia B, Junior AP. Development of L-Asparaginase Biobetters: Current Research Status and Review of the Desirable Quality Profiles. Front Bioeng Biotechnol 2019; 6:212. [PMID: 30687702 PMCID: PMC6335324 DOI: 10.3389/fbioe.2018.00212] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/21/2018] [Indexed: 01/23/2023] Open
Abstract
L-Asparaginase (ASNase) is a vital component of the first line treatment of acute lymphoblastic leukemia (ALL), an aggressive type of blood cancer expected to afflict over 53,000 people worldwide by 2020. More recently, ASNase has also been shown to have potential for preventing metastasis from solid tumors. The ASNase treatment is, however, characterized by a plethora of potential side effects, ranging from immune reactions to severe toxicity. Consequently, in accordance with Quality-by-Design (QbD) principles, ingenious new products tailored to minimize adverse reactions while increasing patient survival have been devised. In the following pages, the reader is invited for a brief discussion on the most recent developments in this field. Firstly, the review presents an outline of the recent improvements on the manufacturing and formulation processes, which can severely influence important aspects of the product quality profile, such as contamination, aggregation and enzymatic activity. Following, the most recent advances in protein engineering applied to the development of biobetter ASNases (i.e., with reduced glutaminase activity, proteolysis resistant and less immunogenic) using techniques such as site-directed mutagenesis, molecular dynamics, PEGylation, PASylation and bioconjugation are discussed. Afterwards, the attention is shifted toward nanomedicine including technologies such as encapsulation and immobilization, which aim at improving ASNase pharmacokinetics. Besides discussing the results of the most innovative and representative academic research, the review provides an overview of the products already available on the market or in the latest stages of development. With this, the review is intended to provide a solid background for the current product development and underpin the discussions on the target quality profile of future ASNase-based pharmaceuticals.
Collapse
Affiliation(s)
- Larissa Pereira Brumano
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Francisco Vitor Santos da Silva
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tales Alexandre Costa-Silva
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexsandra Conceição Apolinário
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - João Henrique Picado Madalena Santos
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Chemistry, CICECO, Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Eduardo Krebs Kleingesinds
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gisele Monteiro
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlota de Oliveira Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Brahim Benyahia
- Department of Chemical Engineering, Loughborough University, Loughborough, United Kingdom
| | - Adalberto Pessoa Junior
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
47
|
Permeability Behavior of Nanocrystalline Solid Dispersion of Dipyridamole Generated Using NanoCrySP Technology. Pharmaceutics 2018; 10:pharmaceutics10030160. [PMID: 30227673 PMCID: PMC6161304 DOI: 10.3390/pharmaceutics10030160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/08/2018] [Accepted: 09/15/2018] [Indexed: 12/18/2022] Open
Abstract
Nanocrystals research has been an area of significant interest lately, providing oral bioavailability benefits to solubility- and/or dissolution rate-limited drugs. Drug nanocrystals are generated using top-down or bottom-up technologies. Combination technologies (Nanoedge, Nanopure XP and SmartCrystal) have been recently developed to generate nanocrystals of improved properties. Our lab has also contributed in this field by providing a ‘novel’ platform technology, NanoCrySP, for the generation of nanocrystals. NanoCrySP-generated nanocrystals have improved the oral bioavailability of various molecules. In this study, we aim to assess the permeability behavior of nanocrystals generated by NanoCrySP. Three samples of Dipyridamole (DPM) drug were used in this study: (1) DPM (micron-sized powder), (2) nanocrystals of DPM (NS), generated by media milling (as control) and, (3) nanocrystalline solid dispersion containing DPM (NSD) in the matrix of mannitol (MAN), generated using NanoCrySP technology. In vitro (Caco-2 cell lines) and ex vivo (everted gut sac) studies were conducted in this work. Cellular permeability (Papp) from apical-to-basolateral side in Caco-2 cell monolayer was found to be in the order NS > NSD > DPM, which was the same as their apparent solubility values. Higher Papp from a basolateral-to-apical side suggested a significant contribution of the P-gp efflux transport for DPM, while NS exhibited much higher inhibition of the efflux mechanism than NSD. Both NS and NSD showed higher permeation from the jejunum region in the ex vivo everted gut sac study. Interestingly, Papp of NSD was similar to NS in ex vivo everted gut sac model, however, NSD showed higher mucoadhesion than NS and DPM in this study.
Collapse
|
48
|
Soares S, Sousa J, Pais A, Vitorino C. Nanomedicine: Principles, Properties, and Regulatory Issues. Front Chem 2018; 6:360. [PMID: 30177965 PMCID: PMC6109690 DOI: 10.3389/fchem.2018.00360] [Citation(s) in RCA: 386] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/30/2018] [Indexed: 01/23/2023] Open
Abstract
Several scientific areas have benefited significantly from the introduction of nanotechnology and the respective evolution. This is especially noteworthy in the development of new drug substances and products. This review focuses on the introduction of nanomedicines in the pharmaceutical market, and all the controversy associated to basic concepts related to these nanosystems, and the numerous methodologies applied for enhanced knowledge. Due to the properties conferred by the nanoscale, the challenges for nanotechnology implementation, specifically in the pharmaceutical development of new drug products and respective regulatory issues are critically discussed, mainly focused on the European Union context. Finally, issues pertaining to the current applications and future developments are presented.
Collapse
Affiliation(s)
- Sara Soares
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - João Sousa
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Alberto Pais
- Department of Chemistry, Coimbra Chemistry Centre, University of Coimbra, Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
49
|
Jampílek J, Kráľová K. Benefits and Potential Risks of Nanotechnology Applications in Crop Protection. NANOTECHNOLOGY IN THE LIFE SCIENCES 2018. [DOI: 10.1007/978-3-319-91161-8_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
50
|
Shete G, Bansal AK. NanoCrySP technology for generation of drug nanocrystals: translational aspects and business potential. Drug Deliv Transl Res 2017; 6:392-8. [PMID: 26912190 DOI: 10.1007/s13346-016-0286-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Drug nanocrystals have rapidly evolved into a mature drug delivery strategy in the last decade, with almost 16 products currently on the market. Several "top-down" technologies are available in the market for generation of nanocrystals. Despite several advantages, very few bottom-up technologies have been explored for commercial purpose. This short communication highlights a novel, bottom-up, spray drying based technology-NanoCrySP-to generate drug nanocrystals. Nanocrystals are generated in the presence of non-polymeric excipients that act as crystallization inducer for the drug. Excipients encourage crystallization of drug by plasticization, primary heterogeneous nucleation, and imparting physical barrier to crystal growth. Nanocrystals have shown significant improvement in dissolution and thereby oral bioavailability. NanoCrySP technology is protected through patents in India, the USA, and the European Union. NanoCrySP can be utilized for (i) pharmaceutical development of new chemical entities, (ii) differentiated products of existing molecules, and (iii) generic drug products. The aggregation of drug nanocrystals generated using NanoCrySP poses significant challenges in the nanocrystal-based product development. Addition of stabilizers either during spray drying or during dissolution has shown beneficial effects.
Collapse
Affiliation(s)
- Ganesh Shete
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector-67, Mohali, Punjab, 160 062, India
| | - Arvind Kumar Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector-67, Mohali, Punjab, 160 062, India.
| |
Collapse
|