1
|
Albayati N, Talluri SR, Dholaria N, Michniak-Kohn B. AI-Driven Innovation in Skin Kinetics for Transdermal Drug Delivery: Overcoming Barriers and Enhancing Precision. Pharmaceutics 2025; 17:188. [PMID: 40006555 PMCID: PMC11859831 DOI: 10.3390/pharmaceutics17020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/19/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Transdermal drug delivery systems (TDDS) offer an alternative to conventional oral and injectable drug administration by bypassing the gastrointestinal tract and liver metabolism, improving bioavailability, and minimizing systemic side effects. However, widespread adoption of TDDS is limited by challenges such as the skin's permeability barrier, particularly the stratum corneum, and the need for optimized formulations. Factors like skin type, hydration levels, and age further complicate the development of universally effective solutions. Advances in artificial intelligence (AI) address these challenges through predictive modeling and personalized medicine approaches. Machine learning models trained on extensive molecular datasets predict skin permeability and accelerate the selection of suitable drug candidates. AI-driven algorithms optimize formulations, including penetration enhancers and advanced delivery technologies like microneedles and liposomes, while ensuring safety and efficacy. Personalized TDDS design tailors drug delivery to individual patient profiles, enhancing therapeutic precision. Innovative systems, such as sensor-integrated patches, dynamically adjust drug release based on real-time feedback, ensuring optimal outcomes. AI also streamlines the pharmaceutical process, from disease diagnosis to the prediction of drug distribution in skin layers, enabling efficient formulation development. This review highlights AI's transformative role in TDDS, including applications of models such as Deep Neural Networks (DNN), Artificial Neural Networks (ANN), BioSIM, COMSOL, K-Nearest Neighbors (KNN), and Set Covering Machine (SVM). These technologies revolutionize TDDS for both skin and non-skin diseases, demonstrating AI's potential to overcome existing barriers and improve patient care through innovative drug delivery solutions.
Collapse
Affiliation(s)
- Nubul Albayati
- Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; (N.A.); (S.R.T.); (N.D.)
- Center for Dermal Research, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Sesha Rajeswari Talluri
- Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; (N.A.); (S.R.T.); (N.D.)
- Center for Dermal Research, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Nirali Dholaria
- Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; (N.A.); (S.R.T.); (N.D.)
- Center for Dermal Research, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Bozena Michniak-Kohn
- Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; (N.A.); (S.R.T.); (N.D.)
- Center for Dermal Research, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| |
Collapse
|
2
|
Lee H, Song S, Yea J, Ha J, Oh S, Jekal J, Hong MS, Won C, Jung HH, Keum H, Han S, Cho JH, Lee T, Jang KI. Vialess heterogeneous skin patch for multimodal monitoring and stimulation. Nat Commun 2025; 16:650. [PMID: 39809752 PMCID: PMC11733152 DOI: 10.1038/s41467-025-55951-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
System-level wearable electronics require to be flexible to ensure conformal contact with the skin, but they also need to integrate rigid and bulky functional components to achieve system-level functionality. As one of integration methods, folding integration offers simplified processing and enhanced functionality through rigid-soft region separation, but so far, it has mainly been applied to modality of electrical sensing and stimulation. This paper introduces a vialess heterogeneous skin patch with multi modalities that separates the soft region and strain-robust region through folded structure. Our system includes electrical and optical modalities for hemodynamic and cardiovascular monitoring, and a force-electrically driven micropump for drug delivery. Each modality is demonstrated through on-demand drug delivery, flexible waveguide-based PPG monitoring, and ECG and body movement monitoring. Wireless data transmission and real-time measurement validate the feedback operation for multi-modalities. This engineered closed-loop platform offers the possibility for broad applications, including cardiovascular monitoring and chronic disease management.
Collapse
Affiliation(s)
- Hyeokjun Lee
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Soojeong Song
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Junwoo Yea
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jeongdae Ha
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Saehyuck Oh
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Janghwan Jekal
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | | | - Chihyeong Won
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Han Hee Jung
- Department of Information and Communication Engineering, Hannam University, Daejeon, Republic of Korea
| | - Hohyun Keum
- Industrial Transformation Technology Department, Korea Institute of Industrial Technology (KITECH), Cheonan, Republic of Korea
| | - Sangyoon Han
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Taeyoon Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Kyung-In Jang
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
| |
Collapse
|
3
|
Tang X, Qin H, Zhang X, Yang H, Yang J, Chen P, Jin Y, Yang L. Design, optimization, and evaluation for a long-time-released transdermal microneedle delivery system containing estradiol. Drug Deliv Transl Res 2024; 14:1551-1566. [PMID: 38062287 DOI: 10.1007/s13346-023-01471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2023] [Indexed: 04/28/2024]
Abstract
Transdermal drug delivery systems (TDDS) have drawbacks such as poor absorption, low blood concentration, and delayed effects. Dissolving microneedle has sharp tips and short length, which overcome patients' pain and improve transdermal efficiency but has low mechanical strength and drug loading capacity. This study thereby proposes a microemulsion-encapsulated and long-time-released transdermal microneedle (MN) delivery system with estradiol (Es) as the model drug. The microemulsion (ME) was optimized by utilizing the pseudo-ternary phase diagram and D-optimal mixture design. The estradiol microemulsion-encapsulated microneedle (Es-ME-MN) was optimized by Box-Behnken design and prepared by freeze-thaw method. The Es-ME-MN obtained was characterized and evaluated through a large variety of studies. Es-ME-MN had sufficient mechanical strength to pierce skin and was safe enough, the length of which was 600 μm, and the Es content was 177.12 ± 0.72 μg/patch without drug-excipient chemical interaction. In vitro permeation study showed that Es-ME-MN has a higher transdermal efficiency and lower retention capacity than commercial estradiol patch and conventional MN. Es plasma concentration began to increase at 3 h and remained at 12.98-23.52 ng/mL until 72 h by pharmacokinetic experiments in the Es-ME-MN group. Es-ME-MN rapidly achieves effective blood concentrations through needle puncture and microemulsion delivery and maintains blood concentrations through the baseplate long-time release. Microemulsion-encapsulated, organic solvent-free, and long-time-released transdermal microneedle will make progress and provide a new idea for transdermal delivery of lipophilic drugs.
Collapse
Affiliation(s)
- XiaoFei Tang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Huaiying Qin
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - XiaoYun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Haiyun Yang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Jianhua Yang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Ping Chen
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yinli Jin
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Lu Yang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
4
|
Antony A, Raju G, Job A, Joshi M, Shankarappa S. Penetration of topically applied polymeric nanoparticles across the epidermis of thick skin from rat. Biomed Phys Eng Express 2024; 10:025030. [PMID: 38316040 DOI: 10.1088/2057-1976/ad2632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
The barrier function of the epidermis poses a significant challenge to nanoparticle-mediated topical delivery. A key factor in this barrier function is the thickness of the stratum corneum (SC) layer within the epidermis, which varies across different anatomical sites. The epidermis from the palms and soles, for instance, have thicker SC compared to those from other areas. Previous studies have attempted to bypass the SC layer for nanoparticle penetration by using physical disruption; however, these studies have mostly focused on non-thick skin. In this study, we investigate the role of SC-disrupting mechano-physical strategies (tape-stripping and microneedle abrasion) on thick and thin skin, in allowing transdermal penetration of topically applied nanoparticles using an ex-vivo skin model from rat. Our findings show that tape-stripping reduced the overall thickness of SC in thick skin by 87%, from 67.4 ± 17.3μm to 8.2 ± 8.5μm, whereas it reduced thin skin SC by only 38%, from 9.9 ± 0.6μm to 6.2 ± 3.2μm. Compared to non-thick skin, SC disruption in thick skin resulted in higher nanoparticle diffusion. Tape-stripping effectively reduces SC thickness of thick skin and can be potentially utilized for enhanced penetration of topically applied nanoparticles in skin conditions that affect thick skin.
Collapse
Affiliation(s)
- Andrea Antony
- Amrita School of Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi - 682041, Kerala, India
| | - Gayathri Raju
- Amrita School of Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi - 682041, Kerala, India
| | - Ahina Job
- Amrita School of Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi - 682041, Kerala, India
- Faculty of Life and Allied Health Sciences, M S Ramaiah University of Applied Sciences, Bangalore, 560054, India
| | - Meet Joshi
- Amrita School of Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi - 682041, Kerala, India
| | - Sahadev Shankarappa
- Amrita School of Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi - 682041, Kerala, India
- Faculty of Life and Allied Health Sciences, M S Ramaiah University of Applied Sciences, Bangalore, 560054, India
| |
Collapse
|
5
|
Khalid R, Mahmood S, Mohamed Sofian Z, Hilles AR, Hashim NM, Ge Y. Microneedles and Their Application in Transdermal Delivery of Antihypertensive Drugs-A Review. Pharmaceutics 2023; 15:2029. [PMID: 37631243 PMCID: PMC10459756 DOI: 10.3390/pharmaceutics15082029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 08/27/2023] Open
Abstract
One of the most cutting-edge, effective, and least invasive pharmaceutical innovations is the utilization of microneedles (MNs) for drug delivery, patient monitoring, diagnostics, medicine or vaccine delivery, and other medical procedures (e.g., intradermal vaccination, allergy testing, dermatology, and blood sampling). The MN-based system offers many advantages, such as minimal cost, high medical effectiveness, comparatively good safety, and painless drug application. Drug delivery through MNs can possibly be viewed as a viable instrument for various macromolecules (e.g., proteins, peptides, and nucleic acids) that are not efficiently administered through traditional approaches. This review article provides an overview of MN-based research in the transdermal delivery of hypertensive drugs. The critical attributes of microneedles are discussed, including the mechanism of drug release, pharmacokinetics, fabrication techniques, therapeutic applications, and upcoming challenges. Furthermore, the therapeutic perspective and improved bioavailability of hypertensive drugs that are poorly aqueous-soluble are also discussed. This focused review provides an overview of reported studies and the recent progress of MN-based delivery of hypertensive drugs, paving the way for future pharmaceutical uses. As MN-based drug administration bypasses first-pass metabolism and the high variability in drug plasma levels, it has grown significantly more important for systemic therapy. In conclusion, MN-based drug delivery of hypertensive drugs for increasing bioavailability and patient compliance could support a new trend of hypertensive drug delivery and provide an alternative option, overcoming the restrictions of the current dosage forms.
Collapse
Affiliation(s)
- Ramsha Khalid
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (R.K.); (Z.M.S.)
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (R.K.); (Z.M.S.)
| | - Zarif Mohamed Sofian
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (R.K.); (Z.M.S.)
| | - Ayah R. Hilles
- INHART, International Islamic University Malaysia, Jalan Gombak, Kuala Lumpur 53100, Malaysia;
| | - Najihah Mohd Hashim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Center for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Yi Ge
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
6
|
Al-Nimry SS, Daghmash RM. Three Dimensional Printing and Its Applications Focusing on Microneedles for Drug Delivery. Pharmaceutics 2023; 15:1597. [PMID: 37376046 DOI: 10.3390/pharmaceutics15061597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Microneedles (MNs) are considered to be a novel smart injection system that causes significantly low skin invasion upon puncturing, due to the micron-sized dimensions that pierce into the skin painlessly. This allows transdermal delivery of numerous therapeutic molecules, such as insulin and vaccines. The fabrication of MNs is carried out through conventional old methods such as molding, as well as through newer and more sophisticated technologies, such as three-dimensional (3D) printing, which is considered to be a superior, more accurate, and more time- and production-efficient method than conventional methods. Three-dimensional printing is becoming an innovative method that is used in education through building intricate models, as well as being employed in the synthesis of fabrics, medical devices, medical implants, and orthoses/prostheses. Moreover, it has revolutionary applications in the pharmaceutical, cosmeceutical, and medical fields. Having the capacity to design patient-tailored devices according to their dimensions, along with specified dosage forms, has allowed 3D printing to stand out in the medical field. The different techniques of 3D printing allow for the production of many types of needles with different materials, such as hollow MNs and solid MNs. This review covers the benefits and drawbacks of 3D printing, methods used in 3D printing, types of 3D-printed MNs, characterization of 3D-printed MNs, general applications of 3D printing, and transdermal delivery using 3D-printed MNs.
Collapse
Affiliation(s)
- Suhair S Al-Nimry
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Rawand M Daghmash
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
7
|
He YT, Hao YY, Yu RX, Zhang C, Chen BZ, Cui Y, Guo XD. Hydroquinone cream-based polymer microneedle roller for the combined treatment of large-area chloasma. Eur J Pharm Biopharm 2023; 185:5-12. [PMID: 36739099 DOI: 10.1016/j.ejpb.2023.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/03/2022] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Melasma is a common hyperpigmented skin condition that occurs on the face and other areas prone to light exposure, seriously affecting people's quality of life. Microneedle, a new type of transdermal drug delivery device, can significantly improve skin permeability. In this study, we designed and fabricated a polymer microneedle roller (PMR) using a mold hot pressing method, and established a mouse model of melasma induced by ultraviolet radiation. The dynamometer and insertion test of MNs into parafilm and skin of mice indicates that the MNs have sufficient mechanical properties to insert parafilm and skin of mice. The two methods (apply hydroquinone cream (HQC) directly and pre-treat with PMR before applying HQC) were used to treat melasma. From the results of skin surface observation, determination of superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in skin and liver tissues, histological observation, and skin Optical coherence tomography (OCT), we confirmed both the two methods had a therapeutic effect while the PMR pretreatment group exhibited a better therapeutic effect. In addition, there were statistical differences between the UV group (P < 0.05). Together these results indicated that the MNs may be promising in future clinical applications in improving the UV irradiation-induced pigmentation like melisma.
Collapse
Affiliation(s)
- Yu Ting He
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 10029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yu Ying Hao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 10029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Rui Xing Yu
- Department of Dermatology, China-Japan Friendship Hospital, East Street Cherry Park, Chaoyang District, Beijing 100029, PR China
| | - Chao Zhang
- Beijing Mainy Biotech. Co., Ltd, Wangjing West Rd #A50, Chaoyang District, Beijing, 100020, PR China
| | - Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 10029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, East Street Cherry Park, Chaoyang District, Beijing 100029, PR China.
| | - Xin Dong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 10029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029 China.
| |
Collapse
|
8
|
Zulcaif, Zafar N, Mahmood A, Sarfraz RM, Elaissari A. Simvastatin Loaded Dissolvable Microneedle Patches with Improved Pharmacokinetic Performance. MICROMACHINES 2022; 13:1304. [PMID: 36014226 PMCID: PMC9414638 DOI: 10.3390/mi13081304] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 05/28/2025]
Abstract
Microneedle patches (MNPs) are one of the emerging approaches for drug delivery involving minimal invasion and improved skin penetration of macro- and micro-entities. Herein, we report dissolvable microneedle patches (dMNPs) as a novel tool for better systemic delivery of Simvastatin in the management of hypocholesteremia. Thiolated chitosan (TC), polyvinyl pyrolidone (PVP) and polyvinyl alcohol (PVA) were employed in the development of dMNPs. Developed patches were characterized through SEM, FTIR, DSC, TGA, PXRD, dissolution testing, tensile strength, elongation (%), skin irritation studies, moisture content and pharmacokinetic evaluation. dMNP F26 exhibited excellent tensile strength (9.85 MPa), penetration potential (~700 µm), moisture content (5.95%), elongation (35.54%) and Simvastatin release of 77.92%. Pharmacokinetic properties were also improved, i.e., Cmax 1.97 µg/mL, tmax 9 h, MRT 19.9 h and AUC 46.24 µg·h/mL as compared to Simvastatin solution displaying Cmax 2.55 µg/mL, tmax 3 h, MRT 5.91 h and AUC 14.20 µg·h/mL thus confirming higher and improved bioavailability. Kinetic modelling revealed zero order as the best fit model based on regression coefficient. Histopathological findings proved the biocompatibility of the developed dMNPs.
Collapse
Affiliation(s)
- Zulcaif
- Faculty of Pharmacy, The University Lahore, Lahore 54000, Pakistan
| | - Nadiah Zafar
- Faculty of Pharmacy, The University Lahore, Lahore 54000, Pakistan
| | - Asif Mahmood
- Department of Pharmacy, The University of Chakwal, Chakwal 48800, Pakistan
| | - Rai Muhammad Sarfraz
- Faculty of Pharmacy, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
| | - Abdelhamid Elaissari
- Univ. Lyon, University Claude Bernard Lyon 1, CNRS, ISA-UMR-5280, F-69622 Lyon, France
| |
Collapse
|
9
|
Zaid Alkilani A, Nimrawi S, Al-Nemrawi NK, Nasereddin J. Microneedle-assisted transdermal delivery of amlodipine besylate loaded nanoparticles. Drug Dev Ind Pharm 2022; 48:322-332. [PMID: 35950766 DOI: 10.1080/03639045.2022.2112694] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transdermal drug delivery has been developed to increase drug bioavailability and improve patient compliance. The current study was carried out to formulate and evaluate a transdermal delivery system loaded with biodegradable polymeric nanoparticles for sustained delivery of amlodipine beslayate (AMB).For this purpose, AMB was incorporated into CS nanoparticles that were prepared via ionic gelation method. Three formulations containing different blends of CS and tripolyphosphate were investigated for the preparation of the nanoparticles and evaluated for particle size (PS), zeta potential (ZP), loading capacity (LC), encapsulation efficiency (EE), scanning electron microscope (SEM), and drug release kinetics. The smallest observed particle size was 321.14 nm ±7.21 nm (NP-3). Across all formulations, the highest observed EE% was 87.2% ± 0.12% (NP-2), and the highest observed LC% was 60.98 ± 0.08% (NP-2). Microneedles were formed by using 15% polyvinylalcohol (PVA) (F1), 15% PVA with 1% propylene glycol (PG) (F2), and 15% PVA with 5% PG (F3). On investigating drug release rates, it was observed that drug permeation and steady-state flux (Jss) both increased proportionally with increasing PG concentration. Nanomedicine, when combined with physical techniques, has opened new opportunities for growth and development of transdermal delivery systems in pharmaceutical industry. In conclusion, biodegradable polymeric nanoparticles-loaded in hydrogel microneedles served as a potential system for the transdermal delivery of AMB in a controlled manner.
Collapse
Affiliation(s)
- Ahlam Zaid Alkilani
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa, Jordan
| | - Sukaina Nimrawi
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa, Jordan
| | - Nusaiba K Al-Nemrawi
- Department of Pharmaceutical Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Jehad Nasereddin
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa, Jordan
| |
Collapse
|
10
|
Tan M, Xu Y, Gao Z, Yuan T, Liu Q, Yang R, Zhang B, Peng L. Recent Advances in Intelligent Wearable Medical Devices Integrating Biosensing and Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108491. [PMID: 35008128 DOI: 10.1002/adma.202108491] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/28/2021] [Indexed: 05/27/2023]
Abstract
The primary roles of precision medicine are to perform real-time examination, administer on-demand medication, and apply instruments continuously. However, most current therapeutic systems implement these processes separately, leading to treatment interruption and limited recovery in patients. Personalized healthcare and smart medical treatment have greatly promoted research on and development of biosensing and drug-delivery integrated systems, with intelligent wearable medical devices (IWMDs) as typical systems, which have received increasing attention because of their non-invasive and customizable nature. Here, the latest progress in research on IWMDs is reviewed, including their mechanisms of integrating biosensing and on-demand drug delivery. The current challenges and future development directions of IWMDs are also discussed.
Collapse
Affiliation(s)
- Minhong Tan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yang Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Ziqi Gao
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Tiejun Yuan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Qingjun Liu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Rusen Yang
- School of Advanced Materials and Nanotechnology, Xidian University, Xian, 710126, P. R. China
| | - Bin Zhang
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Lihua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P. R. China
| |
Collapse
|
11
|
Alkrad JA, Assaf SM, Hussein-Al-Ali SH, Alrousan R. Microemulsions as nanocarriers for oral and transdermal administration of enoxaparin. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Sadeqi A, Kiaee G, Zeng W, Rezaei Nejad H, Sonkusale S. Hard polymeric porous microneedles on stretchable substrate for transdermal drug delivery. Sci Rep 2022; 12:1853. [PMID: 35115643 PMCID: PMC8813900 DOI: 10.1038/s41598-022-05912-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/13/2022] [Indexed: 12/18/2022] Open
Abstract
Microneedles offer a convenient transdermal delivery route with potential for long term sustained release of drugs. However current microneedle technologies may not have the mechanical properties for reliable and stable penetration (e.g. hydrogel microneedles). Moreover, it is also challenging to realize microneedle arrays with large size and high flexibility. There is also an inherent upper limit to the amount and kind of drugs that can be loaded in the microneedles. In this paper, we present a new class of polymeric porous microneedles made from biocompatible and photo-curable resin that address these challenges. The microneedles are unique in their ability to load solid drug formulation in concentrated form. We demonstrate the loading and release of solid formulation of anesthetic and non-steroidal anti-inflammatory drugs, namely Lidocaine and Ibuprofen. Paper also demonstrates realization of large area (6 × 20 cm2) flexible and stretchable microneedle patches capable of drug delivery on any body part. Penetration studies were performed in an ex vivo porcine model supplemented through rigorous compression tests to ensure the robustness and rigidity of the microneedles. Detailed release profiles of the microneedle patches were shown in an in vitro skin model. Results show promise for large area transdermal delivery of solid drug formulations using these porous microneedles.
Collapse
Affiliation(s)
- Aydin Sadeqi
- Nano Lab, Advanced Technology Laboratory, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA.,Department of Electrical and Computer Engineering, Tufts University, 161 College Ave, Medford, MA, 02155, USA
| | - Gita Kiaee
- Nano Lab, Advanced Technology Laboratory, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| | - Wenxin Zeng
- Nano Lab, Advanced Technology Laboratory, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA.,Department of Electrical and Computer Engineering, Tufts University, 161 College Ave, Medford, MA, 02155, USA
| | - Hojatollah Rezaei Nejad
- Nano Lab, Advanced Technology Laboratory, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA. .,Anodyne Nanotech Inc, 38 Wareham St, Boston, MA, 02118, USA.
| | - Sameer Sonkusale
- Nano Lab, Advanced Technology Laboratory, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA. .,Department of Electrical and Computer Engineering, Tufts University, 161 College Ave, Medford, MA, 02155, USA.
| |
Collapse
|
13
|
Step-wise micro-fabrication techniques of microneedle arrays with applications in transdermal drug delivery – A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Zhou R, Yu J, Gu Z, Zhang Y. Microneedle-mediated therapy for cardiovascular diseases. Drug Deliv Transl Res 2021; 12:472-483. [PMID: 34637115 DOI: 10.1007/s13346-021-01073-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 11/30/2022]
Abstract
Cardiovascular diseases remain a leading cause of global disease burden. To date, the limited drug delivery efficacy confines the therapeutic effect in most conventional approaches, such as intramyocardial injections and vascular devices, due to short-term drug release and low retention within the disease sites. As a typical transdermal medical device with a minimally invasive manner and controlled/sustained drug release pattern, microneedles have gained momentum in the field of cardiovascular therapy, from which several cardiovascular diseases have been benefited to the ultimate therapeutic effects. In this concise review, strategies based on the microneedles for the treatments of cardiovascular diseases are introduced, mainly focus on hypertension, atherosclerosis, thrombus, and myocardial diseases. The limitations at the present stage and perspectives of the next-generation microneedles for cardiovascular therapy are also discussed.
Collapse
Affiliation(s)
- Ruyi Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jicheng Yu
- Zenomics Inc., Los Angeles, CA, 90095, USA
| | - Zhen Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China. .,Department of General Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China. .,Zhejiang Laboratory of Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China. .,MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Yuqi Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China. .,Department of Burns and Wound Center, College of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
15
|
Chen X, Yu H, Wang L, Shen D, Li C, Zhou W. Cross-Linking-Density-Changeable Microneedle Patch Prepared from a Glucose-Responsive Hydrogel for Insulin Delivery. ACS Biomater Sci Eng 2021; 7:4870-4882. [PMID: 34519208 DOI: 10.1021/acsbiomaterials.1c01073] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To simplify the preparation process of a glucose-responsive microneedle patch, a cross-linking-density changeable microneedle patch was designed. The microneedle patch was made up of a hydrogel formed by phenylboronic acid-grafted polyallylamine and poly(vinyl alcohol) (PVA). The gel was cross-linked by boronate ester bonds between phenylboronic acid groups and PVA. It still had fluidity and could be filled into a mold to prepare microneedle patches. Moreover, insulin could be directly loaded into the microneedle patch by mixing with the gel. The boronate ester bond would be broken in the presence of glucose, resulting in a decrease in the cross-linking density. Therefore, the gel could achieve a greater swelling degree and insulin could be released faster. In addition, PVA chains were crystallized by repeatedly freezing and thawing to improve the mechanical strength of the microneedle patch. In terms of glucose-dependent insulin release, the gel showed good glucose-responsive insulin-release ability. Through additional ion cross-linking, the microneedle patch could also control the insulin release according to glucose concentration. In the hypoglycemic experiment of diabetic rats, the microneedle patch effectively pierced the skin and slowly released insulin.
Collapse
Affiliation(s)
- Xiang Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Di Shen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Chengjiang Li
- The First Affiliated Hospital of Zhejiang University, College of Medicine, Zhejiang University, Hangzhou 310027, P. R. China
| | - Weibin Zhou
- The First Affiliated Hospital of Zhejiang University, College of Medicine, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
16
|
Fan Z, Wei Y, Yin Z, Huang H, Liao X, Sun L, Liu B, Liu F. Near-Infrared Light-Triggered Unfolding Microneedle Patch for Minimally Invasive Treatment of Myocardial Ischemia. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40278-40289. [PMID: 34424666 DOI: 10.1021/acsami.1c09658] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is hard to achieve safe, effective, and minimally invasive therapies on myocardial infarction (MI) via conventional treatments. To address this challenge, a vascular endothelial growth factor (VEGF)-loaded and near-infrared (NIR)-triggered self-unfolding graphene oxide (GO)-poly(vinyl alcohol) (PVA) microneedle (MN) patch was designed and fabricated to treat MI through a minimally invasive surgery (MIS). The folded MN patch can be easily placed into the chest cavity through a small cut (4 mm) and quickly recover to its original shape with 10 s of irradiation of NIR light (1.5 W/cm2, beam diameter = 0.5 cm), thanks to its excellent shape memory effect and fast shape recovery ability. Meanwhile, the unfolded MN patch can be readily punctured into the heart and wrap the heart tightly, thanks to its sufficient mechanical strength and adjustable morphological structure, thus ensuring a high fixation strength to withstand the high-frequency pulsation of the heart. In addition, the prepared MN patch has low cytotoxicity and controllable and sustainable release of VEGF. More importantly, the MN patch can effectively promote neovascularization, reduce myocardial fibrosis, and restore cardiac function, which indicates its promising application prospects in MIS.
Collapse
Affiliation(s)
- Zengjie Fan
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou 730000, People's Republic of China
- School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yuan Wei
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou 730000, People's Republic of China
- School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhengrong Yin
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou 730000, People's Republic of China
- School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Haofei Huang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou 730000, People's Republic of China
- School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiaozhu Liao
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou 730000, People's Republic of China
- School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Luyi Sun
- Polymer Program, Institute of Materials Science and Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Bin Liu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou 730000, People's Republic of China
- School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Fengzhen Liu
- Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng 252000, People's Republic of China
| |
Collapse
|
17
|
Sirbubalo M, Tucak A, Muhamedagic K, Hindija L, Rahić O, Hadžiabdić J, Cekic A, Begic-Hajdarevic D, Cohodar Husic M, Dervišević A, Vranić E. 3D Printing-A "Touch-Button" Approach to Manufacture Microneedles for Transdermal Drug Delivery. Pharmaceutics 2021; 13:924. [PMID: 34206285 PMCID: PMC8308681 DOI: 10.3390/pharmaceutics13070924] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
Microneedles (MNs) represent the concept of attractive, minimally invasive puncture devices of micron-sized dimensions that penetrate the skin painlessly and thus facilitate the transdermal administration of a wide range of active substances. MNs have been manufactured by a variety of production technologies, from a range of materials, but most of these manufacturing methods are time-consuming and expensive for screening new designs and making any modifications. Additive manufacturing (AM) has become one of the most revolutionary tools in the pharmaceutical field, with its unique ability to manufacture personalized dosage forms and patient-specific medical devices such as MNs. This review aims to summarize various 3D printing technologies that can produce MNs from digital models in a single step, including a survey on their benefits and drawbacks. In addition, this paper highlights current research in the field of 3D printed MN-assisted transdermal drug delivery systems and analyzes parameters affecting the mechanical properties of 3D printed MNs. The current regulatory framework associated with 3D printed MNs as well as different methods for the analysis and evaluation of 3D printed MN properties are outlined.
Collapse
Affiliation(s)
- Merima Sirbubalo
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Amina Tucak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Kenan Muhamedagic
- Department of Mechanical Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo Setaliste 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (D.B.-H.); (M.C.H.)
| | - Lamija Hindija
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Ognjenka Rahić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Jasmina Hadžiabdić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Ahmet Cekic
- Department of Mechanical Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo Setaliste 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (D.B.-H.); (M.C.H.)
| | - Derzija Begic-Hajdarevic
- Department of Mechanical Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo Setaliste 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (D.B.-H.); (M.C.H.)
| | - Maida Cohodar Husic
- Department of Mechanical Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo Setaliste 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (D.B.-H.); (M.C.H.)
| | - Almir Dervišević
- Head and Neck Surgery, Clinical Center University of Sarajevo, Bolnička 25, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Edina Vranić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| |
Collapse
|
18
|
Moniz T, Costa Lima SA, Reis S. Marine polymeric microneedles for transdermal drug delivery. Carbohydr Polym 2021; 266:118098. [PMID: 34044917 DOI: 10.1016/j.carbpol.2021.118098] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Transdermal drug delivery is considered one of the most attractive routes for administration of pharmaceutic and cosmetic active ingredients due to the numerous advantages, especially over oral and intravenous methodologies. However, some limitations still exist mainly regarding the need to improve the drugs permeation across the skin. For this, several strategies have been described, considering the application of chemical permeation enhancers, drugs' nanoformulations and physical methods. Of these, microneedles have been proposed in the last years as promising strategies to enhance transdermal drug delivery. In this review, different types of microneedles are described, and the most commonly used methods of fabrication systematized, as well as the materials typically used and their main therapeutical applications. A special attention is paid to polymeric microneedles, particularly those made from sustainable marine polysaccharides like chitosan, alginate and hyaluronic acid. The applications of marine based polymeric microneedle devices for transdermal drug delivery are examined in detail and the perspectives of translation from the clinical trials to the market demonstrated.
Collapse
Affiliation(s)
- Tânia Moniz
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Sofia A Costa Lima
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
19
|
Yang D, Chen M, Sun Y, Jin Y, Lu C, Pan X, Quan G, Wu C. Microneedle-mediated transdermal drug delivery for treating diverse skin diseases. Acta Biomater 2021; 121:119-133. [PMID: 33285323 DOI: 10.1016/j.actbio.2020.12.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022]
Abstract
Transdermal drug delivery is an attractive route for dermatological disease therapy because it can directly target the lesion site on the skin, reduce adverse reactions associated with systemic administration, and improve patient compliance. However, the stratum corneum, as the main skin barrier, severely limits transdermal drug penetration, with compromised bioavailability. Microneedles (MNs), which are leveraged to markedly improve the penetration of therapeutic agents by piercing the stratum corneum and creating hundreds of reversible microchannels in a minimally invasive manner, have been envisioned as a milestone for effective transdermal drug delivery, especially for superficial disease therapy. Here, the emergence of versatile MNs for the transdermal delivery of various drugs is reviewed, particularly focusing on the application of MNs for the treatment of diverse skin diseases, including superficial tumors, scars, psoriasis, herpes, acne, and alopecia. Additionally, the promises and challenges of the widespread translation of MN-mediated transdermal drug delivery in the dermatology field are summarized.
Collapse
|
20
|
Gupta J, Gupta R, Vanshita. Microneedle Technology: An Insight into Recent Advancements and Future Trends in Drug and Vaccine Delivery. Assay Drug Dev Technol 2020; 19:97-114. [PMID: 33297823 DOI: 10.1089/adt.2020.1022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, microneedle (MN) induced microporation multifunctional approaches to enhance the delivery of drugs through the skin. MN technology included micron-sized needles to create microchannels into the Stratum corneum of skin, the most significant protective layer. Delivery of drugs and vaccines through the transdermal route is an alternative route for hypodermic and oral. It overcomes the problems associated with gastrointestinal along with drug deterioration. It is affordable, noninvasive, painless, simple, and self-administered techniques that provide prolonged release of drugs to enhance patient compliance. The MN delivery focused on biopharmaceuticals like proteins or peptides. The novel concepts have drawn interest in using these techniques in tandem with other enhancement approaches. This review article discussed the latest advancements in MN technology. It emphasized types of MNs, methodology, mechanisms, strategies for delivery of several drugs and vaccines, and significant challenges in the marketing of biopharmaceuticals. Furthermore, relevant U.S. patents and clinical trials based on MNs are also accentuated. Therefore, MN techniques will play a pivotal role in promoting clinical applications and innovative research for scientists and researchers working in the pharmaceutical field.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | | | - Vanshita
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
21
|
Tucak A, Sirbubalo M, Hindija L, Rahić O, Hadžiabdić J, Muhamedagić K, Čekić A, Vranić E. Microneedles: Characteristics, Materials, Production Methods and Commercial Development. MICROMACHINES 2020; 11:mi11110961. [PMID: 33121041 PMCID: PMC7694032 DOI: 10.3390/mi11110961] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 01/19/2023]
Abstract
Although transdermal drug delivery systems (DDS) offer numerous benefits for patients, including the avoidance of both gastric irritation and first-pass metabolism effect, as well as improved patient compliance, only a limited number of active pharmaceutical ingredients (APIs) can be delivered accordingly. Microneedles (MNs) represent one of the most promising concepts for effective transdermal drug delivery that penetrate the protective skin barrier in a minimally invasive and painless manner. The first MNs were produced in the 90s, and since then, this field has been continually evolving. Therefore, different manufacturing methods, not only for MNs but also MN molds, are introduced, which allows for the cost-effective production of MNs for drug and vaccine delivery and even diagnostic/monitoring purposes. The focus of this review is to give a brief overview of MN characteristics, material composition, as well as the production and commercial development of MN-based systems.
Collapse
Affiliation(s)
- Amina Tucak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (L.H.); (O.R.); (J.H.)
- Correspondence: (A.T.); (E.V.)
| | - Merima Sirbubalo
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (L.H.); (O.R.); (J.H.)
| | - Lamija Hindija
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (L.H.); (O.R.); (J.H.)
| | - Ognjenka Rahić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (L.H.); (O.R.); (J.H.)
| | - Jasmina Hadžiabdić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (L.H.); (O.R.); (J.H.)
| | - Kenan Muhamedagić
- Department of Machinery Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo šetalište 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (A.Č.)
| | - Ahmet Čekić
- Department of Machinery Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo šetalište 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (A.Č.)
| | - Edina Vranić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (L.H.); (O.R.); (J.H.)
- Correspondence: (A.T.); (E.V.)
| |
Collapse
|
22
|
Dsouza L, Ghate VM, Lewis SA. Derma rollers in therapy: the transition from cosmetics to transdermal drug delivery. Biomed Microdevices 2020; 22:77. [PMID: 33104926 PMCID: PMC7588378 DOI: 10.1007/s10544-020-00530-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Derma roller, a device rolled onto the skin to form micropores, is extensively used for cosmetic purposes. The pores thus created are utilized to either result in the induction of collagen production, leading to glowing and wrinkle-free skin or for permeating the applied formulations to the site of action within the skin. Recent studies have shown the benefits of using derma rollers for transdermal delivery of drugs. In the nascent stage, this approach paves a way to successfully breach the stratum corneum and aid in the movement of medications directed towards the dermis and the hair follicles. The review essentially summarizes the evidence of the use of derma rollers in cosmetic setup, their designing, and the preclinical and clinical reports of efficacy, safety, and concerns when translated for pharmaceutical purposes and transdermal drug delivery.
Collapse
Affiliation(s)
- Leonna Dsouza
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Vivek M Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
23
|
Asfour MH. Advanced trends in protein and peptide drug delivery: a special emphasis on aquasomes and microneedles techniques. Drug Deliv Transl Res 2020; 11:1-23. [PMID: 32337668 DOI: 10.1007/s13346-020-00746-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proteins and peptides have a great potential as therapeutic agents; they have higher efficiency and lower toxicity, compared to chemical drugs. However, their oral bioavailability is very low; also, the transdermal peptide delivery faces absorption limitations. Accordingly, most of proteins and peptides are administered by parenteral route, but there are many problems associated with this route such as patient discomfort, especially for pediatric use. Thus, it is a great challenge to develop drug delivery systems for administration of proteins and peptides by routes other than parenteral one. This review provides an overview on recent advances adopted for protein and peptide drug delivery, focusing on oral and transdermal routes. This is followed by an emphasis on two recent approaches adopted as delivery systems for protein and peptide drugs, namely aquasomes and microneedles. Aquasomes are nanoparticles fabricated from ceramics developed to enhance proteins and peptides stability, providing an adequate residence time in circulation. It consists of ceramic core coated with poly hydroxyl oligomer, on which protein and peptide drug can be adsorbed. Aquasomes preparation, characterization, and application in protein and peptide drug delivery are discussed. Microneedles are promising transdermal approach; it involves creation of micron-sized pores in the skin for enhancing the drug delivery across the skin, as their length ranged between 150 and 1500 μm. Types of microneedles with different drug delivery mechanisms, characterization, and application in protein and peptide drug delivery are discussed. Graphical abstract.
Collapse
Affiliation(s)
- Marwa Hasanein Asfour
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth Street, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
24
|
Ita K, Ashong S. Percutaneous Delivery of Antihypertensive Agents: Advances and Challenges. AAPS PharmSciTech 2020; 21:56. [PMID: 31909450 DOI: 10.1208/s12249-019-1583-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/16/2019] [Indexed: 12/15/2022] Open
Abstract
Hypertension remains a significant risk factor for several cardiovascular disorders including coronary artery disease and heart failure. Despite the large armamentarium of drugs available for the management of high blood pressure, low oral availability is an ongoing challenge. Researchers are constantly developing alternative drug delivery systems. This review focuses on the transcutaneous delivery of antihypertensive agents. The use of diverse technologies for the delivery of specific antihypertensive agents is emphasized. The advances made and the challenges encountered are highlighted. Several transdermal drug delivery strategies are employed for the transport of this group of therapeutic agents across the skin and the most widely used techniques include microneedles, iontophoresis, sonophoresis, and chemical penetration enhancers. Each of these methods has benefits and limitations, and there are ongoing attempts by scientists to address the shortcomings. For instance, skin irritation continues to be a major challenge with iontophoretic transport while the quantity of a medication that can be incorporated into dissolving microneedles is limited. With skin permeation enhancers, concerns relating to cytotoxicity and irritation are common. Even though the use of ultrasound is exciting, this mode of delivery is also accompanied by challenges such as the design of a battery system that is potent enough to drive a low-frequency sonophoretic cymbal array, while still being portable enough to function as a wearable device. Although most researchers report enhanced drug delivery with the aforementioned methods, it is important to deliver therapeutically useful doses of these medications.
Collapse
|
25
|
Chen J, Cheng P, Sun Y, Wang Y, Zhang X, Yang Z, Ding G. A Minimally Invasive Hollow Microneedle With a Cladding Structure: Ultra-Thin but Strong, Batch Manufacturable. IEEE Trans Biomed Eng 2019; 66:3480-3485. [DOI: 10.1109/tbme.2019.2906571] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Design and Development of Liquid Drug Reservoirs for Microneedle Delivery of Poorly Soluble Drug Molecules. Pharmaceutics 2019; 11:pharmaceutics11110605. [PMID: 31766145 PMCID: PMC6920785 DOI: 10.3390/pharmaceutics11110605] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 01/31/2023] Open
Abstract
The poor aqueous solubility of existing and emerging drugs is a major issue faced by the pharmaceutical industry. Water-miscible organic solvents, termed co-solvents, can be used to enhance the solubility of poorly soluble substances. Typically, drugs with poor aqueous solubility and Log P > 3 are not amenable to delivery across the skin. This study investigated the use of co-solvents as reservoirs to be used in combination with hydrogel-forming microneedles to enhance the transdermal delivery of hydrophobic compounds, namely Nile red, olanzapine and atorvastatin. A custom-made Franz cell apparatus was fabricated to test the suitability of a liquid drug reservoir in combination with polymeric microneedles. A co-solvency approach to reservoir formulation proved effective, with 83.30% ± 9.38% of Nile red dye, dissolved in 1 mL poly(ethylene glycol) (PEG 400), permeating neonatal porcine skin over 24 h. PEG 400 and propylene glycol were found to be suitable reservoir media for olanzapine and atorvastatin, with approximately 50% of each drug delivered after 24 h. This work provides crucial proof-of-concept evidence that the manipulation of microneedle reservoir properties is an effective method to facilitate microneedle-mediated delivery of hydrophobic compounds.
Collapse
|
27
|
|
28
|
Krieger KJ, Bertollo N, Dangol M, Sheridan JT, Lowery MM, O’Cearbhaill ED. Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing. MICROSYSTEMS & NANOENGINEERING 2019; 5:42. [PMID: 31645996 PMCID: PMC6799892 DOI: 10.1038/s41378-019-0088-8] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/08/2019] [Accepted: 07/03/2019] [Indexed: 05/23/2023]
Abstract
We present a simple and customizable microneedle mold fabrication technique using a low-cost desktop SLA 3D printer. As opposed to conventional microneedle fabrication methods, this technique neither requires complex and expensive manufacturing facilities nor expertise in microfabrication. While most low-cost 3D-printed microneedles to date display low aspect ratios and poor tip sharpness, we show that by introducing a two-step "Print & Fill" mold fabrication method, it is possible to obtain high-aspect ratio sharp needles that are capable of penetrating tissue. Studying first the effect of varying design input parameters and print settings, it is shown that printed needles are always shorter than specified. With decreasing input height, needles also begin displaying an increasingly greater than specified needle base diameter. Both factors contribute to low aspect ratio needles when attempting to print sub-millimeter height needles. By setting input height tall enough, it is possible to print needles with high-aspect ratios and tip radii of 20-40 µm. This tip sharpness is smaller than the specified printer resolution. Consequently, high-aspect ratio sharp needle arrays are printed in basins which are backfilled and cured in a second step, leaving sub-millimeter microneedles exposed resulting microneedle arrays which can be used as male masters. Silicone female master molds are then formed from the fabricated microneedle arrays. Using the molds, both carboxymethyl cellulose loaded with rhodamine B as well as polylactic acid microneedle arrays are produced and their quality examined. A skin insertion study is performed to demonstrate the functional capabilities of arrays made from the fabricated molds. This method can be easily adopted by the microneedle research community for in-house master mold fabrication and parametric optimization of microneedle arrays.
Collapse
Affiliation(s)
- Kevin J. Krieger
- UCD Centre for Biomedical Engineering, University College Dublin, Belfield, Dublin 4 Ireland
- School of Mechanical & Materials Engineering, University College Dublin, Belfield, Dublin 4 Ireland
| | - Nicky Bertollo
- UCD Centre for Biomedical Engineering, University College Dublin, Belfield, Dublin 4 Ireland
- School of Mechanical & Materials Engineering, University College Dublin, Belfield, Dublin 4 Ireland
| | - Manita Dangol
- UCD Centre for Biomedical Engineering, University College Dublin, Belfield, Dublin 4 Ireland
- School of Mechanical & Materials Engineering, University College Dublin, Belfield, Dublin 4 Ireland
| | - John T. Sheridan
- UCD Centre for Biomedical Engineering, University College Dublin, Belfield, Dublin 4 Ireland
- School of Electrical & Electronic Engineering, University College Dublin, Belfield, Dublin 4 Ireland
| | - Madeleine M. Lowery
- UCD Centre for Biomedical Engineering, University College Dublin, Belfield, Dublin 4 Ireland
- School of Electrical & Electronic Engineering, University College Dublin, Belfield, Dublin 4 Ireland
| | - Eoin D. O’Cearbhaill
- UCD Centre for Biomedical Engineering, University College Dublin, Belfield, Dublin 4 Ireland
- School of Mechanical & Materials Engineering, University College Dublin, Belfield, Dublin 4 Ireland
| |
Collapse
|
29
|
Li Y, Liu F, Su C, Yu B, Liu D, Chen HJ, Lin DA, Yang C, Zhou L, Wu Q, Xia W, Xie X, Tao J. Biodegradable Therapeutic Microneedle Patch for Rapid Antihypertensive Treatment. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30575-30584. [PMID: 31382742 DOI: 10.1021/acsami.9b09697] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A hypertensive emergency causes severe cardiovascular diseases accompanied by acute target organ damage, requiring rapid and smooth blood pressure (BP) reduction. Current medicines for treating hypertensive emergencies, such as sodium nitroprusside (SNP), require careful dose control to avoid side effects (e.g., cyanide poisoning). The clinical administration of SNP using intravenous injection or drip further restrict its usage for first aid or self-aid in emergencies. Here, we developed an antihypertensive microneedle (aH-MN) technique to transdermally deliver SNP in combination with sodium thiosulfate (ST) as a cyanide antidote in a painless way. Dissolvable microneedles loaded with SNP and ST were fabricated via the centrifugation casting method, where the SNPs were stably packaged in microneedles and would be immediately released into the systemic circulation via subcutaneous capillaries when aH-MNs penetrated the skin. The antihypertensive effects were demonstrated on spontaneously hypertensive rat models. Rapid and potent BP reduction was achieved via aH-MN treatment, fulfilling clinical BP-control requirements for hypertensive emergencies. The side effects including skin irritation and target organ damage of aH-MN therapies were evaluated; the combinative delivery of ST effectively suppressed these side effects induced by the consecutive intake of SNP. This study introduces an efficient and patient-friendly antihypertensive therapy with a favorable side-effect profile, particularly a controllable and self-administrable approach to treat hypertensive emergencies.
Collapse
Affiliation(s)
- Yan Li
- Department of Hypertension and Vascular Disease , The First Affiliated Hospital, Sun Yat-sen University , 510080 Guangzhou , China
- Department of Cardiovascular Medicine , The First Affiliated Hospital of Jinan University , 510630 Guangzhou , China
| | - Fanmao Liu
- Department of Hypertension and Vascular Disease , The First Affiliated Hospital, Sun Yat-sen University , 510080 Guangzhou , China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| | - Chen Su
- Department of Hypertension and Vascular Disease , The First Affiliated Hospital, Sun Yat-sen University , 510080 Guangzhou , China
| | - Bingbo Yu
- Department of Hypertension and Vascular Disease , The First Affiliated Hospital, Sun Yat-sen University , 510080 Guangzhou , China
| | - Di Liu
- Pritzker School of Medicine , University of Chicago , Chicago , Illinois 60637 , United States
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| | - Di-An Lin
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| | - Chengduan Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| | - Lingfei Zhou
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| | - Qianni Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center , Sun Yat-sen University , 510060 Guangzhou , China
| | - Wenhao Xia
- Department of Hypertension and Vascular Disease , The First Affiliated Hospital, Sun Yat-sen University , 510080 Guangzhou , China
| | - Xi Xie
- Department of Hypertension and Vascular Disease , The First Affiliated Hospital, Sun Yat-sen University , 510080 Guangzhou , China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| | - Jun Tao
- Department of Hypertension and Vascular Disease , The First Affiliated Hospital, Sun Yat-sen University , 510080 Guangzhou , China
| |
Collapse
|
30
|
Pandey PC, Shukla S, Skoog SA, Boehm RD, Narayan RJ. Current Advancements in Transdermal Biosensing and Targeted Drug Delivery. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1028. [PMID: 30823435 PMCID: PMC6427209 DOI: 10.3390/s19051028] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 01/10/2023]
Abstract
In this manuscript, recent advancements in the area of minimally-invasive transdermal biosensing and drug delivery are reviewed. The administration of therapeutic entities through the skin is complicated by the stratum corneum layer, which serves as a barrier to entry and retards bioavailability. A variety of strategies have been adopted for the enhancement of transdermal permeation for drug delivery and biosensing of various substances. Physical techniques such as iontophoresis, reverse iontophoresis, electroporation, and microneedles offer (a) electrical amplification for transdermal sensing of biomolecules and (b) transport of amphiphilic drug molecules to the targeted site in a minimally invasive manner. Iontophoretic delivery involves the application of low currents to the skin as well as the migration of polarized and neutral molecules across it. Transdermal biosensing via microneedles has emerged as a novel approach to replace hypodermic needles. In addition, microneedles have facilitated minimally invasive detection of analytes in body fluids. This review considers recent innovations in the structure and performance of transdermal systems.
Collapse
Affiliation(s)
- Prem C Pandey
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, India.
| | - Shubhangi Shukla
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, India.
| | - Shelby A Skoog
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27695, USA.
| | - Ryan D Boehm
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27695, USA.
| | - Roger J Narayan
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
31
|
Affiliation(s)
- Shiva Darvishha
- Department of Polymer Engineering, Science and Research Branch Islamic Azad University, Tehran, Iran
| | - Sahar Amiri
- Department of Polymer Engineering, Science and Research Branch Islamic Azad University, Tehran, Iran
| |
Collapse
|
32
|
Rastogi V, Yadav P, Husain A, Verma A. Effect of hydrophilic and hydrophobic polymers on permeation of S-amlodipine besylate through intercalated polymeric transdermal matrix: 3(2) designing, optimization and characterization. Drug Dev Ind Pharm 2019; 45:669-682. [PMID: 30633579 DOI: 10.1080/03639045.2019.1569035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Innovation in material science has made it possible to fabricate a pharmaceutical material of modifiable characteristics and utility, in delivering therapeutics at a sustained/controlled rate. The objective of this study is to design and optimize the controlled release transdermal films of S-Amlodipine besylate by intercalating hydrophilic and hydrophobic polymers. METHODS 3(2) factorial design and response surface methodology was utilized to prepare formulations by intercalating the varied concentration of polymers(A) and penetration enhancer(B) in solvent. The effect of these independent factors on drug release and flux was investigated to substantiate the ex-vivo, stability and histological findings of the study. RESULTS FTIR, DSC revealed the compatibility of drug with polymers; however, the semicrystallinity in drug was observed under PXRD. SEM micrographs showed homogeneous dispersion and entanglement of drug throughout the matrix. Results from the permeation study suggested the significant effect of factors on the ex vivo permeation of drug. It was observed that drug release was found to be increased with an increase in hydrophilic polymer concentration and PE. The formulations having polymers (EC:PVPK-30) at 7:3 showed maximum drug release with highest flux (102.60 ± 1.12 µg/cm2/h) and permeability coefficient (32.78 ± 1.38 cm/h). Significant effect of PE on lipid and protein framework of the skin was also observed which is responsible for increased permeation. The optimized formulation was found to be stable and showed no-sign of localized reactions, indicating safety and compatibility with the skin. CONCLUSION Thus, results indicated that the prepared intercalated transdermal matrix can be a promising nonoral carrier to deliver effective amounts of drug.
Collapse
Affiliation(s)
- Vaibhav Rastogi
- a Department of Pharmaceutics, Faculty of Pharmacy , IFTM University , Moradabad , Uttar Pradesh , India
| | - Pragya Yadav
- a Department of Pharmaceutics, Faculty of Pharmacy , IFTM University , Moradabad , Uttar Pradesh , India
| | - Arif Husain
- a Department of Pharmaceutics, Faculty of Pharmacy , IFTM University , Moradabad , Uttar Pradesh , India
| | - Anurag Verma
- a Department of Pharmaceutics, Faculty of Pharmacy , IFTM University , Moradabad , Uttar Pradesh , India
| |
Collapse
|
33
|
Wei JCJ, Haridass IN, Crichton ML, Mohammed YH, Meliga SC, Sanchez WY, Grice JE, Benson HAE, Roberts MS, Kendall MAF. Space- and time-resolved investigation on diffusion kinetics of human skin following macromolecule delivery by microneedle arrays. Sci Rep 2018; 8:17759. [PMID: 30531828 PMCID: PMC6288161 DOI: 10.1038/s41598-018-36009-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/09/2018] [Indexed: 12/16/2022] Open
Abstract
Microscale medical devices are being developed for targeted skin delivery of vaccines and the extraction of biomarkers, with the potential to revolutionise healthcare in both developing and developed countries. The effective clinical development of these devices is dependent on understanding the macro-molecular diffusion properties of skin. We hypothesised that diffusion varied according to specific skin layers. Using three different molecular weights of rhodamine dextran (RD) (MW of 70, 500 and 2000 kDa) relevant to the vaccine and therapeutic scales, we deposited molecules to a range of depths (0-300 µm) in ex vivo human skin using the Nanopatch device. We observed significant dissipation of RD as diffusion with 70 and 500 kDa within the 30 min timeframe, which varied with MW and skin layer. Using multiphoton microscopy, image analysis and a Fick's law analysis with 2D cartesian and axisymmetric cylindrical coordinates, we reported experimental trends of epidermal and dermal diffusivity values ranging from 1-8 µm2 s-1 to 1-20 µm2 s-1 respectively, with a significant decrease in the dermal-epidermal junction of 0.7-3 µm2 s-1. In breaching the stratum corneum (SC) and dermal-epidermal junction barriers, we have demonstrated practical application, delivery and targeting of macromolecules to both epidermal and dermal antigen presenting cells, providing a sound knowledge base for future development of skin-targeting clinical technologies in humans.
Collapse
Affiliation(s)
- Jonathan C J Wei
- Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, 4102, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Isha N Haridass
- Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, 4102, Australia
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, 6102, Australia
| | - Michael L Crichton
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Yousuf H Mohammed
- Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Stefano C Meliga
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Washington Y Sanchez
- Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Jeffrey E Grice
- Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Heather A E Benson
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, 6102, Australia
| | - Michael S Roberts
- Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
- Basil Hetzel Institute for Translational Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5011, Australia.
| | | |
Collapse
|
34
|
Ilić T, Savić S, Batinić B, Marković B, Schmidberger M, Lunter D, Savić M, Savić S. Combined use of biocompatible nanoemulsions and solid microneedles to improve transport of a model NSAID across the skin: In vitro and in vivo studies. Eur J Pharm Sci 2018; 125:110-119. [DOI: 10.1016/j.ejps.2018.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/08/2018] [Accepted: 09/30/2018] [Indexed: 12/23/2022]
|
35
|
Preparation, properties and challenges of the microneedles-based insulin delivery system. J Control Release 2018; 288:173-188. [PMID: 30189223 DOI: 10.1016/j.jconrel.2018.08.042] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022]
Abstract
Microneedle technology relates to pharmacy, polymer chemistry and micromachining. Microneedle can effectively deliver insulin into systemic circulation across the skin. This process does not affect the activity of insulin. Compared to subcutaneous injection, microneedles cause less pain for their special structure. This review thoroughly discusses the preparation technologies of the microneedles-based insulin delivery system including solid, hollow, dissolving, phase transition, glucose-responsive microneedle patches. In the meantime, the properties, challenges and clinical/commercial status of the microneedles-based insulin delivery system are also discussed in this review.
Collapse
|
36
|
Zhan H, Ma F, Huang Y, Zhang J, Jiang X, Qian Y. Application of composite dissolving microneedles with high drug loading ratio for rapid local anesthesia. Eur J Pharm Sci 2018; 121:330-337. [DOI: 10.1016/j.ejps.2018.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 02/07/2023]
|
37
|
Luu E, Ita KB, Morra MJ, Popova IE. The Influence of Microneedles on the Percutaneous Penetration of Selected Antihypertensive Agents: Diltiazem Hydrochloride and Perindopril Erbumine. Curr Drug Deliv 2018; 15:1449-1458. [PMID: 30058488 PMCID: PMC6340158 DOI: 10.2174/1567201815666180730125941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/15/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND It is well documented in the scientific literature that high blood pressure can lead to cardiovascular disease. Untreated hypertension has clinical consequences such as coronary artery disease, stroke or kidney failure. Diltiazem hydrochloride (DH), a calcium-channel blocker, and perindopril erbumine (PE), an inhibitor of the angiotensin converting enzyme are used for the management of hypertension. OBJECTIVE This project will examine the effect of microneedle rollers on the transport of DH and PE across pig ear skin. The use of the transcutaneous route of administration reduces and in sometimes eliminates the trauma and pain associated with injections. Furthermore, there is increased patient compliance. The purpose of this project was to study the effect of stainless steel microneedles on the transdermal delivery of DH and PE. METHOD We utilized vertical Franz diffusion cells to study in vitro transport of DH and PE across microneedle- treated pig ear skin. Confocal laser scanning microscopy (CLSM) was used to characterize microchannel depth. Transdermal flux values were determined from the slope of the linear portion of the cumulative amount versus time curve. RESULTS There was a 113.59-fold increase in the transdermal permeation of DH following the application of microneedle roller compared to passive diffusion. CONCLUSION In the case of PE, there was an 11.99-fold increase in the drug transport across pig skin following the application of microneedle rollers in comparison with passive diffusion. Student's t-test and Mann-Whitney's rank sum test were used to determine statistically significant differences between experimental and control groups.
Collapse
Affiliation(s)
- Emmy Luu
- College of Pharmacy, Touro University California, Mare Island-Vallejo, CA, United States
| | - Kevin B Ita
- College of Pharmacy, Touro University California, Mare Island-Vallejo, CA, United States
| | - Matthew J Morra
- Department of Soil and Water Systems, University of Idaho, Moscow, Idaho, ID 83844-2339, United States
| | - Inna E Popova
- Department of Soil and Water Systems, University of Idaho, Moscow, Idaho, ID 83844-2339, United States
| |
Collapse
|
38
|
|
39
|
Sanjay ST, Zhou W, Dou M, Tavakoli H, Ma L, Xu F, Li X. Recent advances of controlled drug delivery using microfluidic platforms. Adv Drug Deliv Rev 2018; 128:3-28. [PMID: 28919029 PMCID: PMC5854505 DOI: 10.1016/j.addr.2017.09.013] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/11/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022]
Abstract
Conventional systematically-administered drugs distribute evenly throughout the body, get degraded and excreted rapidly while crossing many biological barriers, leaving minimum amounts of the drugs at pathological sites. Controlled drug delivery aims to deliver drugs to the target sites at desired rates and time, thus enhancing the drug efficacy, pharmacokinetics, and bioavailability while maintaining minimal side effects. Due to a number of unique advantages of the recent microfluidic lab-on-a-chip technology, microfluidic lab-on-a-chip has provided unprecedented opportunities for controlled drug delivery. Drugs can be efficiently delivered to the target sites at desired rates in a well-controlled manner by microfluidic platforms via integration, implantation, localization, automation, and precise control of various microdevice parameters. These features accordingly make reproducible, on-demand, and tunable drug delivery become feasible. On-demand self-tuning dynamic drug delivery systems have shown great potential for personalized drug delivery. This review presents an overview of recent advances in controlled drug delivery using microfluidic platforms. The review first briefly introduces microfabrication techniques of microfluidic platforms, followed by detailed descriptions of numerous microfluidic drug delivery systems that have significantly advanced the field of controlled drug delivery. Those microfluidic systems can be separated into four major categories, namely drug carrier-free micro-reservoir-based drug delivery systems, highly integrated carrier-free microfluidic lab-on-a-chip systems, drug carrier-integrated microfluidic systems, and microneedles. Microneedles can be further categorized into five different types, i.e. solid, porous, hollow, coated, and biodegradable microneedles, for controlled transdermal drug delivery. At the end, we discuss current limitations and future prospects of microfluidic platforms for controlled drug delivery.
Collapse
Affiliation(s)
- Sharma T. Sanjay
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Wan Zhou
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Maowei Dou
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory
| | - Hamed Tavakoli
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Lei Ma
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - XiuJun Li
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Border Biomedical Research Center, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Biomedical Engineering, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Environmental Science and Engineering, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| |
Collapse
|
40
|
Zu Q, Yu Y, Bi X, Zhang R, Di L. Microneedle-Assisted Percutaneous Delivery of a Tetramethylpyrazine-Loaded Microemulsion. Molecules 2017; 22:molecules22112022. [PMID: 29160824 PMCID: PMC6150303 DOI: 10.3390/molecules22112022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/15/2017] [Indexed: 12/14/2022] Open
Abstract
This study examined the efficacy of the percutaneous delivery of a tetramethylpyrazine-loaded microemulsion (TMP-ME) on skin pretreated with microneedles (MN). The TMP-ME formulation was optimized in vitro with skin permeation experiments, using a uniform experimental design, guided by a pseudo-ternary phase diagram, in which the TMP skin permeation level and mean particle size were indices. The effects of MN pretreatment on skin permeation by TMP-ME were assessed using in vitro skin permeation, in vivo skin microdialysis, and pharmacokinetic studies in rats. The influence of MN pretreatment on the skin barrier function was evaluated by measuring the electrical resistance of rat skin before and after MN insertion. In the optimal formulation of TMP-ME, the weight percentages of Maisine® 35-1 (oil phase), Labrasol® (surfactant), and Transcutol® P (co-surfactant) were 7%, 30% and 10%, respectively, with 1.5% TMP loading. In the in vitro skin permeation study, MN-assisted TMP-ME exhibited a two-fold increase in a 24-h cumulative TMP permeation compared with TMP-ME alone (p < 0.05). In the skin microdialysis study, TMP in MN-assisted TMP-ME exhibited a 1.25-fold increase in Cmax, a 0.93-fold decrease in Tmax, and a 0.88-fold increase in AUC0–t (p < 0.05). Similarly, in the pharmacokinetic study, TMP in MN-assisted TMP-ME exhibited a 2.11-fold increase in Cmax, a 0.67-fold decrease in Tmax, and a 1.07-fold increase in AUC0–t (p < 0.05). The percutaneous electrical resistance of rat skin before and after MN insertion was 850 ± 50 Ω/cm2 and 283 ± 104 Ω/cm2 respectively, indicating that MN dramatically compromises the skin barrier. These results suggest that MN assistance increases the skin permeation rate and the extent of percutaneous absorption of TMP-ME, and that the mechanism may involve the reversible barrier perturbation effect. The rate and extent of percutaneous absorption of TMP-ME can be significantly enhanced by MN assistance, possibly because MN causes a reversible barrier perturbation effect on skin.
Collapse
Affiliation(s)
- Qiang Zu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Jiangsu Provincial TCM Engineering Technology Research Center for Highly Efficient Drug Delivery Systems (DDS), Nanjing 210023, China.
| | - Yanyan Yu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Xiaolin Bi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Jiangsu Provincial TCM Engineering Technology Research Center for Highly Efficient Drug Delivery Systems (DDS), Nanjing 210023, China.
| | - Ren Zhang
- Shanghai Hutchison Pharmaceuticals Limited, Shanghai 200001, China.
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Jiangsu Provincial TCM Engineering Technology Research Center for Highly Efficient Drug Delivery Systems (DDS), Nanjing 210023, China.
| |
Collapse
|
41
|
Yang R, Wei T, Goldberg H, Wang W, Cullion K, Kohane DS. Getting Drugs Across Biological Barriers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:10.1002/adma.201606596. [PMID: 28752600 PMCID: PMC5683089 DOI: 10.1002/adma.201606596] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/30/2017] [Indexed: 05/13/2023]
Abstract
The delivery of drugs to a target site frequently involves crossing biological barriers. The degree and nature of the impediment to flux, as well as the potential approaches to overcoming it, depend on the tissue, the drug, and numerous other factors. Here an overview of approaches that have been taken to crossing biological barriers is presented, with special attention to transdermal drug delivery. Technology and knowledge pertaining to addressing these issues in a variety of organs could have a significant clinical impact.
Collapse
Affiliation(s)
- Rong Yang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Tuo Wei
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Hannah Goldberg
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Weiping Wang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Kathleen Cullion
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| |
Collapse
|
42
|
Ha JM, Lim CA, Han K, Ha JC, Lee HE, Lee Y, Seo YJ, Kim CD, Lee JH, Im M. The Effect of Micro-Spicule Containing Epidermal Growth Factor on Periocular Wrinkles. Ann Dermatol 2017; 29:187-193. [PMID: 28392646 PMCID: PMC5383744 DOI: 10.5021/ad.2017.29.2.187] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 11/22/2022] Open
Abstract
Background Micro-needle patches have been recently used to increase skin permeability, which improves drug delivery, and for cosmetic purposes. However, these patches may often have limited efficacy due to insufficient skin penetration and reduced compliance caused by discomfort. Objective We evaluated the efficacy and the safety of soluble micro-spicule containing epidermal growth factor (MS-EGF) for the treatment of periocular wrinkles. Methods Twenty healthy volunteers aged 33 to 54 years were enrolled in a randomized, controlled, split-face study. For 4 weeks, a periocular wrinkle was treated daily with either a soluble MS-EGF cream or a cream containing EGF alone. All subjects underwent 8 weeks of follow-up. Efficacy was assessed using an ultrasonic measurement of dermal depth and density, digital skin image analysis, 5-point photonumeric scale for periocular wrinkles and subjective satisfaction. Results MS-EGF group showed statistically significant increase of dermal depth and density compared to EGF alone group after 4 and 8 weeks. In addition, there was a marked improvement shown in clinical and 3-dimensional skin image in MS-EGF group. The treatments were well-tolerated; no significant side-effect was noted. Conclusion The MS-EGF formulation may represent an effective and biocompatible advance in the treatment of periocular wrinkles.
Collapse
Affiliation(s)
- Jeong-Min Ha
- Department of Dermatology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Cho-Ah Lim
- Department of Dermatology, Chungnam National University School of Medicine, Daejeon, Korea
| | | | | | - Hae-Eul Lee
- Department of Dermatology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Young Lee
- Department of Dermatology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Young-Joon Seo
- Department of Dermatology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Chang-Deok Kim
- Department of Dermatology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jeung-Hoon Lee
- Department of Dermatology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Myung Im
- Department of Dermatology, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
43
|
Tran KT, Nguyen TD. Lithography-based methods to manufacture biomaterials at small scales. JOURNAL OF SCIENCE: ADVANCED MATERIALS AND DEVICES 2017; 2:1-14. [DOI: 10.1016/j.jsamd.2016.12.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
44
|
Effect of microneedles on transdermal permeation enhancement of amlodipine. Drug Deliv Transl Res 2017; 7:383-394. [PMID: 28160258 DOI: 10.1007/s13346-017-0361-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2016] [Indexed: 10/20/2022]
Abstract
The present study aimed to investigate the effect of microneedle (MN) geometry parameters like length, density, shape and type on transdermal permeation enhancement of amlodipine (AMLO). Two types of MN devices viz. AdminPatch® arrays (ADM) (0.6, 1.2 and 1.5 mm lengths) and laboratory-fabricated polymeric MNs (PM) of 0.6 mm length were employed. In the case of PMs, arrays were applied thrice at different places within a 1.77-cm2 skin area (PM-3) to maintain the MN density closer to 0.6 mm ADM. Scaling analyses were done using dimensionless parameters like concentration of AMLO (Ct/Cs), thickness (h/L) and surface area of the skin (Sa/L2). Microinjection moulding technique was employed to fabricate PM. Histological studies revealed that the PM, owing to their geometry/design, formed wider and deeper microconduits when compared to ADM of similar length. Approximately 6.84- and 6.11-fold increase in the cumulative amount (48 h) of AMLO permeated was observed with 1.5 mm ADM and PM-3 treatments respectively, when compared to passive permeation amounts. Good correlations (R 2 > 0.89) were observed between different dimensionless parameters with scaling analyses. The enhancement in AMLO permeation was found to be in the order of 1.5 mm ADM ≥ PM-3 > 1.2 mm ADM > 0.6 mm ADM ≥PM-1 > passive. The study suggests that MN application enhances the AMLO transdermal permeation and the geometrical parameters of MNs play an important role in the degree of such enhancement.
Collapse
|
45
|
Sanjay ST, Dou M, Fu G, Xu F, Li X. Controlled Drug Delivery Using Microdevices. Curr Pharm Biotechnol 2016; 17:772-87. [PMID: 26813304 PMCID: PMC5135015 DOI: 10.2174/1389201017666160127110440] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/21/2016] [Accepted: 01/21/2016] [Indexed: 12/18/2022]
Abstract
Therapeutic drugs administered systematically are evenly distributed to the whole body through blood circulation and have to cross many biological barriers before reaching the pathological site. Conventional drug delivery may make drugs inactive or reduce their potency as they may be hydrolyzed or degraded enzymatically and are rapidly excreted through the urinary system resulting in suboptimal concentration of drugs at the desired site. Controlled drug delivery aims to localize the pharmacological activity of the drug to the desired site at desired release rates. The advances made by micro/nanofluidic technologies have provided new opportunities for better-controlled drug delivery. Various components of a drug delivery system can be integrated within a single tiny micro/nanofluidic chip. This article reviews recent advances of controlled drug delivery made by microfluidic/nanofluidic technologies. We first discuss microreservoir-based drug delivery systems. Then we highlight different kinds of microneedles used for controlled drug delivery, followed with a brief discussion about the current limitations and the future prospects of controlled drug delivery systems.
Collapse
Affiliation(s)
| | | | | | | | - XiuJun Li
- Department of Chemistry, Faculty of University of Texas at El Paso, 500 West University Ave, El Paso, Texas 79968, USA.
| |
Collapse
|
46
|
The Influence of Solid Microneedles on the Transdermal Delivery of Selected Antiepileptic Drugs. Pharmaceutics 2016; 8:pharmaceutics8040033. [PMID: 27854292 PMCID: PMC5198017 DOI: 10.3390/pharmaceutics8040033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/22/2016] [Accepted: 11/04/2016] [Indexed: 12/13/2022] Open
Abstract
The aim of this project was to examine the effect of microneedle rollers on the percutaneous penetration of tiagabine hydrochloride and carbamazepine across porcine skin in vitro. Liquid chromatography-mass spectrometric analysis was carried out using an Agilent 1200 Series HPLC system coupled to an Agilent G1969A TOF-MS system. Transdermal flux values of the drugs were determined from the steady-state portion of the cumulative amount versus time curves. Following twelve hours of microneedle roller application, there was a 6.74-fold increase in the percutaneous penetration of tiagabine hydrochloride (86.42 ± 25.66 µg/cm2/h) compared to passive delivery (12.83 ± 6.30 µg/cm2/h). For carbamazepine in 20% ethanol, passive transdermal flux of 7.85 ± 0.60 µg/cm2/h was observed compared to 10.85 ± 0.11 µg/cm2/h after microneedle treatment. Carbamazepine reconstituted in 30% ethanol resulted in only a 1.19-fold increase in drug permeation across porcine skin (36.73 ± 1.83 µg/cm2/h versus 30.74 ± 1.32 µg/cm2/h). Differences in flux values of untreated and microneedle-treated porcine skin using solid microneedles for the transdermal delivery of tiagabine were statistically significant. Although there were 1.38- and 1.19-fold increases in transdermal flux values of carbamazepine when applied as 20% and 30% ethanol solutions across microneedle-treated porcine skin, respectively, the increases were not statistically significant.
Collapse
|
47
|
Ita K. Recent trends in the transdermal delivery of therapeutic agents used for the management of neurodegenerative diseases. J Drug Target 2016; 25:406-419. [PMID: 27701893 DOI: 10.1080/1061186x.2016.1245310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
With the increasing proportion of the global geriatric population, it becomes obvious that neurodegenerative diseases will become more widespread. From an epidemiological standpoint, it is necessary to develop new therapeutic agents for the management of Alzheimer's disease, Parkinson's disease, multiple sclerosis and other neurodegenerative disorders. An important approach in this regard involves the use of the transdermal route. With transdermal drug delivery systems (TDDS), it is possible to modulate the pharmacokinetic profiles of these medications and improve patient compliance. Transdermal drug delivery has also been shown to be useful for drugs with short half-life and low or unpredictable bioavailability. In this review, several transdermal drug delivery enhancement technologies are being discussed in relation to the delivery of medications used for the management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Kevin Ita
- a College of Pharmacy, Touro University , Mare Island-Vallejo , CA , USA
| |
Collapse
|
48
|
Sintov AC, Hofmann MA. A novel thermo-mechanical system enhanced transdermal delivery of hydrophilic active agents by fractional ablation. Int J Pharm 2016; 511:821-30. [DOI: 10.1016/j.ijpharm.2016.07.070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 06/30/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
|
49
|
Affiliation(s)
- Kevin Ita
- College of Pharmacy, Touro University, Mare Island-Vallejo, California, CA, USA
| |
Collapse
|
50
|
Ita K. Perspectives on Transdermal Electroporation. Pharmaceutics 2016; 8:E9. [PMID: 26999191 PMCID: PMC4810085 DOI: 10.3390/pharmaceutics8010009] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/01/2016] [Accepted: 03/10/2016] [Indexed: 01/17/2023] Open
Abstract
Transdermal drug delivery offers several advantages, including avoidance of erratic absorption, absence of gastric irritation, painlessness, noninvasiveness, as well as improvement in patient compliance. With this mode of drug administration, there is no pre-systemic metabolism and it is possible to increase drug bioavailability and half-life. However, only a few molecules can be delivered across the skin in therapeutic quantities. This is because of the hindrance provided by the stratum corneum. Several techniques have been developed and used over the last few decades for transdermal drug delivery enhancement. These include sonophoresis, iontophoresis, microneedles, and electroporation. Electroporation, which refers to the temporary perturbation of the skin following the application of high voltage electric pulses, has been used to increase transcutaneous flux values by several research groups. In this review, transdermal electroporation is discussed and the use of the technique for percutaneous transport of low and high molecular weight compounds described. This review also examines our current knowledge regarding the mechanisms of electroporation and safety concerns arising from the use of this transdermal drug delivery technique. Safety considerations are especially important because electroporation utilizes high voltage pulses which may have deleterious effects in some cases.
Collapse
Affiliation(s)
- Kevin Ita
- College of Pharmacy, Touro University, Mare Island-Vallejo, CA 94592, USA.
| |
Collapse
|