1
|
Paulus F, Bauer-Brandl A, Stappaerts J, Holm R. Exploring supersaturated type IV lipid-based formulations: Impact of supersaturation, digestion and precipitation wInhibition on cinnarizine absorption. Int J Pharm 2025; 678:125725. [PMID: 40368002 DOI: 10.1016/j.ijpharm.2025.125725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/30/2025] [Accepted: 05/12/2025] [Indexed: 05/16/2025]
Abstract
Building up on previous publications for type I, II, IIIa, and IIIb Lipid-based formulations (LBFs), the supersaturation potential for cinnarizine in type IV LBFs and the effect of supersaturation, lipid digestion, and precipitation inhibition in vivo was investigated. The supersaturation potential for cinnarizine-loaded type IV LBFs was high and this was investigated in vivo in rats. Supersaturated LBFs tended to show higher drug exposures in vivo than their non-supersaturated counterparts (22 - 92 % increase in AUC0-24h, not dose-normalized), but this was only statistically significant for the formulation containing a precipitation inhibitor under lipase-inhibited conditions, so the overall impact was limited. Soluplus® as a precipitation inhibitor did not increase drug exposure in general, even though the administered cinnarizine dose was higher for the supersaturated formulations. Lipase inhibition had no impact on cinnarizine absorption, indicating no increased precipitation during digestion. The results were in line with previous findings from type IIIb LBFs that revealed that the digestion process was less important for drug absorption from hydrophilic types of LBFs as opposed to the more lipophilic type I- and II systems.
Collapse
Affiliation(s)
- Felix Paulus
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium; Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Annette Bauer-Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Jef Stappaerts
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - René Holm
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| |
Collapse
|
2
|
Knopp MM, Jørgensen JR, Hansen LT, Müllertz A. Predicting the pharmacokinetics and food effect of oral drug products using the dynamic gastrointestinal model (DGM). Eur J Pharm Biopharm 2025:114723. [PMID: 40252814 DOI: 10.1016/j.ejpb.2025.114723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
The pharmacokinetics (PK) of oral drug compounds are often significantly altered by food intake and evaluating this effect, as required by regulatory agencies, typically involves costly and time-consuming clinical trials. This study used the Dynamic Gastrointestinal Model (DGM), an advanced in vitro system simulating both biochemical and mechanical aspects of the human upper gastrointestinal tract, to predict plasma concentration-time profiles (PK profiles) and food effect of three immediate release oral drug products. The drug products, containing cinnarizine (CIN), diclofenac potassium (DIC) or paracetamol (PAR), were processed in the DGM mimicking the fasted and fed state clinical protocols and the resulting intestinal drug dissolution profiles were modelled (by convolution) to achieve the predicted PK profiles. The predicted PK profiles in both the fasted and fed state were in accordance with the observations in clinical trials, capturing both the positive food effect for CIN and the negative food effects for DIC and PAR. These findings demonstrate the ability of the DGM to provide insights into the PK performance and food effect of oral drug products.
Collapse
Affiliation(s)
| | | | | | - Anette Müllertz
- Bioneer A/S, Department of Pharmacy, DK-2100 Copenhagen, Denmark; Department of Pharmacy, University of Copenhagen DK-2100 Copenhagen, Denmark.
| |
Collapse
|
3
|
Pepin X, Arora S, Borges L, Cano-Vega M, Carducci T, Chatterjee P, Chen G, Cristofoletti R, Dallmann A, Delvadia P, Dressman J, Fotaki N, Gray E, Heimbach T, Holte Ø, Kijima S, Kotzagiorgis E, Lennernäs H, Lindahl A, Loebenberg R, Mackie C, Malamatari M, McAllister M, Mitra A, Moody R, Mudie D, Musuamba Tshinanu F, Polli JE, Rege B, Ren X, Rullo G, Scherholz M, Song I, Stillhart C, Suarez-Sharp S, Tannergren C, Tsakalozou E, Veerasingham S, Wagner C, Seo P. Parameterization of Physiologically Based Biopharmaceutics Models: Workshop Summary Report. Mol Pharm 2024; 21:3697-3731. [PMID: 38946085 PMCID: PMC11304397 DOI: 10.1021/acs.molpharmaceut.4c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
This Article shares the proceedings from the August 29th, 2023 (day 1) workshop "Physiologically Based Biopharmaceutics Modeling (PBBM) Best Practices for Drug Product Quality: Regulatory and Industry Perspectives". The focus of the day was on model parametrization; regulatory authorities from Canada, the USA, Sweden, Belgium, and Norway presented their views on PBBM case studies submitted by industry members of the IQ consortium. The presentations shared key questions raised by regulators during the mock exercise, regarding the PBBM input parameters and their justification. These presentations also shed light on the regulatory assessment processes, content, and format requirements for future PBBM regulatory submissions. In addition, the day 1 breakout presentations and discussions gave the opportunity to share best practices around key questions faced by scientists when parametrizing PBBMs. Key questions included measurement and integration of drug substance solubility for crystalline vs amorphous drugs; impact of excipients on apparent drug solubility/supersaturation; modeling of acid-base reactions at the surface of the dissolving drug; choice of dissolution methods according to the formulation and drug properties with a view to predict the in vivo performance; mechanistic modeling of in vitro product dissolution data to predict in vivo dissolution for various patient populations/species; best practices for characterization of drug precipitation from simple or complex formulations and integration of the data in PBBM; incorporation of drug permeability into PBBM for various routes of uptake and prediction of permeability along the GI tract.
Collapse
Affiliation(s)
- Xavier Pepin
- Regulatory
Affairs, Simulations Plus Inc., 42505 10th Street West, Lancaster, California 93534-7059, United States
| | - Sumit Arora
- Janssen
Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Luiza Borges
- ANVISA, SIA Trecho 5́, Guara, Brasília, Federal District 71205-050, Brazil
| | - Mario Cano-Vega
- Drug
Product Technologies, Amgen Inc., Thousand Oaks, California 91320-1799, United
States
| | - Tessa Carducci
- Analytical
Commercialization Technology, Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - Parnali Chatterjee
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Grace Chen
- Takeda
Development Center Americas Inc., 300 Shire Way, Lexington, Massachusetts 02421, United States
| | - Rodrigo Cristofoletti
- College
of Pharmacy, University of Florida, 6550 Sanger Rd., Orlando, Florida 32827, United States
| | - André Dallmann
- Bayer
HealthCare SAS, 59000 Lille, France, on behalf of Bayer
AG, Pharmacometrics/Modeling and Simulation, Systems Pharmacology
& Medicine, PBPK, Leverkusen, Germany
| | - Poonam Delvadia
- Office
of Translational Science, Office of Clinical Pharmacology (OCP), Center
for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United States
| | - Jennifer Dressman
- Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main 60596, Germany
| | - Nikoletta Fotaki
- University of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
| | - Elizabeth Gray
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Tycho Heimbach
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Øyvind Holte
- Norwegian Medical Products Agency, Oslo 0213, Norway
| | - Shinichi Kijima
- Office
of New Drug V, Pharmaceuticals and Medical
Devices Agency (PMDA), Tokyo 100-0013, Japan
| | - Evangelos Kotzagiorgis
- European Medicines Agency (EMA), Domenico Scarlattilaan 6, Amsterdam 1083 HS, The Netherlands
| | - Hans Lennernäs
- Translational
Drug Discovery and Development, Department of Pharmaceutical Bioscience, Uppsala University, Uppsala 751 05, Sweden
| | | | - Raimar Loebenberg
- Faculty
of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmontonton T6G 2E1, Canada
| | - Claire Mackie
- Janssen
Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Maria Malamatari
- Medicines & Healthcare Products Regulatory Agency, 10 S Colonnade, London SW1W 9SZ, United Kingdom
| | - Mark McAllister
- Global
Biopharmaceutics, Drug Product Design, Pfizer, Sandwich CT13 9NJ, United Kingdom
| | - Amitava Mitra
- Clinical
Pharmacology, Kura Oncology Inc., Boston, Massachusetts 02210, United States
| | - Rebecca Moody
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Deanna Mudie
- Global
Research and Development, Small Molecules, Lonza, 63045 NE Corporate
Pl., Bend, Oregon 97701, United States
| | - Flora Musuamba Tshinanu
- Belgian Federal Agency for Medicines and Health Products, Galileelaan 5/03, Brussel 1210, Belgium
| | - James E. Polli
- School
of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Bhagwant Rege
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Xiaojun Ren
- PK
Sciences/Translational Medicine, BioMedical Research, Novartis, One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Gregory Rullo
- Regulatory
CMC, AstraZeneca, 1 Medimmune Way, Gaithersburg, Maryland 20878, United States
| | - Megerle Scherholz
- Pharmaceutical
Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Ivy Song
- Takeda
Development Center Americas Inc., 300 Shire Way, Lexington, Massachusetts 02421, United States
| | - Cordula Stillhart
- Pharmaceutical
R&D, F. Hoffmann-La Roche Ltd., Basel 4070, Switzerland
| | - Sandra Suarez-Sharp
- Regulatory
Affairs, Simulations Plus Inc., 42505 10th Street West, Lancaster, California 93534-7059, United States
| | - Christer Tannergren
- Biopharmaceutics
Science, New Modalities & Parenteral Product Development, Pharmaceutical
Technology & Development, Operations, AstraZeneca, Gothenburg 431 50, Sweden
| | - Eleftheria Tsakalozou
- Division
of Quantitative Methods and Modeling, Office of Research and Standards,
Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20903-1058, United
States
| | - Shereeni Veerasingham
- Pharmaceutical
Drugs Directorate (PDD), Health Canada, 1600 Scott St., Ottawa K1A 0K9, Canada
| | - Christian Wagner
- Global
Drug Product Development, Global CMC Development, the Healthcare Business of Merck KGaA, Darmstadt D-64293, Germany
| | - Paul Seo
- Office
of Translational Science, Office of Clinical Pharmacology (OCP), Center
for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United States
| |
Collapse
|
4
|
Goswami A, Ruhina Rahman SN, Ponneganti S, Gangipangi V, Vavialala H, Radhakrishnanand P, Selvaraju S, Mutheneni SR, Bharti S, Shunmugaperumal T. Intratympanic injections of emulsion-like dispersions to augment cinnarizine amount in a healthy rabbit inner ear model. Nanomedicine (Lond) 2024; 19:1717-1741. [PMID: 39041668 PMCID: PMC11418292 DOI: 10.1080/17435889.2024.2373042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Aim: To investigate eutectic liquid-based emulsion-like dispersions for intratympanic injections to augment cinnarizine permeability across round window membrane in a healthy rabbit inner ear model.Methods: Two-tier systematic optimization was used to get the injection formula. The drug concentrations in perilymph and plasma were analyzed via. Ultra-performance liquid chromatography-tandem mass spectrometry method after 30-, 60-, 90- and 120-min post intratympanic injection time points in rabbits.Results: A shear-thinning behavior, immediate drug release (∼98.80%, 10 min) and higher cell viability (>97.86%, 24 h) were observed in dispersions. The cinnarizine level of 8168.57 ± 1236.79 ng/ml was observed in perilymph at 30 min post intratympanic injection in rabbits.Conclusion: The emulsion-like dispersions can augment drug permeability through round window membrane.
Collapse
Affiliation(s)
- Abhinab Goswami
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research- Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Assam781101, India
| | - Syed Nazrin Ruhina Rahman
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research- Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Assam781101, India
| | - Srikanth Ponneganti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research- Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Assam781101, India
| | - Vijayakumar Gangipangi
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research- Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Assam781101, India
| | - Hariprasad Vavialala
- Bioinformatics Group, Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana500007, India
| | - Pullapanthula Radhakrishnanand
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research- Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Assam781101, India
| | - Sudhagar Selvaraju
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research- Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Assam781101, India
| | - Srinivasa Rao Mutheneni
- Bioinformatics Group, Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana500007, India
| | - Shreekant Bharti
- Department of Pathology/Lab Medicine, All India Institute of Medical Sciences Patna, Phulwarisarif, Patna, Bihar801507, India
| | - Tamilvanan Shunmugaperumal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research- Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Assam781101, India
| |
Collapse
|
5
|
Wang S, Xu Q, Furuishi T, Fukuzawa K, Yonemochi E. Characterization and drug solubilization of arginine-based ionic liquids - Impact of counterions and stoichiometry. Int J Pharm 2024; 659:124228. [PMID: 38744415 DOI: 10.1016/j.ijpharm.2024.124228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/28/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Ionic liquids (ILs) exhibit very diverse physicochemical properties, such as non-volatility, stability, and miscibility, which render them excellent candidate excipients for multi-purpose use. Six novel arginine (Arg)-based ILs were obtained using a one-step ultrasound method. Salt formation was confirmed by Fourier-transform infrared (FTIR), Raman, and nuclear magnetic resonance (NMR) spectroscopies. Moreover, the effects of anions and molar ratio on the molecular states and thermal properties of Arg-ILs were investigated. In addition, the solubilization of drugs with different pKa and LogP values was attempted using Arg-ILs consisting of asparagine, proline, octanoic acid, and malic acid, respectively, and a comparative study was performed. Furthermore, the interaction mode between the drugs and ILs was determined by FTIR and Raman spectroscopy. Presumably, partial interaction between the component of ILs and drugs such as ofloxacin and valsartan occurred, whereas flurbiprofen and isosorbide mononitrate were dispersed in the viscous IL. The development of strategies for the application of ILs as solubilizers or carriers of active pharmaceutical ingredients is an extremely promising and wide avenue of research.
Collapse
Affiliation(s)
- Siran Wang
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Qihui Xu
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Takayuki Furuishi
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Kaori Fukuzawa
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Japan
| | - Etsuo Yonemochi
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| |
Collapse
|
6
|
Be Rziņš KR, Meiland P, Aljabbari A, Boyd BJ. In Operando Analysis of Milk-Based Oral Formulations during Digestion Using Synchrotron Small-Angle X-ray Scattering Coupled to Low-Frequency Raman Spectroscopy. Anal Chem 2024; 96:887-894. [PMID: 38175633 DOI: 10.1021/acs.analchem.3c04540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A low-frequency Raman (LFR) probe was coupled to an in-line small-angle X-ray scattering (SAXS) beamline to test the capabilities of a combinatory approach for the determination of lipid and drug behavior during the enzymatic lipolysis of milk-based oral formulations. Cinnarizine was used as the model drug, and its solubilization dynamics as well as its potential impact on the supramolecular structures formed by the digestion products of bovine milk were evaluated from the perspective of both techniques. The SAXS data were superior in distinguishing various liquid crystalline assemblies formed during the digestion process, with LFR providing complementary information regarding the formation of calcium soaps. On the other hand, studying changes in the LFR domain allowed the differentiation of drug solubilization and precipitation; processes that were less clear from the X-ray scattering data. Given the relative simplicity of the combined experimental setup, these results highlight the advantages that the combination of the two techniques can provide for understanding and developing new lipid-based formulations and will help to translate the results obtained at synchrotron facilities to routine analysis procedures in laboratory/industry-based environments.
Collapse
Affiliation(s)
- Ka Rlis Be Rziņš
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Peter Meiland
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Anas Aljabbari
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Ben J Boyd
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville 3052, Victoria, Australia
| |
Collapse
|
7
|
Kesharwani SS, Ibrahim F. A Combined In-Vitro and GastroPlus® Modeling to Study the Effect of Intestinal Precipitation on Cinnarizine Plasma Profile in a Fasted State. AAPS PharmSciTech 2023; 24:121. [PMID: 37173520 DOI: 10.1208/s12249-023-02577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Poorly water-soluble weak base molecules such as cinnarizine often exhibit pH-dependent solubility within the gastrointestinal tract. This means that their solubility can be influenced by the pH of the surrounding environment, and this can affect their oral absorption. The differential pH solubility between the fasted-state stomach and intestine is an important consideration when studying the oral absorption of cinnarizine. Cinnarizine has moderate permeability and is known to exhibit supersaturation and precipitation in fasted-state simulated intestinal fluid (FaSSIF), which can significantly impact its oral absorption. The present work is aimed at studying the precipitation behavior of cinnarizine in FaSSIF using biorelevant in vitro tools and GastroPlus® modeling, to identify the factors contributing to the observed variability in clinical plasma profiles. The study found that cinnarizine demonstrated variable precipitation rates under different bile salt concentrations, which could impact the concentration of the drug available for absorption. The results also showed that a precipitation-integrated modeling approach accurately predicted the mean plasma profiles from the clinical studies. The study concluded that intestinal precipitation may be one of the factors contributing to the observed variability in Cmax but not the AUC of cinnarizine. The study further suggests that the integration of experimental precipitation results representing a wider range of FaSSIF conditions would increase the probability of predicting some of the observed variability in clinical results. This is important for biopharmaceutics scientists, as it can help them evaluate the risk of in vivo precipitation impacting drug and/or drug product performance.
Collapse
Affiliation(s)
- Siddharth S Kesharwani
- US Early Development Biopharmacy, Synthetics Platform, Sanofi, 350 Water Street, MA, 02141, Cambridge, USA
| | - Fady Ibrahim
- US Early Development Biopharmacy, Synthetics Platform, Sanofi, 350 Water Street, MA, 02141, Cambridge, USA.
| |
Collapse
|
8
|
Józsa L, Nemes D, Pető Á, Kósa D, Révész R, Bácskay I, Haimhoffer Á, Vasvári G. Recent Options and Techniques to Assess Improved Bioavailability: In Vitro and Ex Vivo Methods. Pharmaceutics 2023; 15:pharmaceutics15041146. [PMID: 37111632 PMCID: PMC10144798 DOI: 10.3390/pharmaceutics15041146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Bioavailability assessment in the development phase of a drug product is vital to reveal the disadvantageous properties of the substance and the possible technological interventions. However, in vivo pharmacokinetic studies provide strong evidence for drug approval applications. Human and animal studies must be designed on the basis of preliminary biorelevant experiments in vitro and ex vivo. In this article, the authors have reviewed the recent methods and techniques from the last decade that are in use for assessing the bioavailability of drug molecules and the effects of technological modifications and drug delivery systems. Four main administration routes were selected: oral, transdermal, ocular, and nasal or inhalation. Three levels of methodologies were screened for each category: in vitro techniques with artificial membranes; cell culture, including monocultures and co-cultures; and finally, experiments where tissue or organ samples were used. Reproducibility, predictability, and level of acceptance by the regulatory organizations are summarized for the readers.
Collapse
Affiliation(s)
- Liza Józsa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Dániel Nemes
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Ágota Pető
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Dóra Kósa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Réka Révész
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Ádám Haimhoffer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Gábor Vasvári
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| |
Collapse
|
9
|
Polli JE. A Simple One-Parameter Percent Dissolved Versus Time Dissolution Equation that Accommodates Sink and Non-sink Conditions via Drug Solubility and Dissolution Volume. AAPS J 2022; 25:1. [PMID: 36396889 DOI: 10.1208/s12248-022-00765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
In vitro dissolution generally involves sink conditions, so dissolution equations generally do not need to accommodate non-sink conditions. Greater use of biorelevant media, which are typically less able to provide sink conditions than pharmaceutical surfactants, necessitates equations that accommodate non-sink conditions. One objective was to derive an integrated, one-parameter dissolution equation for percent dissolved versus time that accommodates non-sink effects via drug solubility and dissolution volume parameters, including incomplete solubility. A second objective was to characterize the novel equation by fitting it to biorelevant dissolution profiles of tablets of two poorly water-soluble drugs, as well as by conducting simulations of the effect of dose on dissolution profile. The Polli dissolution equation was derived, [Formula: see text], where M0 is the drug dose (mg), cs is drug solubility (mg/ml), V is dissolution volume (ml), and kd is dissolution rate coefficient (ml/mg per min). Maximum allowable percent dissolved was determined by drug solubility and not a fitted extent of dissolution parameter. The equation fit tablet profiles in the presence and absence of sink conditions, using a single fitted parameter, kd, and where solubility ranged over a 1000-fold range. kd was generally smaller when cs was larger. FeSSGF provided relatively small kd values, reflecting FeSSGF colloids are large and slowly diffusing. Simulations showed impact of non-sink conditions, as well as plausible kd values for various cs scenarios, in agreement with observed kd values. The equation has advantages over first-order and z-factor dissolution rate equations. An Excel file for regression is provided.
Collapse
Affiliation(s)
- James E Polli
- University of Maryland School of Pharmacy, 20 Penn Street, N623, Baltimore, Maryland, 21201, USA.
| |
Collapse
|
10
|
Han M, Xu J, Lin Y. Approaches of formulation bridging in support of orally administered drug product development. Int J Pharm 2022; 629:122380. [DOI: 10.1016/j.ijpharm.2022.122380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
|
11
|
Quantitative assessment of disintegration rate is important for predicting the oral absorption of solid dosage forms containing poorly soluble weak base drugs. Eur J Pharm Biopharm 2022; 180:23-32. [PMID: 36154905 DOI: 10.1016/j.ejpb.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/02/2022] [Accepted: 09/18/2022] [Indexed: 11/20/2022]
Abstract
This study aimed to develop a novel in silico modeling and simulation that considers the disintegration rate in the stomach to predict the in vivo performance of oral solid dosage forms with slow disintegration rates containing poorly soluble weak base drugs. Oxatomide and manidipine hydrochloride were used as model drugs. First, the in vitro disintegration rate and dissolution rate were determined in biorelevant media that simulate the gastrointestinal fluids in fasted humans using a USP apparatus II paddle dissolution tester. Next, the oral absorption of the dosage forms was predicted using the novel simulation model coupled with not only the dissolution rate but also the estimated disintegration rate. As the in vitro disintegration time was 45 min or longer for both drugs in Fasted State Simulated Gastric Fluid, the disintegration rate of these dosage forms was considered slow as immediate release (IR) tablets. While the predicted and observed pharmacokinetic profiles of both drugs were comparable using the new model, the conventional model, which did not consider the disintegration step, underestimated the oral absorption of both drugs. Thus, our novel simulation model coupled with the disintegration rate estimated from in vitro tests is promising for predicting the in vivo performance of oral solid dosage forms with slow disintegration rates containing poorly soluble weak base drugs.
Collapse
|
12
|
Xu J, Zhang L, Shao X. Applications of bio-predictive dissolution tools for the development of solid oral dosage forms: Current industry experience. Drug Dev Ind Pharm 2022; 48:79-97. [PMID: 35786119 DOI: 10.1080/03639045.2022.2098315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Development and optimization of orally administered drug products often require bio-predictive tools to help with informing formulation and manufacturing decisions. Reliable bio-predictive dissolution toolkits not only allow rational development of target formulations without having to conduct excessive in vivo studies but also help in detecting critical material attributes (CMAs), critical formulation variables (CFVs), or critical process parameters (CPPs) that could impact a drug's in vivo performance. To provide early insights for scientists on the development of a bio-predictive method for drug product development, this review summarizes current phase-appropriate bio-predictive dissolution approaches applicable to address typical concerns on solubility-limited absorption, food effect, achlorhydria, development of extended-release formulation, clinically relevant specification, and biowaiver. The selection of an in vitro method which can capture the key rate-limiting step(s) of the in vivo dissolution and/or absorption is considered to have a better chance to produce a meaningful in vitro-in vivo correlation (IVIVC) or in vitro-in vivo relationship (IVIVR).
Collapse
Affiliation(s)
- Jin Xu
- Pharmaceutical Development, Biogen Inc., 115 Broadway, Cambridge, MA 02142, United State
| | - Limin Zhang
- Analytical Strategy and Operations, Bristol-Myers Squibb, Co., One Squibb Drive, New Brunswick, NJ 08903, United State
| | - Xi Shao
- Analytical R&D, Development Science, AbbVie Inc., 1 N Waukegan Rd, North Chicago, IL, 60064, United States
| |
Collapse
|
13
|
Kiyota T, Kambayashi A, Takagi T, Yamashita S. Importance of Gastric Secretion and the Rapid Gastric Emptying of Ingested Water along the Lesser Curvature ("Magenstraße") in Predicting the In Vivo Performance of Liquid Oral Dosage Forms in the Fed State Using a Modeling and Simulation. Mol Pharm 2022; 19:642-653. [PMID: 35075899 DOI: 10.1021/acs.molpharmaceut.1c00778] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The objective of the present study was to develop an in silico model of the stomach for predicting oral drug absorption in fed humans. We focused on a model capable of simulating dynamic fluid volume changes and included a simulated Magenstraße "stomach road," a route along the lesser curvature that often carries fluids rapidly to assess the gastric emptying of drugs. Two types of model liquid drug formulations, liquid-filled soft gelatin capsules (enzalutamide, cyclosporine, and nifedipine) and oral solutions (levofloxacin and fenfluramine), were used. An in silico model was assembled, and simulations were performed using Stella Professional software. The secretion rate of the gastric juice induced by food ingestion was assessed along with the gastric emptying of the ingested water via the Magenstraße in the fed state. The model for the fed state successfully described the in vivo performance of the model drug formulations. These results clearly indicate the importance of including gastric secretion and the kinetics of Magenstraße when predicting the in vivo performance of dosage forms using an in silico modeling and simulation of fed humans. This simulation model should be further optimized to allow for the different physiological mechanisms following the ingestion of different types of meals, as well as modifications for interindividual and intraindividual variabilities in gastrointestinal physiology in the fed state in the future.
Collapse
Affiliation(s)
- Tsuyoshi Kiyota
- Pharmaceutical Research and Technology Labs, Astellas Pharma Inc., 180 Ozumi, Yaizu, Shizuoka 425-0072, Japan
| | - Atsushi Kambayashi
- Pharmaceutical Research and Technology Labs, Astellas Pharma Inc., 180 Ozumi, Yaizu, Shizuoka 425-0072, Japan.,School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Toshihide Takagi
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Shinji Yamashita
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
14
|
Zhang J, Zhang Y, Liu X, Xu X, Li Y, Zhang T. Supercritical fluid chromatography tandem mass spectrometry employed with evaporation-free liquid-liquid extraction for the rapid analysis of cinnarizine in rat plasma. J Sep Sci 2021; 45:968-975. [PMID: 34889052 DOI: 10.1002/jssc.202100825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/11/2022]
Abstract
Cinnarizine is a weak base, which can produce supersaturation and precipitation during gastrointestinal transit, affecting its absorption in vivo. Therefore, it is necessary to investigate whether the oral bioavailability of cinnarizine can be improved after co-administration with precipitation inhibitors or not. In order to evaluate the pharmacokinetic behavior of cinnarizine in rats, a simple, rapid, sensitive, and environmentally friendly supercritical fluid chromatography-tandem mass spectrometric method was established and validated. In this method, flunarizine, a structural analogue of cinnarizine, was selected as the internal standard, and cinnarizine was extracted from rat plasma using evaporation-free liquid-liquid extraction method. The analytes were separated on a Torus 1-AA column (3.0 mm × 100 mm, 1.7 μm) within 2.0 min, using a gradient elution procedure. The transitions of cinnarizine and flunarizine were m/z 369.1 → 167.1 and m/z 405.1 → 203.1, respectively. Cinnarizine showed good linear correlation in the range of 1-500 ng/ml with a lower limit of quantification of 1 ng/ml. The intra- and interday precision and accuracy of all quality control samples were within ±15%. This high-throughput, accurate, sensitive, and reproducible method has been successfully applied to study the effects of the precipitation inhibitor cinnarizine on the pharmacokinetics in rats.
Collapse
Affiliation(s)
- Jiaming Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Yu Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Xiaoyu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Xiaolan Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Yingchao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Tianhong Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| |
Collapse
|
15
|
Effinger A, O'Driscoll CM, McAllister M, Fotaki N. Predicting budesonide performance in healthy subjects and patients with Crohn's disease using biorelevant in vitro dissolution testing and PBPK modeling. Eur J Pharm Sci 2021; 157:105617. [PMID: 33164838 DOI: 10.1016/j.ejps.2020.105617] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/02/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Drug product performance might be affected in Crohn's disease (CD) patients compared to healthy subjects due to pathophysiological changes. Since a low number of clinical studies is performed in this patient population, physiologically-based pharmacokinetic (PBPK) models with integrated results from biorelevant in vitro dissolution studies could be used to assess differences in the bioavailability of drugs. Using this approach, budesonide was used as model drug and its performance in healthy subjects and CD patients was predicted and compared against observed pharmacokinetic data. The in vitro release tests, under healthy versus CD conditions, revealed a similar extent of drug release from a controlled-release budesonide formulation in the fasted state, whereas in the fed state a lower extent was observed with CD. Differences in the physiology of CD patients were identified in literature and their impact on budesonide performance was investigated with a PBPK model, revealing the highest impact on the simulated bioavailability for the reduced hepatic CYP3A4 enzyme abundance and lower human serum albumin concentration. For CD patients, a higher budesonide exposure compared to healthy subjects was predicted with a PBPK population adapted to CD physiology and in agreement with observed pharmacokinetic data. Budesonide performance in the fasted and fed state was successfully predicted in healthy subjects and CD patients using PBPK modeling and in vitro release testing. Following this approach, predictions of the direction and magnitude of changes in bioavailability due to CD could be made for other drugs and guide prescribers to adjust dosage regimens for CD patients accordingly.
Collapse
Affiliation(s)
- Angela Effinger
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | | | | | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK.
| |
Collapse
|
16
|
A combined in vitro in-silico approach to predict the oral bioavailability of borderline BCS Class II/IV weak base albendazole and its main metabolite albendazole sulfoxide. Eur J Pharm Sci 2020; 155:105552. [PMID: 32937212 DOI: 10.1016/j.ejps.2020.105552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/28/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022]
Abstract
The aim of this study was to use a combined in vitro-in silico approach to develop a physiologically based pharmacokinetic model (PBPK) that predicts the bioavailability of albendazole (ABZ), a BCS class II/IV lipophilic weak base, and simulates its main metabolite albendazole sulphoxide (ABZSO) after oral administration of the current marketed dose of 400 mg in the fasted state. In vitro data was collected from solubility and dissolution tests performed with biorelevant media and transfer tests were carried out to evaluate the supersaturation and precipitation characteristics of ABZ upon gastric emptying. These in vitro results were used as biopharmaceutical inputs together with ABZ physicochemical properties including also permeability and in vitro metabolism data and information gathered from different clinical trials reported in the literature, were used to enable PBPK models to be developed using GastroPlus™ (version 9.7). As expected for this weak base with pKa = 3.6, ABZ exhibited a pronounced pH dependent solubility, with the solubility and extent of dissolution being greater at gastric pH and dropping significantly in the intestinal environment suggesting supersaturation and precipitation upon gastric emptying, which was confirmed by the transfer model experiments. PBPK models were set up for heathy volunteers using a full PBPK modeling approach and by implementing dynamic fluid volumes in the ACAT gut physiology in GastroPlus™. When coupling in vitro data (solubility values, dissolution rate and precipitation rate constant, etc.) for ABZ and with fitted values for the Vdss and liver systemic clearance of the sulfoxide metabolite to the PBPK model, the simulated profiles successfully predicated plasma concentrations of ABZ at 400 mg dose and simulated ABZSO at different ABZ dose levels and with different study populations, indicating the usefulness of combing in vitro biorelevant tools with PBPK modeling for the accurate prediction of ABZ bioavailability. The results obtained in this study also helped confirm that ABZ behaves as a BCS class IV compound.
Collapse
|
17
|
Jamei M, Abrahamsson B, Brown J, Bevernage J, Bolger MB, Heimbach T, Karlsson E, Kotzagiorgis E, Lindahl A, McAllister M, Mullin JM, Pepin X, Tistaert C, Turner DB, Kesisoglou F. Current status and future opportunities for incorporation of dissolution data in PBPK modeling for pharmaceutical development and regulatory applications: OrBiTo consortium commentary. Eur J Pharm Biopharm 2020; 155:55-68. [DOI: 10.1016/j.ejpb.2020.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/03/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022]
|
18
|
Biorelevant Two-Stage In Vitro Testing for rDCS Classification and in PBPK Modeling–Case Example Ritonavir. J Pharm Sci 2020; 109:2512-2526. [DOI: 10.1016/j.xphs.2020.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
|
19
|
Cheng L, Wong H. Food Effects on Oral Drug Absorption: Application of Physiologically-Based Pharmacokinetic Modeling as a Predictive Tool. Pharmaceutics 2020; 12:pharmaceutics12070672. [PMID: 32708881 PMCID: PMC7408216 DOI: 10.3390/pharmaceutics12070672] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
The bioavailability of an orally administered small molecule is often dictated by drug-specific physicochemical characteristics and is influenced by many biological processes. For example, in fed or fasted conditions, the transit time within the gastrointestinal tract can vary, confounding the ability to predict the oral absorption. As such, the effects of food on the pharmacokinetics of compounds in the various biopharmaceutics classification system (BCS) classes need to be assessed. The consumption of food leads to physiological changes, including fluctuations in the gastric and intestinal pH, a delay in gastric emptying, an increased bile secretion, and an increased splanchnic and hepatic blood flow. Despite the significant impact of a drug's absorption and dissolution, food effects have not been fully studied and are often overlooked. Physiologically-based pharmacokinetic (PBPK) models can be used to mechanistically simulate a compound's pharmacokinetics under fed or fasted conditions, while integrating drug properties such as solubility and permeability. This review discusses the PBPK models published in the literature predicting the food effects, the models' strengths and shortcomings, as well as future steps to mitigate the current knowledge gap. We observed gaps in knowledge which limits the ability of PBPK models to predict the negative food effects and food effects in the pediatric population. Overall, the further development of PBPK models to predict food effects will provide a mechanistic basis to understand a drug's behavior in fed and fasted conditions, and will help enable the drug development process.
Collapse
|
20
|
Litou C, Turner DB, Holmstock N, Ceulemans J, Box KJ, Kostewicz E, Kuentz M, Holm R, Dressman J. Combining biorelevant in vitro and in silico tools to investigate the in vivo performance of the amorphous solid dispersion formulation of etravirine in the fed state. Eur J Pharm Sci 2020; 149:105297. [PMID: 32151705 DOI: 10.1016/j.ejps.2020.105297] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/26/2020] [Accepted: 03/05/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION In the development of bio-enabling formulations, innovative in vivo predictive tools to understand and predict the in vivo performance of such formulations are needed. Etravirine, a non-nucleoside reverse transcriptase inhibitor, is currently marketed as an amorphous solid dispersion (Intelence® tablets). The aims of this study were 1) to investigate and discuss the advantages of using biorelevant in vitro setups to simulate the in vivo performance of Intelence® 100 mg and 200 mg tablets in the fed state, 2) to build a Physiologically Based Pharmacokinetic (PBPK) model by combining experimental data and literature information with the commercially available in silico software Simcyp® Simulator V17.1 (Certara UK Ltd.), and 3) to discuss the challenges of predicting the in vivo performance of an amorphous solid dispersion and identify the parameters which influence the pharmacokinetics of etravirine most. METHODS Solubility, dissolution and transfer experiments were performed in various biorelevant media simulating the fasted and fed state environment in the gastrointestinal tract. An in silico PBPK model for etravirine in healthy volunteers was developed in the Simcyp® Simulator, using in vitro results and data available from the literature as input. The impact of pre- and post-absorptive parameters on the pharmacokinetics of etravirine was investigated by simulating various scenarios. RESULTS In vitro experiments indicated a large effect of naturally occurring solubilizing agents on the solubility of etravirine. Interestingly, supersaturated concentrations of etravirine were observed over the entire duration of dissolution experiments on Intelence® tablets. Coupling the in vitro results with the PBPK model provided the opportunity to investigate two possible absorption scenarios, i.e. with or without implementation of precipitation. The results from the simulations suggested that a scenario in which etravirine does not precipitate is more representative of the in vivo data. On the post-absorptive side, it appears that the concentration dependency of the unbound fraction of etravirine in plasma has a significant effect on etravirine pharmacokinetics. CONCLUSIONS The present study underlines the importance of combining in vitro and in silico biopharmaceutical tools to advance our knowledge in the field of bio-enabling formulations. Future studies on other bio-enabling formulations can be used to further explore this approach to support rational formulation design as well as robust prediction of clinical outcomes.
Collapse
Affiliation(s)
- Chara Litou
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| | - David B Turner
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, United Kingdom
| | - Nico Holmstock
- Drug Product Development, Janssen R&D, Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Jens Ceulemans
- Drug Product Development, Janssen R&D, Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Karl J Box
- Pion Inc. (UK) Ltd., Forest Row, East Sussex, United Kingdom
| | - Edmund Kostewicz
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| | - Martin Kuentz
- University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstr. 30, 4132, Switzerland
| | - Rene Holm
- Drug Product Development, Janssen R&D, Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Jennifer Dressman
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany; Fraunhofer Institute of Translational Pharmacology and Medicine, Frankfurt, Germany.
| |
Collapse
|
21
|
Chegireddy M, Hanegave GK, Lakshman D, Urazov A, Sree KN, Lewis SA, Dengale SJ. The Significance of Utilizing In Vitro Transfer Model and Media Selection to Study the Dissolution Performance of Weak Ionizable Bases: Investigation Using Saquinavir as a Model Drug. AAPS PharmSciTech 2020; 21:47. [PMID: 31900686 DOI: 10.1208/s12249-019-1563-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/09/2019] [Indexed: 01/20/2023] Open
Abstract
This study investigated the dissolution behavior of BCS class II ionizable weak base Saquinavir and its mesylate salt in the multi-compartment transfer setup employing different composition of dissolution media. The dissolution behavior of Saquinavir was studied by using a two-compartment transfer model representing the transfer of drug from the stomach (donor compartment) to the upper intestine (acceptor compartment). Various buffers like phosphate, bicarbonate, FaSSIF, and FeSSIF were employed. The dissolution was also studied in the concomitant presence of the additional solute, i.e., Quercetin. Further, the dissolution profiles of Saquinavir and its mesylate salt were simulated by GastroPlusTM, and the simulated dissolution profiles were compared against the experimental ones. The formation of in situ HCl salt and water-soluble amorphous phosphate aggregates was confirmed in the donor and acceptor compartments of the transfer setup, respectively. As the consequence of the lower solubility product of HCl salt of Saquinavir, the solubility advantage of mesylate salt was vanished leading to the lower than the predicted dissolution in the acceptor compartment. However, the formation of water-soluble aggregates in the presence of the phosphate salts was observed leading to the higher than the predicted dissolution of the free base in the transfer setup. Interestingly, the formation of such water-soluble aggregates was found to be hindered in the concomitant presence of an ionic solute resulting in the lower dissolution rates. The in situ generation of salts and aggregates in the transfer model lead to the inconsistent prediction of dissolution profiles by GastroPlusTM.
Collapse
|
22
|
Combining biorelevant in vitro and in silico tools to simulate and better understand the in vivo performance of a nano-sized formulation of aprepitant in the fasted and fed states. Eur J Pharm Sci 2019; 138:105031. [DOI: 10.1016/j.ejps.2019.105031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 11/21/2022]
|
23
|
Maghrebi S, Prestidge CA, Joyce P. An update on polymer-lipid hybrid systems for improving oral drug delivery. Expert Opin Drug Deliv 2019; 16:507-524. [PMID: 30957577 DOI: 10.1080/17425247.2019.1605353] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION A promising approach that has recently emerged to overcome the complex biobarriers and interrelated challenges associated with oral drug absorption is to combine the benefits of polymeric and lipid-based nanocarriers within one hybrid system. This multifaceted formulation strategy has given rise to a plethora of polymer-lipid hybrid (PLH) systems with varying nanostructures and biological activities, all of which have demonstrated the ability to improve the biopharmaceutical performance of a wide range of challenging therapeutics. AREAS COVERED The multitude of polymers that can be combined with lipids to exert a synergistic effect for oral drug delivery have been identified, reviewed and critically evaluated. Specific focus is attributed to preclinical studies performed within the past 5 years that have elucidated the role and mechanism of the polymer phase in altering the oral absorption of encapsulated therapeutics. EXPERT OPINION The potential of PLH systems has been clearly identified; however, improved understanding of the structure-activity relationship between PLH systems and oral absorption is fundamental for translating this promising delivery approach into a clinically relevant formulation. Advancing research within this field to identify optimal polymer, lipid combinations and engineering conditions for specific therapeutics are therefore encouraged.
Collapse
Affiliation(s)
- Sajedehsadat Maghrebi
- a School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia , Australia.,b ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of South Australia , Adelaide , South Australia , Australia
| | - Clive A Prestidge
- a School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia , Australia.,b ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of South Australia , Adelaide , South Australia , Australia
| | - Paul Joyce
- c Department of Physics , Chalmers University of Technology , Gothenburg , Sweden
| |
Collapse
|
24
|
Predicting the Changes in Oral Absorption of Weak Base Drugs Under Elevated Gastric pH Using an In Vitro–In Silico–In Vivo Approach: Case Examples—Dipyridamole, Prasugrel, and Nelfinavir. J Pharm Sci 2019; 108:584-591. [DOI: 10.1016/j.xphs.2018.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 12/31/2022]
|
25
|
Bremmell KE, Prestidge CA. Enhancing oral bioavailability of poorly soluble drugs with mesoporous silica based systems: opportunities and challenges. Drug Dev Ind Pharm 2018; 45:349-358. [PMID: 30411991 DOI: 10.1080/03639045.2018.1542709] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Porous silica-based drug delivery systems have shown considerable promise for improving the oral delivery of poorly water-soluble drugs. More specifically, micro- and meso-porous silica carriers have high surface areas with associated ability to physically adsorb high-drug loads in a molecular or amorphous form; this allows molecular state drug release in aqueous gastrointestinal environments, potential for supersaturation, and hence facilitates enhanced absorption and increased bioavailability. This review focuses primarily on the ability of porous silica materials to modulate in vitro drug release and enhance in vivo biopharmaceutical performance. The key considerations identified and addressed are the physicochemical properties of the porous silica materials (e.g. the particle and pore size, shape, and surface chemistry), drug specific properties (e.g. pKa, solubility, and nature of interactions with the silica carrier), potential for both immediate and controlled release, drug release mechanisms, potential for surface functionalization and inclusion of precipitation inhibitors, and importance of utilizing relevant and effective in vitro dissolution methods with discriminating dissolution media that provides guidance for in vivo outcomes (i.e. IVIVC).
Collapse
Affiliation(s)
- Kristen E Bremmell
- a School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , Australia
| | - Clive A Prestidge
- a School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , Australia.,b ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of South Australia , South Australia , Australia
| |
Collapse
|
26
|
Yeo LK, Olusanya TOB, Chaw CS, Elkordy AA. Brief Effect of a Small Hydrophobic Drug (Cinnarizine) on the Physicochemical Characterisation of Niosomes Produced by Thin-Film Hydration and Microfluidic Methods. Pharmaceutics 2018; 10:pharmaceutics10040185. [PMID: 30322124 PMCID: PMC6321096 DOI: 10.3390/pharmaceutics10040185] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/05/2023] Open
Abstract
Novel niosomal formulations containing cinnarizine were developed to enhance its drug characteristics. In this work, niosomes (non-ionic surfactant vesicles) were prepared by conventional thin-film hydration (TFH) and microfluidic (MF) methods with sorbitan monostearate (Span® 60), cholesterol, and co-surfactants (Cremophor® ELP, Cremophor® RH40 and Solutol® HS15) as key excipients. The aim was to study the effect of cinnarizine on the characteristics of different niosomal formulations manufactured by using different methods. For effective targeted oral drug delivery, the efficacy of niosomes for therapeutic applications is correlated to their physiochemical properties. Niosome vesicles prepared were characterised using dynamic light scattering technique and the morphology of niosomes dispersion was characterised using optical microscopy. Dialysis was carried out to purify niosome suspensions to determine drug loading and drug release studies was performed to study the potential use of niosomal systems for cinnarizine.
Collapse
Affiliation(s)
- Li Key Yeo
- School of Pharmacy and Pharmaceutical Sciences, University of Sunderland, Sunderland SR1 3SD, UK.
| | - Temidayo O B Olusanya
- School of Pharmacy and Pharmaceutical Sciences, University of Sunderland, Sunderland SR1 3SD, UK.
| | - Cheng Shu Chaw
- School of Pharmacy and Pharmaceutical Sciences, University of Sunderland, Sunderland SR1 3SD, UK.
| | - Amal Ali Elkordy
- School of Pharmacy and Pharmaceutical Sciences, University of Sunderland, Sunderland SR1 3SD, UK.
| |
Collapse
|
27
|
Introduction to the OrBiTo decision tree to select the most appropriate in vitro methodology for release testing of solid oral dosage forms during development. Eur J Pharm Biopharm 2018; 130:207-213. [DOI: 10.1016/j.ejpb.2018.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 11/19/2022]
|
28
|
A Refined Developability Classification System. J Pharm Sci 2018; 107:2020-2032. [DOI: 10.1016/j.xphs.2018.03.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/09/2018] [Accepted: 03/27/2018] [Indexed: 11/15/2022]
|
29
|
Kaur N, Narang A, Bansal AK. Use of biorelevant dissolution and PBPK modeling to predict oral drug absorption. Eur J Pharm Biopharm 2018; 129:222-246. [DOI: 10.1016/j.ejpb.2018.05.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/16/2018] [Accepted: 05/21/2018] [Indexed: 11/29/2022]
|
30
|
Jede C, Wagner C, Kubas H, Weber C, Weitschies W. In-line derivative spectroscopy as a promising application to a small-scale in vitro transfer model in biorelevant supersaturation and precipitation testing. J Pharm Pharmacol 2018; 70:1315-1323. [DOI: 10.1111/jphp.12991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/07/2018] [Indexed: 11/29/2022]
Abstract
Abstract
Objectives
Dissolution testing of poorly soluble and precipitating drugs is of great importance for pharmaceutical industry. As offline HPLC analytics is time-consuming and labour-intensive, the development of suitable in-line analytics to measure drug concentration allows better predictions of drug dissolution and precipitation. The purpose of this study was to develop an in-line derivative spectroscopic method which facilitates drug concentration measurements in suspensions without additional sample preparation.
Methods
Solubility, dissolution and precipitation of ketoconazole were analysed using derivative spectroscopy and HPLC.
Key findings
Results of solubility and dissolution experiments were highly comparable. Due to higher sampling frequency and lack of sample preparations, supersaturation in a pH-shift experiment was more accurately captured by UV in-line analytics. The application of a prefiltration step and flow-through cuvettes facilitates implementation of in-line derivative spectroscopy into an in vitro transfer model with changing UV-active media and high supersaturation in highly turbid samples.
Conclusions
Although the application of derivative spectroscopy has been described previously, the approach described herein is novel and well-suited for the application in an automated in vitro transfer model. Moreover, it represents a promising tool for drug substance characterisation, candidate selection and formulation development.
Collapse
Affiliation(s)
- Christian Jede
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
- Department of Pharmaceutical Technologies, Chemical and Pharmaceutical Development, Merck KGaA, Darmstadt, Germany
| | - Christian Wagner
- Department of Pharmaceutical Technologies, Chemical and Pharmaceutical Development, Merck KGaA, Darmstadt, Germany
| | - Holger Kubas
- Department of Pharmaceutical Technologies, Chemical and Pharmaceutical Development, Merck KGaA, Darmstadt, Germany
| | - Christian Weber
- Project and Dossier Leadership, Chemical and Pharmaceutical Development, Merck KGaA, Darmstadt, Germany
| | - Werner Weitschies
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| |
Collapse
|
31
|
Zhang S, Sun M, Zhao Y, Song X, He Z, Wang J, Sun J. Molecular mechanism of polymer-assisting supersaturation of poorly water-soluble loratadine based on experimental observations and molecular dynamic simulations. Drug Deliv Transl Res 2018; 7:738-749. [PMID: 28677032 DOI: 10.1007/s13346-017-0401-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polymers have been usually used to retard nucleation and crystal growth in order to maintain supersaturation, yet their roles in inhibition of nucleation and crystal growth are poorly understood. In our work, the polymer-based supersaturation performances and molecular mechanisms of poorly aqueous soluble loratadine were investigated. Two common hydrophilic polymers (hydroxylpropylmethyl cellulose acetate succinate (HPMC-AS) and poly(vinylpyrrolidone-co-vinyl-acetate) (PVP-VA)) were used. It was found that HPMC-AS was a better polymer to prevent drug molecules from aggregation and to maintain the supersaturated state in solution than PVP-VA. The in vitro dissolution experiments showed that HPMC-AS solid dispersions had more rapid release at pH 4.5 and 6.8 media than PVP-VA solid dispersions under the un-sink condition. Moreover, molecular dynamic simulation results showed that HPMC-AS was more firmly absorbed onto a surface of the drug nanoparticles than PVP-VA due to bigger hydrophobic areas of HPMC-AS. Thereby, crystallization process of loratadine was inhibited in the presence of water to provide prolonged stability of the supersaturated state. In conclusion, polymers played a key role in maintaining supersaturation state of loratadine solid dispersions by strong drug-polymer interactions and the hydrophobic characteristic of polymers.
Collapse
Affiliation(s)
- Shenwu Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang, 110016, China
| | - Mengchi Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang, 110016, China
| | - Yongshan Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang, 110016, China
| | - Xuyang Song
- Department of Pharmaceutics, University of Florida, Gainesville, FL, 32610, USA
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang, 110016, China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Wenhua Road, No. 103, Shenyang, 110016, China.
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang, 110016, China.
| |
Collapse
|
32
|
Singh H, Kumar M, Gupta S, Sekharan TR, Tamilvanan S. Influence of hydrophilic polymers addition into cinnarizine–β-cyclodextrin complexes on drug solubility, drug liberation behaviour and drug permeability. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-017-2203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Baxevanis F, Kuiper J, Fotaki N. Strategic drug analysis in fed-state gastric biorelevant media based on drug physicochemical properties. Eur J Pharm Biopharm 2018; 127:326-341. [DOI: 10.1016/j.ejpb.2018.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/06/2018] [Accepted: 03/02/2018] [Indexed: 12/17/2022]
|
34
|
Fiolka T, Dressman J. Development, current applications and future roles of biorelevant two-stage in vitro testing in drug development. J Pharm Pharmacol 2018; 70:335-348. [DOI: 10.1111/jphp.12875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/16/2017] [Indexed: 11/28/2022]
Abstract
Abstract
Objectives
Various types of two stage in vitro testing have been used in a number of experimental settings. In addition to its application in quality control and for regulatory purposes, two-stage in vitro testing has also been shown to be a valuable technique to evaluate the supersaturation and precipitation behavior of poorly soluble drugs during drug development.
Key findings
The so-called ‘transfer model’, which is an example of two-stage testing, has provided valuable information about the in vivo performance of poorly soluble, weakly basic drugs by simulating the gastrointestinal drug transit from the stomach into the small intestine with a peristaltic pump. The evolution of the transfer model has resulted in various modifications of the experimental model set-up. Concomitantly, various research groups have developed simplified approaches to two-stage testing to investigate the supersaturation and precipitation behavior of weakly basic drugs without the necessity of using a transfer pump.
Summary
Given the diversity among the various two-stage test methods available today, a more harmonized approach needs to be taken to optimize the use of two stage testing at different stages of drug development.
Collapse
Affiliation(s)
- Tom Fiolka
- Department of Pharmaceutical Technology, Goethe University, Frankfurt/Main, Germany
| | - Jennifer Dressman
- Department of Pharmaceutical Technology, Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
35
|
Li M, Zhao P, Pan Y, Wagner C. Predictive Performance of Physiologically Based Pharmacokinetic Models for the Effect of Food on Oral Drug Absorption: Current Status. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2017; 7:82-89. [PMID: 29168611 PMCID: PMC5824104 DOI: 10.1002/psp4.12260] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 12/25/2022]
Abstract
A comprehensive search in literature and published US Food and Drug Administration reviews was conducted to assess whether physiologically based pharmacokinetic (PBPK) modeling could be prospectively used to predict clinical food effect on oral drug absorption. Among the 48 resulted food effect predictions, ∼50% were predicted within 1.25‐fold of observed, and 75% within 2‐fold. Dissolution rate and precipitation time were commonly optimized parameters when PBPK modeling was not able to capture the food effect. The current work presents a knowledgebase for documenting PBPK experience to predict food effect.
Collapse
Affiliation(s)
- Mengyao Li
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, USA.,Merck & Co, Inc, Kennilworth, New Jersey, USA
| | - Ping Zhao
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, USA.,Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Yuzhuo Pan
- Office of Generic Drugs, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, USA
| | - Christian Wagner
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, USA.,Current affiliation: Merck KGaA, Darmstadt, Germany
| |
Collapse
|
36
|
Joyce P, Yasmin R, Bhatt A, Boyd BJ, Pham A, Prestidge CA. Comparison across Three Hybrid Lipid-Based Drug Delivery Systems for Improving the Oral Absorption of the Poorly Water-Soluble Weak Base Cinnarizine. Mol Pharm 2017; 14:4008-4018. [DOI: 10.1021/acs.molpharmaceut.7b00676] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Paul Joyce
- School
of Pharmacy and Medical Sciences, University of South Australia, City East Campus, Adelaide 5000, Australia
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson
Lakes 5095, Australia
| | - Rokhsana Yasmin
- School
of Pharmacy and Medical Sciences, University of South Australia, City East Campus, Adelaide 5000, Australia
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson
Lakes 5095, Australia
| | - Achal Bhatt
- School
of Pharmacy and Medical Sciences, University of South Australia, City East Campus, Adelaide 5000, Australia
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson
Lakes 5095, Australia
| | - Ben J. Boyd
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
| | - Anna Pham
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
| | - Clive A. Prestidge
- School
of Pharmacy and Medical Sciences, University of South Australia, City East Campus, Adelaide 5000, Australia
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson
Lakes 5095, Australia
| |
Collapse
|
37
|
Hens B, Pathak SM, Mitra A, Patel N, Liu B, Patel S, Jamei M, Brouwers J, Augustijns P, Turner DB. In Silico Modeling Approach for the Evaluation of Gastrointestinal Dissolution, Supersaturation, and Precipitation of Posaconazole. Mol Pharm 2017; 14:4321-4333. [DOI: 10.1021/acs.molpharmaceut.7b00396] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Bart Hens
- College
of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065, United States of America
- Drug Delivery & Disposition, KU Leuven, Leuven 3000, Belgium
| | - Shriram M. Pathak
- Simcyp Limited (a Certara Company), Sheffield S2 4SU, United Kingdom
| | - Amitava Mitra
- Biopharmaceutics, Pharmaceutical Sciences & Clinical Supply, Merck & Co., Inc., West Point, Pennsylvania 19486, United States of America
- Sandoz, Inc., West Princeton, New Jersey 08540, United States of America
| | - Nikunjkumar Patel
- Simcyp Limited (a Certara Company), Sheffield S2 4SU, United Kingdom
| | - Bo Liu
- Simcyp Limited (a Certara Company), Sheffield S2 4SU, United Kingdom
| | - Sanjaykumar Patel
- Analytical Sciences, Pharmaceutical Sciences & Clinical Supply, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States of America
| | - Masoud Jamei
- Simcyp Limited (a Certara Company), Sheffield S2 4SU, United Kingdom
| | | | | | - David B. Turner
- Simcyp Limited (a Certara Company), Sheffield S2 4SU, United Kingdom
| |
Collapse
|
38
|
Andreas CJ, Pepin X, Markopoulos C, Vertzoni M, Reppas C, Dressman JB. Mechanistic investigation of the negative food effect of modified release zolpidem. Eur J Pharm Sci 2017; 102:284-298. [DOI: 10.1016/j.ejps.2017.03.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 11/30/2022]
|
39
|
Matsui K, Tsume Y, Takeuchi S, Searls A, Amidon GL. Utilization of Gastrointestinal Simulator, an in Vivo Predictive Dissolution Methodology, Coupled with Computational Approach To Forecast Oral Absorption of Dipyridamole. Mol Pharm 2017; 14:1181-1189. [DOI: 10.1021/acs.molpharmaceut.6b01063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kazuki Matsui
- College
of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109-1065, United States
- Drug
Metabolism and Pharmacokinetics, Research Center, Mochida Pharmaceutical Company Limited, 722 Uenohara, Jimba, Gotemba, Shizuoka 412-8524, Japan
| | - Yasuhiro Tsume
- College
of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109-1065, United States
| | - Susumu Takeuchi
- Pharmacokinetics
Group, Sawai Pharmaceutical Company Limited, 5-2-30, Miyahara, Yodogawa-ku, Osaka 532-0003, Japan
| | - Amanda Searls
- College
of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109-1065, United States
| | - Gordon L. Amidon
- College
of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109-1065, United States
| |
Collapse
|
40
|
Prediction of Ketoconazole absorption using an updated in vitro transfer model coupled to physiologically based pharmacokinetic modelling. Eur J Pharm Sci 2017; 100:42-55. [DOI: 10.1016/j.ejps.2016.12.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 12/29/2022]
|
41
|
Lu E, Li S, Wang Z. Biorelevant test for supersaturable formulation. Asian J Pharm Sci 2016; 12:9-20. [PMID: 32104309 PMCID: PMC7032141 DOI: 10.1016/j.ajps.2016.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/27/2016] [Accepted: 10/01/2016] [Indexed: 11/22/2022] Open
Abstract
Supersaturable formulation can generate supersaturation after dissolution, providing kinetic advantage in vivo. However, the supersaturation may precipitate before being absorbed, which makes it difficult to ensure and predict its in vivo performance. The traditional USP method is typically for Quality Control (QC) purpose and cannot be used to predict the formulation in vivo performance. Therefore, there is generally a lack of a predictive biorelevant testing method. In this review, different types of supersaturable formulations are described, including amorphous dispersions, polymorphs, salts/co-crystals, weak base and supersaturable solubilized formulations. Different kinds of in vitro dissolution methods for supersaturable formulations are also reviewed and discussed. Most of the methods take the physiology of gastrointestinal (GI) track into consideration, allowing reasonable prediction of the in vivo performance of supersaturable formulation. However, absorbing drug from GI track into blood stream is a complicate process, which can be affected by different in vivo processes such as transporter and metabolism. These factors cannot be captured by the in vitro testing. Thus, combining in vitro biorelevant dissolution methods with physiology-based pharmacokinetic modeling is a better way for the product development of supersaturable formulation.
Collapse
Affiliation(s)
- Enxian Lu
- Shanghai Aucta Pharmaceuticals Co., Ltd., No. 3377 Kangxin Road. SIMZ Pudong, Shanghai 201318, China
| | - Shoufeng Li
- Shanghai Aucta Pharmaceuticals Co., Ltd., No. 3377 Kangxin Road. SIMZ Pudong, Shanghai 201318, China
| | - Zhongqin Wang
- Shanghai Aucta Pharmaceuticals Co., Ltd., No. 3377 Kangxin Road. SIMZ Pudong, Shanghai 201318, China
| |
Collapse
|
42
|
Tanaka Y, Kawakami A, Nanimatsu A, Horio M, Matsuoka J, Wada T, Kasaoka S, Yoshikawa H. In vivo evaluation of supersaturation/precipitation/re-dissolution behavior of cinnarizine, a lipophilic weak base, in the gastrointestinal tract: the key process of oral absorption. Eur J Pharm Sci 2016; 96:464-471. [PMID: 27773836 DOI: 10.1016/j.ejps.2016.10.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/19/2016] [Accepted: 10/19/2016] [Indexed: 11/18/2022]
Abstract
The aim of this study is to evaluate how supersaturation, precipitation, and re-dissolution processes influence the intestinal absorption of cinnarizine (CNZ), a lipophilic weak base, by monitoring its plasma and luminal concentration-time profile, after oral administration as a HCl solution containing fluorescein isothiocyanate dextran (FD-4), a non-absorbable marker. In the in vitro pH shift experiment, the supersaturation stability was significantly lower when the higher-concentration solution of CNZ (pH1.5) was added to the simulated intestinal fluid. However, although the in vivo bioavailability after oral administration of high and low dose as HCl solutions was greatly improved compared to those as neutral suspensions, the difference in the supersaturation stability was not reflected in the improvement of the in vivo bioavailability. Analysis of CNZ and FD-4 concentrations in each segment of the gastrointestinal tract revealed that most of the CNZ precipitated in the duodenum after gastric emptying, and supersaturation was observed only in the duodenum. Thereafter, the precipitate was rapidly re-dissolved and absorbed in the upper and middle small intestine. The rapid re-dissolution may be caused by smaller particles of the precipitate. In this case, it is considered that the key process for the absorption of CNZ was re-dissolution, not supersaturation. Therefore, different supersaturation stabilities in different doses observed in in vitro precipitation experiment was not reflected to in vivo absorption. These findings may be useful to design efficient supersaturable formulations and to validate and improve current prediction methods.
Collapse
Affiliation(s)
- Yusuke Tanaka
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure, Hiroshima 737-0112, Japan.
| | - Ayaka Kawakami
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure, Hiroshima 737-0112, Japan
| | - Ami Nanimatsu
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure, Hiroshima 737-0112, Japan
| | - Misaki Horio
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure, Hiroshima 737-0112, Japan
| | - Jumpei Matsuoka
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure, Hiroshima 737-0112, Japan
| | - Takami Wada
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure, Hiroshima 737-0112, Japan
| | - Satoshi Kasaoka
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure, Hiroshima 737-0112, Japan
| | - Hiroshi Yoshikawa
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure, Hiroshima 737-0112, Japan
| |
Collapse
|
43
|
Kourentas A, Vertzoni M, Symillides M, Hens B, Brouwers J, Augustijns P, Reppas C. In vitro evaluation of the impact of gastrointestinal transfer on luminal performance of commercially available products of posaconazole and itraconazole using BioGIT. Int J Pharm 2016; 515:352-358. [PMID: 27732895 DOI: 10.1016/j.ijpharm.2016.10.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 12/30/2022]
Abstract
Biorelevant Gastrointestinal Transfer system (BioGIT) has been shown to be useful in reproducing concentrations of drugs in the fasted upper small intestine after their administration in the stomach. In the present investigation, we evaluated the impact of gastrointestinal transfer on luminal performance of commercially available products of two highly lipophilic weak bases, posaconazole (Noxafil® suspension) and itraconazole (Sporanox® hard gelatin capsules and Sporanox® oral solution) by comparing % solid fraction, concentrations and supersaturation in the duodenal compartment of BioGIT with recently reported data in the upper small intestine of healthy adults. BioGIT was useful for estimating the % solid fraction in the upper small intestine, in cases where dissolution during gastric residence was incomplete, i.e. after administration of Noxafil® and Sporanox® capsules, and the precipitated fraction of itraconazole in the upper small intestine after administration of Sporanox® solution; median values in vitro were similar to the luminal values. Based on the values for the area under the concentration vs. time data estimated up to 45min post initiation of the experiment, concentrations in the duodenal compartment of BioGIT were similar to previously measured concentrations in the upper small intestine of healthy adults or they overestimated them by up to 2.5 times. In most cases, supersaturation of contents in the upper small intestine was overestimated, partly due to underestimation of luminal solubility.
Collapse
Affiliation(s)
- Alexandros Kourentas
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| | - Mira Symillides
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| | - Bart Hens
- Drug Delivery & Disposition, KU Leuven, Leuven, Belgium
| | | | | | - Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece.
| |
Collapse
|
44
|
Cristofoletti R, Patel N, Dressman JB. Differences in Food Effects for 2 Weak Bases With Similar BCS Drug-Related Properties: What Is Happening in the Intestinal Lumen? J Pharm Sci 2016; 105:2712-2722. [DOI: 10.1016/j.xphs.2015.11.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 01/08/2023]
|
45
|
Kambayashi A, Yasuji T, Dressman JB. Prediction of the precipitation profiles of weak base drugs in the small intestine using a simplified transfer (“dumping”) model coupled with in silico modeling and simulation approach. Eur J Pharm Biopharm 2016; 103:95-103. [DOI: 10.1016/j.ejpb.2016.03.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 03/14/2016] [Accepted: 03/19/2016] [Indexed: 01/18/2023]
|
46
|
Dressman J, Berlin M. Linking the lab to the patient: Tools for optimizing oral drug delivery. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2015.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Kourentas A, Vertzoni M, Stavrinoudakis N, Symillidis A, Brouwers J, Augustijns P, Reppas C, Symillides M. An in vitro biorelevant gastrointestinal transfer (BioGIT) system for forecasting concentrations in the fasted upper small intestine: Design, implementation, and evaluation. Eur J Pharm Sci 2016; 82:106-14. [DOI: 10.1016/j.ejps.2015.11.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/12/2015] [Accepted: 11/14/2015] [Indexed: 10/22/2022]
|
48
|
Dressman JB, Herbert E, Wieber A, Birk G, Saal C, Lubda D. Mesoporous silica-based dosage forms improve release characteristics of poorly soluble drugs: case example fenofibrate. J Pharm Pharmacol 2015; 68:634-45. [DOI: 10.1111/jphp.12465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/06/2015] [Indexed: 11/28/2022]
Abstract
Abstract
Objectives
Mesoporous silica-based dosage forms offer the potential for improving the absorption of poorly soluble drugs after oral administration. In this investigation, fenofibrate was used as a model drug to study the ability of monomodal (‘PSP A’) and bimodal (‘PSP B’) porous silica to improve release by a ‘spring’ effect in in vitro biorelevant dissolution tests. Also investigated was the addition of various polymers to provide a ‘parachute’ effect, that is, to keep the drug in solution after its release.
Key Findings
Loading fenofibrate onto PSP A or PSP B porous silica substantially improved the dissolution profile of fenofibrate under fasted state conditions compared with both pure drug and the marketed product, TriCor® 145 mg. Adding a polymer such as hydroxypropyl methylcellulose acetate succinate, polyvinylpyrrolidone or copovidon (HPMCAS, PVP or PVPVA) sustains the higher release of fenofibrate from the PSP A silica, resulting in a combination ‘spring and parachute’ effect – loading the drug onto the silica causes a ‘spring’ effect while the polymer enhances the spring effect (HPMCAS, PVP) and adds a sustaining ‘parachute’. Interestingly, a silica to polymer ratio of 4:1 w/w appears to have an optimal effect for fenofibrate (HPMCAS, PVP). Dissolution results under conditions simulating the fasted state in the small intestine with the PSP A or the PSP B silica with HPMCAS added in a 4:1 w/w ratio show very substantial improvement over the marketed, nanosized product (TriCor® 145 mg).
Conclusions
Further experiments to determine whether the highly positive effects on fenofibrate release observed with the silica prototypes investigated to date can be translated to further poorly soluble drugs and to what extent they translate into improved in-vivo performance are warranted.
Collapse
Affiliation(s)
- Jennifer B Dressman
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| | - Elisabeth Herbert
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| | - Alena Wieber
- Formulation Research and Development, Merck Millipore, Darmstadt, Germany
| | - Gudrun Birk
- Formulation Research and Development, Merck Millipore, Darmstadt, Germany
| | | | - Dieter Lubda
- Formulation Research and Development, Merck Millipore, Darmstadt, Germany
| |
Collapse
|
49
|
González-García I, Mangas-Sanjuán V, Merino-Sanjuán M, Bermejo M. In vitro–in vivocorrelations: general concepts, methodologies and regulatory applications. Drug Dev Ind Pharm 2015; 41:1935-47. [DOI: 10.3109/03639045.2015.1054833] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
50
|
Advances and challenges in PBPK modeling – Analysis of factors contributing to the oral absorption of atazanavir, a poorly soluble weak base. Eur J Pharm Biopharm 2015; 93:267-80. [DOI: 10.1016/j.ejpb.2015.03.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/15/2015] [Accepted: 03/31/2015] [Indexed: 11/21/2022]
|