1
|
Venkatesan KB, Alamelu S, Srinivasan MK, Pachaiappan P. Nerolidol loaded beta cyclodextrin nanoparticles: a promising strategy for inducing apoptosis in breast cancer cells (MCF-7). JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-31. [PMID: 40326384 DOI: 10.1080/09205063.2025.2491605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/02/2025] [Indexed: 05/07/2025]
Abstract
This study investigates the synthesis, characterization and anticancer efficacy of nerolidol-loaded beta cyclodextrin polymeric nanoparticles (NER-βCD-NPs) against MCF-7 breast cancer cells. Nerolidol, a sesquiterpene with anti-inflammatory, antioxidant, antimicrobial and anticancer properties, faces challenges of poor solubility and bioavailability, limiting its therapeutic potential. Breast cancer, a leading cause of cancer-related deaths in women, necessitates alternative therapies with fewer side effects compared to conventional chemotherapy. NER-βCD-NPs were synthesized and characterized using UV-visible spectroscopy, fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), dynamic light scattering (DLS), zeta potential analysis and differential scanning calorimetry (DSC). Drug encapsulation efficiency and in vitro release were analyzed using HPLC, while molecular docking assessed NER-βCD interactions. Characterization confirmed successful nanoparticle synthesis. UV-visible spectra and FTIR indicated encapsulation-specific changes, SEM revealed surface morphology, and DLS, zeta potential and DSC analyses demonstrated increased size and stability. The encapsulation efficiency was 84.9%, with 86% NER release at pH 5.4 over 48 h. Docking studies supported strong binding between NER and βCD (binding energy: -3.55 kcal/mol). Cytotoxicity assays showed significant MCF-7 cell inhibition. Mechanistic studies revealed reactive oxygen species (ROS) generation, mitochondrial dysfunction, nuclear changes and cell cycle arrest in the G0-G1 phase. Molecular analysis demonstrated apoptosis through upregulation of Bax, Caspase 6, Caspase 9 and Cytochrome c, alongside Bcl-2 downregulation. These results highlight NER-βCD-NPs as a promising strategy for breast cancer therapy, offering targeted delivery and enhanced therapeutic efficacy while mitigating nerolidol limitations. Further studies are warranted to validate their potential in clinical applications.
Collapse
Affiliation(s)
- Kamalesh Balakumar Venkatesan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Saravanan Alamelu
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Manoj Kumar Srinivasan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Pugalendhi Pachaiappan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| |
Collapse
|
2
|
Sahu C, Sahu RK, Roy A. A Review on Nanotechnologically Derived Phytomedicines for the Treatment of Hepatocellular Carcinoma: Recent Advances in Molecular Mechanism and Drug Targeting. Curr Drug Targets 2025; 26:167-187. [PMID: 39385414 DOI: 10.2174/0113894501312571240920070441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/17/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024]
Abstract
The second largest cause of cancer-related death worldwide, Hepatocellular Carcinoma (HCC) is also the most common primary liver cancer. HCC typically arises in patients with liver cirrhosis. Existing synthetic medicines for treating chronic liver disease are ineffective and come with undesirable side effects. Although herbal remedies have widespread popularity, there is still a long road ahead before they are fully accepted by the scientific community. Secondary metabolites and phytochemicals found in plants are abundant in both the human diet and the non-human environment. Natural plant chemicals have been shown to be beneficial as therapeutic and chemopreventive treatments for a wide variety of chronic disorders. Many diseases, including HCC, can be effectively treated with the help of phytochemicals found in food. Resveratrol, curcumin, urolithin A, silibinin, quercetin, N-trans-feruloyl octopamine, emodin, lycopene, caffeine, and phloretin are all examples. Approximately, 60% of all anticancer medications are determined to be derived from natural substances, according to recent studies. Plant derivatives have played an important role in cancer due to their capacity to scavenge free radicals, limit cell proliferation, and set off apoptosis. The progression of HCC is linked to inflammatory signaling pathways, and this study sought to look at how novel approaches, such as phytomedicines, are being used to fight cancer. Recent advancements in molecular mechanisms and drug targeting for HCC have been discussed in this review.
Collapse
Affiliation(s)
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal-249161, Uttarakhand, India
| | - Amit Roy
- Chhatrapati Shivaji Institute of Pharmacy, Bhilai, Chhattisgarh-491001, India
| |
Collapse
|
3
|
Shahzad A, Teng Z, Yameen M, Liu W, Cui K, Liu X, Sun Y, Duan Q, Xia J, Dong Y, Bai Z, Peng D, Zhang J, Xu Z, Pi J, Yang Z, Zhang Q. Innovative lipid nanoparticles: A cutting-edge approach for potential renal cell carcinoma therapeutics. Biomed Pharmacother 2024; 180:117465. [PMID: 39321512 DOI: 10.1016/j.biopha.2024.117465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024] Open
Abstract
The kidney plays a crucial role in regulating homeostasis within the human body. Renal cell carcinoma (RCC) is the most common form of kidney cancer, accounting for nearly 90 % of all renal malignancies. Despite the availability of various therapeutic strategies, RCC remains a challenging disease due to its resistance to conventional treatments. Nanotechnology has emerged as a promising field, offering new opportunities in cancer therapeutics. It presents several advantages over traditional methods, enabling diverse biomedical applications, including drug delivery, prevention, diagnosis, and treatment. Lipid nanoparticles (LNPs), approximately 100 nm in size, are derived from a range of lipids and other biochemical compounds. these particulates are designed to overcome biological barriers, allowing them to selectively accumulate at diseased target sites for effective therapeutic action. Many pharmaceutically important compounds face challenges such as poor solubility in aqueous solutions, chemical and physiological instability, or toxicity. LNP technology stands out as a promising drug delivery system for bioactive organic compounds. This article reviews the applications of LNPs in RCC treatment and explores their potential clinical translation, identifying the most viable LNPs for medical use. With ongoing advancement in LNP-based anticancer strategies, there is a growing potential to improve the management and treatment of renal cancer.
Collapse
Affiliation(s)
- Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhuoran Teng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Muhammad Yameen
- Department of Biochemistry, Government College University Faisalabad, Punjab 38000, Pakistan
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xiangjie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yijian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Qiuxin Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - JiaoJiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yurong Dong
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Ziyuan Bai
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Dongmei Peng
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Jinshan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhe Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China.
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China.
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China.
| |
Collapse
|
4
|
Cristani M, Citarella A, Carnamucio F, Micale N. Nano-Formulations of Natural Antioxidants for the Treatment of Liver Cancer. Biomolecules 2024; 14:1031. [PMID: 39199418 PMCID: PMC11352298 DOI: 10.3390/biom14081031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress is a key factor in the pathological processes that trigger various chronic liver diseases, and significantly contributes to the development of hepatocarcinogenesis. Natural antioxidants reduce oxidative stress by neutralizing free radicals and play a crucial role in the treatment of free-radical-induced liver diseases. However, their efficacy is often limited by poor bioavailability and metabolic stability. To address these limitations, recent advances have focused on developing nano-drug delivery systems that protect them from degradation and enhance their therapeutic potential. Among the several critical benefits, they showed to be able to improve bioavailability and targeted delivery, thereby reducing off-target effects by specifically directing the antioxidant to the liver tumor site. Moreover, these nanosystems led to sustained release, prolonging the therapeutic effect over time. Some of them also exhibited synergistic effects when combined with other therapeutic agents, allowing for improved overall efficacy. This review aims to discuss recent scientific advances in nano-formulations containing natural antioxidant molecules, highlighting their potential as promising therapeutic approaches for the treatment of liver cancer. The novelty of this review lies in its comprehensive focus on the latest developments in nano-formulations of natural antioxidants for the treatment of liver cancer.
Collapse
Affiliation(s)
- Mariateresa Cristani
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy;
| | - Andrea Citarella
- Department of Chemistry, University of Milan, Via Golgi 19, I-20133 Milano, Italy;
| | - Federica Carnamucio
- Center of Pharmaceutical Engineering and Sciences, Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy;
| |
Collapse
|
5
|
Marin JJG, Macias RIR, Asensio M, Romero MR, Temprano AG, Pereira OR, Jimenez S, Mauriz JL, Di Giacomo S, Avila MA, Efferth T, Briz O. Strategies to enhance the response of liver cancer to pharmacological treatments. Am J Physiol Cell Physiol 2024; 327:C11-C33. [PMID: 38708523 DOI: 10.1152/ajpcell.00176.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
In contrast to other types of cancers, there is no available efficient pharmacological treatment to improve the outcomes of patients suffering from major primary liver cancers, i.e., hepatocellular carcinoma and cholangiocarcinoma. This dismal situation is partly due to the existence in these tumors of many different and synergistic mechanisms of resistance, accounting for the lack of response of these patients, not only to classical chemotherapy but also to more modern pharmacological agents based on the inhibition of tyrosine kinase receptors (TKIs) and the stimulation of the immune response against the tumor using immune checkpoint inhibitors (ICIs). This review summarizes the efforts to develop strategies to overcome this severe limitation, including searching for novel drugs derived from synthetic, semisynthetic, or natural products with vectorial properties against therapeutic targets to increase drug uptake or reduce drug export from cancer cells. Besides, immunotherapy is a promising line of research that is already starting to be implemented in clinical practice. Although less successful than in other cancers, the foreseen future for this strategy in treating liver cancers is considerable. Similarly, the pharmacological inhibition of epigenetic targets is highly promising. Many novel "epidrugs," able to act on "writer," "reader," and "eraser" epigenetic players, are currently being evaluated in preclinical and clinical studies. Finally, gene therapy is a broad field of research in the fight against liver cancer chemoresistance, based on the impressive advances recently achieved in gene manipulation. In sum, although the present is still dismal, there is reason for hope in the non-too-distant future.
Collapse
Affiliation(s)
- Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Marta R Romero
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Alvaro G Temprano
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Olívia R Pereira
- Centro de Investigação de Montanha (CIMO), Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
- Research Centre for Active Living and Wellbeing (LiveWell), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Silvia Jimenez
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Servicio de Farmacia Hospitalaria, Hospital de Salamanca, Salamanca, Spain
| | - Jose L Mauriz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Institute of Biomedicine (IBIOMED), University of Leon, Leon, Spain
| | - Silvia Di Giacomo
- Department of Food Safety, Nutrition and Veterinary Public Health, National Institute of Health, Rome, Italy
| | - Matias A Avila
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Hepatology Laboratory, Solid Tumors Program, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigaciones Sanitarias de Navarra (IdisNA), Pamplona, Spain
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
6
|
Wen Y, Li K, Ni M, Jiang H, Wu H, Yu Q, Li J, Li X, Wei J, Wu W, Xu H. Dendritic Polylysine with Paclitaxel and Triptolide Codelivery for Enhanced Cancer Ferroptosis through the Accumulation of ROS. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38597227 DOI: 10.1021/acsami.4c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Recently, paclitaxel (PTX) was reported to increase intracellular lipid reactive oxygen species (ROS) levels, triggering cancer cell ferroptosis. Based on this, some efforts had been made to improve PTX treatment for non-small-cell lung cancer (NSCLC). Our previous studies demonstrated that triptolide (TPL) could improve the antitumor effect of PTX. Nevertheless, the poor solubility and side effects often limit the application of chemotherapy drugs. In this paper, we constructed a novel nanodrug delivery system (NDDS) chemosynthesis by PEGylated generation 3 (G3) dendritic polylysine coloaded with PTX and TPL (PTX-TPL-PEG-PLL, PTPP), which was endowed with the ability of tumor targeting and favorable solubility. In addition, we demonstrated that TPL could induce ROS generation by regulating the NF-κB signaling pathway to enhance the ferroptosis-induced effect of PTX. Besides, ferroptosis induced by PTPP could improve chemoresistance through inhibiting the level of P-gp, GPX4, and SLC7A11. Furthermore, we determined that ferroptosis may strengthen the immune response by increasing the expression of CD8+ T cells and IFN-γ+ cells while decreasing Treg cells. In general, PTPP may be a potential system for NSCLC treatment.
Collapse
Affiliation(s)
- Yuanyuan Wen
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing 210009, China
| | - Kaiming Li
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Mengnan Ni
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hui Jiang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Haisi Wu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Qinqi Yu
- Department of Geriatric Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Jinyu Li
- Department of Geriatric Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Xiaolin Li
- Department of Geriatric Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Jifu Wei
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing 210009, China
| | - Wei Wu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Huae Xu
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing 210009, China
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
7
|
Kabil MF, Badary OA, Bier F, Mousa SA, El-Sherbiny IM. A comprehensive review on lipid nanocarrier systems for cancer treatment: fabrication, future prospects and clinical trials. J Liposome Res 2024; 34:135-177. [PMID: 37144339 DOI: 10.1080/08982104.2023.2204372] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 04/02/2023] [Indexed: 05/06/2023]
Abstract
Over the last few decades, cancer has been considered a clinical challenge, being among the leading causes of mortality all over the world. Although many treatment approaches have been developed for cancer, chemotherapy is still the most utilized in the clinical setting. However, the available chemotherapeutics-based treatments have several caveats including their lack of specificity, adverse effects as well as cancer relapse and metastasis which mainly explains the low survival rate of patients. Lipid nanoparticles (LNPs) have been utilized as promising nanocarrier systems for chemotherapeutics to overcome the challenges of the currently applied therapeutic strategies for cancer treatment. Loading chemotherapeutic agent(s) into LNPs improves drug delivery at different aspects including specific targeting of tumours, and enhancing the bioavailability of drugs at the tumour site through selective release of their payload, thus reducing their undesired side effects on healthy cells. This review article delineates an overview of the clinical challenges in many cancer treatments as well as depicts the role of LNPs in achieving optimal therapeutic outcomes. Moreover, the review contains a comprehensive description of the many LNPs categories used as nanocarriers in cancer treatment to date, as well as the potential of LNPs for future applications in other areas of medicine and research.
Collapse
Affiliation(s)
- Mohamed Fawzi Kabil
- Nanomedicine Research Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| | - Osama A Badary
- Clinical Pharmacy Department, Faculty of Pharmacy, The British University in Egypt, El-Shorouk City, Egypt
| | - Frank Bier
- AG Molekulare Bioanalytik und Bioelektronik, Institut für Biochemie und Biologie, Universität Potsdam Karl-Liebknecht-Straße 24/25, Potsdam (OT Golm), Germany
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
8
|
Ghosh A, Maske P, Patel V, Dubey J, Aniket K, Srivastava R. Theranostic applications of peptide-based nanoformulations for growth factor defective cancers. Int J Biol Macromol 2024; 260:129151. [PMID: 38181914 DOI: 10.1016/j.ijbiomac.2023.129151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Growth factors play a pivotal role in orchestrating cellular growth and division by binding to specific cell surface receptors. Dysregulation of growth factor production or activity can contribute to the uncontrolled cell proliferation observed in cancer. Peptide-based nanoformulations (PNFs) have emerged as promising therapeutic strategies for growth factor-deficient cancers. PNFs offer multifaceted capabilities including targeted delivery, imaging modalities, combination therapies, resistance modulation, and personalized medicine approaches. Nevertheless, several challenges remain, including limited specificity, stability, pharmacokinetics, tissue penetration, toxicity, and immunogenicity. To address these challenges and optimize PNFs for clinical translation, in-depth investigations are warranted. Future research should focus on elucidating the intricate interplay between peptides and nanoparticles, developing robust spectroscopic and computational methodologies, and establishing a comprehensive understanding of the structure-activity relationship governing peptide-nanoparticle interactions. Bridging these knowledge gaps will propel the translation of peptide-nanoparticle therapies from bench to bedside. While a few peptide-nanoparticle drugs have obtained FDA approval for cancer treatment, the integration of nanostructured platforms with peptide-based medications holds tremendous potential to expedite the implementation of innovative anticancer interventions. Therefore, growth factor-deficient cancers present both challenges and opportunities for targeted therapeutic interventions, with peptide-based nanoformulations positioned as a promising avenue. Nonetheless, concerted research and development endeavors are essential to optimize the specificity, stability, and safety profiles of PNFs, thereby advancing the field of peptide-based nanotherapeutics in the realm of oncology research.
Collapse
Affiliation(s)
- Arnab Ghosh
- Indian Institute of Technology Bombay, NanoBios lab, Department of Biosciences and Bioengineering, Mumbai, India.
| | - Priyanka Maske
- Indian Institute of Technology Bombay, NanoBios lab, Department of Biosciences and Bioengineering, Mumbai, India
| | - Vinay Patel
- Indian Institute of Technology Bombay, NanoBios lab, Department of Biosciences and Bioengineering, Mumbai, India
| | - Jyoti Dubey
- Indian Institute of Technology Bombay, NanoBios lab, Department of Biosciences and Bioengineering, Mumbai, India
| | - Kundu Aniket
- Indian Institute of Technology Bombay, NanoBios lab, Department of Biosciences and Bioengineering, Mumbai, India.
| | - Rohit Srivastava
- Indian Institute of Technology Bombay, NanoBios lab, Department of Biosciences and Bioengineering, Mumbai, India.
| |
Collapse
|
9
|
Wang Q, Liu J, Chen Z, Zheng J, Wang Y, Dong J. Targeting metabolic reprogramming in hepatocellular carcinoma to overcome therapeutic resistance: A comprehensive review. Biomed Pharmacother 2024; 170:116021. [PMID: 38128187 DOI: 10.1016/j.biopha.2023.116021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) poses a heavy burden on human health with high morbidity and mortality rates. Systematic therapy is crucial for advanced and mid-term HCC, but faces a significant challenge from therapeutic resistance, weakening drug effectiveness. Metabolic reprogramming has gained attention as a key contributor to therapeutic resistance. Cells change their metabolism to meet energy demands, adapt to growth needs, or resist environmental pressures. Understanding key enzyme expression patterns and metabolic pathway interactions is vital to comprehend HCC occurrence, development, and treatment resistance. Exploring metabolic enzyme reprogramming and pathways is essential to identify breakthrough points for HCC treatment. Targeting metabolic enzymes with inhibitors is key to addressing these points. Inhibitors, combined with systemic therapeutic drugs, can alleviate resistance, prolong overall survival for advanced HCC, and offer mid-term HCC patients a chance for radical resection. Advances in metabolic research methods, from genomics to metabolomics and cells to organoids, help build the HCC metabolic reprogramming network. Recent progress in biomaterials and nanotechnology impacts drug targeting and effectiveness, providing new solutions for systemic therapeutic drug resistance. This review focuses on metabolic enzyme changes, pathway interactions, enzyme inhibitors, research methods, and drug delivery targeting metabolic reprogramming, offering valuable references for metabolic approaches to HCC treatment.
Collapse
Affiliation(s)
- Qi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Juan Liu
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Ziye Chen
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Jingjing Zheng
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yunfang Wang
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China; Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
10
|
Ashique S, Garg A, Hussain A, Farid A, Kumar P, Taghizadeh‐Hesary F. Nanodelivery systems: An efficient and target-specific approach for drug-resistant cancers. Cancer Med 2023; 12:18797-18825. [PMID: 37668041 PMCID: PMC10557914 DOI: 10.1002/cam4.6502] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Cancer treatment is still a global health challenge. Nowadays, chemotherapy is widely applied for treating cancer and reducing its burden. However, its application might be in accordance with various adverse effects by exposing the healthy tissues and multidrug resistance (MDR), leading to disease relapse or metastasis. In addition, due to tumor heterogeneity and the varied pharmacokinetic features of prescribed drugs, combination therapy has only shown modestly improved results in MDR malignancies. Nanotechnology has been explored as a potential tool for cancer treatment, due to the efficiency of nanoparticles to function as a vehicle for drug delivery. METHODS With this viewpoint, functionalized nanosystems have been investigated as a potential strategy to overcome drug resistance. RESULTS This approach aims to improve the efficacy of anticancer medicines while decreasing their associated side effects through a range of mechanisms, such as bypassing drug efflux, controlling drug release, and disrupting metabolism. This review discusses the MDR mechanisms contributing to therapeutic failure, the most cutting-edge approaches used in nanomedicine to create and assess nanocarriers, and designed nanomedicine to counteract MDR with emphasis on recent developments, their potential, and limitations. CONCLUSIONS Studies have shown that nanoparticle-mediated drug delivery confers distinct benefits over traditional pharmaceuticals, including improved biocompatibility, stability, permeability, retention effect, and targeting capabilities.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of PharmaceuticsPandaveswar School of PharmacyPandaveswarIndia
| | - Ashish Garg
- Guru Ramdas Khalsa Institute of Science and Technology, PharmacyJabalpurIndia
| | - Afzal Hussain
- Department of Pharmaceutics, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | - Arshad Farid
- Gomal Center of Biochemistry and BiotechnologyGomal UniversityDera Ismail KhanPakistan
| | - Prashant Kumar
- Teerthanker Mahaveer College of PharmacyTeerthanker Mahaveer UniversityMoradabadIndia
- Department of Pharmaceutics, Amity Institute of PharmacyAmity University Madhya Pradesh (AUMP)GwaliorIndia
| | - Farzad Taghizadeh‐Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of MedicineIran University of Medical SciencesTehranIran
- Clinical Oncology DepartmentIran University of Medical SciencesTehranIran
| |
Collapse
|
11
|
Cacciola NA, Cuciniello R, Petillo GD, Piccioni M, Filosa S, Crispi S. An Overview of the Enhanced Effects of Curcumin and Chemotherapeutic Agents in Combined Cancer Treatments. Int J Mol Sci 2023; 24:12587. [PMID: 37628772 PMCID: PMC10454892 DOI: 10.3390/ijms241612587] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Due to the progressive ageing of the human population, the number of cancer cases is increasing. For this reason, there is an urgent need for new treatments that can prolong the lives of cancer patients or ensure them a good quality of life. Although significant progress has been made in the treatment of cancer in recent years and the survival rate of patients is increasing, limitations in the use of conventional therapies include the frequent occurrence of side effects and the development of resistance to chemotherapeutic agents. These limitations are prompting researchers to investigate whether combining natural agents with conventional drugs could have a positive therapeutic effect in cancer treatment. Several natural bioactive compounds, especially polyphenols, have been shown to be effective against cancer progression and do not exert toxic effects on healthy tissues. Many studies have investigated the possibility of combining polyphenols with conventional drugs as a novel anticancer strategy. Indeed, this combination often has synergistic benefits that increase drug efficacy and reduce adverse side effects. In this review, we provide an overview of the studies describing the synergistic effects of curcumin, a polyphenol that has been shown to have extensive cytotoxic functions against cancer cells, including combined treatment. In particular, we have described the results of recent preclinical and clinical studies exploring the pleiotropic effects of curcumin in combination with standard drugs and the potential to consider it as a promising new tool for cancer therapy.
Collapse
Affiliation(s)
- Nunzio Antonio Cacciola
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy;
- Research Institute on Terrestrial Ecosystems (IRET), UOS Naples-Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| | - Rossana Cuciniello
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 111, 80131 Naples, Italy; (R.C.); (M.P.)
- IRCCS Neuromed, 86077 Isernia, Italy
| | | | - Miriam Piccioni
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 111, 80131 Naples, Italy; (R.C.); (M.P.)
| | - Stefania Filosa
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 111, 80131 Naples, Italy; (R.C.); (M.P.)
- IRCCS Neuromed, 86077 Isernia, Italy
| | - Stefania Crispi
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 111, 80131 Naples, Italy; (R.C.); (M.P.)
| |
Collapse
|
12
|
Bakrania A, To J, Zheng G, Bhat M. Targeting Wnt-β-Catenin Signaling Pathway for Hepatocellular Carcinoma Nanomedicine. GASTRO HEP ADVANCES 2023; 2:948-963. [PMID: 39130774 PMCID: PMC11307499 DOI: 10.1016/j.gastha.2023.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/17/2023] [Indexed: 08/13/2024]
Abstract
Hepatocellular carcinoma (HCC) represents a high-fatality cancer with a 5-year survival of 22%. The Wnt/β-catenin signaling pathway presents as one of the most upregulated pathways in HCC. However, it has so far not been targetable in the clinical setting. Therefore, studying new targets of this signaling cascade from a therapeutic aspect could enable reversal, delay, or prevention of hepatocarcinogenesis. Although enormous advancement has been achieved in HCC research and its therapeutic management, since HCC often occurs in the context of other liver diseases such as cirrhosis leading to liver dysfunction and/or impaired drug metabolism, the current therapies face the challenge of safely and effectively delivering drugs to the HCC tumor site. In this review, we discuss how a targeted nano drug delivery system could help minimize the off-target toxicities of conventional HCC therapies as well as enhance treatment efficacy. We also put forward the current challenges in HCC nanomedicine along with some potential therapeutic targets from the Wnt/β-catenin signaling pathway that could be used for HCC therapy. Overall, this review will provide an insight to the current advances, limitations and how HCC nanomedicine could change the landscape of some of the undruggable targets in the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Anita Bakrania
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jeffrey To
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mamatha Bhat
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Division of Gastroenterology, Department of Medicine, University Health Network and University of Toronto, Toronto, Ontario, Canada
- Department of Medical Sciences, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Gupta R, Kadhim MM, Turki Jalil A, Obayes AM, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Tayyib NA, Luo X. Multifaceted role of NF-κB in hepatocellular carcinoma therapy: Molecular landscape, therapeutic compounds and nanomaterial approaches. ENVIRONMENTAL RESEARCH 2023; 228:115767. [PMID: 36966991 DOI: 10.1016/j.envres.2023.115767] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 05/16/2023]
Abstract
The predominant kind of liver cancer is hepatocellular carcinoma (HCC) that its treatment have been troublesome difficulties for physicians due to aggressive behavior of tumor cells in proliferation and metastasis. Moreover, stemness of HCC cells can result in tumor recurrence and angiogenesis occurs. Another problem is development of resistance to chemotherapy and radiotherapy in HCC cells. Genomic mutations participate in malignant behavior of HCC and nuclear factor-kappaB (NF-κB) has been one of the oncogenic factors in different human cancers that after nuclear translocation, it binds to promoter of genes in regulating their expression. Overexpression of NF-κB has been well-documented in increasing proliferation and invasion of tumor cells and notably, when its expression enhances, it induces chemoresistance and radio-resistance. Highlighting function of NF-κB in HCC can shed some light on the pathways regulating progression of tumor cells. The first aspect is proliferation acceleration and apoptosis inhibition in HCC cells mediated by enhancement in expression level of NF-κB. Moreover, NF-κB is able to enhance invasion of HCC cells via upregulation of MMPs and EMT, and it triggers angiogenesis as another step for increasing spread of tumor cells in tissues and organs. When NF-κB expression enhances, it stimulates chemoresistance and radio-resistance in HCC cells and by increasing stemness and population of cancer-stem cells, it can provide the way for recurrence of tumor. Overexpression of NF-κB mediates therapy resistance in HCC cells and it can be regulated by non-coding RNAs in HCC. Moreover, inhibition of NF-κB by anti-cancer and epigenetic drugs suppresses HCC tumorigenesis. More importantly, nanoparticles are considered for suppressing NF-κB axis in cancer and their prospectives and results can also be utilized for treatment of HCC. Nanomaterials are promising factors in treatment of HCC and by delivery of genes and drugs, they suppress HCC progression. Furthermore, nanomaterials provide phototherapy in HCC ablation.
Collapse
Affiliation(s)
- Reena Gupta
- Institute of Pharmaceutical Research, GLA University, District-Mathura, U. P., India
| | - Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit, 52001, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, 10022, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan; Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | | | - Nahla A Tayyib
- Faculty of Nursing, Umm al- Qura University, Makkah, Saudi Arabia
| | - Xuanming Luo
- Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
14
|
Basu A, Namporn T, Ruenraroengsak P. Critical Review in Designing Plant-Based Anticancer Nanoparticles against Hepatocellular Carcinoma. Pharmaceutics 2023; 15:1611. [PMID: 37376061 DOI: 10.3390/pharmaceutics15061611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC), accounting for 85% of liver cancer cases, continues to be the third leading cause of cancer-related deaths worldwide. Although various forms of chemotherapy and immunotherapy have been investigated in clinics, patients continue to suffer from high toxicity and undesirable side effects. Medicinal plants contain novel critical bioactives that can target multimodal oncogenic pathways; however, their clinical translation is often challenged due to poor aqueous solubility, low cellular uptake, and poor bioavailability. Nanoparticle-based drug delivery presents great opportunities in HCC therapy by increasing selectivity and transferring sufficient doses of bioactives to tumor areas with minimal damage to adjacent healthy cells. In fact, many phytochemicals encapsulated in FDA-approved nanocarriers have demonstrated the ability to modulate the tumor microenvironment. In this review, information about the mechanisms of promising plant bioactives against HCC is discussed and compared. Their benefits and risks as future nanotherapeutics are underscored. Nanocarriers that have been employed to encapsulate both pure bioactives and crude extracts for application in various HCC models are examined and compared. Finally, the current limitations in nanocarrier design, challenges related to the HCC microenvironment, and future opportunities are also discussed for the clinical translation of plant-based nanomedicines from bench to bedside.
Collapse
Affiliation(s)
- Aalok Basu
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Rd., Rajathevi, Bangkok 10400, Thailand
| | - Thanaphon Namporn
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Rd., Rajathevi, Bangkok 10400, Thailand
| | - Pakatip Ruenraroengsak
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Rd., Rajathevi, Bangkok 10400, Thailand
| |
Collapse
|
15
|
Teixeira PV, Fernandes E, Soares TB, Adega F, Lopes CM, Lúcio M. Natural Compounds: Co-Delivery Strategies with Chemotherapeutic Agents or Nucleic Acids Using Lipid-Based Nanocarriers. Pharmaceutics 2023; 15:pharmaceutics15041317. [PMID: 37111802 PMCID: PMC10141470 DOI: 10.3390/pharmaceutics15041317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Cancer is one of the leading causes of death, and latest predictions indicate that cancer- related deaths will increase over the next few decades. Despite significant advances in conventional therapies, treatments remain far from ideal due to limitations such as lack of selectivity, non-specific distribution, and multidrug resistance. Current research is focusing on the development of several strategies to improve the efficiency of chemotherapeutic agents and, as a result, overcome the challenges associated with conventional therapies. In this regard, combined therapy with natural compounds and other therapeutic agents, such as chemotherapeutics or nucleic acids, has recently emerged as a new strategy for tackling the drawbacks of conventional therapies. Taking this strategy into consideration, the co-delivery of the above-mentioned agents in lipid-based nanocarriers provides some advantages by improving the potential of the therapeutic agents carried. In this review, we present an analysis of the synergistic anticancer outcomes resulting from the combination of natural compounds and chemotherapeutics or nucleic acids. We also emphasize the importance of these co-delivery strategies when reducing multidrug resistance and adverse toxic effects. Furthermore, the review delves into the challenges and opportunities surrounding the application of these co-delivery strategies towards tangible clinical translation for cancer treatment.
Collapse
Affiliation(s)
- Patrícia V Teixeira
- CF-UM-UP-Centro de Física das Universidades do Minho e Porto, Departamento de Física da Universidade do Minho, 4710-057 Braga, Portugal
- CytoGenomics Lab, Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Eduarda Fernandes
- CF-UM-UP-Centro de Física das Universidades do Minho e Porto, Departamento de Física da Universidade do Minho, 4710-057 Braga, Portugal
| | - Telma B Soares
- CF-UM-UP-Centro de Física das Universidades do Minho e Porto, Departamento de Física da Universidade do Minho, 4710-057 Braga, Portugal
| | - Filomena Adega
- CytoGenomics Lab, Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Carla M Lopes
- FFP-I3ID-Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS-Biomedical and Health Sciences Research Unit, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Rua Carlos da Maia 296, 4200-150 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, MEDTECH-Medicines and Healthcare Products, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marlene Lúcio
- CF-UM-UP-Centro de Física das Universidades do Minho e Porto, Departamento de Física da Universidade do Minho, 4710-057 Braga, Portugal
- CBMA-Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| |
Collapse
|
16
|
Kumar G, Virmani T, Sharma A, Pathak K. Codelivery of Phytochemicals with Conventional Anticancer Drugs in Form of Nanocarriers. Pharmaceutics 2023; 15:889. [PMID: 36986748 PMCID: PMC10055866 DOI: 10.3390/pharmaceutics15030889] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Anticancer drugs in monotherapy are ineffective to treat various kinds of cancer due to the heterogeneous nature of cancer. Moreover, available anticancer drugs possessed various hurdles, such as drug resistance, insensitivity of cancer cells to drugs, adverse effects and patient inconveniences. Hence, plant-based phytochemicals could be a better substitute for conventional chemotherapy for treatment of cancer due to various properties: lesser adverse effects, action via multiple pathways, economical, etc. Various preclinical studies have demonstrated that a combination of phytochemicals with conventional anticancer drugs is more efficacious than phytochemicals individually to treat cancer because plant-derived compounds have lower anticancer efficacy than conventional anticancer drugs. Moreover, phytochemicals suffer from poor aqueous solubility and reduced bioavailability, which must be resolved for efficacious treatment of cancer. Therefore, nanotechnology-based novel carriers are employed for codelivery of phytochemicals and conventional anticancer drugs for better treatment of cancer. These novel carriers include nanoemulsion, nanosuspension, nanostructured lipid carriers, solid lipid nanoparticles, polymeric nanoparticles, polymeric micelles, dendrimers, metallic nanoparticles, carbon nanotubes that provide various benefits of improved solubility, reduced adverse effects, higher efficacy, reduced dose, improved dosing frequency, reduced drug resistance, improved bioavailability and higher patient compliance. This review summarizes various phytochemicals employed in treatment of cancer, combination therapy of phytochemicals with anticancer drugs and various nanotechnology-based carriers to deliver the combination therapy in treatment of cancer.
Collapse
Affiliation(s)
- Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai 206001, India
| |
Collapse
|
17
|
Shelash Al-Hawary SI, Abdalkareem Jasim S, M Kadhim M, Jaafar Saadoon S, Ahmad I, Romero Parra RM, Hasan Hammoodi S, Abulkassim R, M Hameed N, K Alkhafaje W, Mustafa YF, Javed Ansari M. Curcumin in the treatment of liver cancer: From mechanisms of action to nanoformulations. Phytother Res 2023; 37:1624-1639. [PMID: 36883769 DOI: 10.1002/ptr.7757] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/10/2023] [Accepted: 01/22/2023] [Indexed: 03/09/2023]
Abstract
Liver cancer is the sixth most prevalent cancer and ranks third in cancer-related death, after lung and colorectal cancer. Various natural products have been discovered as alternatives to conventional cancer therapy strategies, including radiotherapy, chemotherapy, and surgery. Curcumin (CUR) with antiinflammatory, antioxidant, and antitumor activities has been associated with therapeutic benefits against various cancers. It can regulate multiple signaling pathways, such as PI3K/Akt, Wnt/β-catenin, JAK/STAT, p53, MAPKs, and NF-ĸB, which are involved in cancer cell proliferation, metastasis, apoptosis, angiogenesis, and autophagy. Due to its rapid metabolism, poor oral bioavailability, and low solubility in water, CUR application in clinical practices is restricted. To overcome these limitations, nanotechnology-based delivery systems have been applied to use CUR nanoformulations with added benefits, such as reducing toxicity, improving cellular uptake, and targeting tumor sites. Besides the anticancer activities of CUR in combating various cancers, especially liver cancer, here we focused on the CUR nanoformulations, such as micelles, liposomes, polymeric, metal, and solid lipid nanoparticles, and others, in the treatment of liver cancer.
Collapse
Affiliation(s)
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Al-Anbar-Ramadi, Iraq
| | - Mustafa M Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq.,Medical Laboratory Techniques Department, Al-Turath University College, Baghdad, Iraq
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | | | | | - Noora M Hameed
- Anesthesia Techniques, Al-Nisour University College, Baghdad, Iraq
| | - Waleed K Alkhafaje
- Anesthesia Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| |
Collapse
|
18
|
Wang Y, Li J, Xia L. Plant-derived natural products and combination therapy in liver cancer. Front Oncol 2023; 13:1116532. [PMID: 36865794 PMCID: PMC9971944 DOI: 10.3389/fonc.2023.1116532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Liver cancer is one of the malignant cancers globally and seriously endangers human health because of its high morbidity and mortality. Plant-derived natural products have been evaluated as potential anticancer drugs due to low side effects and high anti-tumor efficacy. However, plant-derived natural products also have defects of poor solubility and cumbersome extraction process. In recent years, a growing numbers of plant derived natural products have been used in combination therapy of liver cancer with conventional chemotherapeutic agents, which has improved clinical efficacy through multiple mechanisms, including inhibition of tumor growth, induction of apoptosis, suppression of angiogenesis, enhancement of immunity, reversal of multiple drug resistance and reduction of side effects. The therapeutic effects and mechanisms of plant-derived natural products and combination therapy on liver cancer are reviewed to provide references for developing anti-liver-cancer strategies with high efficacy and low side effects.
Collapse
Affiliation(s)
- Yuqin Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jinyao Li
- *Correspondence: Jinyao Li, ; Lijie Xia,
| | - Lijie Xia
- *Correspondence: Jinyao Li, ; Lijie Xia,
| |
Collapse
|
19
|
Suriya R, Lekshmi G, Anirudhan T. Hyaluronic Acid-Targeted Protein Capped AMSN for Inhibiting Tumour Growth and Side Effects by the Controlled Release of Curcumin and Doxorubicin. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Eitah HE, Attia HN, Soliman AAF, Gamal El Din AA, Mahmoud K, Sayed RH, Maklad YA, El-Sahar AE. Vitamin D ameliorates diethylnitrosamine-induced liver preneoplasia: A pivotal role of CYP3A4/CYP2E1 via DPP-4 enzyme inhibition. Toxicol Appl Pharmacol 2023; 458:116324. [PMID: 36442531 DOI: 10.1016/j.taap.2022.116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Growing evidence has indicated that vitamin D (Vit D) regulates cell proliferation and differentiation in cancer cells. Accordingly, the present study was conducted to investigate the possible beneficial effects of Vit D on diethylnitrosamine (DEN)-induced liver preneoplasia. The effect of Vit D on HepG2 cells was investigated using MTT assay. Additionally, liver preneoplasia was induced in Swiss male albino mice by giving overnight fasted animals 5 consecutive doses of DEN (75 mg/kg/week). Oral treatment with Vit D (200 IU/kg/day) was initiated either 2 weeks before DEN (first protocol) or 1 week after the first dose of DEN injection (second protocol). At the end of the experiment, tissue levels of GGT, DPP-4, TNF-α, IL-6, CYP2E1, and CYP3A4 were also estimated. Moreover, the histopathological study of liver tissue and immunohistochemical detection of GST-P, PCNA, and NF-κB were performed. Vit D exerted a significant cytotoxic effect on HepG2 cells via significantly increasing BAX, p53, and BAX/Bcl2 ratio, and significantly decreasing Bcl2 mRNA expression. In both in vivo protocols, Vit D was capable of normalizing relative liver weight, PCNA, altered hepatocellular foci, and ductular proliferation. Moreover, Vit D significantly reduced the DEN-induced elevation of AST, ALT, ALP, GGT, DDP-4, TNF-α, IL-6, CYP2E1, liver DNA damage, GST-P, NF-κB, nuclear hyperchromasia/pleomorphism, cholestasis, and inflammatory cell aggregates, but significantly increased CYP3A4 content. In conculsion, current results reflect the potential impact of Vit D in the management of early stages of liver cancer.
Collapse
Affiliation(s)
- Hebatollah E Eitah
- Medicinal and Pharmaceutical Chemistry Department, Pharmacology Group, National Research Centre, Dokki, Giza, Egypt
| | - Hanan Naeim Attia
- Medicinal and Pharmaceutical Chemistry Department, Pharmacology Group, National Research Centre, Dokki, Giza, Egypt
| | - Ahmed A F Soliman
- Pharmacognosy Department, National Research Centre, Dokki, Giza, Egypt
| | | | - Khaled Mahmoud
- Pharmacognosy Department, National Research Centre, Dokki, Giza, Egypt
| | - Rabab H Sayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Yousreya A Maklad
- Medicinal and Pharmaceutical Chemistry Department, Pharmacology Group, National Research Centre, Dokki, Giza, Egypt
| | - Ayman E El-Sahar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; School of Pharmacy, Newgiza University, Cairo, Egypt
| |
Collapse
|
21
|
Kong L, Sui GY, Guo RB, Cao HM, Yu Y, Liu Y, Cao Y, Ju X, Yan YH, Ao YH, Li XT, Jia LQ. A multi-strategy liposome targeting hepatocellular carcinoma cells and stem cells enhances the chemotherapy effect of doxorubicin in hepatocellular carcinoma. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
22
|
AbouAitah K, Soliman AAF, Swiderska-Sroda A, Nassrallah A, Smalc-Koziorowska J, Gierlotka S, Lojkowski W. Co-Delivery System of Curcumin and Colchicine Using Functionalized Mesoporous Silica Nanoparticles Promotes Anticancer and Apoptosis Effects. Pharmaceutics 2022; 14:pharmaceutics14122770. [PMID: 36559264 PMCID: PMC9785757 DOI: 10.3390/pharmaceutics14122770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose: Many natural agents have a high anticancer potential, and their combination may be advantageous for improved anticancer effects. Such agents, however, often are not water soluble and do not efficiently target cancer cells, and the kinetics of their action is poorly controlled. One way to overcome these barriers is to combine natural agents with nanoparticles. Our aim in the current study was to fabricate an anticancer nanoformulation for co-delivery of two natural agents, curcumin (CR) and colchicine (CL), with a core-shell structure. Using cancer cell lines, we compared the anticancer efficacy between the combination and a nanoformulation with CL alone. Methods: For the single-drug nanoformulation, we used phosphonate groups to functionalize mesoporous silica nanoparticles (MSNs) and loaded the MSNs with CL. Additional loading of this nanoformulation with CR achieved the co-delivery format. To create the structure with a core shell, we selected a chitosan−cellulose mixture conjugated with targeting ligands of folic acid for the coating. For evaluating anticancer and apoptosis effects, we assessed changes in important genes and proteins in apoptosis (p53, caspase-3, Bax, Bcl-2) in several cell lines (MCF-7, breast adenocarcinoma; HCT-116, colon carcinoma; HOS, human osteosarcoma; and A-549, non−small cell lung cancer). Results: Nanoformulations were successfully synthesized and contained 10.9 wt.% for the CL single-delivery version and 18.1 wt.% for the CL+CR co-delivery nanoformulation. Anticancer effects depended on treatment, cell line, and concentration. Co-delivery nanoformulations exerted anticancer effects that were significantly superior to those of single delivery or free CL or CR. Anticancer effects by cell line were in the order of HCT-116 > A549 > HOS > MCF-7. The lowest IC50 value was obtained for the nanoformulation consisting of CL and CR coated with a polymeric shell conjugated with FA (equivalent to 4.1 ± 0.05 µg/mL). With dual delivery compared with the free agents, we detected strongly increased p53, caspase-3, and Bax expression, but inhibition of Bcl-2, suggesting promotion of apoptosis. Conclusions: Our findings, although preliminary, indicate that the proposed dual delivery nanoformulation consisting of nanocore: MSNs loaded with CL and CR and coated with a shell of chitosan−cellulose conjugated folic acid exerted strong anticancer and apoptotic effects with potent antitumor activity against HCT-116 colon cells. The effect bested CL alone. Evaluating and confirming the efficacy of co-delivery nanoformulations will require in vivo studies.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth Street, Dokki, Giza 12622, Egypt
- Correspondence: (K.A.); (W.L.); Tel.: +20-233371635 (K.A.); +48-22-888-0429 or +48-22-632-4302 (W.L.); Fax: +20-233371010 (K.A.); +48-22-632-4218 (W.L.)
| | - Ahmed A. F. Soliman
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth St, Dokki, Giza 12622, Egypt
| | - Anna Swiderska-Sroda
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| | - Amr Nassrallah
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Julita Smalc-Koziorowska
- Laboratory of Semiconductor Characterization, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| | - Stanislaw Gierlotka
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| | - Witold Lojkowski
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
- Correspondence: (K.A.); (W.L.); Tel.: +20-233371635 (K.A.); +48-22-888-0429 or +48-22-632-4302 (W.L.); Fax: +20-233371010 (K.A.); +48-22-632-4218 (W.L.)
| |
Collapse
|
23
|
Li B, Shao H, Gao L, Li H, Sheng H, Zhu L. Nano-drug co-delivery system of natural active ingredients and chemotherapy drugs for cancer treatment: a review. Drug Deliv 2022; 29:2130-2161. [PMID: 35815678 PMCID: PMC9275501 DOI: 10.1080/10717544.2022.2094498] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy drugs have been used for a long time in the treatment of cancer, but serious side effects are caused by the inability of the drug to be solely delivered to the tumor when treating cancer with chemotherapy. Natural products have attracted more and more attention due to the antitumor effect in multiple ways, abundant resources and less side effects. Therefore, the combination of natural active ingredients and chemotherapy drugs may be an effective antitumor strategy, which can inhibit the growth of tumor and multidrug resistance, reduce side effects of chemotherapy drugs. Nano-drug co-delivery system (NDCDS) can play an important role in the combination of natural active ingredients and chemotherapy drugs. This review provides a comprehensive summary of the research status and application prospect of nano-delivery strategies for the combination of natural active ingredients and chemotherapy drugs, aiming to provide a basis for the development of anti-tumor drugs.
Collapse
Affiliation(s)
- Bingqian Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huili Shao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
24
|
Chen L, Lan J, Li Z, Zeng R, Wang Y, Zhen L, Jin H, Ding Y, Zhang T. A Novel Diosgenin-Based Liposome Delivery System Combined with Doxorubicin for Liver Cancer Therapy. Pharmaceutics 2022; 14:1685. [PMID: 36015311 PMCID: PMC9416271 DOI: 10.3390/pharmaceutics14081685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
As a malignant tumor, liver cancer is mainly treated with chemotherapy, while chemotherapeutic drugs, such as doxorubicin (DOX), may lead to toxicity, drug resistance and poor prognosis. The targeted delivery systems of combining natural products and chemotherapeutic drugs are useful to eliminate cancers with reduced toxicity and increased efficiency. In this study, a diosgenin-based liposome loaded with DOX (Dios-DOX-LP) was developed for synergistic treatment of liver cancer, in which Dios not only replaced cholesterol as the membrane regulator to keep stability of liposomes, but also became the chemotherapy adjuvant of DOX for synergistic treatment. Dios-DOX-LP was characterized by particle size (99.4 ± 6.2 nm), zeta potential (-33.3 ± 2.5 mV), and entrapment efficiency (DOX: 98.77 ± 2.04%, Dios: 87.75 ± 2.93%), which had a good stability and slow-release effect. Compared with commercial DOX liposome (CHOL-DOX-LP), Dios-DOX-LP had an improved anti-tumor effect in vitro and in vivo by inducing the apoptosis and inhibiting the proliferation of the tumor cell, which was 1.6 times better than CHOL-DOX-LP in cytotoxicity, and had 78% of the tumor inhibition rate on tumor-bearing nude mice. Dios-DOX-LP provided a novel idea to achieve synergistic tumor treatment using diosgenin as a liposome material.
Collapse
Affiliation(s)
- Lixia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhe Li
- Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ruifeng Zeng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lu Zhen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Haojieyin Jin
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
25
|
Das M, Joshi A, Devkar R, Seshadri S, Thakore S. Tumor homing dextran and curcumin derived amphiphilic functional polymer self-assembling to tubustecan nanoarchitectures: A strategy of adorning the golden spice (curcumin) for taming the red devil (Dox). J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
26
|
Sawong S, Pekthong D, Suknoppakit P, Winitchaikul T, Kaewkong W, Somran J, Intapa C, Parhira S, Srisawang P. Calotropis gigantea stem bark extracts inhibit liver cancer induced by diethylnitrosamine. Sci Rep 2022; 12:12151. [PMID: 35840761 PMCID: PMC9287404 DOI: 10.1038/s41598-022-16321-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
Several fractions of Calotropis gigantea extracts have been proposed to have potential anticancer activity in many cancer models. The present study evaluated the anticancer activity of C. gigantea stem bark extracts in liver cancer HepG2 cells and diethylnitrosamine (DEN)-induced primary liver cancer in rats. The carcinogenesis model induced by DEN administration has been widely used to study pathophysiological features and responses in rats that are comparable to those seen in cancer patients. The dichloromethane (CGDCM), ethyl acetate, and water fractions obtained from partitioning crude ethanolic extract were quantitatively analyzed for several groups of secondary metabolites and calactin contents. A combination of C. gigantea stem bark extracts with doxorubicin (DOX) was assessed in this study to demonstrate the enhanced cytotoxic effect to cancer compared to the single administration. The combination of DOX and CGDCM, which had the most potential cytotoxic effect in HepG2 cells when compared to the other three fractions, significantly increased cytotoxicity through the apoptotic effect with increased caspase-3 expression. This combination treatment also reduced ATP levels, implying a correlation between ATP and apoptosis induction. In a rat model of DEN-induced liver cancer, treatment with DOX, C. gigantea at low (CGDCM-L) and high (CGDCM-H) doses, and DOX + CGDCM-H for 4 weeks decreased the progression of liver cancer by lowering the liver weight/body weight ratio and the occurrence of liver hyperplastic nodules, fibrosis, and proliferative cells. The therapeutic applications lowered TNF-α, IL-6, TGF-β, and α-SMA inflammatory cytokines in a similar way, implying that CGDCM had a curative effect against the inflammation-induced liver carcinogenesis produced by DEN exposure. Furthermore, CGDCM and DOX therapy decreased ATP and fatty acid synthesis in rat liver cancer, which was correlated with apoptosis inhibition. CGDCM reduced cleaved caspase-3 expression in liver cancer rats when used alone or in combination with DOX, implying that apoptosis-inducing hepatic carcinogenesis was suppressed. Our results also verified the low toxicity of CGDCM injection on the internal organs of rats. Thus, this research clearly demonstrated a promising, novel anticancer approach that could be applied in future clinical studies of CGDCM and combination therapy.
Collapse
Affiliation(s)
- Suphunwadee Sawong
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Dumrongsak Pekthong
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Pennapha Suknoppakit
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Thanwarat Winitchaikul
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Worasak Kaewkong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Julintorn Somran
- Department of Pathology, Faculty of Medicine, Naresuan University, Phitsanulok, 65000, Thailand
| | - Chaidan Intapa
- Department of Oral Diagnosis, Faculty of Dentistry, Naresuan University, Phitsanulok, 65000, Thailand
| | - Supawadee Parhira
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Piyarat Srisawang
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
27
|
Ng CX, Affendi MM, Chong PP, Lee SH. The Potential of Plant-Derived Extracts and Compounds to Augment Anticancer Effects of Chemotherapeutic Drugs. Nutr Cancer 2022; 74:3058-3076. [PMID: 35675271 DOI: 10.1080/01635581.2022.2069274] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Plant extracts comprise a complex mixture of natural compounds with diverse biological activities including anticancer activities. This has made the use of plant extracts a trending strategy in cancer treatment. In addition, plants' active constituents such as polyphenols could confer protective effects on normal cells against damage by free radicals as well as lessen the toxicity of chemotherapeutic drugs. Recently, many emerging studies revealed the combinatory uses of plant extracts and individual therapeutic compounds that could be a promising panacea in hampering multiple signaling pathways involved in cancer development and progression. Besides enhancing the therapeutic efficacy, this has also been proven to reduce the dosage of chemotherapeutic drugs used, and hence overcome multiple drug resistance and minimize treatment side effects. Notably, combined use of plant extracts with chemotherapeutics drugs was shown to enhance anticancer effects through modulating various signaling pathways, such as P13K/AKT, NF-κB, JNK, ERK, WNT/β-catenin, and many more. Hence, this review aims to comprehensively summarize both In Vitro and In Vivo mechanisms of actions of well-studied plant extracts, such as Ganoderma Lucidum, Korean red ginseng, Garcinia sp., curcumin, and luteolin extracts in augmenting anticancer properties of the conventional chemotherapeutic drugs from an extensive literature search of recent publications.
Collapse
Affiliation(s)
- Chu Xin Ng
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Muzaira Mazrul Affendi
- School of Health Sciences, Faculty of Medicine and Health Sciences, International Medical University, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Sau Har Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia.,Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, Selangor, Malaysia
| |
Collapse
|
28
|
Interaction of M2 macrophages with hepatocellular carcinoma co-culture system in the presence of doxorubicin-loaded nanoparticles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Ram AK, Vairappan B, Srinivas BH. Nimbolide attenuates gut dysbiosis and prevents bacterial translocation by improving intestinal barrier integrity and ameliorating inflammation in hepatocellular carcinoma. Phytother Res 2022; 36:2143-2160. [PMID: 35229912 DOI: 10.1002/ptr.7434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/04/2022] [Accepted: 02/16/2022] [Indexed: 09/25/2023]
Abstract
Gut microbiota imbalance plays a key pathological role in hepatocellular carcinoma (HCC) progression; however, the mechanism is poorly understood. We previously showed nimbolide impede tumor development by improving hepatic tight junction (TJ) proteins expression and attenuating inflammation in HCC mice. Here, we aimed to study the role of nimbolide in regulating gut microbiota imbalance and bacterial translocation (BT) through modulating intestinal TJ proteins in an experimental hepatocarcinogenesis. Nimbolide (6 mg/kg) was administered orally for 4 weeks following induction of HCC in mice at the 28th week. Nimbolide treatment attenuated the gut microbiota imbalance by decreasing 16 s rRNA levels of Escherichia coli, Enterococcus, Bacteroides and increasing Bifidobacterium, and Lactobacillus in the intestinal tissue, which was otherwise altered in HCC mice. Furthermore, nimbolide improved intestinal barrier integrity in HCC mice by upregulating TJ proteins such as occludin and ZO-1 expression and subsequently prevented hepatic BT and decreased BT markers such as LBP, sCD14, and procalcitonin in the plasma of HCC mice. Moreover, nimbolide ameliorated intestinal and hepatic inflammation by downregulating TLR4, MyD88, and NF-κB protein expression in HCC mice. Thus, nimbolide represents a novel therapeutic drug for HCC treatment by targeting the gut-liver axis, which plays an imperative role in HCC pathogenesis.
Collapse
Affiliation(s)
- Amit Kumar Ram
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| | - Balasubramaniyan Vairappan
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| | - Bheemanathi Hanuman Srinivas
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| |
Collapse
|
30
|
Tawfik NG, Mohamed WR, Mahmoud HS, Alqarni MA, Naguib IA, Fahmy AM, Ahmed OM. Isatin Counteracts Diethylnitrosamine/2-Acetylaminofluorene-Induced Hepatocarcinogenesis in Male Wistar Rats by Upregulating Anti-Inflammatory, Antioxidant, and Detoxification Pathways. Antioxidants (Basel) 2022; 11:699. [PMID: 35453384 PMCID: PMC9027254 DOI: 10.3390/antiox11040699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/12/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) represents around 85% of all known types of liver cancers and is estimated to be the fifth most common cause of cancer-related death worldwide. The current study assessed the preventive efficacy of isatin on diethylnitrosamine (DENA)/2-acetylaminofluorene (2-AAF)-induced hepatocarcinogenesis in male Wistar rats and investigated the underlying cellular and molecular mechanisms. HCC was initiated by intraperitoneal injection of DENA (150 mg/kg/week) for two weeks, followed by oral 2-AAF (20 mg/kg) every other day for three successive weeks. Oral isatin or vehicle (control) was administered at 25 mg/kg for 20 weeks during and following HCC induction. Isatin ameliorated the deleterious effects of DENA/2-AAF on liver function as evidenced by reduced serum levels of AST, ALT, total bilirubin, albumin, and liver tumor biomarkers (CA19.9 and AFP) compared to control DENA/2-AAF-treated rats. Histopathological evaluations demonstrated that isatin-mediated protection against hepatocarcinogenesis was accompanied by a decline in hepatic lipid peroxidation, a marker of oxidative stress, and enhanced antioxidant capacity, as evidenced by increased glutathione and superoxide dismutase expression. Isatin treatment also upregulated expression of the major stress-response transcription factor Nrf2 and the detoxifying enzymes NAD(P)H quinine oxidoreductase and glutathione-S-transferase alpha 2 and downregulated expression of the proliferation marker Ki67. Moreover, isatin significantly reduced the DENA/2-AAF-induced decrease in hepatic expression of anti-apoptotic Bcl2 and the DENA/2-AAF-induced increases in pro-inflammatory and pro-apoptotic factors (TNF-α, NF-κB p50, NF-κB p65, p53, and caspase 3). Thus, it can be concluded that isatin may protect against chemically induced hepatocarcinogenesis by enhancing cellular antioxidant, anti-inflammatory, and detoxification mechanisms, in part through upregulation of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Nagwa G. Tawfik
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Wafaa R. Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt;
| | - Hanan S. Mahmoud
- Ecology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Mohammed A. Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ibrahim A. Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Alzhraa M. Fahmy
- Tropical Medicine and Infectious Diseases Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt;
| |
Collapse
|
31
|
Mm Shehata E, A Gowayed M, El-Ganainy SO, Sheta E, Sr Elnaggar Y, Abdallah OY. Pectin coated Nanostructured Lipid Carriers for Targeted Piperine Delivery to Hepatocellular Carcinoma. Int J Pharm 2022; 619:121712. [PMID: 35367582 DOI: 10.1016/j.ijpharm.2022.121712] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
Piperine (PIP) is a herbal drug with well-known anticancer activity against different types of cancer including hepatocellular carcinoma. However, low aqueous solubility and extensive first-pass metabolism limit its clinical use. In this study, positively charged PIP-loaded nanostructured lipid carriers (PIP-NLCs) were prepared via melt-emulsification and ultra-sonication method followed by pectin coating to get novel pectin-coated NLCs (PIP-P-NLCs) targeting hepatocellular carcinoma. Complete in vitro characterization was performed. In addition, cytotoxicity and cellular uptake of nanosystems in HepG2 cells were evaluated. Finally, in vivo anticancer activity was tested in the diethylnitrosamine-induced hepatocellular carcinoma mice model. Successful pectin coating was confirmed by an increased particle size of PIP-NLCs from 150.28±2.51 nm to 205.24±5.13 nm and revered Zeta potential from 33.34±3.52 mV to -27.63±2.05 mV. Nanosystems had high entrapment efficiency, good stability, spherical shape, and sustained drug release over 24 hours. Targeted P-NLCs enhanced the cytotoxicity and cellular uptake compared to untargeted NLCs. Furthermore, PIP-P-NLCs improved in vivo anticancer effect of PIP as proved by histological examination of liver tissues, suppression of liver enzymes and oxidative stress environment in the liver, and alteration of cell cycle regulators. To conclude, PIP-P-NLCs can act as a promising approach for targeted delivery of PIP to hepatocellular carcinoma.
Collapse
Affiliation(s)
- Eman Mm Shehata
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Samar O El-Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Yosra Sr Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Head of International Publication and Nanotechnology Consultation Center INCC, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
32
|
Mahmoud K, Swidan S, El-Nabarawi M, Teaima M. Lipid based nanoparticles as a novel treatment modality for hepatocellular carcinoma: a comprehensive review on targeting and recent advances. J Nanobiotechnology 2022; 20:109. [PMID: 35248080 PMCID: PMC8898455 DOI: 10.1186/s12951-022-01309-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/12/2022] [Indexed: 12/12/2022] Open
Abstract
Liver cancer is considered one of the deadliest diseases with one of the highest disease burdens worldwide. Among the different types of liver cancer, hepatocellular carcinoma is considered to be the most common type. Multiple conventional approaches are being used in treating hepatocellular carcinoma. Focusing on drug treatment, regular agents in conventional forms fail to achieve the intended clinical outcomes. In order to improve the treatment outcomes, utilizing nanoparticles-specifically lipid based nanoparticles-are considered to be one of the most promising approaches being set in motion. Multiple forms of lipid based nanoparticles exist including liposomes, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion, nanoemulsion, phytosomes, lipid coated nanoparticles, and nanoassemblies. Multiple approaches are used to enhance the tumor uptake as well tumor specificity such as intratumoral injection, passive targeting, active targeting, and stimuli responsive nanoparticles. In this review, the effect of utilizing lipidic nanoparticles is being discussed as well as the different tumor uptake enhancement techniques used.
Collapse
Affiliation(s)
- Khaled Mahmoud
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt
| | - Shady Swidan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt.
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt.
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mahmoud Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
33
|
Melim C, Magalhães M, Santos AC, Campos EJ, Cabral C. Nanoparticles as phytochemical carriers for cancer treatment: News of the last decade. Expert Opin Drug Deliv 2022; 19:179-197. [PMID: 35166619 DOI: 10.1080/17425247.2022.2041599] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The development and application of novel therapeutic medicines for the treatment of cancer are of vital importance to improve the disease's outcome and survival rate. One noteworthy treatment approach is the use of biologically active compounds present in natural products. Even though these phytocompounds present anti-inflammatory, antioxidant, and anticancer properties, their use is limited essentially due to poor systemic delivery, low bioavailability, and water solubility concerns. To make full use of the anticancer potential of natural products, these limitations need to be technologically addressed. In this sense, nanotechnology emerges as a promising drug delivery system strategy. AREAS COVERED In this review, the benefits and potential of nanodelivery systems for natural products encapsulation as promising therapeutic approaches for cancer, which were developed during the last decade, are highlighted. EXPERT OPINION The nanotechnology area has been under extensive research in the medical field given its capacity for improving the therapeutic potential of drugs by increasing their bioavailability and allowing a targeted delivery to the tumor site. Thereby, the nanoencapsulation of phytocompounds can have a direct impact on the recognized therapeutic activity of natural products towards cancer.
Collapse
Affiliation(s)
- Catarina Melim
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
| | - Mariana Magalhães
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal
| | - Ana Cláudia Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Elisa Julião Campos
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal.,Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
| | - Célia Cabral
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal.,Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
34
|
Zhang X, He C, Xiang G. Engineering nanomedicines to inhibit hypoxia-inducible Factor-1 for cancer therapy. Cancer Lett 2022; 530:110-127. [PMID: 35041892 DOI: 10.1016/j.canlet.2022.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/18/2021] [Accepted: 01/10/2022] [Indexed: 11/02/2022]
Abstract
Hypoxia-inducible factor-1 (HIF-1), an essential promoter of tumor progression, has attracted increasing attention as a therapeutic target. In addition to hypoxic cellular conditions, HIF-1 activation can be triggered by cancer treatment, which causes drug tolerance and therapeutic failure. To date, a series of effective strategies have been explored to suppress HIF-1 function, including silencing the HIF-1α gene, inhibiting HIF-1α protein translation, degrading HIF-1α protein, and inhibiting HIF-1 transcription. Furthermore, nanoparticle-based drug delivery systems have been widely developed to improve the stability and pharmacokinetics of HIF-1 inhibitors or achieve HIF-1-targeted combination therapies as a nanoplatform. In this review, we summarize the current literature on nanomedicines targeting HIF-1 to combat cancer and discuss their potential for future development.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chuanchuan He
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
35
|
Fawzi Kabil M, Nasr M, El-Sherbiny IM. Conventional and hybrid nanoparticulate systems for the treatment of hepatocellular carcinoma: An updated review. Eur J Pharm Biopharm 2021; 167:9-37. [PMID: 34271117 DOI: 10.1016/j.ejpb.2021.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is considered a serious malignancy which affects a large number of people worldwide. Despite the presence of some diagnostic techniques for HCC, the fact that its symptoms somehow overlap with other diseases causes it to be diagnosed at a late stage, hence negatively affecting the prognosis of the disease. The currently available treatment strategies have many shortcomings such as high cost, induction of serious side effects as well as multiple drug resistance, hence resulting in therapeutic failure. Accordingly, nanoformulations have been developed in order to overcome the clinical challenges, enhance the therapeutic efficacy, and elicit chemotherapy tailor-ability. Hybrid nanoparticulate carriers in particular, which are composed of two or more drug vehicles with different physicochemical characteristics combined together in one system, have been recently reported to advance nanotechnology-based therapies. Therefore, this review sheds the light on HCC, and the role of nanotechnology and hybrid nanoparticulate carriers as well as the latest developments in the use of conventional nanoparticles in combating this disease.
Collapse
Affiliation(s)
- Mohamed Fawzi Kabil
- Center for Materials Science, University of Science and Technology, Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ibrahim M El-Sherbiny
- Center for Materials Science, University of Science and Technology, Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt.
| |
Collapse
|
36
|
Hong W, Guo F, Yu N, Ying S, Lou B, Wu J, Gao Y, Ji X, Wang H, Li A, Wang G, Yang G. A Novel Folic Acid Receptor-Targeted Drug Delivery System Based on Curcumin-Loaded β-Cyclodextrin Nanoparticles for Cancer Treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2843-2855. [PMID: 34234415 PMCID: PMC8255901 DOI: 10.2147/dddt.s320119] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/25/2021] [Indexed: 01/30/2023]
Abstract
Purpose A novel folate receptor-targeted β-cyclodextrin (β-CD) drug delivery vehicle was constructed to improve the bioavailability, biosafety, and drug loading capacity of curcumin. Controlled release and targeted delivery was achieved by modifying the nanoparticles with folic acid (FA). Methods Folate-conjugated β-CD-polycaprolactone block copolymers were synthesized and characterized. Curcumin-loaded nanoparticles (FA-Cur-NPs) were structured by self-assembly. The physicochemical properties, stability, release behavior and tumor-targeting ability of the fabricated nanoparticles were studied. Results The average particle size and drug loading of FA-Cur-NPs was 151.8 nm and 20.27%, respectively. Moreover, the FA-Cur-NPs exhibited good stability in vitro for 72 h. The drug release profiles showed that curcumin from FA-Cur-NPs was released significantly faster in a pH 6.4 phosphate buffered solution (PBS) than in pH 7.4, indicating that curcumin can be enriched around the tumor site compared with normal cells. Additionally, the internalization of FA-Cur-NPs was aided by FA receptor-mediated endocytosis, and its cytotoxicity was proportional to the cellular uptake efficiency. Furthermore, in vivo studies confirmed that FA-Cur-NPs exhibited marked accumulation in the tumor site and excellent antitumor activity. Conclusion These findings suggest that FA-Cur-NPs are a promising approach for improving cancer therapy through active targeting and controllable release.
Collapse
Affiliation(s)
- Weiyong Hong
- Department of Pharmacy, Taizhou Municipal Hospital, Taizhou, 318000, People's Republic of China.,College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Fangyuan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Nan Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Sanjun Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Bang Lou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jiangqing Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ying Gao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xugang Ji
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Haiying Wang
- Department of Pharmacy, Taizhou Municipal Hospital, Taizhou, 318000, People's Republic of China
| | - Aiqin Li
- Zhejiang Share Bio-Pharm Co., Ltd, Hangzhou, 310019, People's Republic of China
| | - Guoping Wang
- Zhejiang Dayang Biotech Group Co., Ltd, Hangzhou, 311616, People's Republic of China
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
37
|
Morshedi K, Borran S, Ebrahimi MS, Masoud Khooy MJ, Seyedi ZS, Amiri A, Abbasi-Kolli M, Fallah M, Khan H, Sahebkar A, Mirzaei H. Therapeutic effect of curcumin in gastrointestinal cancers: A comprehensive review. Phytother Res 2021; 35:4834-4897. [PMID: 34173992 DOI: 10.1002/ptr.7119] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/18/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Gastrointestinal (GI) cancers with a high global prevalence are a leading cause of morbidity and mortality. Accordingly, there is a great need to develop efficient therapeutic approaches. Curcumin, a naturally occurring agent, is a promising compound with documented safety and anticancer activities. Recent studies have demonstrated the activity of curcumin in the prevention and treatment of different cancers. According to systematic studies on curcumin use in various diseases, it can be particularly effective in GI cancers because of its high bioavailability in the gastrointestinal tract. Nevertheless, the clinical applications of curcumin are largely limited because of its low solubility and low chemical stability in water. These limitations may be addressed by the use of relevant analogues or novel delivery systems. Herein, we summarize the pharmacological effects of curcumin against GI cancers. Moreover, we highlight the application of curcumin's analogues and novel delivery systems in the treatment of GI cancers.
Collapse
Affiliation(s)
- Korosh Morshedi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sarina Borran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Zeynab Sadat Seyedi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Fallah
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
38
|
Mahmoud SS, Hussein S, Rashed H, Abdelghany EMA, Ali AI. Anticancer Effects of Tacrolimus on Induced Hepatocellular Carcinoma in Mice. Curr Mol Pharmacol 2021; 15:434-445. [PMID: 34061012 DOI: 10.2174/1874467214666210531164546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Tacrolimus is a calcineurin inhibitor widely used for immunological disorders. However, there is a significant controversy regarding its effect on the liver. The present study was conducted to evaluate the anticancer effects of tacrolimus on an induced murine hepatocellular carcinoma (HCC) model and its possible hepatotoxicity at standard therapeutic doses. METHODS Fifty-four male mice were divided into five groups: a control healthy group, control HCC group, tacrolimus-treated group, doxorubicin (DOXO)-treated group, and combined tacrolimus- and DOXO-treated group. The activity of liver enzymes, including alkaline phosphatase, gamma-glutamyl transferase, lactate dehydrogenase, alanine transaminase, and aspartate transaminase, was determined. Serum vascular endothelial growth factor (VEGF) was measured using an enzyme-linked immunosorbent assay. A quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to measure the expression of proliferating cell nuclear antigen (PCNA), Bax, and p53 mRNA. Immunohistochemical staining for cyclin D1 and VEGF was performed. RESULTS Mice that received combined treatment with tacrolimus and DOXO exhibited the best improvement in all parameters when compared with the groups that received DOXO or tacrolimus alone (p < 0.001). CONCLUSION The combination of DOXO and tacrolimus was more effective in the management of HCC compared with either agent alone. This improvement was detected by the reduction of liver enzymes and the improvement of the histopathological picture. The involved mechanisms included significant apoptosis induction demonstrated by upregulation of bax along with a reduction in angiogenesis demonstrated by downregulation of VEGF. This was accompanied by inhibition of cell cycle progression mediated by upregulated p53 and downregulated PCNA and cyclin D1.
Collapse
Affiliation(s)
- Shireen Sami Mahmoud
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samia Hussein
- Medical Biochemistry & Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hayam Rashed
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman M A Abdelghany
- Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Alaa I Ali
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
39
|
Bhattacharya P, Patel TN. A study of deregulated MMR pathways and anticancer potential of curcuma derivatives using computational approach. Sci Rep 2021; 11:10110. [PMID: 33980898 PMCID: PMC8115291 DOI: 10.1038/s41598-021-89282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/19/2021] [Indexed: 11/10/2022] Open
Abstract
Plant derived products have steadily gained momentum in treatment of cancer over the past decades. Curcuma and its derivatives, in particular, have diverse medicinal properties including anticancer potential with proven safety as supported by numerous in vivo and in vitro studies. A defective Mis-Match Repair (MMR) is implicated in solid tumors but its role in haematologic malignancies is not keenly studied and the current literature suggests that it is limited. Nonetheless, there are multiple pathways interjecting the mismatch repair proteins in haematologic cancers that may have a direct or indirect implication in progression of the disease. Here, through computational analysis, we target proteins that are involved in rewiring of multiple signaling cascades via altered expression in cancer using various curcuma derivatives (Curcuma longa L. and Curcuma caesia Roxb.) which in turn, profoundly controls MMR protein function. These biomolecules were screened to identify their efficacy on selected targets (in blood-related cancers); aberrations of which adversely impacted mismatch repair machinery. The study revealed that of the 536 compounds screened, six of them may have the potential to regulate the expression of identified targets and thus revive the MMR function preventing genomic instability. These results reveal that there may be potential plant derived biomolecules that may have anticancer properties against the tumors driven by deregulated MMR-pathways.
Collapse
Affiliation(s)
| | - Trupti N Patel
- Department of Integrative Biology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
40
|
Komeil IA, El-Refaie WM, Gowayed MA, El-Ganainy SO, El Achy SN, Huttunen KM, Abdallah OY. Oral genistein-loaded phytosomes with enhanced hepatic uptake, residence and improved therapeutic efficacy against hepatocellular carcinoma. Int J Pharm 2021; 601:120564. [PMID: 33812970 DOI: 10.1016/j.ijpharm.2021.120564] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/06/2021] [Accepted: 03/29/2021] [Indexed: 12/27/2022]
Abstract
Genistein (Gen) is one of the most potent soy isoflavones used for hepatocellular carcinoma (HCC) treatment. Low aqueous solubility and first-pass metabolism are the main obstacles resulting in low Gen oral bioavailability. The current study aims to introduce phytosomes as an approach to improve Gen solubility, protect it from metabolism by complexation with phospholipids (PL), and get used to PL in Gen lymphatic delivery. Different forms of PL namely: Lipiod® S100, Phosal® 53 MCT, and Phosal®75 SA were used in phytosomes preparation GP, GPM, and GPL respectively. The effect of formulation components on Gen absorption, metabolism, and liver accumulation was evaluated following oral administration to rats. Cytotoxicity and cellular uptake studies were applied on HepG2 cells and in-vivo anti-tumor studies were applied to the DEN-mice model. Results revealed that GP and GPL remarkably accumulated Gen aglycone in hepatic cells and minimized the metabolic effect on Gen. They significantly increased the intracellular accumulation of Gen in its complex form in HepG2 cells. Their cytotoxicity is time-dependent according to the complex stability. The enhanced in-vivo anti-tumor effect was observed for GP and GPL compared to Gen suspension on DEN-induced HCC in mice. In conclusion, Gen-phytosomes can represent a promising approach for liver cancer treatment.
Collapse
Affiliation(s)
- Ibrahim A Komeil
- Department of Pharmaceutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Wessam M El-Refaie
- Department of Pharmaceutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Samar O El-Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Samar N El Achy
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, Kuopio, Finland
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
41
|
Kazemi M, Ashjari M, Nazarabi M. Multi-sensitive curcumin-loaded nanomicelle based on ABC-CBA block copolymer for sustained drug delivery. Drug Dev Ind Pharm 2021; 47:552-561. [PMID: 33629638 DOI: 10.1080/03639045.2021.1890769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A type of multi-sensitive ABC-CBA block copolymer with thermal, glutathione and pH-responsive bonds was synthesized via ring opening polymerization along with cationic ring opening mechanisms. In continuum, the synthesized copolymer strands self-assembled into nanomicelles. The linear copolymer is comprised poly (methoxy ethylene glycol)-b-poly (2-ethyl-2-oxazoline)-b-poly (ε-caprolactone)-cystamine (i.e. [mPEG-b-PEtOz-PCL]2-Cys) and the curcumin was encapsulated inside the micelles mostly through hydrophobic interaction. The H-NMR, FTIR and GPC analysis were applied to identify the composition structure of the copolymer. The critical micelle concentration (CMC) value was achieved favorably 0.01 mg/mL for the synthesized copolymer. The morphology and particle size of solid nanocarrier were characterized by DLS, Zeta potential, AFM, TEM, and SEM micrographs. The drug loading content for the curcumin was attained 13.3% (w/w), and the entrapment efficacy of the drug in nanocarrier was obtained 79 percent. The in vitro release profile of the drug-loaded micelle was investigated by exposure to different pH, temperature and reduction circumstances, stimulated by tumor microenvironment conditions. The cell viability assay of the drug-loaded nanocarrier demonstrates high cytotoxicity toward HDF cells, while the drug-free nanocarrier has trifling toxicity and good biocompatibility. Therefore, according to the pleasant output of the research, this novel nanomicelle based on ABC-CBA block copolymer can be carried out effectively as an efficient nanocarrier in targeted drug delivery.
Collapse
Affiliation(s)
- Marzieh Kazemi
- Nanostructures and Biopolymer Research Lab, Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
| | - Mohsen Ashjari
- Nanostructures and Biopolymer Research Lab, Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran.,Department of Chemical Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran
| | - Masoomeh Nazarabi
- Nanostructures and Biopolymer Research Lab, Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
| |
Collapse
|
42
|
Kashyap D, Tuli HS, Yerer MB, Sharma A, Sak K, Srivastava S, Pandey A, Garg VK, Sethi G, Bishayee A. Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. Semin Cancer Biol 2021; 69:5-23. [PMID: 31421264 DOI: 10.1016/j.semcancer.2019.08.014] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 01/09/2023]
Abstract
Application of natural product-based nanoformulations for the treatment of different human diseases, such as cancer, is an emerging field. The conventional cancer therapeutic modalities, including surgery, chemotherapy, immunotherapy, radiotherapy has limited achievements. A larger number of drawbacks are associated with these therapies, including damage to proliferating healthy tissues, structural deformities, systemic toxicity, long-term side effects, resistance to the drug by tumor cells, and psychological problems. The advent of nanotechnology in cancer therapeutics is recent; however, it has progressed and transformed the field of cancer treatment at a rapid rate. Nanotherapeutics have promisingly overcome the limitations of conventional drug delivery system, i.e., low aqueous solubility, low bioavailability, multidrug resistance, and non-specificity. Specifically, natural product-based nanoformulations are being intentionally studied in different model systems. Where it is found that these nanoformulations has more proximity and reduced side effects. The nanoparticles can specifically target tumor cells, enhancing the specificity and efficacy of cancer therapeutic modalities which in turn improves patient response and survival. The integration of phytotherapy and nanotechnology in the clinical setting may improve pharmacological response and better clinical outcome of patients.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh - 160 012, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala - 133 207, Haryana, India.
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, University of Erciyes, Kayseri 38039, Turkey
| | - Ajay Sharma
- Department of Chemistry, Career Point University, Tikker-Kharwarian, Hamirpur - 176 041, Himachal Pradesh, India
| | | | - Saumya Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad - 211 004, Uttar Pradesh, India
| | - Anjana Pandey
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad - 211 004, Uttar Pradesh, India
| | - Vivek Kumar Garg
- Department of Biochemistry, Government Medical College and Hospital, Sector 32, Chandigarh - 160 031, Punjab, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
43
|
Wang C, Wei X, Shao G. Functional Doxorubicin-Loaded Omega-3 Unsaturated Fatty Acids Nanoparticles in Reversing Hepatocellular Carcinoma Multidrug Resistance. Med Sci Monit 2021; 27:e927727. [PMID: 33524008 PMCID: PMC7863563 DOI: 10.12659/msm.927727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background This study investigated a nanoparticle drug delivery system to reverse multidrug resistance (MDR) and assessed its anticancer efficacy in hepatocellular carcinoma (HCC). Material/Methods Docosahexaenoic acid (DHA) was used as the functional excipient and doxorubicin (DOX) as the chemotherapeutic drug to synthesize DOX nanoparticles (DOX-nano). The human HCC cell line HepG2 was used for experiments. HepG2/DOX, HepG2+DOX, HepG2+DOX-nano, HepG2/DOX+DOX, and HepG2/DOX+DOX-nano groups cells were treated with DOX or DOX-nano (5 μg/mL). Nude mice bearing a HepG2/DOX xenograft were divided into model, DOX, vector-nano, and DOX-nano groups and injected with saline, DOX reagent, vector-nano, and DOX-nano (2 mg/kg), respectively. Next, cytotoxicity, cellular uptake, cell apoptosis and migration, fluorescence imaging, TUNEL assay, and tumor inhibition effects were assessed in vitro and in vivo. Furthermore, expression of MDR-related proteins was also detected using western blotting. Results Fluorescence imaging showed that the DOX uptake in the DOX-nano-treated group was the strongest in the HCC cells or tumors. Cell apoptosis was significantly increased in DOX-nano-treated HepG2/DOX cells and tumors, and cell migration was significantly inhibited in the DOX-nano-treated HepG2/DOX cells compared with the other groups. The tumor inhibitory rate in DOX-nano-injected tumors was also significantly higher than in other groups. The expression of breast cancer resistance protein, B-cell lymphoma 2, lung resistance protein, multidrug resistance protein, and protein kinase C alpha was significantly decreased in DOX-nano-treated HepG2/DOX cells and xenograft tumors. Significantly better antitumor and MDR-reversing effects were also observed in the HepG2+DOX group compared with the HepG2/DOX group. Conclusions This study revealed the potential efficacy of a DOX-nano drug delivery system for the treatment of HCC, using HepG2/DOX cells and nude mice bearing HepG2/DOX xenografts.
Collapse
Affiliation(s)
- Chunlei Wang
- Pharmaceutical Preparation Section, Cancer Hospital of The University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China (mainland).,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China (mainland)
| | - Xiaoyan Wei
- Pharmaceutical Preparation Section, Cancer Hospital of The University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China (mainland).,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China (mainland)
| | - Guoliang Shao
- Pharmaceutical Preparation Section, Cancer Hospital of The University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China (mainland).,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
44
|
Ahiwale RJ, Chellampillai B, Pawar AP. Investigation of novel sorafenib tosylate loaded biomaterial based nano-cochleates dispersion system for treatment of hepatocellular carcinoma. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1878034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Raj J. Ahiwale
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth University, Pune, Maharashtra, India
| | - Bothiraja Chellampillai
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth University, Pune, Maharashtra, India
| | - Atmaram P. Pawar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth University, Pune, Maharashtra, India
| |
Collapse
|
45
|
Rahman M, Almalki WH, Alrobaian M, Iqbal J, Alghamdi S, Alharbi KS, Alruwaili NK, Hafeez A, Shaharyar A, Singh T, Waris M, Kumar V, Beg S. Nanocarriers-loaded with natural actives as newer therapeutic interventions for treatment of hepatocellular carcinoma. Expert Opin Drug Deliv 2021; 18:489-513. [PMID: 33225771 DOI: 10.1080/17425247.2021.1854223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Cancer has always been a menace for the society. Hepatocellular carcinoma (HCC) is one of the most lethal and 3rdlargest causes of deaths around the world.Area covered: The emergence of natural actives is considered as the greatest boon for fighting cancer. The natural actives take precedence over the traditional chemotherapeutic drugs in terms of their multi-target, multi-level and coordinated effects in the treatment of HCC. Literature reports have indicated the tremendous potential of bioactive natural products in inhibiting the HCC via molecular drug targeting, augmented bioavailability, and the ability for both passive or active targeting and stimulus-responsive drug release characteristics. This review provides a newer treatment approaches involved in the mechanism of action of different natural actives used for the HCC treatment via different molecular pathways. Besides, the promising advantage of natural bioactive-loaded nanocarriers in HCC treatment has also been also presented in this review. Expert opinion: The remarkable outcomes have been observed with therapeutic efficacy of the nanocarriers of natural actives in the treatment of HCC.Furthermore, it requires a thorough assessment of the safety and efficacy evaluation of the nanocarriers for the delivery of targeted natural active ingredients in HCC.].
Collapse
Affiliation(s)
- Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-qura University, Saudi Arabia
| | - Majed Alrobaian
- Department of Pharmaceutics & and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Jawed Iqbal
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, Jamia Nagar, New Delhi-110025
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Khalid S Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Adil Shaharyar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Tanuja Singh
- Department of Botany, T.P.S College, Patna, Bihar, India
| | - Mohammad Waris
- Department of Botany, T.P.S College, Patna, Bihar, India
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Nanomedicine Research Lab, Jamia Hamdard, New Delhi, India
| |
Collapse
|
46
|
Health Benefits of Turmeric and Curcumin Against Food Contaminants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1328:171-197. [DOI: 10.1007/978-3-030-73234-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
47
|
Polychemotherapy with Curcumin and Doxorubicin via Biological Nanoplatforms: Enhancing Antitumor Activity. Pharmaceutics 2020; 12:pharmaceutics12111084. [PMID: 33187385 PMCID: PMC7697177 DOI: 10.3390/pharmaceutics12111084] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/31/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin (DOX) is a well-known chemotherapeutic agent extensively applied in the field of cancer therapy. However, similar to other chemotherapeutic agents such as cisplatin, paclitaxel, docetaxel, etoposide and oxaliplatin, cancer cells are able to obtain chemoresistance that limits DOX efficacy. In respect to dose-dependent side effect of DOX, enhancing its dosage is not recommended for effective cancer chemotherapy. Therefore, different strategies have been considered for reversing DOX resistance and diminishing its side effects. Phytochemical are potential candidates in this case due to their great pharmacological activities. Curcumin is a potential antitumor phytochemical isolated from Curcuma longa with capacity of suppressing cancer metastasis and proliferation and affecting molecular pathways. Experiments have demonstrated the potential of curcumin for inhibiting chemoresistance by downregulating oncogene pathways such as MMP-2, TGF-β, EMT, PI3K/Akt, NF-κB and AP-1. Furthermore, coadministration of curcumin and DOX potentiates apoptosis induction in cancer cells. In light of this, nanoplatforms have been employed for codelivery of curcumin and DOX. This results in promoting the bioavailability and internalization of the aforementioned active compounds in cancer cells and, consequently, enhancing their antitumor activity. Noteworthy, curcumin has been applied for reducing adverse effects of DOX on normal cells and tissues via reducing inflammation, oxidative stress and apoptosis. The current review highlights the anticancer mechanism, side effects and codelivery of curcumin and DOX via nanovehicles.
Collapse
|
48
|
Trošelj KG, Samaržija I, Tomljanović M, Kujundžić RN, Đaković N, Mojzeš A. Implementing Curcumin in Translational Oncology Research. Molecules 2020; 25:E5240. [PMID: 33182817 PMCID: PMC7698148 DOI: 10.3390/molecules25225240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
Most data published on curcumin and curcumin-based formulations are very promising. In cancer research, the majority of data has been obtained in vitro. Less frequently, researchers used experimental animals. The results of several clinical studies are conclusive, and these studies have established a good foundation for further research focusing on implementing curcumin in clinical oncology. However, the issues regarding timely data reporting and lack of disclosure of the exact curcumin formulations used in these studies should not be neglected. This article is a snapshot of the current status of publicly available data on curcumin clinical trials and a detailed presentation of results obtained so far with some curcumin formulations. Phenomena related to the observed effects of curcumin shown in clinical trials are presented, and its modifying effect on gut microbiota and metabolic reprogramming is discussed. Based on available data, there is a strong indication that curcumin and its metabolites present molecules that do not necessarily need to be abundant in order to act locally and benefit systemically. Future clinical studies should be designed in a way that will take that fact into consideration.
Collapse
Affiliation(s)
- Koraljka Gall Trošelj
- Laboratory for Epigenomics, Ruđer Bošković Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia; (I.S.); (M.T.); (R.N.K.); (A.M.)
| | - Ivana Samaržija
- Laboratory for Epigenomics, Ruđer Bošković Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia; (I.S.); (M.T.); (R.N.K.); (A.M.)
| | - Marko Tomljanović
- Laboratory for Epigenomics, Ruđer Bošković Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia; (I.S.); (M.T.); (R.N.K.); (A.M.)
| | - Renata Novak Kujundžić
- Laboratory for Epigenomics, Ruđer Bošković Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia; (I.S.); (M.T.); (R.N.K.); (A.M.)
| | - Nikola Đaković
- Institute for Clinical Medical Research and Education, University Hospital Centre Sisters of Charity, 10000 Zagreb, Croatia;
- Department of Clinical Oncology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Anamarija Mojzeš
- Laboratory for Epigenomics, Ruđer Bošković Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia; (I.S.); (M.T.); (R.N.K.); (A.M.)
| |
Collapse
|
49
|
Martinelli C, Biglietti M. Nanotechnological approaches for counteracting multidrug resistance in cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:1003-1020. [PMID: 35582219 PMCID: PMC8992571 DOI: 10.20517/cdr.2020.47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/02/2020] [Accepted: 08/12/2020] [Indexed: 12/23/2022]
Abstract
Every year, cancer accounts for a vast portion of deaths worldwide. Established clinical protocols are based on chemotherapy, which, however, is not tumor-selective and produces a series of unbearable side effects in healthy tissues. As a consequence, multidrug resistance (MDR) can arise causing metastatic progression and disease relapse. Combination therapy has demonstrated limited responses in the treatment of MDR, mainly due to the different pharmacokinetic properties of administered drugs and to tumor heterogeneity, challenges that still need to be solved in a significant percentage of cancer patients. In this perspective, we briefly discuss the most relevant MDR mechanisms leading to therapy failure and we report the most advanced strategies adopted in the nanomedicine field for the design and evaluation of ad hoc nanocarriers. We present some emerging classes of nanocarriers developed to reverse MDR and discuss recent progress evidencing their limits and promises.
Collapse
|
50
|
Abo Mansour HE, El-Batsh MM, Badawy NS, Mehanna ET, Mesbah NM, Abo-Elmatty DM. Ginger Extract Loaded into Chitosan Nanoparticles Enhances Cytotoxicity and Reduces Cardiotoxicity of Doxorubicin in Hepatocellular Carcinoma in Mice. Nutr Cancer 2020; 73:2347-2362. [PMID: 32972241 DOI: 10.1080/01635581.2020.1823436] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/27/2020] [Accepted: 09/05/2020] [Indexed: 02/08/2023]
Abstract
This study aimed to investigate the impact of ginger extract (GE) loaded into chitosan nanoparticles (CNPs) in enhancing cytotoxicity and reducing cardiotoxicity of doxorubicin (DXN) in hepatocellular carcinoma (HCC) induced mice. DXN and GE were loaded into CNPs and cytotoxicity of loaded and unloaded drugs against HepG2 cells was evaluated. HCC was induced in male albino mice by injection of diethylnitrosamine (DINA). Mice were divided into eight groups (n = 15): (1) normal control, (2) DINA, (3) CNPs, (4) free DXN, (5) CNPs DXN, (6) free GE, (7) CNPs GE, and (8) CNPs DXN + CNPs GE. Both GE and DXN loaded into CNPs showed a greater decline in cell viability of HepG2 cells than the unloaded forms. GE CNPs displayed pronounced anticancer activity In Vivo through apoptosis, greater down-regulation of multidrug resistance 1, enhancement of anti-oxidant activity and depletion of vascular endothelial growth factor content in liver tissues. GE CNPs in combination with DXN CNPs showed nearly normal hepatic lobule architecture and the greatest increase in apoptotic cell count. Co-treatment group had decreased cardiac malondialdehyde, tumor necrosis factor-α and serum activity of creatine kinase and lactate dehydrogenase. Combination of GE CNPs and DXN CNPs might be a potentially effective therapeutic approach for HCC.
Collapse
Affiliation(s)
- Hend E Abo Mansour
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Shebeen El-Kom, Egypt
| | - Maha M El-Batsh
- Department of Clinical Pharmacology, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Nadia S Badawy
- Department of Histology and Cell Biology, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Eman T Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Noha M Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Dina M Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|