1
|
Luo L, Zhou H, Wang S, Pang M, Zhang J, Hu Y, You J. The Application of Nanoparticle-Based Imaging and Phototherapy for Female Reproductive Organs Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2207694. [PMID: 37154216 DOI: 10.1002/smll.202207694] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/06/2023] [Indexed: 05/10/2023]
Abstract
Various female reproductive disorders affect millions of women worldwide and bring many troubles to women's daily life. Let alone, gynecological cancer (such as ovarian cancer and cervical cancer) is a severe threat to most women's lives. Endometriosis, pelvic inflammatory disease, and other chronic diseases-induced pain have significantly harmed women's physical and mental health. Despite recent advances in the female reproductive field, the existing challenges are still enormous such as personalization of disease, difficulty in diagnosing early cancers, antibiotic resistance in infectious diseases, etc. To confront such challenges, nanoparticle-based imaging tools and phototherapies that offer minimally invasive detection and treatment of reproductive tract-associated pathologies are indispensable and innovative. Of late, several clinical trials have also been conducted using nanoparticles for the early detection of female reproductive tract infections and cancers, targeted drug delivery, and cellular therapeutics. However, these nanoparticle trials are still nascent due to the body's delicate and complex female reproductive system. The present review comprehensively focuses on emerging nanoparticle-based imaging and phototherapies applications, which hold enormous promise for improved early diagnosis and effective treatments of various female reproductive organ diseases.
Collapse
Affiliation(s)
- Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Mei Pang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yilong Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| |
Collapse
|
2
|
Bender L, Preis E, Engelhardt KH, Amin MU, Ayoub AM, Librizzi D, Roschenko V, Schulze J, Yousefi BH, Schaefer J, Bakowsky U. In vitro and in ovo photodynamic efficacy of nebulized curcumin-loaded tetraether lipid liposomes prepared by DC as stable drug delivery system. Eur J Pharm Sci 2024; 196:106748. [PMID: 38471594 DOI: 10.1016/j.ejps.2024.106748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Lung cancer is one of the most common causes of high mortality worldwide. Current treatment strategies, e.g., surgery, radiotherapy, chemotherapy, and immunotherapy, insufficiently affect the overall outcome. In this study, we used curcumin as a natural photosensitizer in photodynamic therapy and encapsulated it in liposomes consisting of stabilizing tetraether lipids aiming for a pulmonary drug delivery system against lung cancer. The liposomes with either hydrolyzed glycerol-dialkyl-glycerol tetraether (hGDGT) in different ratios or hydrolyzed glycerol-dialkyl-nonitol tetraether (hGDNT) were prepared by dual centrifugation (DC), an innovative method for liposome preparation. The liposomes' physicochemical characteristics before and after nebulization and other nebulization characteristics confirmed their suitability. Morphological characterization using atomic force and transmission electron microscopy showed proper vesicular structures indicative of liposomes. Qualitative and quantitative uptake of the curcumin-loaded liposomes in lung adenocarcinoma (A549) cells was visualized and proven. Phototoxic effects of the liposomes were detected on A549 cells, showing decreased cell viability. The generation of reactive oxygen species required for PDT and disruption of mitochondrial membrane potential were confirmed. Moreover, the chorioallantoic membrane (CAM) model was used to further evaluate biocompatibility and photodynamic efficacy in a 3D cell culture context. Photodynamic efficacy was assessed by PET/CT after nebulization of the liposomes onto the xenografted tumors on the CAM with subsequent irradiation. The physicochemical properties and the efficacy of tetraether lipid liposomes encapsulating curcumin, especially liposomes containing hGDNT, in 2D and 3D cell cultures seem promising for future PDT usage against lung cancer.
Collapse
Affiliation(s)
- Lena Bender
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany
| | - Konrad H Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany
| | - Muhammad Umair Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany
| | - Abdallah M Ayoub
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany
| | - Damiano Librizzi
- Center for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging, Department of Nuclear Medicine, University of Marburg, Hans-Meerwein-Str. 3, Marburg 35043, Germany
| | - Valeri Roschenko
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany
| | - Jan Schulze
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany
| | - Behrooz H Yousefi
- Center for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging, Department of Nuclear Medicine, University of Marburg, Hans-Meerwein-Str. 3, Marburg 35043, Germany
| | - Jens Schaefer
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany.
| |
Collapse
|
3
|
Miyazaki M, Arisaka C, Nakagawara A, Sasaki N, Takahashi H, Takagi T, Amii H, Sonoyama M. Thermodynamic study on hydrated bilayers of ether-linked phosphatidylcholines with terminal perfluorobutyl group. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184261. [PMID: 38101595 DOI: 10.1016/j.bbamem.2023.184261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/01/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Novel terminally perfluorobutyl group-containing ether-linked phosphatidylcholines with different alkyl chain lengths (di-O-F4-Cn-PCs, n = 14,16 and 18) were developed as possible materials for stable liposomes aiming at applications of structural and functional analyses of membrane proteins. Differential scanning calorimetric investigations of the thermotropic transition of hydrated di-O-F4-Cn-PC bilayers demonstrated that the transition temperature of every di-O-F4-Cn-PC decreases by ~20 °C compared to their corresponding non-fluorinated PCs, di-O-Cn-PCs. With the elongation of the hydrophobic chain, on the other hand, the transition enthalpy (ΔH) and entropy (ΔS) increased in a linear manner. Comparison of ΔH and ΔS values against the net hydrocarbon chain length between di-O-F4-Cn-PCs and di-O-Cn-PCs strongly suggests that in the thermotropic transition of the di-O-F4-Cn-PC membrane, the perfluorobutyl segments undergo very limited structural changes; therefore, the hydrocarbon segments are mainly responsible for the phase transition.
Collapse
Affiliation(s)
- Masaya Miyazaki
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Chika Arisaka
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Ai Nakagawara
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Nanako Sasaki
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Hiroshi Takahashi
- Division of Pure and Applied Science, Graduate School of Science and Technology, Gunma University, Maebashi, Gunma 371-8510, Japan.
| | - Toshiyuki Takagi
- Cellular and Molecular Biotechnology Research Institute, AIST, Tsukuba, Ibaraki 305-8565, Japan.
| | - Hideki Amii
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan; Gunma University Initiative for Advanced Research (GIAR), Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Masashi Sonoyama
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan; Gunma University Initiative for Advanced Research (GIAR), Gunma University, Kiryu, Gunma 376-8515, Japan; Gunma University Center for Food Science and Wellness (GUCFW), Gunma University, Kiryu, Gunma 376-8515, Japan.
| |
Collapse
|
4
|
Romero EL, Morilla MJ. Ether lipids from archaeas in nano-drug delivery and vaccination. Int J Pharm 2023; 634:122632. [PMID: 36690132 DOI: 10.1016/j.ijpharm.2023.122632] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/26/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Archaea are microorganisms more closely related to eukaryotes than bacteria. Almost 50 years after being defined as a new domain of life on earth, new species continue to be discovered and their phylogeny organized. The study of the relationship between their genetics and metabolism and some of their extreme habitats has even positioned them as a model of extraterrestrial life forms. Archaea, however, are deeply connected to the life of our planet: they can be found in arid, acidic, warm areas; on most of the earth's surface, which is cold (below 5 °C), playing a prominent role in the cycles of organic materials on a global scale and they are even part of our microbiota. The constituent materials of these microorganisms differ radically from those produced by eukaryotes and bacteria, and the nanoparticles that can be manufactured using their ether lipids as building blocks exhibit unique properties that are of interest in nanomedicine. Here, we present for the first time a complete overview of the pre-clinical applications of nanomedicines based on ether archaea lipids, focused on drug delivery and adjuvancy over the last 25 years, along with a discussion on their pros, cons and their future industrial implementation.
Collapse
Affiliation(s)
- Eder Lilia Romero
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina.
| | - Maria Jose Morilla
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| |
Collapse
|
5
|
Magnetic Thermosensitive Liposomes Loaded with Doxorubicin. Methods Mol Biol 2023; 2622:103-119. [PMID: 36781754 DOI: 10.1007/978-1-0716-2954-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Liposome-mediated anticancer drug delivery has the advantage of limiting the massive cytotoxicity of chemotherapeutic agents. Doxorubicin (DOX) PEG-liposomal does however have a slow-release rate that hinders its therapeutic efficacy. In this study, an integrated therapeutic system based on magnetic thermosensitive liposomes was designed. The chelated gadolinium acquired magnetic properties in the liposomes. The hyperthermia induced by ultra-high-field magnetic resonance imaging (UHF-MRI) enhances the chemotherapeutic effects of DOX. The DOX release from liposomes was facilitated over a narrow range of temperatures owing to the phase transition temperature of the liposomes. The magnetic properties of the liposomes were evident by the elevation of contrast after the exposure to UHF-MRI. Moreover, triple-negative breast cancer (TNBC) cells showed a significant decrease in cellular viability reaching less than 40% viability after 1 h of exposure to UHF-MRI. The liposomes demonstrated a physiological coagulation time and a minimal hemolytic potential in hemocompatibility studies; therefore, they were considered safe for physiological application. As a result, magnetic-thermosensitive liposomal guidance of local delivery of DOX could increase the therapeutic index, thereby reducing the amount of the drug required for systemic administration and the chance of affecting the adjacent tissues.
Collapse
|
6
|
Hemetsberger A, Preis E, Engelhardt K, Gutberlet B, Runkel F, Bakowsky U. Highly Stable Liposomes Based on Tetraether Lipids as a Promising and Versatile Drug Delivery System. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6995. [PMID: 36234336 PMCID: PMC9571198 DOI: 10.3390/ma15196995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Conventional liposomes often lack stability, limiting their applicability and usage apart from intravenous routes. Nevertheless, their advantages in drug encapsulation and physicochemical properties might be helpful in oral and pulmonary drug delivery. This study investigated the feasibility and stability of liposomes containing tetraether lipids (TEL) from Thermoplasma acidophilum. Liposomes composed of different molar ratios of TEL:Phospholipon 100H (Ph) were produced and exposed to various temperature and pH conditions. The effects on size, polydispersity index, and zeta potential were examined by dynamic and electrophoretic light scattering. Autoclaving, which was considered an additional process step after fabrication, could minimize contamination and prolong shelf life, and the stability after autoclaving was tested. Moreover, 5(6)-carboxyfluorescein leakage was measured after incubation in the presence of fetal calf serum (FCS) and lung surfactant (Alveofact). The incorporation of TEL into the liposomes significantly impacted the stability against low pH, higher temperatures, and even sterilization by autoclaving. The stability of liposomes containing TEL was confirmed by atomic force microscopy as images revealed similar sizes and morphology before and after incubation with FCS. It could be concluded that increasing the molar ratio in the TEL:Ph liposome formulations improved the structural stability against high temperature, low pH, sterilization via autoclaving, and the presence of FCS and lung surfactant.
Collapse
Affiliation(s)
- Aybike Hemetsberger
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Konrad Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Bernd Gutberlet
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Frank Runkel
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany
- Faculty of Biology and Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| |
Collapse
|
7
|
Vesicular and Planar Membranes of Archaea Lipids: Unusual Physical Properties and Biomedical Applications. Int J Mol Sci 2022; 23:ijms23147616. [PMID: 35886964 PMCID: PMC9319432 DOI: 10.3390/ijms23147616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Liposomes and planar membranes made of archaea or archaea-like lipids exhibit many unusual physical properties compared to model membranes composed of conventional diester lipids. Here, we review several recent findings in this research area, which include (1) thermosensitive archaeosomes with the capability to drastically change the membrane surface charge, (2) MthK channel's capability to insert into tightly packed tetraether black lipid membranes and exhibit channel activity with surprisingly high calcium sensitivity, and (3) the intercalation of apolar squalane into the midplane space of diether bilayers to impede proton permeation. We also review the usage of tetraether archaeosomes as nanocarriers of therapeutics and vaccine adjuvants, as well as the biomedical applications of planar archaea lipid membranes. The discussion on archaeosomal therapeutics is focused on partially purified tetraether lipid fractions such as the polar lipid fraction E (PLFE) and glyceryl caldityl tetraether (GCTE), which are the main components of PLFE with the sugar and phosphate removed.
Collapse
|
8
|
Li F, Harvey RD, Modicano P, Hamdi F, Kyrilis F, Müller S, Gruhle K, Kastritis P, Drescher S, Dailey LA. Investigating bolalipids as solubilizing agents for poorly soluble drugs: Effects of alkyl chain length on solubilization and cytotoxicity. Colloids Surf B Biointerfaces 2022; 212:112369. [PMID: 35123195 DOI: 10.1016/j.colsurfb.2022.112369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 01/31/2023]
Abstract
Synthetic single-chain bolalipids with symmetrical headgroups have shown potential in various pharmaceutical applications, such as the stabilization of liposome bilayers. Despite their amphiphilic character, synthetic bolalipids have not yet been investigated for their suitability as solubilizing agents for poorly soluble drug compounds. In this study, three synthetic single-chain bolalipids with increasing alkyl chain lengths (C22, C24 and C26) were investigated. All three bolalipids were able to achieve an increased solubility of the model drug, mefenamic acid, by approximately 180% in a pH 7.4 buffer compared to only a 102-105% increase achieved by sodium dodecyl sulfate (SDS) or the non-ionic surfactant pegylated hydroxystearate (PEG-HS). Subsequently, interfacial activity of bolalipids and their ability to destabilize liposomal bilayers were investigated. The C22 bolalipid exhibited a consistently lower interfacial activity, which was consistent with its significantly lower cytotoxicity in the macrophage-like cell line, J774. A1, compared to C24 and C26 counterparts. The mean IC50 values of the bolalipids tested (0.035-0.093 mM) were approximately 4-100-fold lower than that of SDS (0.401 mM) or PEG-HS (0.922 mM), with the mechanism of toxicity linked to increased cell membrane permeability, as is expected for surfactants. In summary, evidence from this study shows that decreasing the length of the bolalipid alkyl linker from C26 to C22 resulted in a significantly decreased cytotoxicity with no loss in drug solubilization efficiency.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Richard D Harvey
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Paola Modicano
- Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Martin Luther University (MLU) Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Farzad Hamdi
- Biozentrum, MLU Halle-Wittenberg, Weinbergweg 22, Halle/Saale, Germany; Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, MLU Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Fotios Kyrilis
- Biozentrum, MLU Halle-Wittenberg, Weinbergweg 22, Halle/Saale, Germany; Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, MLU Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Sindy Müller
- Institute of Pharmacy, Department of Pharmaceutical Chemistry, MLU Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
| | - Kai Gruhle
- Institute of Pharmacy, Department of Pharmaceutical Chemistry, MLU Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
| | - Panagiotis Kastritis
- Biozentrum, MLU Halle-Wittenberg, Weinbergweg 22, Halle/Saale, Germany; Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, MLU Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Simon Drescher
- Phospholipid Research Center, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Lea Ann Dailey
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria.
| |
Collapse
|
9
|
Abu Dayyih A, Alawak M, Ayoub AM, Amin MU, Abu Dayyih W, Engelhardt K, Duse L, Preis E, Brüßler J, Bakowsky U. Thermosensitive liposomes encapsulating hypericin: Characterization and photodynamic efficiency. Int J Pharm 2021; 609:121195. [PMID: 34673168 DOI: 10.1016/j.ijpharm.2021.121195] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/20/2021] [Accepted: 10/06/2021] [Indexed: 12/22/2022]
Abstract
The potent photodynamic properties of Hypericin (Hyp) elicit a range of light-dose-dependent anti-tumor activities. However, its low water solubility hampers its broad application. Therefore, the administration of Hyp into biological systems requires drug carriers that would enable sufficient bioavailability. Stimuli-triggered nanocarriers, which are sensitive to endogenous or exogenous stimuli, have become an attractive replacement for conventional therapeutic regimens. Herein, we produced optimized Hyp thermosensitive liposomes (Hyp-TSL), self-assembled from DPPC, DSPC, DSPE-PEG2000. Hyp-TSL displayed a hydrodynamic diameter below 100 nm with an adequate encapsulation efficiency of 94.5 % and good colloidal stability. Hyp-TSL exhibited thermal sensitivity over a narrow range with a phase transition temperature of 41.1 °C, in which liposomal destruction was evident in AFM images after elevated temperature above the phase transition temperature. The uptake of TSL-Hyp into MDA-MB-231 cells was significantly increased with hyperthermic treatment of 42 °C when compared to the uptake at a average physiological temperature of 37 °C. Consequent enhancement of cellular reactive oxygen species was observed after hyperthermic treatment at 42 °C. The half-maximal inhibitory concentration of Hyp TSL was reduced by 3.8 fold after hyperthermic treatment at 42 °C in comparison to treatment at 37 °C. Hyp-TSL were considered safe for intravenous applications as compared by hemocompatibility studies, where coagulation time was <50 s and hemolytic potential was <10%. Conclusively, the enhancement in tumor drug availability correlated with improved therapeutic outcomes.
Collapse
Affiliation(s)
- Alice Abu Dayyih
- Department of Pharmaceutics and Biopharmaceutics, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Mohamad Alawak
- Department of Pharmaceutics and Biopharmaceutics, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Abdallah M Ayoub
- Department of Pharmaceutics and Biopharmaceutics, Philipps Universität Marburg, 35037 Marburg, Germany; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Muhammad U Amin
- Department of Pharmaceutics and Biopharmaceutics, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Wael Abu Dayyih
- College of Pharmacy, Mutah University, 61710 Alkarak, Jordan
| | - Konrad Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Lili Duse
- Department of Pharmaceutics and Biopharmaceutics, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Jana Brüßler
- Department of Pharmaceutics and Biopharmaceutics, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, Philipps Universität Marburg, 35037 Marburg, Germany.
| |
Collapse
|
10
|
Moghassemi S, Dadashzadeh A, Azevedo RB, Feron O, Amorim CA. Photodynamic cancer therapy using liposomes as an advanced vesicular photosensitizer delivery system. J Control Release 2021; 339:75-90. [PMID: 34562540 DOI: 10.1016/j.jconrel.2021.09.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/26/2022]
Abstract
The multidisciplinary field of photodynamic therapy (PDT) is a combination of photochemistry and photophysics sciences, which has shown tremendous potential for cancer therapy application. PDT employs a photosensitizing agent (PS) and light to form cytotoxic reactive oxygen species and subsequently oxidize light-exposed tissue. Despite numerous advantages of PDT and enormous progress in this field, common PSs are still far from ideal treatment because of their poor permeability, non-specific phototoxicity, side effects, hydrophobicity, weak bioavailability, and tendency to self-aggregation. To circumvent these limitations, PS can be encapsulated in liposomes, an advanced drug delivery system that has demonstrated the ability to enhance drug permeability into biological membranes and loading both hydrophobic and lipophilic agents. Moreover, liposomes can also be coated by targeting agents to improve delivery efficiency. The present review aims to summarize the principles of PDT, various PS generations, PS-loaded nanoparticles, liposomes, and their impact on PDT, then discuss recent photodynamic cancer therapy strategies using liposomes as PS-loaded vectors, and highlight future possibilities and perspectives.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Ricardo Bentes Azevedo
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Olivier Feron
- Pôle de Pharmacologie et thérapeutique, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christiani A Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
11
|
Ayoub AM, Amin MU, Ambreen G, Dayyih AA, Abdelsalam AM, Somaida A, Engelhardt K, Wojcik M, Schäfer J, Bakowsky U. Photodynamic and antiangiogenic activities of parietin liposomes in triple negative breast cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112543. [DOI: 10.1016/j.msec.2021.112543] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/25/2021] [Accepted: 11/06/2021] [Indexed: 12/22/2022]
|
12
|
Scholte A, Hübner C, Ströhl D, Scheufler O, Czich S, Börke JM, Hildebrand G, Liefeith K. First Isolation and Structure Elucidation of GDNT-β-Glu - Tetraether Lipid Fragment from Archaeal Sulfolobus Strains. ChemistryOpen 2021; 10:889-895. [PMID: 34468091 PMCID: PMC8409090 DOI: 10.1002/open.202100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/10/2021] [Indexed: 11/09/2022] Open
Abstract
Due to their special chemical structure, tetraether lipids (TEL) represent essential elements of archaeal membranes, providing these organisms with extraordinary properties. Here we describe the characterization of a newly isolated structural element of the main lipids. The TEL fragment GDNT-β-Glu was isolated from Sulfolobus metallicus and characterized in terms of its chemical structure by NMR- and MS-investigations. The obtained data are dissimilar to analogically derived established structures - in essence, the binding relationships in the polar head group are re-determined and verified. With this work, we provide an important contribution to the structure elucidation of intact TEL also contained in other Sulfolobus strains such as Solfulobus acidocaldarius and Sulfolobus solfataricus.
Collapse
Affiliation(s)
- Alexander Scholte
- Institute for Bioprocessing and Analytical Measurement TechniquesRosenhof37308Heilbad HeiligenstadtGermany
| | - Christoph Hübner
- Institute for Bioprocessing and Analytical Measurement TechniquesRosenhof37308Heilbad HeiligenstadtGermany
| | - Dieter Ströhl
- Department of ChemistryMartin Luther University Halle-WittenbergKurt-Mothes-Str. 206120HalleGermany
| | | | - Steffen Czich
- Institute for Bioprocessing and Analytical Measurement TechniquesRosenhof37308Heilbad HeiligenstadtGermany
| | - Julia M. Börke
- Institute for Bioprocessing and Analytical Measurement TechniquesRosenhof37308Heilbad HeiligenstadtGermany
| | - Gerhard Hildebrand
- Institute for Bioprocessing and Analytical Measurement TechniquesRosenhof37308Heilbad HeiligenstadtGermany
| | - Klaus Liefeith
- Institute for Bioprocessing and Analytical Measurement TechniquesRosenhof37308Heilbad HeiligenstadtGermany
| |
Collapse
|
13
|
Lehmann J, Agel MR, Engelhardt KH, Pinnapireddy SR, Agel S, Duse L, Preis E, Wojcik M, Bakowsky U. Improvement of Pulmonary Photodynamic Therapy: Nebulisation of Curcumin-Loaded Tetraether Liposomes. Pharmaceutics 2021; 13:pharmaceutics13081243. [PMID: 34452205 PMCID: PMC8397990 DOI: 10.3390/pharmaceutics13081243] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is one of the most common causes for a high number of cancer related mortalities worldwide. Therefore, it is important to improve the therapy by finding new targets and developing convenient therapies. One of these novel non-invasive strategies is the combination of pulmonary delivered tetraether liposomes and photodynamic therapy. In this study, liposomal model formulations containing the photosensitiser curcumin were nebulised via two different technologies, vibrating-mesh nebulisation and air-jet nebulisation, and compared with each other. Particle size and ζ-potential of the liposomes were investigated using dynamic light scattering and laser Doppler anemometry, respectively. Furthermore, atomic force microscopy and transmission electron microscopy were used to determine the morphological characteristics. Using a twin glass impinger, suitable aerodynamic properties were observed, with the fine particle fraction of the aerosols being ≤62.7 ± 1.6%. In vitro irradiation experiments on lung carcinoma cells (A549) revealed an excellent cytotoxic response of the nebulised liposomes in which the stabilisation of the lipid bilayer was the determining factor. Internalisation of nebulised curcumin-loaded liposomes was visualised utilising confocal laser scanning microscopy. Based on these results, the pulmonary application of curcumin-loaded tetraether liposomes can be considered as a promising approach for the photodynamic therapy against lung cancer.
Collapse
Affiliation(s)
- Jennifer Lehmann
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (J.L.); (M.R.A.); (K.H.E.); (S.R.P.); (L.D.); (E.P.); (M.W.)
| | - Michael R. Agel
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (J.L.); (M.R.A.); (K.H.E.); (S.R.P.); (L.D.); (E.P.); (M.W.)
| | - Konrad H. Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (J.L.); (M.R.A.); (K.H.E.); (S.R.P.); (L.D.); (E.P.); (M.W.)
| | - Shashank R. Pinnapireddy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (J.L.); (M.R.A.); (K.H.E.); (S.R.P.); (L.D.); (E.P.); (M.W.)
| | - Sabine Agel
- Imaging Unit, Biomedical Research Center (BFS), University of Giessen, Schubertstr. 81, 35392 Giessen, Germany;
| | - Lili Duse
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (J.L.); (M.R.A.); (K.H.E.); (S.R.P.); (L.D.); (E.P.); (M.W.)
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (J.L.); (M.R.A.); (K.H.E.); (S.R.P.); (L.D.); (E.P.); (M.W.)
| | - Matthias Wojcik
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (J.L.); (M.R.A.); (K.H.E.); (S.R.P.); (L.D.); (E.P.); (M.W.)
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (J.L.); (M.R.A.); (K.H.E.); (S.R.P.); (L.D.); (E.P.); (M.W.)
- Correspondence:
| |
Collapse
|
14
|
Preis E, Schulze J, Gutberlet B, Pinnapireddy SR, Jedelská J, Bakowsky U. The chorioallantoic membrane as a bio-barrier model for the evaluation of nanoscale drug delivery systems for tumour therapy. Adv Drug Deliv Rev 2021; 174:317-336. [PMID: 33905805 DOI: 10.1016/j.addr.2021.04.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/29/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
In 2010, the European Parliament and the European Union adopted a directive on the protection of animals used for scientific purposes. The directive aims to protect animals in scientific research, with the final goal of complete replacement of procedures on live animals for scientific and educational purposes as soon as it is scientifically viable. Furthermore, the directive announces the implementation of the 3Rs principle: "When choosing methods, the principles of replacement, reduction and refinement should be implemented through a strict hierarchy of the requirement to use alternative methods." The visibility, accessibility, and the rapid growth of the chorioallantoic membrane (CAM) offers a clear advantage for various manipulations and for the simulation of different Bio-Barriers according to the 3R principle. The extensive vascularisation on the CAM provides an excellent substrate for the cultivation of tumour cells or tumour xenografts which could be used for the therapeutic evaluation of nanoscale drug delivery systems. The tumour can be targeted either by topical application, intratumoural injection or i.v. injection. Different application sites and biological barriers can be examined within a single model.
Collapse
Affiliation(s)
- Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Jan Schulze
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Bernd Gutberlet
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Shashank Reddy Pinnapireddy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; CSL Behring Innovation GmbH, Emil-von-Behring-Str. 76, 35041 Marburg, Germany
| | - Jarmila Jedelská
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; Center for Tumor Biology and Immunology, Core Facility for Small Animal MRI, Hans-Meerwein Str. 3, 35043 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| |
Collapse
|
15
|
Gruhle K, Tuchtenhagen M, Müller S, Hause G, Meister A, Drescher S. Synthesis and aggregation behaviour of single-chain, 1,32-alkyl-branched bis(phosphocholines) - part 2: lateral chain length triggers self-assembling from sheets to fibres to vesicles. Org Biomol Chem 2021; 18:3585-3598. [PMID: 32347287 DOI: 10.1039/d0ob00534g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Six single-chain, 1,32-alkyl-branched bis(phosphocholines) PC-C32(1,32Cm)-PC have been synthesized as model lipids for naturally occurring archaeal membrane lipids. The preparation of these bipolar amphiphiles bearing lateral alkyl chains of different lengths (C4-C15) was realized using a Cu-catalyzed Grignard bis-coupling reaction of various primary alkyl-branched bromides as side parts and a 1,22-dibromide as the centre part. The aggregation behaviour of these bolalipids in water was initially investigated by differential scanning calorimetry and transmission electron microscopy. As a main result, the types of aggregates found and their stability upon heating were strongly connected to the length of the lateral alkyl chain of the bolalipid: short and long lateral chains led to lamellar structures, whereas side chains of medium length led to fibrous aggregates. In future, these bolalipids could be used to produce tailored and stabilized liposomes for oral drug delivery.
Collapse
Affiliation(s)
- Kai Gruhle
- Institute of Pharmacy - Biophysical Pharmacy, Martin Luther University (MLU), Wolfgang-Langenbeck-Strasse 4, 01620 Halle (Saale), Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Membrane properties of amacrocyclic tetraether bisphosphatidylcholine lipid: Effect of a single membrane-spanning polymethylene cross-linkage between two head groups of ditetradecylphosphatidylcholine membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183569. [PMID: 33549531 DOI: 10.1016/j.bbamem.2021.183569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 11/23/2022]
Abstract
The plasma membranes of archaea are abundant in macrocyclic tetraether lipids that contain a single or double long transmembrane hydrocarbon chains connecting the two glycerol backbones at both ends. In this study, a novel amacrocyclic bisphosphatidylcholine lipid bearing a single membrane-spanning octacosamethylene chain, 1,1'-O-octacosamethylene-2,2'-di-O-tetradecyl-bis-(sn-glycero)-3,3'-diphosphocholine (AC-(di-O-C14PC)2), was synthesized to elucidate effects of the interlayer cross-linkage on membrane properties based on comparison with its corresponding diether phosphatidylcholine, 1,2-di-O-tetradecyl-sn-glycero-3-phosphocholine (DTPC), that forms bilayer membrane. Several physicochemical techniques demonstrated that while AC-(di-O-C14PC)2 monolayer, which adopts a particularly high-ordered structure in the gel phase, shows remarkably high thermotropic transition temperature compared to DTPC bilayer, the fluidity of both phospholipids above the transition temperature is comparable. Nonetheless, the fluorescent dye leakage from inside the AC-(di-O-C14PC)2 vesicles in the fluid phase is highly suppressed. The origin of the membrane properties characteristic of AC-(di-O-C14PC)2 monolayer is discussed in terms of the single long transmembrane hydrophobic linkage and the diffusional motion of the lipid molecules.
Collapse
|
17
|
Uhl P, Sauter M, Hertlein T, Witzigmann D, Laffleur F, Hofhaus G, Fidelj V, Tursch A, Özbek S, Hopke E, Haberkorn U, Bernkop‐Schnürch A, Ohlsen K, Fricker G, Mier W. Overcoming the Mucosal Barrier: Tetraether Lipid‐Stabilized Liposomal Nanocarriers Decorated with Cell‐Penetrating Peptides Enable Oral Delivery of Vancomycin. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Philipp Uhl
- Department of Nuclear Medicine Heidelberg University Hospital Heidelberg 69120 Germany
| | - Max Sauter
- Department of Nuclear Medicine Heidelberg University Hospital Heidelberg 69120 Germany
- Department of Clinical Pharmacology and Pharmacoepidemiology Heidelberg University Hospital Heidelberg 69120 Germany
| | - Tobias Hertlein
- Institute for Molecular Infection Biology University of Würzburg Würzburg 97080 Germany
| | - Dominik Witzigmann
- Department of Biochemistry and Molecular Biology University of British Columbia Vancouver British Columbia V6T 1Z3 Canada
| | - Flavia Laffleur
- Department of Pharmaceutical Technology Institute of Pharmacy Center for Molecular Biosciences Innsbruck University of Innsbruck Innsbruck 6020 Austria
| | - Götz Hofhaus
- Bioquant, CellNetWorks University of Heidelberg Heidelberg 69120 Germany
| | - Veronika Fidelj
- Institute of Pharmacy and Molecular Biotechnology Department of Pharmaceutical Technology and Biopharmacy Ruprecht‐Karls University Heidelberg 69120 Germany
| | - Anja Tursch
- Centre for Organismal Studies Department of Molecular Evolution and Genomics University of Heidelberg Heidelberg 69120 Germany
| | - Suat Özbek
- Centre for Organismal Studies Department of Molecular Evolution and Genomics University of Heidelberg Heidelberg 69120 Germany
| | - Elisa Hopke
- Institute for Molecular Infection Biology University of Würzburg Würzburg 97080 Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine Heidelberg University Hospital Heidelberg 69120 Germany
| | - Andreas Bernkop‐Schnürch
- Department of Pharmaceutical Technology Institute of Pharmacy Center for Molecular Biosciences Innsbruck University of Innsbruck Innsbruck 6020 Austria
| | - Knut Ohlsen
- Institute for Molecular Infection Biology University of Würzburg Würzburg 97080 Germany
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology Department of Pharmaceutical Technology and Biopharmacy Ruprecht‐Karls University Heidelberg 69120 Germany
| | - Walter Mier
- Department of Nuclear Medicine Heidelberg University Hospital Heidelberg 69120 Germany
| |
Collapse
|
18
|
Hughes JR, Miller AS, Wallace CE, Vemuri GN, Iovine PM. Biomedically Relevant Applications of Bolaamphiphiles and Bolaamphiphile-Containing Materials. Front Chem 2021; 8:604151. [PMID: 33553103 PMCID: PMC7855593 DOI: 10.3389/fchem.2020.604151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/15/2020] [Indexed: 12/28/2022] Open
Abstract
Bolaamphiphiles (BAs) are structurally segmented molecules with rich assembly characteristics and diverse physical properties. Interest in BAs as standalone active agents or as constituents of more complex therapeutic formulations has increased substantially in recent years. The preorganized amphiphilicity of BAs allows for a range of biological activities including applications that rely on multivalency. This review summarizes BA-related research in biomedically relevant areas. In particular, we review BA-related literature in four areas: gene delivery, antimicrobial materials, hydrogels, and prodrugs. We also discuss several distinguishing characteristics of BAs that impact their utility as biomedically relevant compounds.
Collapse
Affiliation(s)
| | | | | | | | - Peter M. Iovine
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA, United States
| |
Collapse
|
19
|
Liu R, Gao Y, Liu N, Suo Y. Nanoparticles loading porphyrin sensitizers in improvement of photodynamic therapy for ovarian cancer. Photodiagnosis Photodyn Ther 2020; 33:102156. [PMID: 33352314 DOI: 10.1016/j.pdpdt.2020.102156] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/15/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ovarian cancer, the malignant tumor with the highest mortality rate in gynecological tumors, leads to a poor prognosis due to tumor metastasis. At present, the main treatment for ovarian cancer is the combination of cytoreduction surgery and chemotherapy. But the surgery is insufficient to solve the extensive transfer of tumor in the abdominal cavity and a large proportion of ovarian cancer cases have shown resistance to chemotherapy. Photodynamic therapy (PDT) is a viable treatment option for a wide range of applications, especially in malignant tumors. Porphyrin sensitizers, as the most widely used photosensitive agents, have the following advantages: short photosensitive period and high singlet oxygen production. However, most studies have found that it is difficult to achieve high loading rates of photosensitive agents, thus effective concentration in target tissue is suboptimal and the lethal ability is greatly reduced. In this article, we review several studies that nanoparticles loading porphyrin sensitizers for photodynamic therapy of ovarian cancer. METHODS We collected relevant literature from PUBMED and reviewed their research content. RESULTS The application of nanotechnology to PDT in ovarian cancer can reduce the non-specific toxicity of photosensitive agents and increase stability and delivery efficiency. CONCLUSIONS The combination with nanotechnology can cover the shortcomings of photodynamic therapy, but the specific efficacy still needs a large number of experiments to prove.
Collapse
Affiliation(s)
- Rui Liu
- Obstetrics and Gynaecology, Shanxi Provincial Peoples Hospital, Taiyuan, China.
| | - Yanxia Gao
- Obstetrics and Gynaecology, Shanxi Provincial Peoples Hospital, Taiyuan, China.
| | - Nannan Liu
- Obstetrics and Gynaecology, Shanxi Provincial Peoples Hospital, Taiyuan, China.
| | - Yuping Suo
- Obstetrics and Gynaecology, Shanxi Provincial Peoples Hospital, Taiyuan, China.
| |
Collapse
|
20
|
Alawak M, Abu Dayyih A, Mahmoud G, Tariq I, Duse L, Goergen N, Engelhardt K, Reddy Pinnapireddy S, Jedelská J, Awak M, König AM, Brüßler J, Bartsch JW, Bakowsky U. ADAM 8 as a novel target for doxorubicin delivery to TNBC cells using magnetic thermosensitive liposomes. Eur J Pharm Biopharm 2020; 158:390-400. [PMID: 33338603 DOI: 10.1016/j.ejpb.2020.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/21/2020] [Accepted: 12/13/2020] [Indexed: 01/04/2023]
Abstract
Metastatic breast cancer is one of the most common causes of cancer-related death in women worldwide. The transmembrane metalloprotease-disintegrin (ADAM8) protein is highly overexpressed in triple-negative breast cancer (TNBC) cells and potentiates tumor cell invasion and extracellular matrix remodeling. Exploiting the high expression levels of ADAM8 in TNBC cells by delivering anti-ADAM8 antibodies efficiently to the targeted site can be a promising strategy for therapy of TNBC. For instance, a targeted approach with the aid of ultra-high field magnetic resonance imaging (UHF-MRI) activatable thermosensitive liposomes (LipTS-GD) could specifically increase the intracellular accumulation of cytotoxic drugs. The surface of doxorubicin-loaded LipTS-GD was modified by covalent coupling of MAB1031 antibody (LipTS-GD-MAB) in order to target the overexpressed ADAM8 in ADAM8 positive MDA-MB-231 cells. Physicochemical characterization of these liposomes was performed using size, surface morphology and UHF-MRI imaging analysis. In vitro cell targeting was investigated by the washing and circulation method. Intracellular trafficking and lysosomal colocalization were assessed by fluorescence microscopy. Cell viability, biocompatibility and in-ovo CAM assays were performed to determine the effectiveness and safety profiles of liposome formulations. Our results show specific binding and induction of doxorubicin release after LipTS-GD-MAB treatment caused a higher cytotoxic effect at the cellular target site.
Collapse
Affiliation(s)
- Mohamad Alawak
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Alice Abu Dayyih
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Gihan Mahmoud
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Ain Helwan, 11795 Cairo, Egypt
| | - Imran Tariq
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany; Punjab University College of Pharmacy, University of the Punjab, 54000 Lahore, Pakistan
| | - Lili Duse
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Nathalie Goergen
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Konrad Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | | | - Jarmila Jedelská
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Muhannad Awak
- Department of Neurosurgery, Wolfsburg Hospital, 38440 Wolfsburg, Germany
| | - Alexander M König
- Department of Diagnostic and Interventional Radiology, University of Marburg, 35032 Marburg, Germany
| | - Jana Brüßler
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, University of Marburg, University Hospital Marburg, 35032 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany.
| |
Collapse
|
21
|
Ambreen G, Duse L, Tariq I, Ali U, Ali S, Pinnapireddy SR, Bette M, Bakowsky U, Mandic R. Sensitivity of Papilloma Virus-Associated Cell Lines to Photodynamic Therapy with Curcumin-Loaded Liposomes. Cancers (Basel) 2020; 12:cancers12113278. [PMID: 33167593 PMCID: PMC7694491 DOI: 10.3390/cancers12113278] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Globally, the burden of papilloma virus-associated cancers is high. About 5% of all cancers worldwide are caused by the human papillomavirus (HPV). Photodynamic therapy (PDT) is considered as a useful therapeutic option to treat cancers, particularly those near the tissue surface, since it is typically well tolerated and less invasive with a lower risk of severe complications as compared to conventional treatment strategies. PDT requires the combination of a photosensitizer, light of a specific wavelength, and tissue oxygen. In the present study, we examined the effectiveness of PDT together with a curcumin (liposome)-based photosensitizer in three papilloma virus-associated cell lines. PDT with curcumin liposomes could inhibit proliferation, cell migration, and colony formation of the tested tumor cells. The results suggest that curcumin-encapsulated liposomes in conjunction with PDT could be a useful tool for the treatment of papilloma virus-associated tumors. Abstract Photodynamic therapy (PDT) is a minimally invasive therapeutic approach used in the treatment of various medical conditions and cancerous diseases, involving light, a photosensitizing substance, and oxygen. Curcumin, a naturally occurring compound, carries antitumor activities and potentially could be exploited as a photosensitizer in PDT. Only little is known about liposomal-encapsulated curcumin that could help in increasing the efficacy, stability, and bioavailability of this compound. This study investigates the in vitro effects of curcumin-loaded liposomes in combination with PDT. Three papilloma virus-associated cell lines were treated with curcumin-loaded liposomes corresponding to a curcumin concentration of 0–100 µmol/L for 4 h followed by illumination at 457 nm (blue) for 45, 136, and 227 s at a fluence of 220.2 W/m2 (100 mA) corresponding to 1, 3 and 5 J·cm−2. After 24 h, the biological outcome of the treatment was assessed with the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), SYTO9/PI (propidium iodide), Annexin V-FITC (fluorescein isothiocyanate)/PI, clonogenic survival, and scratch (wound closure) assays. Photoactivation of curcumin-loaded liposomes led to a significant reduction in colony formation and migratory abilities, as well as to an increase in tumor cell death. The results point to the combination of curcumin-loaded liposomes with PDT as a potentially useful tool for the treatment of papillomavirus-associated malignancies.
Collapse
Affiliation(s)
- Ghazala Ambreen
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, 35037 Marburg, Germany; (G.A.); (L.D.); (I.T.); (U.A.); (S.A.); (S.R.P.)
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, 35033 Marburg, Germany
| | - Lili Duse
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, 35037 Marburg, Germany; (G.A.); (L.D.); (I.T.); (U.A.); (S.A.); (S.R.P.)
| | - Imran Tariq
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, 35037 Marburg, Germany; (G.A.); (L.D.); (I.T.); (U.A.); (S.A.); (S.R.P.)
- Punjab University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, 54000 Lahore, Pakistan
| | - Uzma Ali
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, 35037 Marburg, Germany; (G.A.); (L.D.); (I.T.); (U.A.); (S.A.); (S.R.P.)
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, 35033 Marburg, Germany
| | - Sajid Ali
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, 35037 Marburg, Germany; (G.A.); (L.D.); (I.T.); (U.A.); (S.A.); (S.R.P.)
- Faculty of Pharmacy, The University of Lahore, 54000 Lahore, Pakistan
| | - Shashank R. Pinnapireddy
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, 35037 Marburg, Germany; (G.A.); (L.D.); (I.T.); (U.A.); (S.A.); (S.R.P.)
- CSL Behring GmbH, 35041 Marburg, Germany
| | - Michael Bette
- Institute of Anatomy and Cell Biology, Philipps-Universität Marburg, 35037 Marburg, Germany;
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, 35037 Marburg, Germany; (G.A.); (L.D.); (I.T.); (U.A.); (S.A.); (S.R.P.)
- Correspondence: (U.B.); (R.M.); Tel.: +4964212825884 (U.B.); +4964215861400 (R.M.)
| | - Robert Mandic
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, 35033 Marburg, Germany
- Correspondence: (U.B.); (R.M.); Tel.: +4964212825884 (U.B.); +4964215861400 (R.M.)
| |
Collapse
|
22
|
Alawak M, Mahmoud G, Dayyih AA, Duse L, Pinnapireddy SR, Engelhardt K, Awak I, Wölk C, König AM, Brüßler J, Bakowsky U. Magnetic resonance activatable thermosensitive liposomes for controlled doxorubicin delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111116. [PMID: 32600717 DOI: 10.1016/j.msec.2020.111116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/19/2020] [Accepted: 05/23/2020] [Indexed: 01/10/2023]
Abstract
To limit the massive cytotoxicity of chemotherapeutic agents, it is desirable to establish an appropriate subtle blend of formulation design based on a dual-responsive strategy. In this study, a combined therapeutic platform based on magnetic thermosensitive liposomes (LipTS-GD) was developed. The incorporation of chelated-gadolinium imparted magnetic properties to thermosensitive liposomes (LipTS). The application of an ultra high field magnetic resonance imaging (UHF-MRI) induced hyperthermia, thus provided an improved chemotherapeutic effect of Doxorubicin (DOX). The paramagnetic platform demonstrated thermal sensitivity over a narrow temperature range starting at 37.8 °C, hence the release of DOX from LipTS-GD can be well triggered by inducing hyperthermia using UHF-MRI application. The prepared LipTS-GD were below 200 nm in diameter and an adequate release of DOX reaching 68% was obtained after 1 h UHF-MRI exposure. Profoundly, triple-negative breast cancer (TNBC) cells that were treated with LipTS-GD and subjected thereafter to UHF-MRI exposure for 60 min showed 36% viability. Hemocompatibility studies of LipTS-GD showed a physiological coagulation time and minimal hemolytic potential. Conclusively, LipTS-GD guided local delivery of DOX to solid tumors will potentially raise the therapeutic index, thus reducing the required dose and frequency of DOX administered systemically without influencing the adjacent tissues.
Collapse
Affiliation(s)
- Mohamad Alawak
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Gihan Mahmoud
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Ain Helwan, 11795 Cairo, Egypt
| | - Alice Abu Dayyih
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Lili Duse
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | | | - Konrad Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | | | - Christian Wölk
- Martin Luther University Halle-Wittenberg, Institute of Pharmacy, 06120 Halle, Germany
| | - Alexander M König
- Department of Diagnostic and Interventional Radiology, University of Marburg, 35032 Marburg, Germany
| | - Jana Brüßler
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany.
| |
Collapse
|
23
|
The Cell Membrane of Sulfolobus spp.-Homeoviscous Adaption and Biotechnological Applications. Int J Mol Sci 2020; 21:ijms21113935. [PMID: 32486295 PMCID: PMC7312580 DOI: 10.3390/ijms21113935] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/20/2022] Open
Abstract
The microbial cell membrane is affected by physicochemical parameters, such as temperature and pH, but also by the specific growth rate of the host organism. Homeoviscous adaption describes the process of maintaining membrane fluidity and permeability throughout these environmental changes. Archaea, and thereby, Sulfolobus spp. exhibit a unique lipid composition of ether lipids, which are altered in regard to the ratio of diether to tetraether lipids, number of cyclopentane rings and type of head groups, as a coping mechanism against environmental changes. The main biotechnological application of the membrane lipids of Sulfolobus spp. are so called archaeosomes. Archaeosomes are liposomes which are fully or partly generated from archaeal lipids and harbor the potential to be used as drug delivery systems for vaccines, proteins, peptides and nucleic acids. This review summarizes the influence of environmental parameters on the cell membrane of Sulfolobus spp. and the biotechnological applications of their membrane lipids.
Collapse
|
24
|
Wavelength dependent photo-cytotoxicity to ovarian carcinoma cells using temoporfin loaded tetraether liposomes as efficient drug delivery system. Eur J Pharm Biopharm 2020; 150:50-65. [DOI: 10.1016/j.ejpb.2020.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 01/10/2023]
|
25
|
Yang M, Yang T, Mao C. Enhancement of Photodynamic Cancer Therapy by Physical and Chemical Factors. Angew Chem Int Ed Engl 2019; 58:14066-14080. [PMID: 30663185 PMCID: PMC6800243 DOI: 10.1002/anie.201814098] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Indexed: 12/25/2022]
Abstract
The viable use of photodynamic therapy (PDT) in cancer therapy has never been fully realized because of its undesirable effects on healthy tissues. Herein we summarize some physicochemical factors that can make PDT a more viable and effective option to provide future oncological patients with better-quality treatment options. These physicochemical factors include light sources, photosensitizer (PS) carriers, microwaves, electric fields, magnetic fields, and ultrasound. This Review is meant to provide current information pertaining to PDT use, including a discussion of in vitro and in vivo studies. Emphasis is placed on the physicochemical factors and their potential benefits in overcoming the difficulty in transitioning PDT into the medical field. Many advanced techniques, such as employing X-rays as a light source, using nanoparticle-loaded stem cells and bacteriophage bio-nanowires as a photosensitizer carrier, as well as integration with immunotherapy, are among the future directions.
Collapse
Affiliation(s)
- Mingying Yang
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Chuanbin Mao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| |
Collapse
|
26
|
Bhatta A, Krishnamoorthy G, Marimuthu N, Dihingia A, Manna P, Biswal HT, Das M, Krishnamoorthy G. Chlorin e6 decorated doxorubicin encapsulated chitosan nanoparticles for photo-controlled cancer drug delivery. Int J Biol Macromol 2019; 136:951-961. [DOI: 10.1016/j.ijbiomac.2019.06.127] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/09/2019] [Accepted: 06/17/2019] [Indexed: 11/28/2022]
|
27
|
Kałas W, Wysokińska E, Przybyło M, Langner M, Ulatowska-Jarża A, Biały D, Wawrzyńska M, Zioło E, Gil W, Trzeciak AM, Podbielska H, Kopaczyńska M. Photoactive Liposomal Formulation of PVP-Conjugated Chlorin e6 for Photodynamic Reduction of Atherosclerotic Plaque. Int J Mol Sci 2019; 20:ijms20163852. [PMID: 31394775 PMCID: PMC6721124 DOI: 10.3390/ijms20163852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/24/2019] [Accepted: 08/03/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Liposomes serve as delivery systems for biologically active compounds. Existing technologies inefficiently encapsulate large hydrophilic macromolecules, such as PVP-conjugated chlorin e6 (Photolon). This photoactive drug has been widely tested for therapeutic applications, including photodynamic reduction of atherosclerotic plaque. Methods: A novel formulation of Photolon was produced using “gel hydration technology”. Its pharmacokinetics was tested in Sus scrofa f. domestica. Its cellular uptake, cytotoxicity, and ability to induce a phototoxic reaction were demonstrated in J774A.1, RAW264.7 macrophages, and vascular smooth muscle (T/G HA-VSMC) as well as in vascular endothelial (HUVEC) cells. Results: Developed liposomes had an average diameter of 124.7 ± 0.6 nm (polydispersity index (PDI) = 0.055) and contained >80% of Photolon). The half-life of formulation in S. scrofa was 20 min with area under the curve (AUC) equal to 14.7. The formulation was noncytotoxic in vitro and was rapidly (10 min) and efficiently accumulated by macrophages, but not T/G HA-VSMC or HUVEC. The accumulated quantity of photosensitizer was sufficient for induction of phototoxicity in J774A.1, but not in T/G HA-VSMC. Conclusions: Due to the excellent physical and pharmacokinetic properties and selectivity for macrophages, the novel liposomal formulation of Photolon is a promising therapeutic candidate for use in arteriosclerosis treatment when targeting macrophages but not accompanying vascular tissue is critical for effective and safe therapy.
Collapse
Affiliation(s)
- Wojciech Kałas
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, PAS, R. Weigla 12, 53-114 Wrocław, Poland.
| | - Edyta Wysokińska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, PAS, R. Weigla 12, 53-114 Wrocław, Poland
| | - Magdalena Przybyło
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
| | - Marek Langner
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
| | - Agnieszka Ulatowska-Jarża
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
| | - Dariusz Biały
- Department and Clinic of Cardiology, Borowska 213, 50-556 Wrocław, Poland
| | - Magdalena Wawrzyńska
- Department of Emergency Medical Service, Wroclaw Medical University, Parkowa 34, 51-616 Wrocław, Poland
| | - Ewa Zioło
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, PAS, R. Weigla 12, 53-114 Wrocław, Poland
| | - Wojciech Gil
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-383 Wrocław, Poland
| | - Anna M Trzeciak
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-383 Wrocław, Poland
| | - Halina Podbielska
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
| | - Marta Kopaczyńska
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
28
|
Yang M, Yang T, Mao C. Optimierung photodynamischer Krebstherapien auf der Grundlage physikalisch‐chemischer Faktoren. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mingying Yang
- College of Animal Science Zhejiang University Hangzhou Zhejiang 310058 China
| | - Tao Yang
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 China
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center Institute for Biomedical Engineering, Science and Technology University of Oklahoma 101 Stephenson Parkway Norman OK 73019 USA
| |
Collapse
|
29
|
Goergen N, Wojcik M, Drescher S, Pinnapireddy SR, Brüßler J, Bakowsky U, Jedelská J. The Use of Artificial Gel Forming Bolalipids as Novel Formulations in Antimicrobial and Antifungal Therapy. Pharmaceutics 2019; 11:E307. [PMID: 31266209 PMCID: PMC6680875 DOI: 10.3390/pharmaceutics11070307] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 12/23/2022] Open
Abstract
The alarming growth of multi-drug resistant bacteria has led to a quest for alternative antibacterial therapeutics. One strategy to circumvent the already existing resistance is the use of photodynamic therapy. Antimicrobial photodynamic therapy (aPDT) involves the use of non-toxic photosensitizers in combination with light and in situ oxygen to generate toxic radical species within the microbial environment which circumvents the resistance building mechanism of the bacteria. Hydrogels are used ubiquitously in the biological and pharmaceutical fields, e.g., for wound dressing material or as drug delivery systems. Hydrogels formed by water-insoluble low-molecular weight gelators may potentially provide the much-needed benefits for these applications. Bolalipids are a superior example of such gelators. In the present work, two artificial bolalipids were used, namely PC-C32-PC and Me2PE-C32-Me2PE, which self-assemble in water into long and flexible nanofibers leading to a gelation of the surrounding solvent. The aim of the study was to create stable hydrogel formulations of both bolalipids and to investigate their applicability as a novel material for drug delivery systems. Furthermore, methylene blue-a well-known photosensitizer-was incorporated into the hydrogels in order to investigate the aPDT for the treatment of skin and mucosal infections using a custom designed LED device.
Collapse
Affiliation(s)
- Nathalie Goergen
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Matthias Wojcik
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Simon Drescher
- Institute of Pharmacy, Biophysical Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
| | | | - Jana Brüßler
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Jarmila Jedelská
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany.
| |
Collapse
|
30
|
Development of inhalable curcumin loaded Nano-in-Microparticles for bronchoscopic photodynamic therapy. Eur J Pharm Sci 2019; 132:63-71. [PMID: 30797026 DOI: 10.1016/j.ejps.2019.02.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/05/2019] [Accepted: 02/16/2019] [Indexed: 12/18/2022]
Abstract
Photodynamic therapy is amongst the most rapidly developing therapeutic strategies against cancer. However, most photosensitizers are administered intravenously with very few reports about pulmonary applications. To address this issue, an inhalable formulation consisting of nanoparticles loaded with photosensitizer (i.e. curcumin) was developed. The nanoparticles were prepared using nanoprecipitation method. Dynamic light scattering measurements of the curcumin loaded nanoparticles revealed a hydrodynamic diameter of 181.20 ± 11.52 nm. In vitro irradiation experiments with human lung epithelial carcinoma cells (A549) showed a selective cellular toxicity of the nanoparticles upon activation using LED irradiating device. Moreover, curcumin nanoparticles exhibited a dose-dependent photocytotoxicity and the IC50 values of curcumin were directly dependent on the radiation fluence used. The nanoparticles were subsequently spray dried using mannitol as a stabilizer to produce Nano-in-Microparticles with appropriate aerodynamic properties for a sufficient deposition in the lungs. This was confirmed using the next generation impactor, which revealed a large fine particle fraction (64.94 ± 3.47%) and a mass median aerodynamic diameter of 3.02 ± 0.07 μm. Nano-in-Microparticles exhibited a good redispersibility and disintegrated into the original nanoparticles upon redispersion in aqueous medium. The Langmuir monolayer experiments revealed an excellent compatibility of the nanoparticles with the lung surfactant. Results from this study showed that the Nano-in-Microparticles are promising drug carriers for the photodynamic therapy of lung cancer.
Collapse
|
31
|
Gruhle K, Müller S, Meister A, Drescher S. Synthesis and aggregation behaviour of single-chain, 1,32-alkyl branched bis(phosphocholines): effect of lateral chain length. Org Biomol Chem 2019; 16:2711-2724. [PMID: 29589028 DOI: 10.1039/c8ob00424b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Three novel single-chain bis(phosphocholines) bearing two lateral alkyl chains of variable length next to the headgroup have been synthesized as model lipids for naturally occurring archaeal membrane lipids. The synthesis was realized using the Cu-catalyzed Grignard bis-coupling reaction of a primary bromide as a side part and a 1,ω-dibromide as a centre part. We could show that the aggregation behaviour of the resulting bolalipids strongly depends on the length of the lateral alkyl chain: the C3-branched bolalipid self-assembles into lamellar sheets, whereas the C6- and C9-analogues form nanofibres. The lamella-forming bolalipids could be used in the future to prepare stable and tailored liposomes for oral drug delivery.
Collapse
Affiliation(s)
- K Gruhle
- Institute of Pharmacy, Biophysical Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany.
| | | | | | | |
Collapse
|
32
|
Mahmoud G, Jedelská J, Omar SM, Strehlow B, Schneider M, Bakowsky U. Stabilized tetraether lipids based particles guided prophyrins photodynamic therapy. Drug Deliv 2018; 25:1526-1536. [PMID: 29996694 PMCID: PMC6058496 DOI: 10.1080/10717544.2018.1482970] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 11/11/2022] Open
Abstract
Photodynamic therapy (PDT) that involves ergonomically delivered light in the presence of archetypical photosensitizer such as Protoporphyrin IX (PpIX) is a time-honored missile strategy in cancer therapeutics. Yet, the premature release of PpIX is one of the most abundant dilemma encounters the therapeutic outcomes of PDT due to associated toxicity and redistribution to serum proteins. In this study, ultrastable tetraether lipids (TELs) based liposomes were developed. PpIX molecules were identified to reside physically in the monolayer; thereby the inherent π-π stacking that leads to aggregation of PpIX in aqueous milieu was dramatically improved. TEL29.9 mol% and TEL62mol% based liposomes revealed PpIX sustained release diffusion pattern from spherical particles as confirmed by converged fitting to Baker & Lonsdale model. Stability in presence of human serum albumins, a key element for PDT accomplishment was emphasized. The epitome candidates were selected for vascular photodynamic (vPDT) in in-Ovo chick chorioallantoic membrane. Profoundly, TEL62mol% based liposomes proved to be the most effective liposomes that demonstrated localized effect within the irradiated area without eliciting quiescent vasculatures damages. Cellular photodynamic therapy (cPDT) revealed that various radiant exposure doses of 134, 202, 403 or 672 mJ.cm-2 could deliberately modulate the photo-responses of PpIX in TEL-liposomes.
Collapse
Affiliation(s)
- Gihan Mahmoud
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Jarmila Jedelská
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
| | - Samia Mohamed Omar
- Department of Pharmaceutics, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Boris Strehlow
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
| |
Collapse
|
33
|
Müller S, Kind M, Gruhle K, Hause G, Meister A, Drescher S. Mixing behaviour of bilayer-forming phosphatidylcholines with single-chain alkyl-branched bolalipids: effect of lateral chain length. Biophys Chem 2018; 244:1-10. [PMID: 30388712 DOI: 10.1016/j.bpc.2018.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/08/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022]
Abstract
Liposomes are a promising class of drug delivery vehicles. However, no liposomal formulation has been approved for an oral application so far, due to stability issues of the liposomes in the gastrointestinal tract. Herein, we investigate the miscibility of three novel single-chain alkyl-branched bolalipids PC-C32(1,32Cn)-PC (n = 3, 6, 9) with either saturated or unsaturated phosphatidylcholines by means of differential scanning calorimetry (DSC), transmission electron microscopy (TEM) of stained samples, vitrified specimens, or replica of freeze-fractured samples, and dynamic light scattering (DLS). The novel bolalipids contain lateral alkyl chains of different length in 1- and 32-position of the long membrane-spanning C32 alkyl chain. We will show for the first time that these single-chain alkyl-branched bolalipids show a miscibility with bilayer-forming phospholipids-by maintaining the vesicular aggregate structure-due to the lateral alkyl substituents located next to the phosphocholine headgroup of the bolalipid. We are convinced that these alkyl side chains are able to fill the void volume, which is created when unmodified single-chain bolalipids are inserted in a transmembrane fashion into a phospholipid bilayer. Consequently, the miscibility of our alkyl-chained bolalipids with bilayer-forming phospholipids rose with increasing lengths of the lateral alkyl chain of the bolalipid. Finally, we were successful in preparing liposomes from various bolalipid/phospholipid mixtures, which were stable in size upon storage for at least 21 days. These mixed liposomes (bolasomes) could be used as oral drug delivery systems in the near future.
Collapse
Affiliation(s)
- Sindy Müller
- Institute of Pharmacy, Biophysical Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, Halle (Saale) 06120, Germany
| | - Maximilian Kind
- Institute of Pharmacy, Biophysical Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, Halle (Saale) 06120, Germany
| | - Kai Gruhle
- Institute of Pharmacy, Biophysical Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, Halle (Saale) 06120, Germany
| | - Gerd Hause
- Biocenter, MLU Halle-Wittenberg, Weinbergweg 22, Halle (Saale) 06120, Germany
| | - Annette Meister
- HALOmem and Institute of Biochemistry and Biotechnology, MLU Halle-Wittenberg, Kurt-Mothes-Str. 3a, Halle (Saale) 06120, Germany
| | - Simon Drescher
- Institute of Pharmacy, Biophysical Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, Halle (Saale) 06120, Germany.
| |
Collapse
|
34
|
Müller S, Meister A, Otto C, Hause G, Drescher S. Mixing behaviour of asymmetrical glycerol diether bolalipids with saturated and unsaturated phosphatidylcholines. Biophys Chem 2018; 238:39-48. [DOI: 10.1016/j.bpc.2018.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/17/2018] [Accepted: 04/21/2018] [Indexed: 12/17/2022]
|
35
|
Duse L, Pinnapireddy SR, Strehlow B, Jedelská J, Bakowsky U. Low level LED photodynamic therapy using curcumin loaded tetraether liposomes. Eur J Pharm Biopharm 2018; 126:233-241. [DOI: 10.1016/j.ejpb.2017.10.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/06/2017] [Accepted: 10/06/2017] [Indexed: 12/21/2022]
|
36
|
Drescher S, Otto C, Müller S, Garamus VM, Garvey CJ, Grünert S, Lischka A, Meister A, Blume A, Dobner B. Impact of Headgroup Asymmetry and Protonation State on the Aggregation Behavior of a New Type of Glycerol Diether Bolalipid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4360-4373. [PMID: 29557659 DOI: 10.1021/acs.langmuir.8b00527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the present work, we describe the synthesis and the temperature-dependent aggregation behavior of a new class of asymmetrical glycerol diether bolalipids. These bolalipids are composed of a membrane-spanning alkyl chain with 32 carbon atoms (C32) in the sn-3 position, a methyl-branched C16 alkyl chain in the sn-2 position, and a zwitterionic phosphocholine headgroup in the sn-1 position of a glycerol moiety. The long C32 alkyl chain is terminated either by a second phosphocholine (PC-Gly(2C16Me)C32-PC) or by a phosphodimethylethanolamine headgroup (PC-Gly(2C16Me)C32-Me2PE). The temperature- and pH-dependent aggregation behavior of both lipids was studied using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, small-angle X-ray scattering (SAXS), and small-angle neutron scattering (SANS) experiments. The morphology of the formed aggregates in an aqueous suspension was visualized by transmission electron microscopy (TEM). We show that PC-Gly(2C16Me)C32-PC and PC-Gly(2C16Me)C32-Me2PE at pH 5 self-assemble into large lamellar aggregates and large lipid vesicles. Within these structures, the bolalipid molecules are probably assembled in a monolayer with fully interdigitated chains. The lipid molecules seem to be tilted with respect to the layer normal to ensure a dense packing of the alkyl chains. A temperature increase leads to a transition from a lamellar gel phase to the liquid-crystalline phase at about 28-30 °C for both bolalipids. The lamellar aggregates of PC-Gly(2C16Me)C32-Me2PE started to transform into nanofibers when the pH value of the suspension was increased to above 11. At pH 12, these nanofibers were the dominant aggregates.
Collapse
Affiliation(s)
| | | | | | - Vasil M Garamus
- Helmholtz-Zentrum Geesthacht: Centre for Materials and Coastal Research (HZG) , Max-Planck-Strasse 1 , 21502 Geesthacht , Germany
| | - Christopher J Garvey
- Australian Nuclear Science and Technology Organisation (ANSTO) , Kirrawee DC , NSW Australia
| | | | | | - Annette Meister
- Institute of Biochemistry and Biotechnology , MLU Halle-Wittenberg , Kurt-Mothes-Strasse 3 , 06120 Halle (Saale) , Germany
| | - Alfred Blume
- Institute of Chemistry , MLU Halle-Wittenberg , von-Danckelmann-Platz 4 , 06120 Halle (Saale) , Germany
| | | |
Collapse
|
37
|
Quehenberger J, Shen L, Albers SV, Siebers B, Spadiut O. Sulfolobus - A Potential Key Organism in Future Biotechnology. Front Microbiol 2017; 8:2474. [PMID: 29312184 PMCID: PMC5733018 DOI: 10.3389/fmicb.2017.02474] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/28/2017] [Indexed: 11/13/2022] Open
Abstract
Extremophilic organisms represent a potentially valuable resource for the development of novel bioprocesses. They can act as a source for stable enzymes and unique biomaterials. Extremophiles are capable of carrying out microbial processes and biotransformations under extremely hostile conditions. Extreme thermoacidophilic members of the well-characterized genus Sulfolobus are outstanding in their ability to thrive at both high temperatures and low pH. This review gives an overview of the biological system Sulfolobus including its central carbon metabolism and the development of tools for its genetic manipulation. We highlight findings of commercial relevance and focus on potential industrial applications. Finally, the current state of bioreactor cultivations is summarized and we discuss the use of Sulfolobus species in biorefinery applications.
Collapse
Affiliation(s)
- Julian Quehenberger
- Research Division Biochemical Engineering, Faculty of Technical Chemistry, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Vienna, Austria
| | - Lu Shen
- Department of Molecular Enzyme Technology and Biochemistry, Faculty of Chemistry – Biofilm Centre, University of Duisburg-Essen, Essen, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II-Microbiology, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Bettina Siebers
- Department of Molecular Enzyme Technology and Biochemistry, Faculty of Chemistry – Biofilm Centre, University of Duisburg-Essen, Essen, Germany
| | - Oliver Spadiut
- Research Division Biochemical Engineering, Faculty of Technical Chemistry, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
38
|
Markowski T, Müller S, Dobner B, Meister A, Blume A, Drescher S. An Asymmetrical Glycerol Diether Bolalipid with Protonable Phosphodimethylethanolamine Headgroup: The Impact of pH on Aggregation Behavior and Miscibility with DPPC. Polymers (Basel) 2017; 9:E573. [PMID: 30965876 PMCID: PMC6418739 DOI: 10.3390/polym9110573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 01/07/2023] Open
Abstract
Investigations regarding the self-assembly of (bola)phospholipids in aqueous media are crucial to understand the complex relationship between chemical structure of lipids and the shape and size of their aggregates in water. Here, we introduce a new asymmetrical glycerol diether bolaphospholipid, the compound Me₂PE-Gly(2C16)C32-OH. This bolalipid contains a long (C32) ω-hydroxy alkyl chain bond to glycerol in the sn-3 position, a C16 alkyl chain at the sn-2 position, and a protonable phosphodimethylethanolamine (Me₂PE) headgroup at the sn-1 position of the glycerol. The aggregation behavior of this bolalipid was studied as a function of temperature and pH using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) spectroscopy. We show that this bolalipid aggregates into condensed lamellar sheets in acidic milieu and in large sheet-like aggregates at neutral pH-value. By contrast, at a pH-value of 10, where the Me₂PE headgroup is only partially protonated, small lipid disks with diameter 50⁻100 nm were additionally found. Moreover, the miscibility of this asymmetrical bolalipid with the bilayer-forming phosphatidylcholine DPPC was investigated by means of DSC and TEM. The incorporation of bolalipids into phospholipid membranes could result in stabilized liposomes applicable for drug delivery purposes. We show that mixtures of DPPC and Me₂PE-Gly(2C16)C32-OH form large lamellar aggregates at pH of 5, 7, and 10. However, closed lipid vesicles (liposomes) with an increased thermal stability were not found.
Collapse
Affiliation(s)
- Thomas Markowski
- Institute of Pharmacy-Biochemical Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany.
| | - Sindy Müller
- Institute of Pharmacy-Biophysical Pharmacy, MLU Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany.
| | - Bodo Dobner
- Institute of Pharmacy-Biochemical Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany.
| | - Annette Meister
- Institute of Chemistry-Biophysical Chemistry, MLU Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
- Institute of Biochemistry and Biotechnology, MLU Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany.
| | - Alfred Blume
- Institute of Chemistry-Biophysical Chemistry, MLU Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| | - Simon Drescher
- Institute of Pharmacy-Biophysical Pharmacy, MLU Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany.
| |
Collapse
|
39
|
Mahmoud G, Jedelská J, Strehlow B, Omar S, Schneider M, Bakowsky U. Photo-responsive tetraether lipids based vesicles for prophyrin mediated vascular targeting and direct phototherapy. Colloids Surf B Biointerfaces 2017; 159:720-728. [DOI: 10.1016/j.colsurfb.2017.08.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/01/2017] [Accepted: 08/25/2017] [Indexed: 01/08/2023]
|
40
|
Oral delivery of vancomycin by tetraether lipid liposomes. Eur J Pharm Sci 2017; 108:111-118. [DOI: 10.1016/j.ejps.2017.07.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/21/2017] [Accepted: 07/11/2017] [Indexed: 11/18/2022]
|
41
|
Lee Y, Thompson DH. Stimuli-responsive liposomes for drug delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9:10.1002/wnan.1450. [PMID: 28198148 PMCID: PMC5557698 DOI: 10.1002/wnan.1450] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 12/25/2022]
Abstract
The ultimate goal of drug delivery is to increase the bioavailability and reduce the toxic side effects of the active pharmaceutical ingredient (API) by releasing them at a specific site of action. In the case of antitumor therapy, association of the therapeutic agent with a carrier system can minimize damage to healthy, nontarget tissues, while limit systemic release and promoting long circulation to enhance uptake at the cancerous site due to the enhanced permeation and retention effect (EPR). Stimuli-responsive systems have become a promising way to deliver and release payloads in a site-selective manner. Potential carrier systems have been derived from a wide variety of materials, including inorganic nanoparticles, lipids, and polymers that have been imbued with stimuli-sensitive properties to accomplish triggered release based on an environmental cue. The unique features in the tumor microenvironment can serve as an endogenous stimulus (pH, redox potential, or unique enzymatic activity) or the locus of an applied external stimulus (heat or light) to trigger the controlled release of API. In liposomal carrier systems triggered release is generally based on the principle of membrane destabilization from local defects within bilayer membranes to effect release of liposome-entrapped drugs. This review focuses on the literature appearing between November 2008-February 2016 that reports new developments in stimuli-sensitive liposomal drug delivery strategies using pH change, enzyme transformation, redox reactions, and photochemical mechanisms of activation. WIREs Nanomed Nanobiotechnol 2017, 9:e1450. doi: 10.1002/wnan.1450 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Y Lee
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - D H Thompson
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
42
|
Drescher S, Garamus VM, Garvey CJ, Meister A, Blume A. Aggregation behaviour of a single-chain, phenylene-modified bolalipid and its miscibility with classical phospholipids. Beilstein J Org Chem 2017; 13:995-1007. [PMID: 28684979 PMCID: PMC5480355 DOI: 10.3762/bjoc.13.99] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/28/2017] [Indexed: 01/04/2023] Open
Abstract
In the present work, we describe the synthesis of a single-chain, phenylene-modified bolalipid with two phosphocholine headgroups, PC-C18pPhC18-PC, using a Sonogashira cross-coupling reaction as a key step. The aggregation behaviour was studied as a function of temperature using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, and small angle neutron scattering (SANS). We show that our new bolalipid self-assembles into nanofibres, which transform into flexible nanofibres at 27 °C and further to small elongated micelles at 45 °C. Furthermore, the miscibility of the bolalipid with bilayer-forming phosphatidylcholines (DMPC, DPPC, and DSPC) was investigated by means of DSC, TEM, FTIR, and small angle X-ray scattering (SAXS). We could show that the PC-C18pPhC18-PC is partially miscible with saturated phosphatidylcholines; however, closed lipid vesicles with an increased thermal stability were not found. Instead, bilayer fragments and disk-like aggregates are formed.
Collapse
Affiliation(s)
- Simon Drescher
- Institute of Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
| | - Vasil M Garamus
- Helmholtz-Zentrum Geesthacht (HZG), Centre for Materials and Costal Research, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Christopher J Garvey
- Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee DC, NSW, Australia
| | - Annette Meister
- Institute of Chemistry, MLU Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
- Institute of Biochemistry and Biotechnology, MLU Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Alfred Blume
- Institute of Chemistry, MLU Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| |
Collapse
|
43
|
Transfection Studies with Colloidal Systems Containing Highly Purified Bipolar Tetraether Lipids from Sulfolobus acidocaldarius. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2017; 2017:8047149. [PMID: 28239294 PMCID: PMC5292391 DOI: 10.1155/2017/8047149] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/04/2016] [Accepted: 12/22/2016] [Indexed: 11/18/2022]
Abstract
Lipid vectors are commonly used to facilitate the transfer of nucleic acids into mammalian cells. In this study, two fractions of tetraether lipids from the archaea Sulfolobus acidocaldarius were extracted and purified using different methods. The purified lipid fractions polar lipid fraction E (PLFE) and hydrolysed glycerol-dialkyl-nonitol tetraether (hGDNT) differ in their structures, charge, size, and miscibility from conventional lipids. Liposomes were prepared by mixing tetraether lipids with cholesterol (CH) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) resulting in stable vectors for gene delivery. Lipoplexes were prepared by complexation of liposomes with a luciferase expressing plasmid (pCMV-luc) at certain nitrogen-to-phosphorus (N/P) ratios and optimised for the transient transfection of ovarian adenocarcinoma cells (SK-OV-3). Complexation efficacy was investigated by gel-red fluorescence assay. Biophysical properties, like size, surface charge, and morphology, were investigated by differential light scattering (DLS), atomic force microscopy (AFM), and scanning electron microscopy (Cryo-SEM), respectively, revealing structural differences between liposomes and lipoplexes. A range of stable transfecting agents containing tetraether lipids were obtained by incorporating 5 mol% of tetraether lipids. Lipoplexes showed a decrease in free gel-red with increasing N/P ratios indicating efficient incorporation of plasmid DNA (pDNA) and remarkable stability. Transfection experiments of the lipoplexes revealed successful and superior transfection of SK-OV-3 cell line compared to the commercially available DOTAP and branched polyethyleneimine (25 kDa bPEI).
Collapse
|
44
|
P. Sugár I, Lee-Gau Chong P. Monte Carlo simulations of the distributions of intra- and extra-vesicular ions and membrane associated charges in hybrid liposomes composed of negatively charged tetraether and zwitterionic diester phospholipids. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.2.316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
45
|
Uhl P, Helm F, Hofhaus G, Brings S, Kaufman C, Leotta K, Urban S, Haberkorn U, Mier W, Fricker G. A liposomal formulation for the oral application of the investigational hepatitis B drug Myrcludex B. Eur J Pharm Biopharm 2016; 103:159-166. [DOI: 10.1016/j.ejpb.2016.03.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 01/01/2023]
|