1
|
Raza MA, Khatoon N, Parveen R, Nirisha V, Thakur Y, Thakur Y, Lata K, Shifana AS, Disouza J, Saoji SD, Ajazuddin. Natural macromolecules polysaccharide-based drug delivery systems targeting tumor necrosis factor alpha receptor for the treatment of cancer: A review. Int J Biol Macromol 2025:145145. [PMID: 40516724 DOI: 10.1016/j.ijbiomac.2025.145145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 05/27/2025] [Accepted: 06/09/2025] [Indexed: 06/16/2025]
Abstract
Cancer is one of the most significant abnormalities in medical sciences for which a new and efficient therapeutic intervention is desired. Targeting the tumor necrosis factor-alpha receptor appears to have a critical role in both cancer development and immune modality. In this review, an attempt is made to review the potential and avenues of natural macromolecules that have augmented drug delivery systems for specific targeting of the tumor necrosis factor-alpha receptor in cancer therapy. Biological macromolecules, derived from biocompatible and biodegradable sources such as lipids, polysaccharides of natural origin, such as chitosan, hyaluronic acid, alginate, pectin, dextran, starch, cellulose, agar, carrageenan, guar gum, chondroitin sulfate, pullulan, and konjac glucomannan, have been immensely utilized in drug delivery systems for its negligible toxicity mucoadhesive properties, ability to enhance drug stability, and controlled release capabilities. Various novel drug delivery approaches are discussed in detail, including those using polysaccharides, lipids, chitosan, proteins, polymers, dendrimers, exosomes, hydrogels, albumin nanoparticles, silk nanoparticles, and cyclodextrin nanoparticles, incorporating cutting-edge engineering techniques for encapsulation of chemotherapeutic, immunomodulatory, and gene-silencing drugs for site-specific delivery at a site of a tumor. Such macromolecules can mitigate toxicity and even bypass multidrug resistance through their intrinsic property, ligand functionalization for targetability towards receptors. In the present review, an attempt is made to present an outlook for the role of natural macromolecules is being a breakthrough intervention in interfering with tumor necrosis factor-alpha receptor-dependent processes in cancer and a new direction in developing efficient, non-toxic, and personalized therapies for anti-cancer activities.
Collapse
Affiliation(s)
| | - Nousheen Khatoon
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, C.G., India
| | - Rahnuma Parveen
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, C.G., India
| | - V Nirisha
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, C.G., India
| | - Yamini Thakur
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, C.G., India
| | - Yogita Thakur
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, C.G., India
| | - Kumari Lata
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, C.G., India
| | - A S Shifana
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, C.G., India
| | - John Disouza
- Bombay Institute of Pharmacy & Research, Dombivli East, Taluka: Kalyan 421204, Maharashtra, India
| | - Suprit D Saoji
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, Maharashtra, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, C.G., India; Rungta College of Engineering & Technology, Bhilai,C.G., India.
| |
Collapse
|
2
|
Gao C, Yang Z, Song R, Sheng H, Zhu L. Nanotechnology-based drug delivery system for targeted therapy of ulcerative colitis from traditional Chinese medicine: A review. Int J Pharm 2025; 673:125375. [PMID: 39965734 DOI: 10.1016/j.ijpharm.2025.125375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/27/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
Ulcerative colitis (UC) is a chronic autoimmune disease and seriously affects the normal life of patients. Conventional therapeutic drugs are difficult to meet clinical needs. Traditional Chinese medicine (TCM) ingredients could effectively alleviate the symptoms of UC by anti-inflammatory, anti-oxidative, regulating the gut microbiota, and repairing the colonic epithelial barrier, but their low solubility and bioavailability severely limit their clinical application. Nano-drug delivery systems (NDDS) combined with TCM ingredients is a promising option for treating UC, and they could significantly enhance the stability, solubility, and bioavailability of TCM ingredients. The review describes the anti-UC mechanisms of TCM ingredients, systematically summarizes various kinds of NDDS for TCM ingredients according to different routes of administration, and highlights the advantages of NDDS for TCM ingredients in the treatmentof UC. In addition, we discuss the limitations of existing NDDS for TCM ingredients and the development direction in the future. This review will provide a basis for the future development of anti-UC NDDS for TCM ingredients.
Collapse
Affiliation(s)
- Chengcheng Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zerun Yang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ruirui Song
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
3
|
Jantorn P, Noosak C, Iamthanaporn K, Saeloh Sotthibandhu D. Silk fibroin thermosensitive polymers: Osteogenic, anti-inflammatory, and angiogenic effects for osteomyelitis treatment. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-17. [PMID: 39955672 DOI: 10.1080/09205063.2025.2458887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025]
Abstract
Infectious bone defects pose a significant challenge in orthopedics by hindering healing and vascularization. This study explored the impact of fibroin thermosensitive hydrogel on osteogenesis, inflammatory response, and angiogenesis as a potential biomaterial for bone regeneration in osteomyelitis treatment. The biocompatibility of the hydrogel by live/dead staining revealed a high number of viable osteoblast cells after 14 days. ALP activity was significantly increased in all hydrogel formulations, with F3 showing the highest levels of total protein content and calcium deposition, indicating more effective osteogenesis. Gene expression analysis of the osteogenesis-related genes demonstrated that RUNX2 was upregulated by day 7, followed by increased expressions of the OCN and COL-1 genes at later stages. The inflammatory response to F3 was assessed by measuring the nitric oxide (NO) production and pro-inflammatory gene expression in LPS-stimulated RAW 264.7 macrophages. The F3 formulation significantly reduced NO production and iNOS expression, suggesting selective inhibition of the inflammatory pathway. The VEGF-loaded F3 formulation exhibited substantial angiogenic potential, enhancing HUVEC cell proliferation by 140% over 48 h. The osteogenic, anti-inflammatory, and angiogenic effects shown by the F3 formulation were well-suited for applications in osteomyelitis treatment.
Collapse
Affiliation(s)
- Pavarish Jantorn
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, Thailand
| | - Chayanee Noosak
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, Thailand
| | - Khanin Iamthanaporn
- Department of Orthopedics, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | | |
Collapse
|
4
|
Ferrera F, Resaz R, Bari E, Fenoglio D, Mastracci L, Miletto I, Modena A, Perteghella S, Sorlini M, Segale L, Filaci G, Torre ML, Giovannelli L. Silk fibroin nanoparticles for locoregional cancer therapy: Preliminary biodistribution in a murine model and microfluidic GMP-like production. Int J Biol Macromol 2024; 282:137121. [PMID: 39500437 DOI: 10.1016/j.ijbiomac.2024.137121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/10/2024]
Abstract
Silk fibroin nanoparticles (SFNs) have been widely investigated for drug delivery, but their clinical application still faces technical (large-scale and GMP-compliant manufacturing), economic (cost-effectiveness in comparison to other polymer-based nanoparticles), and biological (biodistribution assessments) challenges. To address biodistribution challenge, we provide a straightforward desolvation method (in acetone) to produce homogeneous SFNs incorporating increasing amounts of Fe2O3 (SFNs-Fe), detectable by Magnetic Resonance Imaging (MRI), and loaded with curcumin as a model lipophilic drug. SFNs-Fe were characterized by a homogeneous distribution of the combined materials and showed an actual Fe2O3 loading close to the theoretical one. The amount of Fe2O3 incorporated affected the physical-chemical properties of SFNs-Fe, such as polymer matrix compactness, mean diameter and drug release mechanism. All formulations were cytocompatible; curcumin encapsulation mitigated its cytotoxicity, and iron oxide incorporation did not impact cell metabolic activity but affected cellular uptake in vitro. SFNs-Fe proved optimal for biodistribution studies, as MRI showed significant nanoparticle retention at the administration site, supporting their potential for locoregional cancer therapy. Finally, technical and economic challenges in SFN production were overcome using a GMP-compliant microfluidic scalable technology, which optimized preparation to produce smaller particle sizes compared to manual methods and reduced acetone usage, thus offering environmental and economic benefits. Moreover, enabling large-scale production of GMP-like SFNs, this represents a considerable step forward for their application in the clinic.
Collapse
Affiliation(s)
- Francesca Ferrera
- Department of Internal Medicine, Centre of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV 6, 16132 Genova, Italy
| | - Roberta Resaz
- Animal Facility, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Elia Bari
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy.
| | - Daniela Fenoglio
- Department of Internal Medicine, Centre of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV 6, 16132 Genova, Italy; Biotherapy Unit, IRCCS Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Luca Mastracci
- Department of Surgical and Integrated Diagnostic Sciences, University of Genoa, Viale Benedetto XV 6, 16132 Genova, Italy; Anatomic Pathology Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Ivana Miletto
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy
| | - Angelo Modena
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy
| | - Sara Perteghella
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; PharmaExceed s.r.l., Piazza Castello 19, 27100 Pavia, Italy
| | - Marzio Sorlini
- PharmaExceed s.r.l., Piazza Castello 19, 27100 Pavia, Italy; Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, SUPSI, Lugano University Centre, Campus Est, Via la Santa 1, CH-6962 Viganello, Switzerland
| | - Lorena Segale
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy
| | - Gilberto Filaci
- Department of Internal Medicine, Centre of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV 6, 16132 Genova, Italy; Biotherapy Unit, IRCCS Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Maria Luisa Torre
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy; PharmaExceed s.r.l., Piazza Castello 19, 27100 Pavia, Italy
| | - Lorella Giovannelli
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy
| |
Collapse
|
5
|
Shuai Y, Zheng M, Kundu SC, Mao C, Yang M. Bioengineered Silk Protein-Based 3D In Vitro Models for Tissue Engineering and Drug Development: From Silk Matrix Properties to Biomedical Applications. Adv Healthc Mater 2024; 13:e2401458. [PMID: 39009465 DOI: 10.1002/adhm.202401458] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/22/2024] [Indexed: 07/17/2024]
Abstract
3D in vitro model has emerged as a valuable tool for studying tissue development, drug screening, and disease modeling. 3D systems can accurately replicate tissue microstructures and physiological features, mirroring the in vivo microenvironment departing from conventional 2D cell cultures. Various 3D in vitro models utilizing biomacromolecules like collagen and synthetic polymers have been developed to meet diverse research needs and address the complex challenges of contemporary research. Silk proteins, bearing structural and functional similarities to collagen, have been increasingly employed to construct advanced 3D in vitro systems, surpassing the limitations of 2D cultures. This review examines silk proteins' composition, structure, properties, and functions, elucidating their role in 3D in vitro models. Furthermore, recent advances in biomedical applications involving silk-based organoid models are discussed. In particular, the unique physiological attributes of silk matrix constituents in in vitro tissue constructs are highlighted, providing a meticulous evaluation of their importance. Additionally, it outlines the current research hurdles and complexities while contemplating future avenues, thereby paving the way for developing complex and biomimetic silk protein-based microtissues.
Collapse
Affiliation(s)
- Yajun Shuai
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Meidan Zheng
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, P. R. China
| | - Mingying Yang
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
6
|
Liao J, Gu Q, Liu Z, Wang H, Yang X, Yan R, Zhang X, Song S, Wen L, Wang Y. Edge advances in nanodrug therapies for osteoarthritis treatment. Front Pharmacol 2024; 15:1402825. [PMID: 39539625 PMCID: PMC11559267 DOI: 10.3389/fphar.2024.1402825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
As global population and lifestyles change, osteoarthritis (OA) is becoming a major healthcare challenge world. OA, a chronic condition characterized by inflammatory and degeneration, often present with joint pain and can lead to irreversible disability. While there is currently no cure for OA, it is commonly managed using nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, and glucosamine. Although these treatments can alleviate symptoms, it is difficult to effectively deliver and sustain therapeutic agents within joints. The emergence of nanotechnology, particularly in form of smart nanomedicine, has introduced innovative therapeutic approaches for OA treatment. Nanotherapeutic strategies offer promising advantages, including more precise targeting of affected areas, prolonged therapeutic effects, enhanced bioavailability, and reduced systemic toxicity compared to traditional treatments. While nanoparticles show potential as a viable delivery system for OA therapies based on encouraging lab-based and clinical trials results, there remails a considerable gap between current research and clinical application. This review highlights recent advances in nanotherapy for OA and explore future pathways to refine and optimize OA treatments strategies.
Collapse
Affiliation(s)
- Jinfeng Liao
- Department of Dermatology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Qingjia Gu
- Department of ENT, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Zheng Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Hailian Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Xian Yang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongkai Yan
- Department of Radiology, Ohio state university, Columbus, OH, United States
| | - Xiaofeng Zhang
- Greenwich Hospital, Yale New Haven Health, Greenwich, CT, United States
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Lebin Wen
- Department of Thyroid, Sichuan Second Hospital of TCM, Chengdu, China
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Hridayanka KSN, Duttaroy AK, Basak S. Bioactive Compounds and Their Chondroprotective Effects for Osteoarthritis Amelioration: A Focus on Nanotherapeutic Strategies, Epigenetic Modifications, and Gut Microbiota. Nutrients 2024; 16:3587. [PMID: 39519419 PMCID: PMC11547880 DOI: 10.3390/nu16213587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
In degenerative joint disease like osteoarthritis (OA), bioactive compounds like resveratrol, epigallocatechin gallate, curcumin, and other polyphenols often target various signalling pathways, including NFκB, TGFβ, and Wnt/β-catenin by executing epigenetic-modifying activities. Epigenetic modulation can target genes of disease pathophysiology via histone modification, promoter DNA methylation, and non-coding RNA expression, some of which are directly involved in OA but have been less explored. OA patients often seek options that can improve the quality of their life in addition to existing treatment with nonsteroidal anti-inflammatory drugs (NSAIDs). Although bioactive and natural compounds exhibit therapeutic potential against OA, several disadvantages loom, like insolubility and poor bioavailability. Nanoformulated bioactive compounds promise a better way to alleviate OA since they also control systemic events, including metabolic, immunological, and inflammatory responses, by modulating host gut microbiota that can regulate OA pathogenesis. Recent data suggest gut dysbiosis in OA. However, limited evidence is available on the role of bioactive compounds as epigenetic and gut modulators in ameliorating OA. Moreover, it is not known whether the effects of polyphenolic bioactive compounds on gut microbial response are mediated by epigenetic modulatory activities in OA. This narrative review highlights the nanotherapeutic strategies utilizing bioactive compounds, reporting their effects on chondrocyte growth, metabolism, and epigenetic modifications in osteoarthritis amelioration.
Collapse
Affiliation(s)
- Kota Sri Naga Hridayanka
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India;
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway;
| | - Sanjay Basak
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India;
| |
Collapse
|
8
|
Roquito T, Colaço M, Costa JP, Borges O. Curcumin-encapsulated glucan nanoparticles as an oxidative stress modulator against human hepatic cancer cells. Colloids Surf B Biointerfaces 2024; 245:114326. [PMID: 39442411 DOI: 10.1016/j.colsurfb.2024.114326] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
In Hepatitis B patients, the virus targets liver cells, leading to inflammation and liver damage, which can result in severe complications such as liver failure, cirrhosis, and liver cancer. Therapeutic options for liver disease are currently limited. Curcumin, a polyphenol with potential protective effects against chronic diseases like cancer, suffers from poor water solubility, restricting its pharmacological applications. This study explores the encapsulation of curcumin in glucan nanoparticles (NPs) and its impact on oxidative stress in liver cancer cells. Two sizes of curcumin-loaded glucan NPs, GC111 (111 nm) and GC398 (398 nm), were produced with nearly 100 % encapsulation efficiency. Cytotoxicity studies revealed that particle size influences the extent of observed effects, with GC111 NPs causing a greater reduction in cell viability. Additionally, the smaller GC111 NPs demonstrated a higher capacity to induce oxidative stress in cancer cells by stimulating the production of ROS, NO, and the chemokine RANTES in a concentration-dependent manner. These findings suggest that the smaller GC111 NPs are promising candidates for future studies aimed at evaluating oxidative stress-induced tumor cell death mechanisms.
Collapse
Affiliation(s)
- Tiago Roquito
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Portugal; CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Mariana Colaço
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Portugal; CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - João Panão Costa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Portugal; CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Olga Borges
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Portugal; CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal.
| |
Collapse
|
9
|
Wang T, Yan J, Zhang S, Qi N, Zhang Y, Li G, Han Z. Silk fibroin microspheres loaded Rehmannia Liuwei extract for the protection of endothelial cells from the inhibitory effects. Colloids Surf B Biointerfaces 2024; 241:114034. [PMID: 38878662 DOI: 10.1016/j.colsurfb.2024.114034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 07/29/2024]
Abstract
Liuwei Dihuang (LWDH) is a multi-component and multi-target Chinese herbal compound widely used for treating chronic conditions such as diabetes, diabetic nephropathy, hypertension, osteoporosis, and chronic kidney disease. However, traditional Chinese medicine (TCM) preparations like decoction and pill face limitations, including low active component concentration, limited bioavailability, short half-life, and the need for high dosage, which may increase the burden on liver and kidney functions and reduce clinical efficacy. In this study, LWDH was further purified using D101 macroporous adsorption resin, resulting in a soluble extract with an active component content 53.6 times higher than that of LWDH itself. The freeze-dried LWDH extract was then encapsulated within silk fibroin (SF) microspheres to significantly enhance the sustained release performance of the drug. In a human umbilical vein endothelial cell (HUVEC) model cultured under high glucose conditions, methanol vapor-treated SF/LWDH microspheres demonstrated a decrease in the 24-hour drug release rate from 61.88 % to 34.81 %, augmenting their protective effect on endothelial cells.
Collapse
Affiliation(s)
- Tao Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Jia Yan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Shujun Zhang
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Ning Qi
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yue Zhang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Zhifen Han
- Department of Integrated Traditional Chinese and Western Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
10
|
Lin P, Gu H, Zhuang X, Wang F, Hu X. Controlled Release of Curcumin and Hypocrellin A from Electrospun Poly(l-Lactic Acid)/Silk Fibroin Nanofibers for Enhanced Cancer Cell Inhibition. ACS APPLIED BIO MATERIALS 2024; 7:5423-5436. [PMID: 39069738 DOI: 10.1021/acsabm.4c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Nanofibers have emerged as a highly effective method for drug delivery, attributed to their remarkable porosity and ability to regulate drug release rates while minimizing toxicity and side effects. In this study, we successfully loaded the natural anticancer drugs curcumin (CUR) and hypocrellin A (HA) into pure poly(l-lactic acid) (PLLA) and PLLA-silk protein (PS) composite nanofibers through electrospinning technology. This result was confirmed through comprehensive analysis involving SEM, FTIR, XRD, DSC, TG, zeta potential, and pH stability analysis. The encapsulation efficiency of all samples exceeded 85%, demonstrating the effectiveness of the loading process. Additionally, the drug release doses were significantly higher in the composites compared to pure PLLA, owing to the enhanced crystallinity and stability of the silk proteins. Importantly, the composite nanofibers exhibited excellent pH stability in physiological and acidic environments. Furthermore, the drug-loaded composite nanofibers displayed strong inhibitory effects on cancer cells, with approximately 28% (HA) and 37% (CUR) inhibition of cell growth and differentiation within 72 h, while showing minimal impact on normal cells. This research highlights the potential for controlling drug release through the manipulation of fiber diameter and crystallinity, paving the way for wider applications of electrospun green nanomaterials in the field of medicine.
Collapse
Affiliation(s)
- Ping Lin
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, People's Republic of China
- School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, People's Republic of China
| | - Hanling Gu
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, People's Republic of China
- School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, People's Republic of China
| | - Xincheng Zhuang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, People's Republic of China
- School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, People's Republic of China
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, People's Republic of China
- School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, People's Republic of China
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, New Jersey 08028, United States
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
11
|
Coppola C, Greco M, Munir A, Musarò D, Quarta S, Massaro M, Lionetto MG, Maffia M. Osteoarthritis: Insights into Diagnosis, Pathophysiology, Therapeutic Avenues, and the Potential of Natural Extracts. Curr Issues Mol Biol 2024; 46:4063-4105. [PMID: 38785519 PMCID: PMC11119992 DOI: 10.3390/cimb46050251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Osteoarthritis (OA) stands as a prevalent and progressively debilitating clinical condition globally, impacting joint structures and leading to their gradual deterioration through inflammatory mechanisms. While both non-modifiable and modifiable factors contribute to its onset, numerous aspects of OA pathophysiology remain elusive despite considerable research strides. Presently, diagnosis heavily relies on clinician expertise and meticulous differential diagnosis to exclude other joint-affecting conditions. Therapeutic approaches for OA predominantly focus on patient education for self-management alongside tailored exercise regimens, often complemented by various pharmacological interventions primarily targeting pain alleviation. However, pharmacological treatments typically exhibit short-term efficacy and local and/or systemic side effects, with prosthetic surgery being the ultimate resolution in severe cases. Thus, exploring the potential integration or substitution of conventional drug therapies with natural compounds and extracts emerges as a promising frontier in enhancing OA management. These alternatives offer improved safety profiles and possess the potential to target specific dysregulated pathways implicated in OA pathogenesis, thereby presenting a holistic approach to address the condition's complexities.
Collapse
Affiliation(s)
- Chiara Coppola
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Lecce-Arnesano, 73100 Lecce, Italy; (C.C.); (A.M.)
| | - Marco Greco
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Anas Munir
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Lecce-Arnesano, 73100 Lecce, Italy; (C.C.); (A.M.)
| | - Debora Musarò
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Stefano Quarta
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy;
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Michele Maffia
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy
| |
Collapse
|
12
|
Bejenaru C, Radu A, Segneanu AE, Biţă A, Ciocîlteu MV, Mogoşanu GD, Bradu IA, Vlase T, Vlase G, Bejenaru LE. Pharmaceutical Applications of Biomass Polymers: Review of Current Research and Perspectives. Polymers (Basel) 2024; 16:1182. [PMID: 38732651 PMCID: PMC11085205 DOI: 10.3390/polym16091182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Polymers derived from natural biomass have emerged as a valuable resource in the field of biomedicine due to their versatility. Polysaccharides, peptides, proteins, and lignin have demonstrated promising results in various applications, including drug delivery design. However, several challenges need to be addressed to realize the full potential of these polymers. The current paper provides a comprehensive overview of the latest research and perspectives in this area, with a particular focus on developing effective methods and efficient drug delivery systems. This review aims to offer insights into the opportunities and challenges associated with the use of natural polymers in biomedicine and to provide a roadmap for future research in this field.
Collapse
Affiliation(s)
- Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (C.B.); (A.R.)
| | - Antonia Radu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (C.B.); (A.R.)
| | - Adina-Elena Segneanu
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
| | - Andrei Biţă
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (A.B.); (G.D.M.); (L.E.B.)
| | - Maria Viorica Ciocîlteu
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania;
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (A.B.); (G.D.M.); (L.E.B.)
| | - Ionela Amalia Bradu
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
| | - Titus Vlase
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
- Research Center for Thermal Analyzes in Environmental Problems, West University of Timişoara, 16 Johann Heinrich Pestalozzi Street, 300115 Timişoara, Timiş, Romania
| | - Gabriela Vlase
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
- Research Center for Thermal Analyzes in Environmental Problems, West University of Timişoara, 16 Johann Heinrich Pestalozzi Street, 300115 Timişoara, Timiş, Romania
| | - Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (A.B.); (G.D.M.); (L.E.B.)
| |
Collapse
|
13
|
Xu L, Wu C, Lay Yap P, Losic D, Zhu J, Yang Y, Qiao S, Ma L, Zhang Y, Wang H. Recent advances of silk fibroin materials: From molecular modification and matrix enhancement to possible encapsulation-related functional food applications. Food Chem 2024; 438:137964. [PMID: 37976879 DOI: 10.1016/j.foodchem.2023.137964] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Silk fibroin materials are emergingly explored for food applications due to their inherent properties including safe oral consumption, biocompatibility, gelatinization, antioxidant performance, and mechanical properties. However, silk fibroin possesses drawbacks like brittleness owing to its inherent specific composition and structure, which limit their applications in this field. This review discusses current progress about molecular modification methods on silk fibroin such as extraction, blending, self-assembly, enzymatic catalysis, etc., to address these limitations and improve their physical/chemical properties. It also summarizes matrix enhancement strategies including freeze drying, spray drying, electrospinning/electrospraying, microfluidic spinning/wheel spinning, desolvation and supercritical fluid, to generate nano-, submicron-, micron-, or bulk-scale materials. It finally highlights the food applications of silk fibroin materials, including nutraceutical improvement, emulsions, enzyme immobilization and 3D/4D printing. This review also provides insights on potential opportunities (like safe modification, toxicity risk evaluation, and digestion conditions) and possibilities (like digital additive manufacturing) in functional food industry.
Collapse
Affiliation(s)
- Liang Xu
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China
| | - Chaoyang Wu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Pei Lay Yap
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia; ARC Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Dusan Losic
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia; ARC Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Juncheng Zhu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuxin Yang
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Shihao Qiao
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China.
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China.
| |
Collapse
|
14
|
Lu G, Yang C, Chu K, Zhu Y, Huang S, Zheng J, Jia H, Li X, Ban J. Implantable celecoxib nanofibers made by electrospinning: fabrication and characterization. Nanomedicine (Lond) 2024; 19:657-669. [PMID: 38305028 DOI: 10.2217/nnm-2023-0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Background: Osteoarthritis causes tremendous damage to the joints, reducing the quality of life and imposing significant financial burden. An implantable drug-delivery system can improve the symptomatic manifestations with low doses and frequencies. However, the free drug has short retention in the joint cavity. Materials & methods: This study used electrostatic spinning technology to create an implantable drug-delivery system loaded with celecoxib (celecoxib nanofibers [Cel-NFs]) to improve retention and bioavailability. Results: Cel-NFs exhibited good formability, hydrophilicity and tensile properties. Cel-NFs were able to continuously release drugs for 2 weeks and increase the uptake capacity of Raw 264.7 cells, ultimately ameliorating symptoms in osteoarthritis rats. Conclusion: These results suggest that Cel-NFs can effectively ameliorate cartilage damage, reduce joint pain and alleviate osteoarthritis progression.
Collapse
Affiliation(s)
- Geng Lu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Chuangzan Yang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Kedi Chu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yi Zhu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Sa Huang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Juying Zheng
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Huanhuan Jia
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Sysytems, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiaofang Li
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, China
| | - Junfeng Ban
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, China
| |
Collapse
|
15
|
Zhao J, Liang G, Zhou G, Hong K, Yang W, Liu J, Zeng L. Efficacy and safety of curcumin therapy for knee osteoarthritis: A Bayesian network meta-analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117493. [PMID: 38036015 DOI: 10.1016/j.jep.2023.117493] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/15/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcumin, a polyphenolic compound extracted from turmeric (Curcuma longa L.), is widely used in traditional Chinese medicine to treat osteoarthritis and rheumatoid arthritis. Clinical and experimental studies show that curcuminoid formulations have considerable clinical application value in the treatment of knee osteoarthritis (KOA). AIM OF THE STUDY To evaluate the efficacy and safety of curcumin, both alone and in combination with other drugs, in KOA treatment through a Bayesian network meta-analysis (NMA). METHODS We searched PubMed, Embase and Cochrane Library for randomized controlled trials of curcumin for KOA treatment. The time range of the search was from the establishment of each database to April 26, 2023. The NMAs of outcome indicators were all performed using a random-effects model. NMAs were calculated and graphed in R using MetaInsight and Stata 140 software. Measurement data were represented by the mean difference (MD), while count data were represented by the odds ratio (OR); the 95% confidence interval (CI) of each effect size was also calculated. RESULTS This study included 23 studies from 7 countries, including 2175 KOA patients and 6 interventions. The NMA results showed that compared with placebo, curcumin significantly reduced the visual analogue scale pain score (MD = -1.63, 95% CI: -2.91 to -0.45) and total WOMAC score (MD = -18.85, 95% CI: -29.53 to -8.76). Compared with placebo, curcumin (OR = 0.17, 95% CI: 0.08 to 0.36), curcumin + NSAIDs (OR = 0.01, 95% CI: 0.00 to 0.13) and NSAIDs (OR = 0.11, 95% CI: 0.02 to 0.47) reduced the use of rescue medication. Compared with NSAIDs, curcumin (OR = 0.51, 95% CI: 0.25 to 0.94) and curcumin + NSAIDs (OR = 0.23, 95% CI: 0.06 to 0.9) had a reduced incidence of adverse reactions. The surface under the cumulative ranking curve results indicated that curcumin monotherapy, curcumin + chondroprotective agents, and curcumin + NSAIDs have good clinical value in KOA treatment. CONCLUSIONS Curcumin, either alone or in combination with other treatments, is considered to have good clinical efficacy and safety in KOA treatment. Drug combinations containing curcumin may have the dual effect of enhancing efficacy and reducing adverse reactions, but this possibility still needs to be confirmed by further clinical and basic research.
Collapse
Affiliation(s)
- Jinlong Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome/The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China; The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China.
| | - Guihong Liang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China; The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China.
| | - Guanghui Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome/The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Kunhao Hong
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Weiyi Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China.
| | - Jun Liu
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangdong Second Chinese Medicine Hospital (Guangdong Province Enginering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095, China.
| | - Lingfeng Zeng
- State Key Laboratory of Traditional Chinese Medicine Syndrome/The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China; The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China.
| |
Collapse
|
16
|
Wei H, Huang H, He H, Xiao Y, Chun L, Jin Z, Li H, Zheng L, Zhao J, Qin Z. Pt-Se Hybrid Nanozymes with Potent Catalytic Activities to Scavenge ROS/RONS and Regulate Macrophage Polarization for Osteoarthritis Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0310. [PMID: 38410279 PMCID: PMC10895487 DOI: 10.34133/research.0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/12/2024] [Indexed: 02/28/2024]
Abstract
The activation of pro-inflammatory M1-type macrophages by overexpression of reactive oxygen species (ROS) and reactive nitrogen species (RONS) in synovial membranes contributes to osteoarthritis (OA) progression and cartilage matrix degradation. Here, combing Pt and Se with potent catalytic activities, we developed a hybrid Pt-Se nanozymes as ROS and RONS scavengers to exert synergistic effects for OA therapy. As a result, Pt-Se nanozymes exhibited efficient scavenging effect on ROS and RONS levels, leading to repolarization of M1-type macrophages. Furthermore, the polarization of synovial macrophages to the M2 phenotype inhibited the expression of pro-inflammatory factors and salvaged mitochondrial function in arthritic chondrocytes. In vivo results also suggest that Pt-Se nanozymes effectively suppress the early progression of OA with an Osteoarthritis Research International Association score reduction of 68.21% and 82.66% for 4 and 8 weeks, respectively. In conclusion, this study provides a promising strategy to regulate inflammatory responses by macrophage repolarization processes for OA therapeutic.
Collapse
Affiliation(s)
- Hong Wei
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Hongjun Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics,
Affiliated Hospital of Guilin Medical University, Guilin 541000, China
| | - Haoqiang He
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yuanming Xiao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Life Sciences Institute,
Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics Trauma and Hand Surgery,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Lu Chun
- School of Materials and Environment,
Guangxi Minzu University, Nanning, Guangxi 53000, China
| | - Zhiqiang Jin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics Trauma and Hand Surgery,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Hanyang Li
- Department of Orthopaedics,
Affiliated Hospital of Guilin Medical University, Guilin 541000, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics Trauma and Hand Surgery,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
- Guangxi Key Laboratory of Regenerative Medicine,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zainen Qin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
17
|
Kuperkar K, Atanase LI, Bahadur A, Crivei IC, Bahadur P. Degradable Polymeric Bio(nano)materials and Their Biomedical Applications: A Comprehensive Overview and Recent Updates. Polymers (Basel) 2024; 16:206. [PMID: 38257005 PMCID: PMC10818796 DOI: 10.3390/polym16020206] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Degradable polymers (both biomacromolecules and several synthetic polymers) for biomedical applications have been promising very much in the recent past due to their low cost, biocompatibility, flexibility, and minimal side effects. Here, we present an overview with updated information on natural and synthetic degradable polymers where a brief account on different polysaccharides, proteins, and synthetic polymers viz. polyesters/polyamino acids/polyanhydrides/polyphosphazenes/polyurethanes relevant to biomedical applications has been provided. The various approaches for the transformation of these polymers by physical/chemical means viz. cross-linking, as polyblends, nanocomposites/hybrid composites, interpenetrating complexes, interpolymer/polyion complexes, functionalization, polymer conjugates, and block and graft copolymers, are described. The degradation mechanism, drug loading profiles, and toxicological aspects of polymeric nanoparticles formed are also defined. Biomedical applications of these degradable polymer-based biomaterials in and as wound dressing/healing, biosensors, drug delivery systems, tissue engineering, and regenerative medicine, etc., are highlighted. In addition, the use of such nano systems to solve current drug delivery problems is briefly reviewed.
Collapse
Affiliation(s)
- Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Piplod, Surat 395007, Gujarat, India;
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Anita Bahadur
- Department of Zoology, Sir PT Sarvajanik College of Science, Surat 395001, Gujarat, India;
| | - Ioana Cristina Crivei
- Department of Public Health, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 700449 Iasi, Romania;
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla Road, Surat 395007, Gujarat, India;
| |
Collapse
|
18
|
Li Q, Lin L, Zhang C, Zhang H, Ma Y, Qian H, Chen XL, Wang X. The progression of inorganic nanoparticles and natural products for inflammatory bowel disease. J Nanobiotechnology 2024; 22:17. [PMID: 38172992 PMCID: PMC10763270 DOI: 10.1186/s12951-023-02246-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024] Open
Abstract
There is a growing body of evidence indicating a close association between inflammatory bowel disease (IBD) and disrupted intestinal homeostasis. Excessive production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with an increase in M1 proinflammatory macrophage infiltration during the activation of intestinal inflammation, plays a pivotal role in disrupting intestinal homeostasis in IBD. The overabundance of ROS/RNS can cause intestinal tissue damage and the disruption of crucial gut proteins, which ultimately compromises the integrity of the intestinal barrier. The proliferation of M1 macrophages contributes to an exaggerated immune response, further compromising the intestinal immune barrier. Currently, intestinal nanomaterials have gained widespread attention in the context of IBD due to their notable characteristics, including the ability to specifically target regions of interest, clear excess ROS/RNS, and mimic biological enzymes. In this review, we initially elucidated the gut microenvironment in IBD. Subsequently, we delineate therapeutic strategies involving two distinct types of nanomedicine, namely inorganic nanoparticles and natural product nanomaterials. Finally, we present a comprehensive overview of the promising prospects associated with the application of nanomedicine in future clinical settings for the treatment of IBD (graphic abstract). Different classes of nanomedicine are used to treat IBD. This review primarily elucidates the current etiology of inflammatory bowel disease and explores two prominent nanomaterial-based therapeutic approaches. First, it aims to eliminate excessive reactive oxygen species and reactive nitrogen species. Second, they focus on modulating the polarization of inflammatory macrophages and reducing the proportion of pro-inflammatory macrophages. Additionally, this article delves into the treatment of inflammatory bowel disease using inorganic metal nanomaterials and natural product nanomaterials.
Collapse
Affiliation(s)
- Qingrong Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Liting Lin
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Cong Zhang
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Hengguo Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yan Ma
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Haisheng Qian
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Xianwen Wang
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| |
Collapse
|
19
|
Singh S, Semwal BC, Sharma H, Sharma D. Impact of Phytomolecules with Nanotechnology on the Treatment of
Inflammation. CURRENT BIOACTIVE COMPOUNDS 2023; 19. [DOI: 10.2174/1573407219666230807150030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 01/06/2025]
Abstract
Abstract:
Inflammation is a part of the biological response of body tissues against harmful stimuli,
such as damaged cells, pathogens, irradiations, and toxic compounds. Numerous treatments, including
anti-inflammatory drugs that treat the condition of inflammation, are available for its management.
Because of the severe adverse effects associated with synthetic medications, phytotherapy
may be a promising and effective approach to treating inflammation. The therapeutic potential of
herbs is due to their capacity to target a variety of inflammatory mediators, including chemokines,
cytokines, nitric oxide, lipoxygenase, nuclear factor kappa-B, and arachidonic acid. Furthermore,
nanomedicine may be a valuable and effective formulation approach for overcoming the drawbacks
of phytoconstituents, such as their low bioavailability, high first-pass metabolism, and poor stability.
The current manuscript provides a thorough description of many phytoconstituents and herbal
plants that have great potential for treating inflammation-related diseases, as well as information on
their limitations, drug formulations, and regulatory issues.
Collapse
Affiliation(s)
- Sonia Singh
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University Mathura, U.P, 281406, India
| | - Bhupesh C Semwal
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University Mathura, U.P, 281406, India
| | - Himanshu Sharma
- Department of Computer Engineering & Applications, GLA University Mathura, U.P, 281406, India
| | - Divya Sharma
- Parexel International,
DLF Building Tower F, 3rd Floor, Chandigarh Technology Park, Chandigarh-160101, India
| |
Collapse
|
20
|
Pham DT, Nguyen DXT, Lieu R, Huynh QC, Nguyen NY, Quyen TTB, Tran VD. Silk nanoparticles for the protection and delivery of guava leaf ( Psidium guajava L.) extract for cosmetic industry, a new approach for an old herb. Drug Deliv 2023; 30:2168793. [PMID: 36694964 PMCID: PMC9879179 DOI: 10.1080/10717544.2023.2168793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Guava (Psidium guajava L.) is a well-known plant containing high levels of natural antioxidants, the phenolic compounds, which have been employed in numerous cosmetic products. However, these molecules are unstable to oxidants, light, temperature, pH, water, and enzymatic activities. Therefore, to enhance their stability and preserve their antioxidant activity, this study investigated the silk fibroin nanoparticles (SFNs) ability to encapsulate, deliver, and heat-protect the phenolic compounds of the guava leaves ethanolic extract. Firstly, the guava ethanolic extract was produced by maceration, which possessed a total phenolic content of 312.6 mg GAE/g DPW and a high antioxidant activity (IC50 = 5.397 ± 0.618 µg/mL). Then, the extract loaded SFNs were manufactured by desolvation method, and the particles demonstrated appropriate sizes of 200-700 nm with narrow size distribution, spherical shape, silk-II crystalline structure, high drug entrapment efficiency of > 70% (dependent on the fibroin content), and a two-phase sustained drug release for at least 210 min. Using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, the antioxidant activity of the guava extract was well-preserved in the extract loaded SFNs. Finally, after being treated with high temperature of 70 °C for 24 h, the guava extract almost loses all of its antioxidant property (5 times decrement), whereas the extract loaded SFNs could retain the extract activity. Conclusively, the SFNs proved much potential to deliver and heat-protect the guava extract phenolic compounds, and preserve their antioxidant activity. Confirmed by this case, SFNs could be further explored in protecting other natural compounds from environmental factors.
Collapse
Affiliation(s)
- Duy Toan Pham
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, Vietnam,CONTACT Duy Toan Pham Department of Chemistry, College of Natural Sciences, Can Tho University, Campus II, 3/2 Street, Can Tho900000, Vietnam
| | - Doan Xuan Tien Nguyen
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, Vietnam
| | - Ruby Lieu
- Faculty of Commerce, Van Lang University, Ho Chi Minh City, Vietnam
| | - Quoc Cuong Huynh
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, Vietnam
| | - Ngoc Yen Nguyen
- Faculty of Chemical Engineering, College of Engineering, Can Tho University, Can Tho, Vietnam
| | - Tran Thi Bich Quyen
- Faculty of Chemical Engineering, College of Engineering, Can Tho University, Can Tho, Vietnam
| | - Van De Tran
- Department of Health Organization and Management, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| |
Collapse
|
21
|
Su J, Yu M, Wang H, Wei Y. Natural anti-inflammatory products for osteoarthritis: From molecular mechanism to drug delivery systems and clinical trials. Phytother Res 2023; 37:4321-4352. [PMID: 37641442 DOI: 10.1002/ptr.7935] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 08/31/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease that affects millions globally. The present nonsteroidal anti-inflammatory drug treatments have different side effects, leading researchers to focus on natural anti-inflammatory products (NAIPs). To review the effectiveness and mechanisms of NAIPs in the cellular microenvironment, examining their impact on OA cell phenotype and organelles levels. Additionally, we summarize relevant research on drug delivery systems and clinical randomized controlled trials (RCTs), to promote clinical studies and explore natural product delivery options. English-language articles were searched on PubMed using the search terms "natural products," "OA," and so forth. We categorized search results based on PubChem and excluded "natural products" which are mix of ingredients or compounds without the structure message. Then further review was separately conducted for molecular mechanisms, drug delivery systems, and RCTs later. At present, it cannot be considered that NAIPs can thoroughly prevent or cure OA. Further high-quality studies on the anti-inflammatory mechanism and drug delivery systems of NAIPs are needed, to determine the appropriate drug types and regimens for clinical application, and to explore the combined effects of different NAIPs to prevent and treat OA.
Collapse
Affiliation(s)
- Jianbang Su
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Minghao Yu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haochen Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingliang Wei
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
22
|
Aldrich JL, Panicker A, Ovalle R, Sharma B. Drug Delivery Strategies and Nanozyme Technologies to Overcome Limitations for Targeting Oxidative Stress in Osteoarthritis. Pharmaceuticals (Basel) 2023; 16:1044. [PMID: 37513955 PMCID: PMC10383173 DOI: 10.3390/ph16071044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress is an important, but elusive, therapeutic target for osteoarthritis (OA). Antioxidant strategies that target oxidative stress through the elimination of reactive oxygen species (ROS) have been widely evaluated for OA but are limited by the physiological characteristics of the joint. Current hallmarks in antioxidant treatment strategies include poor bioavailability, poor stability, and poor retention in the joint. For example, oral intake of exogenous antioxidants has limited access to the joint space, and intra-articular injections require frequent dosing to provide therapeutic effects. Advancements in ROS-scavenging nanomaterials, also known as nanozymes, leverage bioactive material properties to improve delivery and retention. Material properties of nanozymes can be tuned to overcome physiological barriers in the knee. However, the clinical application of these nanozymes is still limited, and studies to understand their utility in treating OA are still in their infancy. The objective of this review is to evaluate current antioxidant treatment strategies and the development of nanozymes as a potential alternative to conventional small molecules and enzymes.
Collapse
Affiliation(s)
| | | | | | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.L.A.)
| |
Collapse
|
23
|
Fan X, Peng X, Wang T, Gu Y, Sun G, Shou Q, Song H, Nian R, Liu W. Optimized silk fibroin nanoparticle functionalization with anti-CEA nanobody enhancing active targeting of colorectal cancer cells. Biomed Mater 2023; 18:045027. [PMID: 37321227 DOI: 10.1088/1748-605x/acdeba] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Abstract
This work aimed to establish a simple and feasible method to obtain silk fibroin nanoparticles (SFNPs) with uniform particles size, and then modify the SFNPs with nanobody (Nb) 11C12 targeting the proximal membrane end of carcinoembryonic antigen on the surface of colorectal cancer (CRC) cells. The regenerated silk fibroin (SF) was isolated using ultrafiltration tubes with a 50 kDa molecular weight cut-off, and the retention fraction (named as SF > 50 kDa) was further self-assembled into SFNPs by ethanol induction. Scanning electron microscope (SEM) and high-resolution transmission electron microscop showed that the SFNPs with uniform particles size were formed. Due to electrostatic adsorption and pH responsiveness, SFNPs have been proved to effectively load and release the anticancer drug doxorubicin hydrochloride (DOX) (DOX@SFNPs). Further, targeting molecule Nb 11C12 was used to modify these nanoparticles, constituting the targeted outer layer of the drug delivery system (DOX@SFNPs-11C12), achieving precise localization to cancer cells. The release amount of DOX observed fromin vitrodrug release profiles increased as follows: pH 7.4 < pH 6.8 < pH 5.4, demonstrating that the DOX release could be accelerated in a weakly acidic environment.In vitrocytotoxicity experiments displayed that SFNPs-11C12 nanoparticles exhibited good safety and biocompatibility. Drug-loaded nanoparticles, DOX@SFNPs-11C12, led to higher LoVo cells apoptosis compared to DOX@SFNPs. Fluorescence spectrophotometer characterization and confocal laser scanning microscopy further showed that the internalization of DOX was highest in the DOX@SFNPs-11C12, certifying that the introduced targeting molecule enhanced the uptake of drug delivery system by LoVo cells. This study provides a simple and operational approach to developing an optimized SFNPs drug delivery system modified by targeting Nb, which can be a good candidate for CRC therapy.
Collapse
Affiliation(s)
- Xiying Fan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China
- Shandong Energy Institute, Qingdao 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, People's Republic of China
| | - Xinying Peng
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, People's Republic of China
| | - Tingting Wang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China
- Shandong Energy Institute, Qingdao 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, People's Republic of China
| | - Yi Gu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, People's Republic of China
| | - Guochuan Sun
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China
- Shandong Energy Institute, Qingdao 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, People's Republic of China
| | - Qinghui Shou
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China
- Shandong Energy Institute, Qingdao 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, People's Republic of China
| | - Haipeng Song
- Shenzhen Innova Nanobodi Co., Ltd, No. 1301 Guanguang Road, Shenzhen 518110, People's Republic of China
| | - Rui Nian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China
- Shandong Energy Institute, Qingdao 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, People's Republic of China
| | - Wenshuai Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China
- Shandong Energy Institute, Qingdao 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, People's Republic of China
| |
Collapse
|
24
|
Wu J, Guo W, Wang Y, Liu J, Wang H, Zheng Z, Wang X, Kaplan DL. Stabilization and Sustained Release of Fragrances Using Silk-PEG Microspheres. ACS Biomater Sci Eng 2023. [PMID: 37144723 DOI: 10.1021/acsbiomaterials.3c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Fragrances, which are commonly used in food, textiles, consumer products, and medical supplies, are volatile compounds that require stabilization and controlled release due to their sensitivity to environmental conditions such as light, oxygen, temperature, and humidity. Encapsulation in various material matrices is a desired technique for these purposes, and there is a growing interest in using sustainable natural materials to reduce environmental impact. In this study, fragrance encapsulation in microspheres made from silk fibroin (SF) was investigated. Fragrance-loaded silk fibroin microspheres (Fr-SFMSs) were prepared by adding fragrance/surfactant emulsions to silk solutions, followed by mixing them with polyethylene glycol under ambient conditions. The study investigated eight different fragrances, where citral, beta-ionone, and eugenol showed higher binding affinities to silk than the other five fragrances, resulting in better microsphere formation with uniform sizes and higher fragrance loading (10-30%). Citral-SFMSs showed characteristic crystalline β-sheet structures of SF, high thermal stability (initial weight loss at 255 °C), long shelf life at 37 °C (>60 days), and sustained release (∼30% of citral remained after incubation at 60 °C for 24 h). When citral-SFMSs with different sizes were used to treat cotton fabrics, about 80% of the fragrance remained on the fabrics after one wash, and the duration of release from the treated fabrics was significantly longer than that of control samples treated with citral alone (no microspheres). This method of preparing Fr-SFMSs has potential applications in textile finishing, cosmetics, and the food industry.
Collapse
Affiliation(s)
- Jianbing Wu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
- College of Textile, Garment and Design, Changshu Institute of Technology, Suzhou 215500, People's Republic of China
| | - Wenjun Guo
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Yongfeng Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Jian Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Heng Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
25
|
Zhang S, Wang L, Kang Y, Wu J, Zhang Z. Nanomaterial-based Reactive Oxygen Species Scavengers for Osteoarthritis Therapy. Acta Biomater 2023; 162:1-19. [PMID: 36967052 DOI: 10.1016/j.actbio.2023.03.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Reactive oxygen species (ROS) play distinct but important roles in physiological and pathophysiological processes. Recent studies on osteoarthritis (OA) have suggested that ROS plays a crucial role in its development and progression, serving as key mediators in the degradation of the extracellular matrix, mitochondrial dysfunction, chondrocyte apoptosis, and OA progression. With the continuous development of nanomaterial technology, the ROS-scavenging ability and antioxidant effects of nanomaterials are being explored, with promising results already achieved in OA treatment. However, current research on nanomaterials as ROS scavengers for OA is relatively non-uniform and includes both inorganic and functionalized organic nanomaterials. Although the therapeutic efficacy of nanomaterials has been reported to be conclusive, there is still no uniformity in the timing and potential of their use in clinical practice. This paper reviews the nanomaterials currently used as ROS scavengers for OA treatment, along with their mechanisms of action, with the aim of providing a reference and direction for similar studies, and ultimately promoting the early clinical use of nanomaterials for OA treatment. STATEMENT OF SIGNIFICANCE: Reactive oxygen species (ROS) play an important role in the pathogenesis of osteoarthritis (OA). Nanomaterials serving as promising ROS scavengers have gained increasing attention in recent years. This review provides a comprehensive overview of ROS production and regulation, as well as their role in OA pathogenesis. Furthermore, this review highlights the applications of various types of nanomaterials as ROS scavengers in OA treatment and their mechanisms of action. Finally, the challenges and future prospects of nanomaterial-based ROS scavengers in OA therapy are discussed.
Collapse
|
26
|
Paladines-Quezada D, Cueva C, Gil-Muñoz R, Cenis JL, Bartolomé B, Moreno-Arribas MV, Lozano-Pérez AA. Preparation, characterization and gastrointestinal stability of silk fibroin nanoparticles loaded with red wine polyphenols. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
27
|
Bari E, Di Gravina GM, Scocozza F, Perteghella S, Frongia B, Tengattini S, Segale L, Torre ML, Conti M. Silk Fibroin Bioink for 3D Printing in Tissue Regeneration: Controlled Release of MSC extracellular Vesicles. Pharmaceutics 2023; 15:pharmaceutics15020383. [PMID: 36839705 PMCID: PMC9959026 DOI: 10.3390/pharmaceutics15020383] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Sodium alginate (SA)-based hydrogels are often employed as bioink for three-dimensional (3D) scaffold bioprinting. They offer a suitable environment for cell proliferation and differentiation during tissue regeneration and also control the release of growth factors and mesenchymal stem cell secretome, which is useful for scaffold biointegration. However, such hydrogels show poor mechanical properties, fast-release kinetics, and low biological performance, hampering their successful clinical application. In this work, silk fibroin (SF), a protein with excellent biomechanical properties frequently used for controlled drug release, was blended with SA to obtain improved bioink and scaffold properties. Firstly, we produced a printable SA solution containing SF capable of the conformational change from Silk I (random coil) to Silk II (β-sheet): this transition is a fundamental condition to improve the scaffold's mechanical properties. Then, the SA-SF blends' printability and shape fidelity were demonstrated, and mechanical characterization of the printed hydrogels was performed: SF significantly increased compressive elastic modulus, while no influence on tensile response was detected. Finally, the release profile of Lyosecretome-a freeze-dried formulation of MSC-secretome containing extracellular vesicles (EV)-from scaffolds was determined: SF not only dramatically slowed the EV release rate, but also modified the kinetics and mechanism release with respect to the baseline of SA hydrogel. Overall, these results lay the foundation for the development of SA-SF bioinks with modulable mechanical and EV-release properties, and their application in 3D scaffold printing.
Collapse
Affiliation(s)
- Elia Bari
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy
- Correspondence:
| | - Giulia Maria Di Gravina
- Department of Industrial and Information Engineering, University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
| | - Franca Scocozza
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
| | - Sara Perteghella
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
- PharmaExceed s.r.l., Piazza Castello 19, 27100 Pavia, Italy
| | - Benedetta Frongia
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
| | - Sara Tengattini
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Lorena Segale
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy
| | - Maria Luisa Torre
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy
- PharmaExceed s.r.l., Piazza Castello 19, 27100 Pavia, Italy
| | - Michele Conti
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
| |
Collapse
|
28
|
Laurindo LF, de Carvalho GM, de Oliveira Zanuso B, Figueira ME, Direito R, de Alvares Goulart R, Buglio DS, Barbalho SM. Curcumin-Based Nanomedicines in the Treatment of Inflammatory and Immunomodulated Diseases: An Evidence-Based Comprehensive Review. Pharmaceutics 2023; 15:pharmaceutics15010229. [PMID: 36678859 PMCID: PMC9861982 DOI: 10.3390/pharmaceutics15010229] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Curcumin (CUR) is a polyphenol extracted from the rhizome of Curcuma longa that possesses potent anti-inflammatory and antioxidant potential. Despite CUR's numerous beneficial effects on human health, it has limitations, such as poor absorption. Nano-based drug delivery systems have recently been applied to improve CUR's solubility and bioavailability and potentialize its health effects. This review investigated the effects of different CUR-based nanomedicines on inflammatory and immunomodulated diseases. PUBMED, EMBASE, COCHRANE, and GOOGLE SCHOLAR databases were searched, and the Scale for Assessment of Narrative Review Articles (SANRA) was used for quality assessment and PRISMA guidelines. Overall, 66 studies were included comprising atherosclerosis, rheumatoid arthritis (RA), Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), Huntington's disease (HD), inflammatory bowel diseases (IBD), psoriasis, liver fibrosis, epilepsy, and COVID-19. The available scientific studies show that there are many known nanoformulations with curcumin. They can be found in nanosuspensions, nanoparticles, nanoemulsions, solid lipid particles, nanocapsules, nanospheres, and liposomes. These formulations can improve CUR bioavailability and can effectively be used as adjuvants in several inflammatory and immune-mediated diseases such as atheroma plaque formation, RA, dementia, AD, PD, MS, IBD, psoriasis, epilepsy, COVID-19, and can be used as potent anti-fibrotic adjuvants in fibrotic liver disease.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Gabriel Magno de Carvalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Bárbara de Oliveira Zanuso
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Maria Eduardo Figueira
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ricardo de Alvares Goulart
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Daiene Santos Buglio
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília, São Paulo 17500-000, Brazil
- Correspondence: ; Tel.: +55-14-99655-3190
| |
Collapse
|
29
|
Yu B, Li Y, Lin Y, Zhu Y, Hao T, Wu Y, Sun Z, Yang X, Xu H. Research progress of natural silk fibroin and the appplication for drug delivery in chemotherapies. Front Pharmacol 2023; 13:1071868. [PMID: 36686706 PMCID: PMC9845586 DOI: 10.3389/fphar.2022.1071868] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Silk fibroin has been widely used in biological fields due to its biocompatibility, mechanical properties, biodegradability, and safety. Recently, silk fibroin as a drug carrier was developed rapidly and achieved remarkable progress in cancer treatment. The silk fibroin-based delivery system could effectively kill tumor cells without significant side effects and drug resistance. However, few studies have been reported on silk fibroin delivery systems for antitumor therapy. The advancement of silk fibroin-based drug delivery systems research and its applications in cancer therapy are highlighted in this study. The properties, applications, private opinions, and future prospects of silk fibroin carriers are discussed to understand better the development of anti-cancer drug delivery systems, which may also contribute to advancing silk fibroin innovation.
Collapse
Affiliation(s)
- Bin Yu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Yanli Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China,Department of Pharmacy, Binzhou Hospital of Traditional Chinese Medicine, Binzhou, China
| | - Yuxian Lin
- Department of Pharmacy, Wenzhou People’s Hospital of The Third Affiliated Hospital of Shanghai University, The Third Clinical Institute Affiliated To Wenzhou Medical University, Wenzhou, China
| | - Yuanying Zhu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Teng Hao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Yan Wu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Zheng Sun
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, China,*Correspondence: Xin Yang, ; Hui Xu,
| | - Hui Xu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China,*Correspondence: Xin Yang, ; Hui Xu,
| |
Collapse
|
30
|
Bari E, Ferrera F, Altosole T, Perteghella S, Mauri P, Rossi R, Passignani G, Mastracci L, Galati M, Astone GI, Mastrogiacomo M, Castagnola P, Fenoglio D, Di Silvestre D, Torre ML, Filaci G. Trojan-horse silk fibroin nanocarriers loaded with a re-call antigen to redirect immunity against cancer. J Immunother Cancer 2023; 11:e005916. [PMID: 36697251 PMCID: PMC9950976 DOI: 10.1136/jitc-2022-005916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The current challenge for immunotherapies is to generate effective antitumor immunity. Since tumor immune escape mechanisms do not impact pre-existing and consolidated immune responses, we tested the hypothesis of redirecting a pregenerated immunity to cancer: to recall a non-tumor antigen response against the tumor, silk fibroin nanoparticles (SFNs) have been selected as 'Trojan-horse' carriers, promoting the antigen uptake by the tumor cells. METHODS SFNs have been loaded with either ovalbumin (OVA) or CpG oligonucleotide (CpG) as antigen or adjuvant, respectively. In vitro uptake of SFNs by tumor (B16/F10 melanoma and MB49 bladder cancer) or dendritic cells, as well as the presence of OVA-specific T cells in splenic and tumor-infiltrating lymphocytes, were assessed by cytometric analyses. Proof-of-concept of in vivo efficacy was achieved in an OVA-hyperimmune B16/F10 murine melanoma model: SFNs-OVA or SFNs-CpG were injected, separately or in association, into the subcutaneous peritumoral area. Cancer dimensions/survival time were monitored, while, at the molecular level, system biology approaches based on graph theory and experimental proteomic data were performed. RESULTS SFNs were efficiently in vitro uptaken by cancer and dendritic cells. In vivo peritumor administration of SFNs-OVA redirected OVA-specific cytotoxic T cells intratumorally. Proteomics and systems biology showed that peritumoral treatment with either SFNs-OVA or SFNs-CpG dramatically modified tumor microenvironment with respect to the control (CTR), mainly involving functional modules and hubs related to angiogenesis, inflammatory mediators, immune function, T complex and serpins expression, redox homeostasis, and energetic metabolism. Both SFNs-OVA and SFNs-CpG significantly delayed melanoma growth/survival time, and their effect was additive. CONCLUSIONS Both SFNs-OVA and SFNs-CpG induce effective anticancer response through complementary mechanisms and show the efficacy of an innovative active immunotherapy approach based on the redirection of pre-existing immunity against cancer cells. This approach could be universally applied for solid cancer treatments if translated into the clinic using re-call antigens of childhood vaccination.
Collapse
Affiliation(s)
- Elia Bari
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Piemonte, Italy
| | - Francesca Ferrera
- Department of Internal Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genova, Liguria, Italy
| | - Tiziana Altosole
- Department of Internal Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genova, Liguria, Italy
| | - Sara Perteghella
- Department of Drug Sciences, University of Pavia, Pavia, Lombardia, Italy
- PharmaExceed S.r.l, Pavia, Lombardia, Italy
| | - Pierluigi Mauri
- Institute for Biomedical Technologies, ITB CNR, Segrate, Lombardia, Italy
| | - Rossana Rossi
- Institute for Biomedical Technologies, ITB CNR, Segrate, Lombardia, Italy
| | - Giulia Passignani
- Institute for Biomedical Technologies, ITB CNR, Segrate, Lombardia, Italy
| | - Luca Mastracci
- Anatomic Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Liguria, Italy
- Department of Surgical and Integrated Diagnostic Sciences, University of Genoa, Genova, Liguria, Italy
| | - Martina Galati
- Department of Internal Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genova, Liguria, Italy
| | - Giuseppina Iliana Astone
- Department of Internal Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genova, Liguria, Italy
| | - Maddalena Mastrogiacomo
- Department of Internal Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genova, Liguria, Italy
| | - Patrizio Castagnola
- Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genova, Liguria, Italy
| | - Daniela Fenoglio
- Department of Internal Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genova, Liguria, Italy
- Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genova, Liguria, Italy
| | - Dario Di Silvestre
- Institute for Biomedical Technologies, ITB CNR, Segrate, Lombardia, Italy
| | - Maria Luisa Torre
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Piemonte, Italy
- PharmaExceed S.r.l, Pavia, Lombardia, Italy
| | - Gilberto Filaci
- Department of Internal Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genova, Liguria, Italy
- Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genova, Liguria, Italy
| |
Collapse
|
31
|
Pham DT, Huynh QC, Lieu R, Nguyen VB, Tran VD, Thuy BTP. Controlled-Release Wedelia trilobata L. Flower Extract Loaded Fibroin Microparticles as Potential Anti-Aging Preparations for Cosmetic Trade Commercialization. Clin Cosmet Investig Dermatol 2023; 16:1109-1121. [PMID: 37131540 PMCID: PMC10149084 DOI: 10.2147/ccid.s405464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023]
Abstract
Background Wedelia trilobata L. (WT), a common herbal plant in Vietnam, is popularly used as a strong antioxidant in Vietnamese folk medicine. However, limited studies have reported the application of WT flower in cosmeceutical area. Purpose This study explored the potentials of WT loaded fibroin microparticles (FMPs-WT) as a novel anti-aging cosmeceutical product. Methods The WT flower was firstly extracted by maceration with methanol, ethanol 60%, and ethanol 96%, and its chemical compositions and total polyphenol content were investigated. Then, the FMPs-WT were developed by desolvation method and physicochemically characterized. Finally, the product antioxidant activities were in-vitro determined using DPPH assay. Results The optimal WT extract was the ethanol 60% extract, which contains polyphenols, alkaloids, flavonoids, saponins, glycosides, and organic acids; with a total polyphenol content of 46.47 ± 2.32 mg GAE/g plant powder. The FMPs-WT were successfully formulated, with a distinct silk-II polymorph; varied sizes of 0.592 to 9.820 µm, depending on the fibroin concentrations and the WT extraction solvent; high entrapment efficiencies of >65%; and sustained-release patterns of polyphenol in pH 7.4 for >6 h. Regarding the antioxidant activity, the pure WT flower extracts possessed high scavenging actions with IC50 of 7.98 ± 0.40 µg/mL, comparable with the standard ascorbic acid (IC50 = 4.23 ± 0.21 µg/mL). Moreover, the FMPs-WT could retain the extract antioxidant capacity, and exert the effects in a timely manner, corresponding to its release profile. Conclusion The FMPs-WT could be further investigated to become a potential anti-aging cosmeceutical product in the market.
Collapse
Affiliation(s)
- Duy Toan Pham
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, 900000, Vietnam
| | - Quoc Cuong Huynh
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, 900000, Vietnam
| | - Ruby Lieu
- Faculty of Commerce, Van Lang University, Ho Chi Minh City, Vietnam
| | - Viet Bach Nguyen
- Faculty of Chemical Engineering, College of Engineering, Can Tho University, Can Tho, 900000, Vietnam
| | - Van De Tran
- Department of Health Organization and Management, Can Tho University of Medicine and Pharmacy, Can Tho, 900000, Vietnam
| | - Bui Thi Phuong Thuy
- Faculty of Fundamental Sciences, Van Lang University, Ho Chi Minh City, Vietnam
- Correspondence: Bui Thi Phuong Thuy, Faculty of Fundamental Sciences, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City, Vietnam, Email
| |
Collapse
|
32
|
Dou H, Wang S, Hu J, Song J, Zhang C, Wang J, Xiao L. Osteoarthritis models: From animals to tissue engineering. J Tissue Eng 2023; 14:20417314231172584. [PMID: 37223125 PMCID: PMC10201005 DOI: 10.1177/20417314231172584] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/13/2023] [Indexed: 05/25/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative osteoarthropathy. Although it has been revealed that a variety of factors can cause or aggravate the symptoms of OA, the pathogenic mechanisms of OA remain unknown. Reliable OA models that accurately reflect human OA disease are crucial for studies on the pathogenic mechanism of OA and therapeutic drug evaluation. This review first demonstrated the importance of OA models by briefly introducing the OA pathological features and the current limitations in the pathogenesis and treatment of OA. Then, it mainly discusses the development of different OA models, including animal and engineered models, highlighting their advantages and disadvantages from the perspective of pathogenesis and pathology analysis. In particular, the state-of-the-art engineered models and their potential were emphasized, as they may represent the future direction in the development of OA models. Finally, the challenges in obtaining reliable OA models are also discussed, and possible future directions are outlined to shed some light on this area.
Collapse
Affiliation(s)
- Hongyuan Dou
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Shuhan Wang
- Shenzhen Institute for Drug Control, Shenzhen Testing Center of Medical Devices, Shenzhen, China
| | - Jiawei Hu
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Jian Song
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Chao Zhang
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Jiali Wang
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Lin Xiao
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
33
|
Pacheco MO, Eccles LE, Davies NA, Armada J, Cakley AS, Kadambi IP, Stoppel WL. Progress in silk and silk fiber-inspired polymeric nanomaterials for drug delivery. FRONTIERS IN CHEMICAL ENGINEERING 2022; 4:1044431. [PMID: 38487791 PMCID: PMC10939129 DOI: 10.3389/fceng.2022.1044431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
The fields of drug and gene delivery have been revolutionized by the discovery and characterization of polymer-based materials. Polymeric nanomaterials have emerged as a strategy for targeted delivery because of features such as their impressive biocompatibility and improved availability. Use of naturally derived polymers in these nanomaterials is advantageous due to their biodegradability and bioresorption. Natural biopolymer-based particles composed of silk fibroins and other silk fiber-inspired proteins have been the focus of research in drug delivery systems due to their simple synthesis, tunable characteristics, and ability to respond to stimuli. Several silk and silk-inspired polymers contain a high proportion of reactive side groups, allowing for functionalization and addition of targeting moieties. In this review, we discuss the main classes of silk and silk-inspired polymers that are being used in the creation of nanomaterials. We also focus on the fabrication techniques used in generating a tunable design space of silk-based polymeric nanomaterials and detail how that translates into use for drug delivery to several distinct microenvironments.
Collapse
Affiliation(s)
- Marisa O Pacheco
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL
| | - Lauren E Eccles
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL
| | | | - Jostin Armada
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL
| | - Alaura S Cakley
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL
| | - Isiri P Kadambi
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL
| | - Whitney L Stoppel
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
34
|
Polymeric Nanoparticles for Drug Delivery in Osteoarthritis. Pharmaceutics 2022; 14:pharmaceutics14122639. [PMID: 36559133 PMCID: PMC9788411 DOI: 10.3390/pharmaceutics14122639] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative musculoskeletal disorder affecting the whole synovial joint and globally impacts more than one in five individuals aged 40 and over, representing a huge socioeconomic burden. Drug penetration into and retention within the joints are major challenges in the development of regenerative therapies for OA. During the recent years, polymeric nanoparticles (PNPs) have emerged as promising drug carrier candidates due to their biodegradable properties, nanoscale structure, functional versatility, and reproducible manufacturing, which makes them particularly attractive for cartilage penetration and joint retention. In this review, we discuss the current development state of natural and synthetic PNPs for drug delivery and OA treatment. Evidence from in vitro and pre-clinical in vivo studies is used to show how disease pathology and key cellular pathways of joint inflammation are modulated by these nanoparticle-based therapies. Furthermore, we compare the biodegradability and surface modification of these nanocarriers in relation to the drug release profile and tissue targeting. Finally, the main challenges for nanoparticle delivery to the cartilage are discussed, as a function of disease state and physicochemical properties of PNPs such as size and surface charge.
Collapse
|
35
|
The influence of iron source, hydrophilic emulsifiers, and positioning of encapsulates on in vitro bioaccessibility and simultaneous delivery of iron and curcumin by water-in-oil-in-water (W1/O/W2) double emulsions. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Alonso-González M, Fernández-Carballido A, Quispe-Chauca P, Lozza I, Martín-Sabroso C, Isabel Fraguas-Sánchez A. DoE-based development of celecoxib loaded PLGA nanoparticles: In ovo assessment of its antiangiogenic effect. Eur J Pharm Biopharm 2022; 180:149-160. [DOI: 10.1016/j.ejpb.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/07/2022] [Accepted: 09/25/2022] [Indexed: 11/04/2022]
|
37
|
Feng J, Li Z, Tian L, Mu P, Hu Y, Xiong F, Ma X. Efficacy and safety of curcuminoids alone in alleviating pain and dysfunction for knee osteoarthritis: a systematic review and meta-analysis of randomized controlled trials. BMC Complement Med Ther 2022; 22:276. [PMID: 36261810 PMCID: PMC9580113 DOI: 10.1186/s12906-022-03740-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Curcuminoids (CURs) are the principal ingredients of Curcuma longa L. [Zingiberaceae] (CL)-an herbal plant used in east Asia to alleviate pain and inflammation. Thus far, the therapeutic effects of CURs for knee osteoarthritis (OA) uncovered by multiple reviews remained uncertain due to broadly involving trials with different agents-combined or CURs-free interventions. Therefore, we formed stringent selection criteria and assessment methods to summarize current evidence on the efficacy and safety of CURs alone in the treatment of knee OA. METHODS A series of databases were searched for randomized controlled trials (RCTs) evaluating the efficacy and safety of CURs for knee OA. Clinical outcomes were evaluated using meta-analysis and the minimum clinically important difference (MCID) for both statistical and clinical significance. RESULTS Fifteen studies with 1670 patients were included. CURs were significantly more effective than placebo in the improvements of VAS for pain ( WMD: - 1.77, 95% CI: - 2.44 to - 1.09), WOMAC total score ( WMD: - 7.06, 95% CI: - 12.27 to - 1.84), WOMAC pain score ( WMD: - 1.42, 95% CI: - 2.41 to - 0.43), WOMAC function score ( WMD: - 5.04, 95% CI: - 7.65 to - 2.43), and WOMAC stiffness score ( WMD: - 0.54, 95% CI: - 1.03 to - 0.05). Meanwhile, CURs were not inferior to NSAIDs in the improvements of pain- and function-related outcomes. Additionally, CURs did not significantly increase the incidence of adverse events (AEs) compared with placebo ( RR: 1.03, 95% CI: 0.69 to 1.53, P = 0.899, I2 = 23.7%) and NSAIDs (RR: 0.71 0.65, 95% CI: 0.57 0.41 to 0.90 1.03). CONCLUSIONS CURs alone can be expected to achieve considerable analgesic and functional promotion effects for patients with symptomatic knee OA in short term, without inducing an increase of adverse events. However, considering the low quality and substantial heterogeneity of present studies, a cautious and conservative recommendation for broader clinical use of CURs should still be made. Further high-quality studies are necessary to investigate the impact of different dosages, optimization techniques and administration approaches on long-term safety and efficacy of CURs, so as to strengthen clinical decision making for patients with symptomatic knee OA.
Collapse
Affiliation(s)
- Jie Feng
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Zhao Li
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Linling Tian
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Panyun Mu
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yimei Hu
- Department of Orthopedics, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China.
| | - Feng Xiong
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Xu Ma
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
38
|
Zhang J, Huang Y, Xu J, Zhao R, Xiong C, Habu J, Wang Y, Luo X. Global publication trends and research hotspots of curcumin application in tumor: A 20-year bibliometric approach. Front Oncol 2022; 12:1033683. [PMID: 36300100 PMCID: PMC9589263 DOI: 10.3389/fonc.2022.1033683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/23/2022] [Indexed: 01/03/2023] Open
Abstract
Malignant tumor is a disease caused by the imbalance of cell growth and proliferation mechanism, which seriously threatens human health and life safety. However, side effects and drug resistance are the key factors that limit the efficacy of anti-tumor drugs. Therefore, it is urgent and necessary to explore and unearth natural, safe and effective chemosensitizers in tumor researches. Curcumin is the main active ingredient in Curcuma, which has anti-inflammatory, anti-inflammatory and anti-oxidation effects, and has inhibitory effects on a variety of cancers. Bibliometric analysis is a scientific and quantitative method to assess the published articles, which can help researchers to find the development trends and the research hotspots of a specific research field, providing the development of future research for researchers. This study searched the Web Science Core Collection (woscc) for publications related to curcumin and tumors from January 1, 2001 to December 31, 2021. The specific characteristics of 1707 publications were analyzed by using Microsoft Excel software, CiteSpace, Vosviewer and online analysis platform of literature metrology. China had the largest number of published articles, with 579 publications. Aggarwal BB’s articles total citations and average citations were the most. PLoS One had the largest number of publications, with 32 publications. The current research focuses on “nanoparticles”, “delivery”, “micells” and “doxorubicin”. At present, nano based drug delivery system to improve the bioavailability of curcumin and thus to treat tumors will be the focus of future research.
Collapse
|
39
|
Yang W, Zeng Q, Pan Q, Huang W, Hu H, Shao Z. Application and prospect of ROS-related nanomaterials for orthopaedic related diseases treatment. Front Chem 2022; 10:1035144. [PMID: 36277336 PMCID: PMC9581401 DOI: 10.3389/fchem.2022.1035144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
The importance of reactive oxygen species (ROS) in the occurrence and development of orthopaedic related diseases is becoming increasingly prominent. ROS regulation has become a new method to treat orthopaedic related diseases. In recent years, the application of nanomaterials has become a new hope for precision and efficient treatment. However, there is a lack of reviews on ROS-regulated nanomaterials for orthopaedic related diseases. Based on the key significance of nanomaterials for the treatment of orthopaedic related diseases, we searched the latest related studies and reviewed the nanomaterials that regulate ROS in the treatment of orthopaedic related diseases. According to the function of nanomaterials, we describe the scavenging of ROS related nanomaterials and the generation of ROS related nanomaterials. In this review, we closely integrated nanomaterials with the treatment of orthopaedic related diseases such as arthritis, osteoporosis, wound infection and osteosarcoma, etc., and highlighted the advantages and disadvantages of existing nanomaterials. We also looked forward to the design of ROS-regulated nanomaterials for the treatment of orthopaedic related diseases in the future.
Collapse
Affiliation(s)
- Wenbo Yang
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianwen Zeng
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Pan
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Huang
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zengwu Shao, ; Hongzhi Hu, ; Wei Huang,
| | - Hongzhi Hu
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zengwu Shao, ; Hongzhi Hu, ; Wei Huang,
| | - Zengwu Shao
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zengwu Shao, ; Hongzhi Hu, ; Wei Huang,
| |
Collapse
|
40
|
Leung KS, Shirazi S, Cooper LF, Ravindran S. Biomaterials and Extracellular Vesicle Delivery: Current Status, Applications and Challenges. Cells 2022; 11:2851. [PMID: 36139426 PMCID: PMC9497093 DOI: 10.3390/cells11182851] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022] Open
Abstract
In this review, we will discuss the current status of extracellular vesicle (EV) delivery via biopolymeric scaffolds for therapeutic applications and the challenges associated with the development of these functionalized scaffolds. EVs are cell-derived membranous structures and are involved in many physiological processes. Naïve and engineered EVs have much therapeutic potential, but proper delivery systems are required to prevent non-specific and off-target effects. Targeted and site-specific delivery using polymeric scaffolds can address these limitations. EV delivery with scaffolds has shown improvements in tissue remodeling, wound healing, bone healing, immunomodulation, and vascular performance. Thus, EV delivery via biopolymeric scaffolds is becoming an increasingly popular approach to tissue engineering. Although there are many types of natural and synthetic biopolymers, the overarching goal for many tissue engineers is to utilize biopolymers to restore defects and function as well as support host regeneration. Functionalizing biopolymers by incorporating EVs works toward this goal. Throughout this review, we will characterize extracellular vesicles, examine various biopolymers as a vehicle for EV delivery for therapeutic purposes, potential mechanisms by which EVs exert their effects, EV delivery for tissue repair and immunomodulation, and the challenges associated with the use of EVs in scaffolds.
Collapse
Affiliation(s)
- Kasey S. Leung
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Sajjad Shirazi
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Lyndon F. Cooper
- School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
41
|
Velasco-Salgado C, Pontes-Quero GM, García-Fernández L, Aguilar MR, de Wit K, Vázquez-Lasa B, Rojo L, Abradelo C. The Role of Polymeric Biomaterials in the Treatment of Articular Osteoarthritis. Pharmaceutics 2022; 14:pharmaceutics14081644. [PMID: 36015270 PMCID: PMC9413163 DOI: 10.3390/pharmaceutics14081644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 12/03/2022] Open
Abstract
Osteoarthritis is a high-prevalence joint disease characterized by the degradation of cartilage, subchondral bone thickening, and synovitis. Due to the inability of cartilage to self-repair, regenerative medicine strategies have become highly relevant in the management of osteoarthritis. Despite the great advances in medical and pharmaceutical sciences, current therapies stay unfulfilled, due to the inability of cartilage to repair itself. Additionally, the multifactorial etiology of the disease, including endogenous genetic dysfunctions and exogenous factors in many cases, also limits the formation of new cartilage extracellular matrix or impairs the regular recruiting of chondroprogenitor cells. Hence, current strategies for osteoarthritis management involve not only analgesics, anti-inflammatory drugs, and/or viscosupplementation but also polymeric biomaterials that are able to drive native cells to heal and repair the damaged cartilage. This review updates the most relevant research on osteoarthritis management that employs polymeric biomaterials capable of restoring the viscoelastic properties of cartilage, reducing the symptomatology, and favoring adequate cartilage regeneration properties.
Collapse
Affiliation(s)
- Carmen Velasco-Salgado
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcon, Spain
| | - Gloria María Pontes-Quero
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - Luis García-Fernández
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - María Rosa Aguilar
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - Kyra de Wit
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Blanca Vázquez-Lasa
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - Luis Rojo
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
- Correspondence: (L.R.); (C.A.)
| | - Cristina Abradelo
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcon, Spain
- Correspondence: (L.R.); (C.A.)
| |
Collapse
|
42
|
Chen F, Liu Q. Demystifying phytoconstituent-derived nanomedicines in their immunoregulatory and therapeutic roles in inflammatory diseases. Adv Drug Deliv Rev 2022; 186:114317. [PMID: 35533788 DOI: 10.1016/j.addr.2022.114317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/15/2022] [Accepted: 04/30/2022] [Indexed: 11/28/2022]
Abstract
In the past decades, phytoconstituents have appeared as critical mediators for immune regulations among various diseases, both in eukaryotes and prokaryotes. These bioactive molecules, showing a broad range of biological functions, would hold tremendous promise for developing new therapeutics. The discovery of phytoconstituents' capability of functionally regulating immune cells and associating cytokines, suppressing systemic inflammation, and remodeling immunity have rapidly promoted the idea of their employment as anti-inflammatory agents. In this review, we discuss various roles of phyto-derived medicines in the field of inflammatory diseases, including chronic inflammation, autoimmune diseases, and acute inflammatory disease such as COVID-19. Nevertheless, traditional phyto-derived medicines often concurred with their clinical administration limitations, such as their lack of cell specificity, inefficient cytoplasmic delivery, and rapid clearance by the immune system. As alternatives, phyto-derived nano-approaches may provide significant benefits. Both unmodified and engineered nanocarriers present the potential to serve as phytoconstituent delivery systems to improve therapeutic physio-chemical properties and pharmacokinetic profiles. Thus, the development of phytoconstituents' nano-delivery designs, their new and perspective approaches for therapeutical applications are elaborated herein.
Collapse
Affiliation(s)
- Fengqian Chen
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 216, 1550 Orleans Street, Baltimore, MD 21231, United States.
| |
Collapse
|
43
|
Eugenol/silk fibroin nanoparticles embedded Lycium barbarum polysaccharide nanofibers for active food packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
44
|
Ma L, Zheng X, Lin R, Sun AR, Song J, Ye Z, Liang D, Zhang M, Tian J, Zhou X, Cui L, Liu Y, Liu Y. Knee Osteoarthritis Therapy: Recent Advances in Intra-Articular Drug Delivery Systems. Drug Des Devel Ther 2022; 16:1311-1347. [PMID: 35547865 PMCID: PMC9081192 DOI: 10.2147/dddt.s357386] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/17/2022] [Indexed: 12/12/2022] Open
Abstract
Drug delivery for osteoarthritis (OA) treatment is a continuous challenge because of their poor bioavailability and rapid clearance in joints. Intra-articular (IA) drug delivery is a common strategy and its therapeutic effects depend mainly on the efficacy of the drug-delivery system used for OA therapy. Different types of IA drug-delivery systems, such as microspheres, nanoparticles, and hydrogels, have been rapidly developed over the past decade to improve their therapeutic effects. With the continuous advancement in OA mechanism research, new drugs targeting specific cell/signaling pathways in OA are rapidly evolving and effective drug delivery is critical for treating OA. In this review, recent advances in various IA drug-delivery systems for OA treatment, OA targeted strategies, and related signaling pathways in OA treatment are summarized and analyzed based on current publications.
Collapse
Affiliation(s)
- Luoyang Ma
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Xiaoyan Zheng
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
- Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang city, Guangdong province, 524045, People's Republic of China
| | - Rui Lin
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Antonia RuJia Sun
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen City, Guangdong Province, 518055, People’s Republic of China
| | - Jintong Song
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Zhiqiang Ye
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Dahong Liang
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Min Zhang
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Jia Tian
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Xin Zhou
- Marine Medical Research Institute of Zhanjiang, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Liao Cui
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Yuyu Liu
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Yanzhi Liu
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
- Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang city, Guangdong province, 524045, People's Republic of China
- Shenzhen Osteomore Biotechnology Co., Ltd., Shenzhen city, Guangdong Province, 518118, People’s Republic of China
- Correspondence: Yanzhi Liu; Yuyu Liu, Tel +86-759-2388405; +86-759-2388588, Email ;
| |
Collapse
|
45
|
涂 鹏, 马 勇, 潘 娅, 汪 志, 孙 杰, 陈 凯, 杨 光, 王 礼, 刘 孟, 郭 杨. [Effect of silk fibroin microcarrier loaded with clematis total saponins and chondrocytes on promoting rabbit knee articular cartilage defects repair]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:343-351. [PMID: 35293177 PMCID: PMC8923927 DOI: 10.7507/1002-1892.202107061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Objective To prepare the silk fibroin microcarrier loaded with clematis total saponins (CTS) (CTS-silk fibroin microcarrier), and to investigate the effect of microcarrier combined with chondrocytes on promoting rabbit knee articular cartilage defects repair. Methods CTS-silk fibroin microcarrier was prepared by high voltage electrostatic combined with freeze drying method using the mixture of 5% silk fibroin solution, 10 mg/mL CTS solution, and glycerin. The samples were characterized by scanning electron microscope and the cumulative release amount of CTS was detected. Meanwhile, unloaded silk fibroin microcarrier was also prepared. Chondrocytes were isolated from knee cartilage of 4-week-old New Zealand rabbits and cultured. The 3rd generation of chondrocytes were co-cultured with the two microcarriers respectively for 7 days in microgravity environment. During this period, the adhesion of chondrocytes to microcarriers was observed by inverted phase contrast microscope and scanning electron microscope, and the proliferation activity of cells was detected by cell counting kit 8 (CCK-8), and compared with normal cells. Thirty 3-month-old New Zealand rabbits were selected to make bilateral knee cartilage defects models and randomly divided into 3 groups ( n=20). Knee cartilage defects in group A were not treated, and in groups B and C were filled with the unloaded silk fibroin microcarrier-chondrocyte complexes and CTS-silk fibroin microcarrier-chondrocyte complexes, respectively. At 12 weeks after operation, the levels of matrix metalloproteinase 9 (MMP-9), MMP-13, and tissue inhibitor of MMP 1 (TIMP-1) in articular fluid were detected by ELISA. The cartilage defects were collected for gross observation and histological observation (HE staining and toluidine blue staining). Western blot was used to detect the expressions of collagen type Ⅱ and proteoglycan. The inflammatory of joint synovium was observed by histological staining and inducible nitric oxide synthase (iNOS) immunohistochemical staining. Results The CTS-silk fibroin microcarrier was spherical, with a diameter between 300 and 500 μm, a porous surface, and a porosity of 35.63%±3.51%. CTS could be released slowly in microcarrier for a long time. Under microgravity, the chondrocytes attached to the surface of the two microcarriers increased gradually with the extension of culture time, and the proliferation activity of chondrocytes at 24 hours after co-culture was significantly higher than that of normal chondrocytes ( P<0.05). There was no significant difference in proliferation activity of chondrocytes between the two microcarriers ( P>0.05). In vivo experiment in animals showed that the levels of MMP-9 and MMP-13 in group C were significantly lower than those in groups A and B ( P<0.05), and the level of TIMP-1 in group C was significantly higher ( P<0.05). Compared with group A, the cartilage defects in groups B and C were filled with repaired tissue, and the repaired surface of group C was more complete and better combined with the surrounding cartilage. Histological observation and Western blot analysis showed that the International Cartilage Repair Scoring (ICRS) and the relative expression levels of collagen type Ⅱ and proteoglycan in groups B and C were significantly better than those in group A, and group C was significantly better than group B ( P<0.05). The histological observation showed that the infiltration of synovial inflammatory cells and hyperplasia of small vessels significantly reduced in group C compared with groups A and B. iNOS immunohistochemical staining showed that the expression of iNOS in group C was significantly lower than that in groups A and B ( P<0.05). Conclusion CTS-silk fibroin microcarrier has good CTS sustained release effect and biocompatibility, and can promote the repair of rabbit cartilage defect by carrying chondrocyte proliferation in microgravity environment.
Collapse
Affiliation(s)
- 鹏程 涂
- 南京中医药大学附属医院骨伤科(南京 210029)Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210029, P. R. China
- 南京中医药大学骨伤修复与重建新技术实验室(南京 210023)Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210023, P. R. China
| | - 勇 马
- 南京中医药大学附属医院骨伤科(南京 210029)Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210029, P. R. China
- 南京中医药大学骨伤修复与重建新技术实验室(南京 210023)Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210023, P. R. China
- 南京中医药大学中医学院 · 中西医结合学院(南京 210023)School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210023, P. R. China
| | - 娅岚 潘
- 南京中医药大学附属医院骨伤科(南京 210029)Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210029, P. R. China
- 南京中医药大学骨伤修复与重建新技术实验室(南京 210023)Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210023, P. R. China
| | - 志芳 汪
- 南京中医药大学附属医院骨伤科(南京 210029)Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210029, P. R. China
| | - 杰 孙
- 南京中医药大学附属医院骨伤科(南京 210029)Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210029, P. R. China
- 南京中医药大学骨伤修复与重建新技术实验室(南京 210023)Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210023, P. R. China
| | - 凯 陈
- 南京中医药大学附属医院骨伤科(南京 210029)Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210029, P. R. China
| | - 光露 杨
- 南京中医药大学附属医院骨伤科(南京 210029)Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210029, P. R. China
- 南京中医药大学骨伤修复与重建新技术实验室(南京 210023)Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210023, P. R. China
| | - 礼宁 王
- 南京中医药大学附属医院骨伤科(南京 210029)Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210029, P. R. China
- 南京中医药大学骨伤修复与重建新技术实验室(南京 210023)Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210023, P. R. China
| | - 孟敏 刘
- 南京中医药大学附属医院骨伤科(南京 210029)Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210029, P. R. China
- 南京中医药大学骨伤修复与重建新技术实验室(南京 210023)Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210023, P. R. China
| | - 杨 郭
- 南京中医药大学附属医院骨伤科(南京 210029)Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210029, P. R. China
- 南京中医药大学骨伤修复与重建新技术实验室(南京 210023)Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210023, P. R. China
| |
Collapse
|
46
|
Yang W, Xie D, Liang Y, Chen N, Xiao B, Duan L, Wang M. Multi-responsive fibroin-based nanoparticles enhance anti-inflammatory activity of kaempferol. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Sidhu AK, Verma N, Kaushal P. Role of Biogenic Capping Agents in the Synthesis of Metallic Nanoparticles and Evaluation of Their Therapeutic Potential. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2021.801620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The biomedical properties of nanoparticles have been the area of focus for contemporary science; however, there are issues concerning their long-term toxicities. Recent trends in nanoparticle fabrication and surface manipulation, the use of distinctive biogenic capping agents, have allowed the preparation of nontoxic, surface-functionalized, and monodispersed nanoparticles for medical applications. These capping agents act as stabilizers or binding molecules that prevent agglomeration and steric hindrance, alter the biological activity and surface chemistry, and stabilize the interaction of nanoparticles within the preparation medium. Explicit features of nanoparticles are majorly ascribed to the capping present on their surface. The present review article is an attempt to compile distinctive biological capping agents deployed in the synthesis of metal nanoparticles along with the medical applications of these capped nanoparticles. First, this innovative review highlights the various biogenic capping agents, including biomolecules and biological extracts of plants and microorganisms. Next, the therapeutic applications of capped nanoparticles and the effect of biomolecules on the efficiency of the nanoparticles have been expounded. Finally, challenges and future directions on the use of biological capping agents have been concluded. The goal of the present review article is to provide a comprehensive report to researchers who are looking for alternative biological capping agents for the green synthesis of important metallic nanoparticles.
Collapse
|
48
|
Mu P, Feng J, Hu Y, Xiong F, Ma X, Tian L. Botanical Drug Extracts Combined With Biomaterial Carriers for Osteoarthritis Cartilage Degeneration Treatment: A Review of 10 Years of Research. Front Pharmacol 2022; 12:789311. [PMID: 35173609 PMCID: PMC8841352 DOI: 10.3389/fphar.2021.789311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is a long-term chronic arthrosis disease which is usually characterized by pain, swelling, joint stiffness, reduced range of motion, and other clinical manifestations and even results in disability in severe cases. The main pathological manifestation of OA is the degeneration of cartilage. However, due to the special physiological structure of the cartilage, once damaged, it is unable to repair itself, which is one of the challenges of treating OA clinically. Abundant studies have reported the application of cartilage tissue engineering in OA cartilage repair. Among them, cell combined with biological carrier implantation has unique advantages. However, cell senescence, death and dedifferentiation are some problems when cultured in vitro. Botanical drug remedies for OA have a long history in many countries in Asia. In fact, botanical drug extracts (BDEs) have great potential in anti-inflammatory, antioxidant, antiaging, and other properties, and many studies have confirmed their effects. BDEs combined with cartilage tissue engineering has attracted increasing attention in recent years. In this review, we will explain in detail how cartilage tissue engineering materials and BDEs play a role in cartilage repair, as well as the current research status.
Collapse
Affiliation(s)
- Panyun Mu
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Feng
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yimei Hu
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yimei Hu,
| | - Feng Xiong
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xu Ma
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linling Tian
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
49
|
Celecoxib-Loaded Solid Lipid Nanoparticles for Colon Delivery: Formulation Optimization and In Vitro Assessment of Anti-Cancer Activity. Pharmaceutics 2022; 14:pharmaceutics14010131. [PMID: 35057027 PMCID: PMC8780659 DOI: 10.3390/pharmaceutics14010131] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 02/04/2023] Open
Abstract
This work aimed to optimize a celecoxib (CXB)-loaded solid lipid nanoparticles (SLN) colon delivery system for the enhancement of anticancer activity. An ultrasonic melt-emulsification method was employed in this work for the preparation of SLN. The physical attributes were characterized for their particle sizes, charges, morphology, and entrapment efficiency (%EE), in addition to DSC and FTIR. The in vitro drug release profiles were evaluated, and the anticancer activity was examined utilizing an MTT assay in three cancer cell lines: the colon cancer HT29, medulloblastoma Daoy, and hepatocellular carcinoma HepG2 cells. All of the prepared SLN formulations had nanoscale particle sizes ranging from 238 nm to 757 nm. High zeta-potential values (mv) within −30 s mv were reported. The %EE was in the range 86.76–96.6%. The amorphous nature of the SLN-entrapped CXB was confirmed from SLN DSC thermograms. The in vitro release profile revealed a slow constant rate of release with no burst release, which is unusual for SLN. Both the F9 and F14 demonstrated almost complete CXB release within 24 h, with only 25% completed within the first 5 h. F9 caused a significant percentage of cell death in the three cancer cell lines tested after 24 h of incubation and maintained this effect for 72 h. The prepared CXB-loaded SLN exhibited unique properties such as slow release with no burst and a high %EE. The anticancer activity of one formulation was extremely significant in all tested cancer cell lines at all incubation times, which is very promising.
Collapse
|
50
|
Kaur A, Kaur L, Singh G, Dhawan RK, Mahajan A. Nanotechnology-based Herbal Formulations: A Survey of Recent Patents, Advancements, and Transformative Headways. RECENT PATENTS ON NANOTECHNOLOGY 2022; 16:295-307. [PMID: 33913409 DOI: 10.2174/1872210515666210428135343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Nanotechnology in association with herbal medicine can lead to enhanced therapeutic and diminished adverse effects of medication. In turn, it can lead to synergistic effects of administered compound overcoming its demerits. Nowadays, the trend of herbal compounds to treat even a small illness is gaining momentum. Gone are the days when the ineffectiveness of a compound was impossible to be dealt with. Nevertheless, in this competitive era of science and innovative technology, it has become possible to maximize the usefulness of ineffective yet potent herbal compounds. The demand for herbal compounds is getting amplified because of their ability to treat a myriad of diseases, including COVID-19, showing fewer side effects. The merger of nanotechnology with traditional medicine augments the potential of herbal drugs for devastating dangerous and chronic diseases like cancer. In this review article, we have tried to assimilate the complete information regarding the use of different nanocarriers to overcome the drawbacks of herbal compounds. In addition, all the recent advancements in the herbal field, as well as the future exploration to be emphasized, have been discussed.
Collapse
Affiliation(s)
- Anureet Kaur
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, 143001, India
| | - Lakhvir Kaur
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, 143001, India
| | - Gurjeet Singh
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, 143001, India
| | - R K Dhawan
- Department of Pharmacology, Khalsa College of Pharmacy, Amritsar, 143001, India
| | - Ayushi Mahajan
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, 143001, India
| |
Collapse
|