1
|
Dowdall N, Hoare T. β-1,3 Glucan Microparticles & Nanoparticles: Fabrication Methods & Applications in Immunomodulation & Targeted Drug Delivery. Adv Healthc Mater 2025:e2501006. [PMID: 40302314 DOI: 10.1002/adhm.202501006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/17/2025] [Indexed: 05/02/2025]
Abstract
Innate immune cells such as macrophages and dendritic cells play major roles in the progression of many cancerous, fibrotic, and autoimmune diseases, often due to environmental cues that skew these cells toward a phenotype that progresses or exacerbates the disease state. As such, a growing focus in treating such diseases is placed on exploiting the high plasticity of these cells to modify or reverse their pro-disease phenotypes using immunomodulatory materials. β-1,3 glucans are one such type of material that has exhibited diverse immunomodulatory effects on immune cells, including the mitigation or reversal of the adverse effects of dysregulated immune cells. In this review, we outline various fabrication techniques to produce β-1,3 glucan-derived microparticles and nanoparticles and discuss the diverse particle properties that can be obtained by tuning glucan chemistry, fabrication method, and formulation components. Furthermore, the immunomodulatory applications of β-1,3 glucan particles are highlighted with a focus on immune cell targeting, modulation, and the delivery of small molecule and macromolecular therapeutics.
Collapse
Affiliation(s)
- Nate Dowdall
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 4L8, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 4L8, Canada
| |
Collapse
|
2
|
Naiel S, Dowdall N, Zhou Q, Ali P, Hayat A, Vierhout M, Wong EY, Couto R, Yépez B, Seifried B, Moquin P, Kolb MR, Ask K, Hoare T. Modulating pro-fibrotic macrophages using yeast beta-glucan microparticles prepared by Pressurized Gas eXpanded liquid (PGX) Technology®. Biomaterials 2025; 313:122816. [PMID: 39250864 DOI: 10.1016/j.biomaterials.2024.122816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Pro-fibrotic M2-like macrophages are widely implicated in the pathogenesis and progression of lung fibrosis due to their production of pro-fibrotic growth factors and cytokines. Yeast beta-glucan (YBG) microparticles have shown potential as immunomodulators that can convert macrophage polarization from a pro-fibrotic phenotype to an anti-fibrotic phenotype through the engagement of the Dectin-1 receptor. However, the processing conditions used to fabricate YBG microparticles can lead to unpredictable immunomodulatory effects. Herein, we report the use of Pressurized Gas eXpanded liquids (PGX) Technology® to fabricate YBG (PGX-YBG) microparticles with higher surface areas, lower densities, and smaller and more uniform size distributions compared to commercially available spray-dried YBGs. PGX-YBG is shown to activate Dectin-1 more efficiently in vitro while avoiding significant TLR 2/4 activation. Furthermore, PGX-YBG microparticles effectively modulate M2-like fibrosis-inducing murine and human macrophages into fibrosis-suppressing macrophages both in vitro as well as in ex vivo precision-cut murine lung slices, suggesting their potential utility as a therapeutic for addressing a broad spectrum of fibrotic end-point lung diseases.
Collapse
Affiliation(s)
- S Naiel
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 50 Charlton Avenue East, L314-5, Hamilton, ON, L8N 4A6, Canada
| | - N Dowdall
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Q Zhou
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - P Ali
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 50 Charlton Avenue East, L314-5, Hamilton, ON, L8N 4A6, Canada
| | - A Hayat
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 50 Charlton Avenue East, L314-5, Hamilton, ON, L8N 4A6, Canada
| | - M Vierhout
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 50 Charlton Avenue East, L314-5, Hamilton, ON, L8N 4A6, Canada
| | - E Y Wong
- Ceapro Inc., 7824 51 Ave NW, Edmonton, AB, T6E 6W2, Canada
| | - R Couto
- Ceapro Inc., 7824 51 Ave NW, Edmonton, AB, T6E 6W2, Canada
| | - B Yépez
- Ceapro Inc., 7824 51 Ave NW, Edmonton, AB, T6E 6W2, Canada
| | - B Seifried
- Ceapro Inc., 7824 51 Ave NW, Edmonton, AB, T6E 6W2, Canada
| | - P Moquin
- Ceapro Inc., 7824 51 Ave NW, Edmonton, AB, T6E 6W2, Canada
| | - M R Kolb
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - K Ask
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 50 Charlton Avenue East, L314-5, Hamilton, ON, L8N 4A6, Canada.
| | - T Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
3
|
Eluppai Asthagiri Kumaraswamy N, Jayaramamurthy S, Martin CA, Srinivasan B. Unlocking the potential of beta-glucans: a comprehensive review from synthesis to drug delivery carrier potency. Drug Deliv Transl Res 2025; 15:483-507. [PMID: 39120791 DOI: 10.1007/s13346-024-01694-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
Modernization and lifestyle changes have resulted in a number of diseases, including cancer, that require complicated and thorough treatments. One of the most important therapies is the administration of antibiotics and medicines. This is known as chemotherapy for cancer, and it is a regularly utilised treatment plan in which the medications used have negative side effects. This has resulted in extensive research on materials capable of delivering pharmaceuticals to particular targets over an extended period of time. Biopolymers have often been preferred as effective drug delivery carriers. Of these, β-glucan, a natural polysaccharide, has not been extensively studied as a drug delivery carrier, despite its unique properties. This review discusses the sources, extraction techniques, structures, and characteristics of β-glucan to provide an overview. Furthermore, the different methods employed to encapsulate drugs into β-glucan and its role as an efficient drug, SiRNA and Plasmid DNA carrier have been elaborated in this article. The capacity of β-glucan-based to specifically target and alter tumour-associated macrophages, inducing an immune response ultimately resulting in tumour suppression has been elaborated. Finally, this study aims to stimulate further research on β-glucan by thoroughly describing its many characteristics and demonstrating its effectiveness as a drug delivery vehicle.
Collapse
Affiliation(s)
| | - Sivasankari Jayaramamurthy
- Department of Physics, B S Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, 600048, India
| | - Catherine Ann Martin
- Dr. Rela Institute and Medical Centre, National Foundation for Liver Research, Chromepet, Chennai, 600044, India
| | - Baskar Srinivasan
- Department of Physics, Easwari Engineering College, Ramapuram, Chennai, 600089, India
| |
Collapse
|
4
|
Yan L, Huang B, Wang X, Jiang Y, Liu J, Jia X, Feng L, Yang B. The carrier function and inhibition effect on benign prostatic hyperplasia of a glucan from Epimedium brevicornu Maxim. Carbohydr Polym 2024; 340:122316. [PMID: 38858029 DOI: 10.1016/j.carbpol.2024.122316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
Epimedium, a traditional Chinese medicine commonly used as a dietary supplement, contains polysaccharides and flavonoids as its main bioactive ingredients. In this study, a neutral homogeneous polysaccharide (EPSN-1) was isolated from Epimedium brevicornu Maxim. EPSN-1 was identified as a glucan with a backbone of →4)-α-D-Glcp-(1→, branched units comprised α-D-Glcp-(1→6)-α-D-Glcp-(1→, β-D-Glcp-(1→6)-β-D-Glcp-(1→ and α-D-Glcp-(1→ connected to the C6 position of backbone. The conformation of EPSN-1 in aqueous solution indicated its potential to form nanoparticles. This paper aims to investigate the carrier and pharmacodynamic activity of EPSN-1. The findings demonstrated that, on the one hand, EPSN-1, as a functional ingredient, may load Icariin (ICA) through non-covalent interactions, improving its biopharmaceutical properties such as solubility and stability, thereby improving its intestinal absorption. Additionally, as an effective ingredient, EPSN-1 could help maintain the balance of the intestinal environment by increasing the abundance of Parabacteroides, Lachnospiraceae UGG-001, Anaeroplasma, and Eubacterium xylanophilum group, while decreasing the abundance of Allobaculum, Blautia, and Adlercreutzia. Overall, this dual action of EPSN-1 sheds light on the potential applications of natural polysaccharides, highlighting their dual role as carriers and contributors to biological activity.
Collapse
Affiliation(s)
- Lingling Yan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Bin Huang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xueqing Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yuchen Jiang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jialing Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xiaobin Jia
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Liang Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Bing Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
5
|
Zhang L, Ye P, Zhu H, Zhu L, Ren Y, Lei J. Bioinspired and biomimetic strategies for inflammatory bowel disease therapy. J Mater Chem B 2024; 12:3614-3635. [PMID: 38511264 DOI: 10.1039/d3tb02995f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic chronic inflammatory bowel disease with high morbidity and an increased risk of cancer or death, resulting in a heavy societal medical burden. While current treatment modalities have been successful in achieving long-term remission and reducing the risk of complications, IBD remains incurable. Nanomedicine has the potential to address the high toxic side effects and low efficacy in IBD treatment. However, synthesized nanomedicines typically exhibit some degree of immune rejection, off-target effects, and a poor ability to cross biological barriers, limiting the development of clinical applications. The emergence of bionic materials and bionic technologies has reshaped the landscape in novel pharmaceutical fields. Biomimetic drug-delivery systems can effectively improve biocompatibility and reduce immunogenicity. Some bioinspired strategies can mimic specific components, targets or immune mechanisms in pathological processes to produce targeting effects for precise disease control. This article highlights recent research on bioinspired and biomimetic strategies for the treatment of IBD and discusses the challenges and future directions in the field to advance the treatment of IBD.
Collapse
Affiliation(s)
- Limei Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Peng Ye
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Huatai Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Liyu Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Yuting Ren
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
6
|
Krejčová G, Saloň I, Klimša V, Ulbrich P, Aysan AB, Bajgar A, Štěpánek F. Magnetic Yeast Glucan Particles for Antibody-Free Separation of Viable Macrophages from Drosophila melanogaster. ACS Biomater Sci Eng 2024; 10:355-364. [PMID: 38048070 PMCID: PMC10777351 DOI: 10.1021/acsbiomaterials.3c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
Currently available methods for cell separation are generally based on fluorescent labeling using either endogenously expressed fluorescent markers or the binding of antibodies or antibody mimetics to surface antigenic epitopes. However, such modification of the target cells represents potential contamination by non-native proteins, which may affect further cell response and be outright undesirable in applications, such as cell expansion for diagnostic or therapeutic applications, including immunotherapy. We present a label- and antibody-free method for separating macrophages from living Drosophila based on their ability to preferentially phagocytose whole yeast glucan particles (GPs). Using a novel deswelling entrapment approach based on spray drying, we have successfully fabricated yeast glucan particles with the previously unachievable content of magnetic iron oxide nanoparticles while retaining their surface features responsible for phagocytosis. We demonstrate that magnetic yeast glucan particles enable macrophage separation at comparable yields to fluorescence-activated cell sorting without compromising their viability or affecting their normal function and gene expression. The use of magnetic yeast glucan particles is broadly applicable to situations where viable macrophages separated from living organisms are subsequently used for analyses, such as gene expression, metabolomics, proteomics, single-cell transcriptomics, or enzymatic activity analysis.
Collapse
Affiliation(s)
- Gabriela Krejčová
- Department
of Molecular Biology and Genetics, Faculty of Sciences, University of South Bohemia, Branišovská 1160/31, 37005 České Budějovice, Czech Republic
| | - Ivan Saloň
- Department
of Chemical Engineering, University of Chemistry
and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Vojtěch Klimša
- Department
of Chemical Engineering, University of Chemistry
and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Pavel Ulbrich
- Department
of Biochemistry and Microbiology, University
of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Ayse Beyza Aysan
- Department
of Chemical Engineering, University of Chemistry
and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Adam Bajgar
- Department
of Molecular Biology and Genetics, Faculty of Sciences, University of South Bohemia, Branišovská 1160/31, 37005 České Budějovice, Czech Republic
- Department
of Chemical Engineering, University of Chemistry
and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - František Štěpánek
- Department
of Chemical Engineering, University of Chemistry
and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
7
|
Wu Y, Li P, Jiang Z, Sun X, He H, Yan P, Xu Y, Liu Y. Bioinspired yeast-based β-glucan system for oral drug delivery. Carbohydr Polym 2023; 319:121163. [PMID: 37567689 DOI: 10.1016/j.carbpol.2023.121163] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 08/13/2023]
Abstract
Oral drug delivery is the preferred route of drug administration for patients, especially those who need long-term medication. Recently, bioinspired drug delivery systems have emerged for the oral delivery of various therapeutics. Among them, the yeast-based β-glucan system is a novel and promising platform, for oral administration that can overcome the biological barriers of the harsh gastrointestinal environment. Remarkably, the yeast-based β-glucan system not only protects the drug through the harsh gastrointestinal environment but also achieves targeted therapeutic effects by specifically recognizing immune cells, especially macrophages. Otherwise, it exhibits immunomodulatory properties. Based on the pleasant characteristics of the yeast-based β-glucan system, they are widely used in various macrophage-related diseases for oral administration. In this review, we introduced the structure and function of yeast-based β-glucan. Subsequently, we further summarized the current preparation methods of yeast-based β-glucan carriers and the strategies for preparing yeast-based β-glucan drug delivery systems. In addition, we focus on discussing the applications of β-glucan drug delivery systems in various diseases. Finally, the current challenges and future perspectives of the β-glucan drug delivery system are introduced.
Collapse
Affiliation(s)
- Ya Wu
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Pengyun Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Zongzhe Jiang
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xiaolei Sun
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China
| | - Huqiang He
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China
| | - Pijun Yan
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yong Xu
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Yong Liu
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
8
|
Serum and lymph pharmacokinetics of nilotinib delivered by yeast glucan particles per os. Int J Pharm 2023; 634:122627. [PMID: 36693484 DOI: 10.1016/j.ijpharm.2023.122627] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Nilotinib is a selective tyrosine-kinase inhibitor approved for the treatment of chronic myeloid leukemia. It is poorly soluble in aqueous media and has a low oral bioavailability. Nilotinib encapsulation into yeast glucan particles (GPs) was investigated in this work as a means of increasing bioavailability. The amorphization of nilotinib in GPs resulted in an increased dissolution rate, which was confirmed by in vitro experiments using biorelevant dissolution media. Simultaneously, GPs containing nilotinib were effectively taken up by macrophages, which was quantified in vitro on cell cultures. The overall oral bioavailability in a rat model was approximately 39 % for nilotinib delivered in a reference formulation (Tasigna) and was almost doubled when delivered in GPs. The contribution of glucan particles to the lymphatic transport of nilotinib was quantified. When delivered by GPs, cumulative nilotinib absorption via the lymphatic system increased by a factor of 10.8 compared to the reference, but still represented arelative bioavailability of only 1.12 %. The cumulative uptake of GPs in the lymph was found to be 0.54 mg after a single dose of 50 mg. Yeast glucan particles can therefore serve as a drug delivery vehicle with a dual function: dissolution rate enhancement by amorphization, and, to asmaller extent, lymphatic delivery due to macrophage uptake.
Collapse
|
9
|
Oral Cell-Targeted Delivery Systems Constructed of Edible Materials: Advantages and Challenges. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227991. [PMID: 36432092 PMCID: PMC9697699 DOI: 10.3390/molecules27227991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Cell-targeted delivery is an advanced strategy which can effectively solve health problems. However, the presence of synthetic materials in delivery systems may trigger side effects. Therefore, it is necessary to develop cell-targeted delivery systems with excellent biosafety. Edible materials not only exhibit biosafety, but also can be used to construct cell-targeted delivery systems such as ligands, carriers, and nutraceuticals. Moreover, oral administration is the appropriate route for cell-targeted delivery systems constructed of edible materials (CDSEMs), which is the same as the pattern of food intake, resulting in good patient compliance. In this review, relevant studies of oral CDSEMs are collected to summarize the construction method, action mechanism, and health impact. The gastrointestinal stability of delivery systems can be improved by anti-digestible materials. The design of the surface structure, shape, and size of carrier is beneficial to overcoming the mucosal barrier. Additionally, some edible materials show dual functions of a ligand and carrier, which is conductive to simplifying the design of CDSEMs. This review can provide a better understanding and prospect for oral CDSEMs and promote their application in the health field.
Collapse
|
10
|
Tan Y, Chen L, Li K, Lou B, Liu Y, Liu Z. Yeast as carrier for drug delivery and vaccine construction. J Control Release 2022; 346:358-379. [PMID: 35483637 DOI: 10.1016/j.jconrel.2022.04.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022]
Abstract
Yeast has been employed as an effective derived drug carrier as a unicellular microorganism. Many research works have been devoted to the encapsulation of nucleic acid compounds, insoluble small molecule drugs, small molecules, liposomes, polymers, and various nanoparticles in yeast for the treatment of disease. Recombinant yeast-based vaccine carriers (WYV) have played a major role in the development of vaccines. Herein, the latest reports on the application of yeast carriers and the development of related research are summarized, a conceptual description of gastrointestinal absorption of yeast carriers, as well as the various package forms of different drug molecules and nanoparticles in yeast carriers are introduced. In addition, the advantages and development of recombinant yeast vaccine carriers for the disease, veterinary and aquaculture applications are discussed. Moreover, the current challenges and future directions of yeast carriers are proposed.
Collapse
Affiliation(s)
- Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Liwei Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Beibei Lou
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China.
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, PR China.
| |
Collapse
|
11
|
Bastos R, Oliveira PG, Gaspar VM, Mano JF, Coimbra MA, Coelho E. Brewer's yeast polysaccharides - A review of their exquisite structural features and biomedical applications. Carbohydr Polym 2022; 277:118826. [PMID: 34893243 DOI: 10.1016/j.carbpol.2021.118826] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/27/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022]
Abstract
Recent advances on brewer's yeast cell wall polysaccharides have unraveled exquisite structural features and diverse composition with (β1→3), (β1→6), (α1→4), (β1→4)-mix-linked glucans that are recognized to interact with different cell receptors and trigger specific biological responses. Herein, a comprehensive showcase of structure-biofunctional relationships between yeast polysaccharides and their biological targets is highlighted, with a focus on polysaccharide features that govern the biomedical activity. The insolubility of β-glucans is a crucial factor for binding and activation of Dectin-1 receptor, operating as adjuvants of immune responses. Contrarily, soluble low molecular weight β-glucans have a strong inhibition of reactive oxygen species production, acting as antagonists of Dectin-1 mediated signaling. Soluble glucan-protein moieties can also act as antitumoral agents. The balance between mannoproteins-TLR2 and β-glucans-Dectin-1 receptors-activation is crucial for osteogenesis. Biomedical applications value can also be obtained from yeast microcapsules as oral delivery systems, where highly branched (β1→6)-glucans lead to higher receptor affinity.
Collapse
Affiliation(s)
- Rita Bastos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Patrícia G Oliveira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Vítor M Gaspar
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João F Mano
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Elisabete Coelho
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|