1
|
Steiger MB, Steinauer A, Gao D, Cerrejon DK, Krupke H, Heussi M, Merkl P, Klipp A, Burger M, Martin-Olmos C, Leroux JC. Enzymatic absorption promoters for non-invasive peptide delivery. J Control Release 2025; 382:113675. [PMID: 40164434 DOI: 10.1016/j.jconrel.2025.113675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Peptide drugs offer considerable potential for treating a diverse range of diseases. Yet, their clinical application is generally restricted to injectable therapies. The main challenge hindering their broader use through globally accessible, patient-friendly, and non-invasive delivery routes such as oral or buccal, lies in their poor ability to cross biological barriers effectively. Here, we demonstrate that enzymes can be harnessed to transiently reduce these barriers and improve absorption. As a proof of concept, we employ a mucin-specific protease (mucinase) and a phospholipase to increase mucus diffusivity and epithelial cell membrane permeability, respectively. In a canine model, we show that enteric capsules containing both enzymes, and the peptide drug desmopressin achieved a relative bioavailability of 155 % compared to the drug alone. Additionally, a buccal patch loaded with phospholipase and semaglutide displayed a 5-fold higher bioavailability and lower variability (71.5 % reduction in the coefficient of variation) compared to the commercially available oral tablet. These results suggest that enzymatic modulation of biological barriers holds promise as a strategy to improve non-invasive delivery of peptides and potentially other macromolecular drugs.
Collapse
Affiliation(s)
- Marilena Bohley Steiger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland; Laboratory of Biomolecular Engineering and Nanomedicine, EPFL, 1015 Lausanne, Switzerland
| | - Daniel Gao
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - David Klein Cerrejon
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Hanna Krupke
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Miguel Heussi
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Padryk Merkl
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Alexander Klipp
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Michael Burger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Cristina Martin-Olmos
- Center for Advanced Surface Analysis, Institute of Earth Sciences, UNIL, 1015 Lausanne, Switzerland; School of Architecture, Civil and Environmental Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
2
|
Subramanian D, Chin A, Shi Y, Liu GW, Langer R, Traverso G. Identification and Validation of Cyclic Peptides with Mucin-Selective, Location-Specific Binding in the Gastrointestinal Tract. ACS NANO 2025; 19:14693-14706. [PMID: 40216380 PMCID: PMC12020424 DOI: 10.1021/acsnano.4c13520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/23/2025]
Abstract
Oral drug delivery is a widely preferred method of drug administration due to its ease of use and convenience for patients. Localization of drug release in the gastrointestinal (GI) tract is important to treat localized diseases and maximize drug absorption. However, achieving drug localization in the dynamic GI tract is challenging. To address this challenge, we leveraged the geographic diversity of the GI tract by targeting its mucus layers, which coat the epithelial surfaces. These layers, composed of mucin glycoproteins, are synthesized with unique chemical compositions and expressed in different regions, making them ideal targets for drug localization. In this article, we identify cyclic peptides that bind selectively to MUC2 (in the intestines) and MUC5AC (in the stomach), serving as targeting ligands to these regions of the GI tract. We demonstrate the effectiveness of these peptides through in vitro, ex vivo, and in vivo experiments, showing that incorporating these targeting ligands can increase binding and selectivity 2-fold to the desired regions, thus potentially overcoming challenges with localizing drug distribution in oral delivery. These results indicate that cyclic peptides can be used to localize drug cargoes at certain sites in the body compared to free drugs.
Collapse
Affiliation(s)
- Deepak
A. Subramanian
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- David
H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Austin Chin
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Yunhua Shi
- David
H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gary W. Liu
- David
H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert Langer
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- David
H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Giovanni Traverso
- David
H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Division
of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
3
|
Xin X, Wu D, Zhao P, Li Y, Qin H, Dai J, Zhou Y, Lyu Y, Yang Y, Zhu Y, Shi H, Yang L, Yin L. Catch-to-Amplify Nanoparticles with Bacteria Surface for Sequential Mucosal Immune Activation for Acute Myeloid Leukemia Therapy. ACS NANO 2025; 19:14661-14679. [PMID: 40202129 DOI: 10.1021/acsnano.4c08515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Mucosal-mediated immune deficiency is associated with immune evasion and poor clinical outcomes in acute myeloid leukemia (AML). Here, we describe the elicitation of mucosal and systemic immune response by oral delivery of MDP-modified PEG-lipid (MDP-PEG-DSPE) and polylactic acid-polyhistidine (PLA-PHis) copolymer constructed nanosystem (mPOD) into Peyer's patches. To protect against gastrointestinal degradation, enteric-soluble capsules are utilized for encapsulating mPOD to promote penetration across intestinal mucus and engender robust Peyer's patch targeting initiated by MDP-PEG-DSPE. Compared with intravenous and intramuscular administration, the oral delivery of MDP-PEG-DSPE and 5'-triphosphate-modified RNA (ppp-RNA) into gut-associated lymphoid tissues reinforces dendritic cell maturation and migration, amplifies mucosal immune response, and boosts the production of secretory immunoglobulin A via retinoic acid-inducible gene I/nucleotide-binding oligomerization domain 2 (RIG-I/NOD2) signaling activation. In the AML murine model, the provoked mucosal immunity positively regulates the systemic cytotoxic immune reactions, which, in turn, eradicate disseminated malignant leukemic cells and provide defense against leukemia attacks.
Collapse
MESH Headings
- Animals
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- Nanoparticles/chemistry
- Mice
- Immunity, Mucosal/drug effects
- Humans
- Mice, Inbred C57BL
- Polyethylene Glycols/chemistry
Collapse
Affiliation(s)
- Xiaofei Xin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Di Wu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Pengbo Zhao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Huanyu Qin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jinyu Dai
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yong Zhou
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yifu Lyu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Yang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Ying Zhu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hang Shi
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Lei Yang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Lifang Yin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
4
|
Saleem W, Aslam A, Tariq M, Nauwynck H. Intestinal mucus: the unsung hero in the battle against viral gastroenteritis. Gut Pathog 2025; 17:11. [PMID: 39972475 PMCID: PMC11841282 DOI: 10.1186/s13099-025-00684-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/04/2025] [Indexed: 02/21/2025] Open
Abstract
Intestinal mucus plays a crucial role in defending against enteric infections by protecting the vulnerable intestinal epithelial cells both physically and through its various constituents. Despite this, numerous gastroenteritis-causing viruses, such as rotavirus, coronavirus, adenovirus, astrovirus, calicivirus, and enterovirus, continue to pose significant threats to humans and animals. While several studies have examined the interactions between these viruses and intestinal mucus, significant gaps remain in understanding the full protective potential of intestinal mucus against these pathogens. This review aims to elucidate the protective role of intestinal mucus in viral gastroenteritis. It begins with a comprehensive literature overview of (i) intestinal mucus, (ii) enteric viruses of medical and veterinary importance, and (iii) the known interactions between various enteric viruses and intestinal mucus. Following this, a case study is presented to highlight the age-dependent blocking effect of porcine intestinal mucus against transmissible gastroenteritis virus, a porcine coronavirus. Finally, the review discusses future investigation directions to further explore the potential of intestinal mucus as a defense mechanism against viral gastroenteritis to stimulate further research in this dynamic and critical area.
Collapse
Affiliation(s)
- Waqar Saleem
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Merelbeke, 9820, Belgium.
| | - Ateeqa Aslam
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Merelbeke, 9820, Belgium
| | - Mehlayl Tariq
- Laboratory of Biomedical Chemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, 53-114, Poland
| | - Hans Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Merelbeke, 9820, Belgium
| |
Collapse
|
5
|
Zeng T, Lu C, Wang M, Chen H, Yoshitomi T, Kawazoe N, Yang Y, Chen G. The effect of microenvironmental viscosity on the emergence of colon cancer cell resistance to doxorubicin. J Mater Chem B 2025; 13:2180-2191. [PMID: 39803934 DOI: 10.1039/d4tb02334j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The colon possesses a unique physiological environment among human organs, where there is a highly viscous body fluid layer called the mucus layer above colonic epithelial cells. Dysfunction of the mucus layer not only contributes to the occurrence of colorectal cancer (CRC) but also plays an important role in the development of chemoresistance in CRC. Although viscosity is an essential property of the mucus layer, it remains elusive how viscosity affects chemoresistance in colon cancer cells. In this study, the influence of viscosity on their chemoresistance was elucidated by culturing colon cancer cells in media of different viscosities supplemented with doxorubicin (DOX). The viscosity range was adjusted from 99.4 mPa s to 776.6 mPa s by adding polyethylene glycol of different molecular weights in culture medium. Cell viability in the high viscosity medium was higher than that in the low viscosity medium. Expression of chemoresistance-related genes such as ABCC2 and ABCG2 increased when cells were cultured in the high viscosity medium. Furthermore, cell migration increased while proliferation decreased when cells were cultured in the high viscosity medium. The colon cancer cells cultured in the high viscosity medium exhibited high expression of p21 mRNA. The results suggested that viscosity could affect the resistance of colon cancer cells to DOX by regulating the expression of chemoresistance-related and proliferation-related genes.
Collapse
Affiliation(s)
- Tianjiao Zeng
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Chengyu Lu
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Man Wang
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Huajian Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
| | - Toru Yoshitomi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
| | - Naoki Kawazoe
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
| | - Yingnan Yang
- Graduate School of Life and Environment Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Guoping Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
6
|
Yang X, Zhang J, Chen J, Xie Y, Hu T, Luo Q, Peng T, Luo H, Shi L, Wan J, Wang J, Yang X, Sheng J. Permeation enhancer decorated nanoparticles for oral delivery of insulin: manipulating the surface density of borneol and PEG for absorption barriers. Biomater Sci 2025; 13:743-757. [PMID: 39715336 DOI: 10.1039/d4bm01210k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Oral protein drugs' delivery faces challenges due to multiple absorption barriers for macromolecules. Co-administration with permeation enhancers and encapsulation in nano-carriers are two promising strategies to enhance their oral absorption. Herein, the poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) are decorated with polyethylene glycol (PEG) and a traditional Chinese medicine-derived permeation enhancer borneol (BO) for oral insulin delivery. Compared with a physical mixture of BO and PEG-decorated PLGA NPs, PLGA-PEG-BO NPs significantly facilitate insulin permeation across intestinal epithelia through various transcytosis pathways. The relationship among the BO surface density, physico-chemical properties and multiple barriers penetration ability is further investigated. Increasing the BO density boosts penetration through the epithelial cell layer but reduces enzyme and mucus barrier penetration. When the surface PEG density is at 90% and BO density is at 10%, the NPs possess the strongest overall ability to overcome both the mucus layer barrier and epithelial cell barrier, as illustrated by the highest permeation efficiency through Caco-2/HT29-MTX cell co-cultural monolayers. In diabetic rodents, PLGA-PEG90%-BO10% NPs exhibit high intestinal safety and a substantial hypoglycemic effect, with insulin availability at 6.22 ± 2.30%, double that of orally delivered insulin PLGA-PEG NPs and far superior to a physical mixture with BO. This study reveals the importance of tailored absorption enhancer decoration for oral protein delivery.
Collapse
Affiliation(s)
- Xiaoyu Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China.
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, P. R. China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, P. R. China
| | - Jidong Zhang
- Department of Pharmacy, School Hospital, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jitang Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China.
| | - Yunxuan Xie
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tianci Hu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 201203 Shanghai, P. R. China.
| | - Qin Luo
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 201203 Shanghai, P. R. China.
| | - Tianhao Peng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China.
| | - Han Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China.
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, 442000 Hubei, P. R. China
| | - Linlin Shi
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, 471003 Luoyang, P. R. China
| | - Jiangling Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China.
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 201203 Shanghai, P. R. China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China.
| | - Jianyong Sheng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China.
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 201203 Shanghai, P. R. China.
| |
Collapse
|
7
|
McCoy R, Wang K, Treiber J, Fu Y, Malliaras GG, Salleo A, Owens RM. Mucus-on-a-chip: investigating the barrier properties of mucus with organic bioelectronics. J Mater Chem B 2025; 13:577-587. [PMID: 39575664 DOI: 10.1039/d4tb01351d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Gastrointestinal (GI) mucus is a biologically complex hydrogel that acts as a partially permeable barrier between the contents of the GI tract and the mucosal epithelial lining. Its structural integrity is essential for the lubrication of the tract thereby aiding smooth transit of contents, and the protection of the epithelium from pathogens that seek to colonise and invade. Understanding its physical response to drugs and the microbiome is essential for treating many gastrointestinal infectious diseases. Given this, a static in vitro model of a GI mucus-on-a-chip has been developed with integrated electronics to monitor the barrier properties of mucus hydrogels. Its application for investigating the effect of drugs and biofilm formation on the mucus structure is validated using rheological techniques, confocal microscopy and electrochemical impedance spectroscopy (EIS).
Collapse
Affiliation(s)
- Reece McCoy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, UK.
- Department of Electrical Engineering, University of Cambridge, CB3 0FA, Cambridge, UK
| | - Kaixin Wang
- Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, UK.
| | - Jeremy Treiber
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Ying Fu
- Department of Pure and Applied Chemistry, University of Strathclyde, G1 1XQ, Glasgow, UK
| | - George G Malliaras
- Department of Electrical Engineering, University of Cambridge, CB3 0FA, Cambridge, UK
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, UK.
| |
Collapse
|
8
|
Garbarino E, Subbiahdoss G, Scheberl A, Reimhult E, Misevic G. The native glycocalyx ultrastructure in humans and sponges is a self-assembled, lamellar micro- and nanoarray. Commun Biol 2024; 7:1677. [PMID: 39702586 DOI: 10.1038/s42003-024-07355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
Mucin, proteoglycan, glyconectin, and hyaluronan intermolecular binding in the physiological hydrated state forms the native glycocalyx ultrastructure via the polyvalent interactions of their similar bottle-brush morphologies. This ultrastructure provides a variety of essential cellular recognition/adhesion and selective filtration functions. Unfortunately, for decades, the glycocalyx architecture was only examined in the non-native dehydrated/fixed state. This has resulted in the visualization of an artefactual unorganized fiber mesh, hindering understanding of structure-function relationships. We unveil a well-organized glycocalyx lamellar ultrastructure using cryo-SEM after cryo-preservation with minimal sublimation to conserve water and ion distribution and, thereby, native intermolecular interactions. The glycocalyx of human cells and the glyconectin glycocalyx of an evolutionary distant sponge displayed similar self-assembled ultrastructures comprising hierarchical micro- and nanoarrays despite compositional differences. AFM binding strength measurements and cryo-SEM results imply that evolutionarily preserved glycocalyx morphologies are formed by thermodynamically driven self-assembly of glycoconjugates with similar physicochemical properties.
Collapse
Affiliation(s)
- Emanuela Garbarino
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, PR China
- Institute of Colloid and Biointerface Science, Department of Bionanosciences, BOKU University, Muthgasse 11/II, 1190, Vienna, Austria
| | - Guruprakash Subbiahdoss
- Institute of Colloid and Biointerface Science, Department of Bionanosciences, BOKU University, Muthgasse 11/II, 1190, Vienna, Austria
| | - Andrea Scheberl
- Institute of Colloid and Biointerface Science, Department of Bionanosciences, BOKU University, Muthgasse 11/II, 1190, Vienna, Austria
| | - Erik Reimhult
- Institute of Colloid and Biointerface Science, Department of Bionanosciences, BOKU University, Muthgasse 11/II, 1190, Vienna, Austria.
| | - Gradimir Misevic
- Institute of Colloid and Biointerface Science, Department of Bionanosciences, BOKU University, Muthgasse 11/II, 1190, Vienna, Austria.
- Department of Research, Gimmune GmbH, Baarerstrasse 12 Zug, ZUG, 6302, Switzerland.
| |
Collapse
|
9
|
Klitgaard M, Jacobsen J, Kristensen MN, Berthelsen R, Müllertz A. Characterizing interregional differences in the rheological properties and composition of rat small intestinal mucus. Drug Deliv Transl Res 2024; 14:3309-3320. [PMID: 38526635 PMCID: PMC11445339 DOI: 10.1007/s13346-024-01574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 03/27/2024]
Abstract
The mucus layer in the small intestine is generally regarded as a barrier to drug absorption. However, the mucus layer is a complex system, and presently, only a few studies have been conducted to elucidate its physicochemical properties. The current study hypothesizes that the mucus layer contains solubility-enhancing surfactants and thus might aid the oral absorption of poorly water-soluble drugs. Mucus was sampled from sections of the small intestine of fasted rats to analyze the rheological properties and determine the mucus pH and concentrations of proteins and endogenous surfactants, i.e., bile salts, polar lipids, and neutral lipids. The mucus layer in the two proximal sections of the small intestine exhibited different rheological properties such as higher zero-shear viscosity and lower loss tangent and higher protein concentrations compared to all subsequent sections of the small intestine. The pH of the mucus layer was stable at ~ 6.5 throughout most of the small intestine, but increased to 7.5 in the ileum. The bile salt concentrations increased from the duodenum (16.0 ± 2.2 mM) until the mid jejunum (55.1 ± 9.5 mM), whereas the concentrations of polar lipids and neutral lipids decreased from the duodenum (17.4 ± 2.2 mM and 37.8 ± 1.6 mM, respectively) until the ileum (4.8 ± 0.4 mM and 10.7 ± 1.1 mM, respectively). In conclusion, the mucus layer of the rat small intestine contains endogenous surfactants at levels that might benefit solubilization and absorption of orally administered poorly water-soluble drugs.
Collapse
Affiliation(s)
- Mette Klitgaard
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Jette Jacobsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Maja Nørgaard Kristensen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Ragna Berthelsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
10
|
Gottwald J, Balke J, Stellmacher J, van Vorst K, Ghazisaeedi F, Fulde M, Alexiev U. Cy3-Based Nanoviscosity Determination of Mucus: Effect of Mucus Collection Methods and Antibiotics Treatment. Macromol Biosci 2024; 24:e2300437. [PMID: 38625085 DOI: 10.1002/mabi.202300437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/21/2023] [Indexed: 04/17/2024]
Abstract
The integrity of the protective mucus layer as a primary defense against pathogen invasion and microbial leakage into the intestinal epithelium can be compromised by the effects of antibiotics on the commensal microbiome. Changes in mucus integrity directly affect the solvent viscosity in the immediate vicinity of the mucin network, that is, the nanoviscosity, which in turn affects both biochemical reactions and selective transport. To assess mucus nanoviscosity, a reliable readout via the viscosity-dependent fluorescence lifetime of the molecular rotor dye cyanine 3 is established and nanoviscosities from porcine and murine ex vivo mucus are determined. To account for different mucin concentrations due to the removal of digestive residues during mucus collection, the power law dependence of mucin concentration on viscosity is used. The impact of antibiotics combinations (meropenem/vancomycin, gentamycin/ampicillin) on ex vivo intestinal mucus nanoviscosity is presented. The significant increase in viscosity of murine intestinal mucus after treatment suggests an effect of antibiotics on the microbiota that affects mucus integrity. This method will be a useful tool to assess how drugs, directly or indirectly, affect mucus integrity. Additionally, the method can be utilized to analyze the role of mucus nanoviscosity in health and disease, as well as in drug development.
Collapse
Affiliation(s)
- Jacqueline Gottwald
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Jens Balke
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Johannes Stellmacher
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Kira van Vorst
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7, 14163, Berlin, Germany
| | - Fereshteh Ghazisaeedi
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7, 14163, Berlin, Germany
| | - Marcus Fulde
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7, 14163, Berlin, Germany
| | - Ulrike Alexiev
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| |
Collapse
|
11
|
Wang AS, Villegas-Novoa C, Wang Y, Sims CE, Allbritton NL. Mucus-coated, magnetically-propelled fecal surrogate to mimic fecal shear forces on colonic epithelium. Biomaterials 2024; 309:122577. [PMID: 38677221 PMCID: PMC11497585 DOI: 10.1016/j.biomaterials.2024.122577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/06/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024]
Abstract
The relationship between the mechanical forces associated with bowel movement and colonic mucosal physiology is understudied. This is partly due to the limited availability of physiologically relevant fecal models that can exert these mechanical stimuli in in vitro colon models in a simple-to-implement manner. In this report, we created a mucus-coated fecal surrogate that was magnetically propelled to produce a controllable sweeping mechanical stimulation on primary intestinal epithelial cell monolayers. The mucus layer was derived from purified porcine stomach mucins, which were first modified with reactive vinyl sulfone (VS) groups followed by reaction with a thiol crosslinker (PEG-4SH) via a Michael addition click reaction. Formation of mucus hydrogel network was achieved at the optimal mixing ratio at 2.5 % w/v mucin-VS and 0.5 % w/v PEG-4SH. The artificial mucus layer possessed similar properties as the native mucus in terms of its storage modulus (66 Pa) and barrier function (resistance to penetration by 1-μm microbeads). This soft, but mechanically resilient mucus layer was covalently linked to a stiff fecal hydrogel surrogate (based on agarose and magnetic particles, with a storage modulus of 4600 Pa). The covalent bonding between the mucus and agarose ensured its stability in the subsequent fecal sliding movement when tested at travel distances as long as 203 m. The mucus layer served as a lubricant and protected epithelial cells from the moving fecal surrogate over a 1 h time without cell damage. To demonstrate its utility, this mucus-coated fecal surrogate was used to mechanically stimulate a fully differentiated, in vitro primary colon epithelium, and the physiological stimulated response of mucin-2 (MUC2), interleukin-8 (IL-8) and serotonin (5HT) secretion was quantified. Compared with a static control, mechanical stimulation caused a significant increase in MUC2 secretion into luminal compartment (6.4 × ), a small but significant increase in IL-8 secretion (2.5 × and 3.5 × , at both luminal and basal compartments, respectively), and no detectable alteration in 5HT secretion. This mucus-coated fecal surrogate is expected to be useful in in vitro colon organ-on-chips and microphysiological systems to facilitate the investigation of feces-induced mechanical stimulation on intestinal physiology and pathology.
Collapse
Affiliation(s)
- Alan S Wang
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA; Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Yuli Wang
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Christopher E Sims
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA; Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Nancy L Allbritton
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
12
|
Rulff H, Schmidt RF, Wei LF, Fentker K, Kerkhoff Y, Mertins P, Mall MA, Lauster D, Gradzielski M. Comprehensive Characterization of the Viscoelastic Properties of Bovine Submaxillary Mucin (BSM) Hydrogels and the Effect of Additives. Biomacromolecules 2024; 25:4014-4029. [PMID: 38832927 PMCID: PMC11238336 DOI: 10.1021/acs.biomac.4c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
This study presents a comprehensive characterization of the viscoelastic and structural properties of bovine submaxillary mucin (BSM), which is widely used as a commercial source to conduct mucus-related research. We conducted concentration studies of BSM and examined the effects of various additives, NaCl, CaCl2, MgCl2, lysozyme, and DNA, on its rheological behavior. A notable connection between BSM concentration and viscoelastic properties was observed, particularly under varying ionic conditions. The rheological spectra could be well described by a fractional Kelvin-Voigt model with a minimum of model parameters. A detailed proteomics analysis provided insight into the protein, especially mucin composition within BSM, showing MUC19 as the main component. Cryo-scanning electron microscopy enabled the visualization of the porous BSM network structure. These investigations give us a more profound comprehension of the BSM properties, especially those pertaining to viscoelasticity, and how they are influenced by concentration and environmental conditions, aspects relevant to the field of mucus research.
Collapse
Affiliation(s)
- Hanna Rulff
- Institute
of Chemistry, Technische Universität
Berlin, 10623 Berlin, Germany
| | - Robert F. Schmidt
- Institute
of Chemistry, Technische Universität
Berlin, 10623 Berlin, Germany
| | - Ling-Fang Wei
- Institute
of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Kerstin Fentker
- Proteomics
Platform, Max-Delbrück-Center for
Molecular Medicine, 13125 Berlin, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, 14195 Berlin, Germany
| | - Yannic Kerkhoff
- Research
Center of Electron Microscopy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Philipp Mertins
- Proteomics
Platform, Max-Delbrück-Center for
Molecular Medicine, 13125 Berlin, Germany
- Berlin Institute
of Health at Charite, Universitätsmedizin
Berlin, 10178 Berlin, Germany
| | - Marcus A. Mall
- Berlin Institute
of Health at Charite, Universitätsmedizin
Berlin, 10178 Berlin, Germany
- Department
of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine,
Charite, Universitätsmedizin Berlin, 13353 Berlin, Germany
- German
Centre for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Daniel Lauster
- Institute
of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Michael Gradzielski
- Institute
of Chemistry, Technische Universität
Berlin, 10623 Berlin, Germany
| |
Collapse
|
13
|
Walsh D, Bevan J, Harrison F. How Does Airway Surface Liquid Composition Vary in Different Pulmonary Diseases, and How Can We Use This Knowledge to Model Microbial Infections? Microorganisms 2024; 12:732. [PMID: 38674677 PMCID: PMC11052052 DOI: 10.3390/microorganisms12040732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Growth environment greatly alters many facets of pathogen physiology, including pathogenesis and antimicrobial tolerance. The importance of host-mimicking environments for attaining an accurate picture of pathogen behaviour is widely recognised. Whilst this recognition has translated into the extensive development of artificial cystic fibrosis (CF) sputum medium, attempts to mimic the growth environment in other respiratory disease states have been completely neglected. The composition of the airway surface liquid (ASL) in different pulmonary diseases is far less well characterised than CF sputum, making it very difficult for researchers to model these infection environments. In this review, we discuss the components of human ASL, how different lung pathologies affect ASL composition, and how different pathogens interact with these components. This will provide researchers interested in mimicking different respiratory environments with the information necessary to design a host-mimicking medium, allowing for better understanding of how to treat pathogens causing infection in these environments.
Collapse
Affiliation(s)
- Dean Walsh
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK (F.H.)
| | | | | |
Collapse
|
14
|
Barmpatsalou V, Tjakra M, Li L, Dubbelboer IR, Karlsson E, Pedersen Lomstein B, Bergström CAS. Development of a canine artificial colonic mucus model for drug diffusion studies. Eur J Pharm Sci 2024; 194:106702. [PMID: 38218203 DOI: 10.1016/j.ejps.2024.106702] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/14/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Colonic mucus is a key factor in the colonic environment because it may affect drug absorption. Due to the similarity of human and canine gastrointestinal physiology, dogs are an established preclinical species for the assessment of controlled release formulations. Here we report the development of an artificial colonic mucus model to mimic the native canine one. In vitro models of the canine colonic environment can provide insights for early stages of drug development and contribute to the implementation of the 3Rs (refinement, reduction, and replacement) of animal usage in the drug development process. Our artificial colonic mucus could predict diffusion trends observed in native mucus and was successfully implemented in microscopic and macroscopic assays to study macromolecular permeation through the mucus. The traditional Transwell set up was optimized with the addition of a nylon filter to ensure homogenous representation of the mucus barrier in vitro. In conclusion, the canine artificial colonic mucus can be used to study drug permeation across the mucus and its flexibility allows its use in various set ups depending on the nature of the compound under investigation and equipment availability.
Collapse
Affiliation(s)
- V Barmpatsalou
- The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, Box 580, SE-751 23, Uppsala, Sweden
| | - M Tjakra
- The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, Box 580, SE-751 23, Uppsala, Sweden
| | - L Li
- The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, Box 580, SE-751 23, Uppsala, Sweden
| | - I R Dubbelboer
- The Swedish Drug Delivery Center, Department of Pharmaceutical Biosciences, Uppsala University, Box 574, SE-751 23, Uppsala, Sweden
| | - E Karlsson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - B Pedersen Lomstein
- Product Development & Drug Delivery, Global Pharmaceutical R&D, Ferring Pharmaceuticals A/S, Amager Strandvej 405, 2770, Kastrup, Denmark
| | - C A S Bergström
- The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, Box 580, SE-751 23, Uppsala, Sweden.
| |
Collapse
|
15
|
Jadhav H, Augustijns P, Tannergren C. Approaches to Account for Colon Absorption in Physiologically Based Biopharmaceutics Modeling of Extended-Release Drug Products. Mol Pharm 2023; 20:6272-6288. [PMID: 37902586 DOI: 10.1021/acs.molpharmaceut.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The rate and extent of colon absorption are important determinants of the in vivo performance of extended-release (ER) drug products. The ability to appropriately predict this at different stages of development using mechanistic physiologically based biopharmaceutic modeling (PBBM) is highly desirable. This investigation aimed to evaluate the prediction performance of three different approaches to account for colon absorption in predictions of the in vivo performance of ER drug product variants with different in vitro release profiles. This was done by mechanistic predictions of the absorption and plasma exposure of the ER drug products using GastroPlus and GI-Sim for five drugs with different degrees of colon absorption limitations in humans. Colon absorption was accounted for in the predictions using three different approaches: (1) by an a priori approach using the default colon models, (2) by fitting the colon absorption scaling factors to the observed plasma concentration-time profiles after direct administration to the colon in humans, or (3) from the ER drug product variant with the slowest in vitro release profile. The prediction performance was evaluated based on the percentage prediction error and the average absolute prediction error (AAPE). Two levels of acceptance criteria corresponding to highly accurate (AAPE ≤ 20%) and accurate (AAPE 20-50%) predictions were defined prior to the evaluation. For the a priori approach, the relative bioavailability (Frel), AUC0-t, and Cmax of the ER drug product variants for the low to medium colon absorption limitation risk drugs was accurately predicted with an AAPE range of 11-53 and 8-59% for GastroPlus and GI-Sim, respectively. However, the prediction performance was poor for the high colon absorption limitation risk drugs. Moreover, accounting for the human regional colon absorption data in the models did not improve the prediction performance. In contrast, using the colon absorption scaling factors derived from the slowest ER variant significantly improved the prediction performance regardless of colon absorption limitation, with a majority of the predictions meeting the high accuracy criteria. For the slowest ER approach, the AAPE ranges were 5-24 and 5-32% for GastroPlus and GI-Sim, respectively, excluding the low permeability drug. In conclusion, the a priori PBBM can be used during candidate selection and early product design to predict the in vivo performance of ER drug products for low to medium colon absorption limitation risk drugs with sufficient accuracy. The results also indicate a limited value in performing human regional absorption studies in which the drug is administered to the colon as a bolus to support PBBM development for ER drug products. Instead, by performing an early streamlined relative bioavailability study with the slowest relevant ER in vitro release profile, a highly accurate PBBM suitable for ER predictions for commercial and regulatory applications can be developed, except for permeability-limited drugs.
Collapse
Affiliation(s)
- Harshad Jadhav
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca Gothenburg, S-431 83 Mölndal, Sweden
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, ON2 Herestraat 49, 3000 Leuven, Belgium
| | - Patrick Augustijns
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, ON2 Herestraat 49, 3000 Leuven, Belgium
| | - Christer Tannergren
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca Gothenburg, S-431 83 Mölndal, Sweden
| |
Collapse
|
16
|
Keller T, Trinks N, Brand J, Trippmacher S, Stahlhut P, Albrecht K, Papastavrou G, Koepsell H, Sauer M, Groll J. Design of Nanohydrogels for Targeted Intracellular Drug Transport to the Trans-Golgi Network. Adv Healthc Mater 2023; 12:e2201794. [PMID: 36739269 PMCID: PMC11469190 DOI: 10.1002/adhm.202201794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/27/2023] [Indexed: 02/06/2023]
Abstract
Nanohydrogels combine advantages of hydrogels and nanoparticles. In particular, they represent promising drug delivery systems. Nanogel synthesis by oxidative condensation of polyglycidol prepolymers, that are modified with thiol groups, results in crosslinking by disulfide bonds. Hereby, biomolecules like the antidiabetic peptide RS1-reg, derived from the regulatory protein RS1 of the Na+ -D-glucose cotransporter SGLT1, can be covalently bound by cysteine residues to the nanogel in a hydrophilic, stabilizing environment. After oral uptake, the acid-stable nanogels protect their loading during gastric passage from proteolytic degradation. Under alkaline conditions in small intestine the nanohydrogels become mucoadhesive, pass the intestinal mucosa and are taken up into small intestinal enterocytes by endocytosis. Using Caco-2 cells as a model for small intestinal enterocytes, by confocal laser scanning microscopy and structured illumination microscopy, the colocalization of fluorescent-labeled RS1-reg with markers of endosomes, lysosomes, and trans-Golgi-network after uptake with polyglycidol-based nanogels formed by precipitation polymerization is demonstrated. This indicates that RS1-reg follows the endosomal pathway. In the following, the design of bespoken nanohydrogels for specific targeting of RS1-reg to its site of action at the trans-Golgi network is described that might also represent a way of targeted transport for other drugs to their targets at the Golgi apparatus.
Collapse
Affiliation(s)
- Thorsten Keller
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and BiofabricationUniversity of WürzburgPleicherwall 297070WürzburgGermany
| | - Nora Trinks
- Department of Biotechnology and BiophysicsUniversity of WürzburgAm Hubland97074WürzburgGermany
| | - Jessica Brand
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and BiofabricationUniversity of WürzburgPleicherwall 297070WürzburgGermany
| | - Steffen Trippmacher
- Physical Chemistry IIUniversity of BayreuthUniversitätsstr. 3095440BayreuthGermany
| | - Philipp Stahlhut
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and BiofabricationUniversity of WürzburgPleicherwall 297070WürzburgGermany
| | - Krystyna Albrecht
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and BiofabricationUniversity of WürzburgPleicherwall 297070WürzburgGermany
| | - Georg Papastavrou
- Physical Chemistry IIUniversity of BayreuthUniversitätsstr. 3095440BayreuthGermany
| | - Hermann Koepsell
- Institute of Anatomy and Cell BiologyUniversity of WürzburgKoellikerstraße 697070WürzburgGermany
| | - Markus Sauer
- Department of Biotechnology and BiophysicsUniversity of WürzburgAm Hubland97074WürzburgGermany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and BiofabricationUniversity of WürzburgPleicherwall 297070WürzburgGermany
| |
Collapse
|
17
|
Sang X, Wang Q, Ning Y, Wang H, Zhang R, Li Y, Fang B, Lv C, Zhang Y, Wang X, Ren F. Age-Related Mucus Barrier Dysfunction in Mice Is Related to the Changes in Muc2 Mucin in the Colon. Nutrients 2023; 15:nu15081830. [PMID: 37111049 PMCID: PMC10145456 DOI: 10.3390/nu15081830] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/07/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
During aging, the protective function of mucus barrier is significantly reduced among which changes in colonic mucus barrier function received the most attention. Additionally, the incidence of colon-related diseases increases significantly in adulthood, posing a threat to the health of the elderly. However, the specific changes in colonic mucus barrier with aging and the underlying mechanisms have not been fully elucidated. To understand the effects of aging on the colonic mucus barrier, changes in the colonic mucus layer were evaluated in mice aged 2, 12, 18, and 24 months. Microbial invasion, thickness, and structure of colonic mucus in mice at different months of age were analyzed by in situ hybridization fluorescence staining, AB/PAS staining, and cryo-scanning electron microscopy. Results showed that the aged colon exhibited intestinal mucus barrier dys-function and altered mucus properties. During aging, microorganisms invaded the mucus layer to reach epithelial cells. Compared with young mice, the thickness of mucus layer in aged mice in-creased by 11.66 μm. And the contents of the main components and glycosylation structure of colon changed. Among them, the proportion of goblet cells decreased significantly in older mice, and the expression of spdef genes that regulate goblet cell differentiation decreased. Further, the expression of key enzymes involved in mucin core structure formation and glycan modification also changed with aging. The expression of core 1 β1,3-galactosyltransferase (C1GalT1) which is the key enzyme forming the main core structure increased by one time, while core 2 β1,6 N-acetylglucosaminyltransferase (C2GnT) and core 3 β1,3 N-acetylglucosaminyltransferase (C3GnT) decreased 2 to 6- and 2-fold, respectively. Also, the expression of sialyltransferase, one of the mucin-glycan modifying enzymes, was decreased by 1-fold. Overall, our results indicate that the goblet cells/glycosyltransferase/O-glycan axis plays an important role in maintaining the physicochemical properties of colonic mucus and the stability of intestinal environment.
Collapse
Affiliation(s)
- Xueqin Sang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qingyu Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Yueyan Ning
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100083, China
| | - Huihui Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Rui Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Cong Lv
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yan Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoyu Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fazheng Ren
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| |
Collapse
|
18
|
Wright L, Wignall A, Jõemetsa S, Joyce P, Prestidge CA. A membrane-free microfluidic approach to mucus permeation for efficient differentiation of mucoadhesive and mucopermeating nanoparticulate systems. Drug Deliv Transl Res 2023; 13:1088-1101. [PMID: 36520273 DOI: 10.1007/s13346-022-01274-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
The gastrointestinal mucus barrier is a widely overlooked yet essential component of the intestinal epithelium, responsible for the body's protection against harmful pathogens and particulates. This, coupled with the increasing utilisation of biological molecules as therapeutics (e.g. monoclonal antibodies, RNA vaccines and synthetic proteins) and nanoparticle formulations for drug delivery, necessitates that we consider the additional absorption barrier that the mucus layer may pose. It is imperative that in vitro permeability methods can accurately model this barrier in addition to standardised cellular testing. In this study, a mucus-on-a-chip (MOAC) microfluidic device was engineered and developed to quantify the permeation kinetics of nanoparticles through a biorelevant synthetic mucus layer. Three equivalently sized nanoparticle systems, formulated from chitosan (CSNP), mesoporous silica (MSNP) and poly (lactic-co-glycolic) acid (PLGA-NP) were prepared to encompass various surface chemistries and nanostructures and were assessed for their mucopermeation within the MOAC. Utilising this device, the mucoadhesive behaviour of chitosan nanoparticles was clearly visualised, a phenomenon not often observed via standard permeation models. In contrast, MSNP and PLGA-NP displayed mucopermeation, with significant differences in permeation pattern due to specific mucus-nanoparticle binding. Further optimisation of the MOAC to include a more biorelevant mucus mimic resulted in 5.5-fold hindered PLGA-NP permeation compared to a mucin solution. Furthermore, tracking of PLGA-NP at a single nanoparticle resolution revealed rank-order correlations between particle diffusivity and MOAC permeation. This device, including utilisation of biosimilar mucus, provides a unique ability to quantify both mucoadhesion and mucopenetration of nano-formulations and elucidate mucus binding interactions on a microscopic scale.
Collapse
Affiliation(s)
- Leah Wright
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Anthony Wignall
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Silver Jõemetsa
- Department of Physics, Chalmers University of Technology, Göteborg, Sweden
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Paul Joyce
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Clive A Prestidge
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, Australia.
| |
Collapse
|
19
|
Hu X, Grinstaff MW. Advances in Hydrogel Adhesives for Gastrointestinal Wound Closure and Repair. Gels 2023; 9:282. [PMID: 37102894 PMCID: PMC10138019 DOI: 10.3390/gels9040282] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Millions of individuals undergo gastrointestinal (GI) tract surgeries each year with common postoperative complications including bleeding, perforation, anastomotic leakage, and infection. Today, techniques such as suturing and stapling seal internal wounds, and electrocoagulation stops bleeding. These methods induce secondary damage to the tissue and can be technically difficult to perform depending on the wound site location. To overcome these challenges and to further advance wound closure, hydrogel adhesives are being investigated to specifically target GI tract wounds because of their atraumatic nature, fluid-tight sealing capability, favorable wound healing properties, and facile application. However, challenges remain that limit their use, such as weak underwater adhesive strength, slow gelation, and/or acidic degradation. In this review, we summarize recent advances in hydrogel adhesives to treat various GI tract wounds, with a focus on novel material designs and compositions to combat the environment-specific challenges of GI injury. We conclude with a discussion of potential opportunities from both research and clinical perspectives.
Collapse
Affiliation(s)
| | - Mark W. Grinstaff
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
20
|
Stamatopoulos K, Ferrini P, Nguyen D, Zhang Y, Butler JM, Hall J, Mistry N. Integrating In Vitro Biopharmaceutics into Physiologically Based Biopharmaceutic Model (PBBM) to Predict Food Effect of BCS IV Zwitterionic Drug (GSK3640254). Pharmaceutics 2023; 15:pharmaceutics15020521. [PMID: 36839843 PMCID: PMC9965536 DOI: 10.3390/pharmaceutics15020521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
A strategy followed to integrate in vitro solubility and permeability data into a PBBM model to predict the food effect of a BCS IV zwitterionic drug (GSK3640254) observed in clinical studies is described. The PBBM model was developed, qualified and verified using clinical data of an immediate release (IR)-tablet (10-320 mg) obtained in healthy volunteers under fasted and fed conditions. The solubility of GSK3640254 was a function of its ionization state, the media composition and pH, whereas its permeability determined using MDCK cell lines was enhanced by the presence of mixed micelles. In vitro data alongside PBBM modelling suggested that the positive food effect observed in the clinical studies was attributed to micelle-mediated enhanced solubility and permeability. The biorelevant media containing oleic acid and cholesterol in fasted and fed levels enabled the model to appropriately capture the magnitude of the food effect. Thus, by using Simcyp® v20 software, the PBBM model accurately predicted the results of the food effect and predicted data were within a two-fold error with 70% being within 1.25-fold. The developed model strategy can be effectively adopted to increase the confidence of using PBBM models to predict the food effect of BCS class IV drugs.
Collapse
Affiliation(s)
- Konstantinos Stamatopoulos
- Biopharmaceutics, DPD, MDS, GlaxoSmithKline, David Jack Centre, Park Road, Ware SG12 0DP, UK
- Correspondence:
| | - Paola Ferrini
- Analytical Platform and Platform Modernisation, Analytical Development, DPD, MDS, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Dung Nguyen
- IVIVT DMPK Research, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA 19426, USA
| | - Ying Zhang
- Clinical Pharmacology Modeling and Simulation, GSK, Collegeville, PA 19426, USA
| | - James M. Butler
- Biopharmaceutics, DPD, MDS, GlaxoSmithKline, David Jack Centre, Park Road, Ware SG12 0DP, UK
| | - Jon Hall
- Analytical Development, MDS, GlaxoSmithKline, David Jack Centre, Park Road, Ware SG12 0DP, UK
| | - Nena Mistry
- Biopharmaceutics, DPD, MDS, GlaxoSmithKline, David Jack Centre, Park Road, Ware SG12 0DP, UK
| |
Collapse
|
21
|
Barmpatsalou V, Rodler A, Jacobson M, Karlsson EML, Pedersen BL, Bergström CAS. Development and validation of a porcine artificial colonic mucus model reflecting the properties of native colonic mucus in pigs. Eur J Pharm Sci 2023; 181:106361. [PMID: 36528165 DOI: 10.1016/j.ejps.2022.106361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Colonic mucus plays a key role in colonic drug absorption. Mucus permeation assays could therefore provide useful insights and support rational formulation development in the early stages of drug development. However, the collection of native colonic mucus from animal sources is labor-intensive, does not yield amounts that allow for routine experimentation, and raises ethical concerns. In the present study, we developed an in vitro porcine artificial colonic mucus model based on the characterization of native colonic mucus. The structural properties of the artificial colonic mucus were validated against the native secretion for their ability to capture key diffusion patterns of macromolecules in native mucus. Moreover, the artificial colonic mucus could be stored under common laboratory conditions, without compromising its barrier properties. In conclusion, the porcine artificial colonic mucus model can be considered a biorelevant way to study the diffusion behavior of drug candidates in colonic mucus. It is a cost-efficient screening tool easily incorporated into the early stages of drug development and it contributes to the implementation of the 3Rs (refinement, reduction, and replacement of animals) in the drug development process.
Collapse
Affiliation(s)
- Vicky Barmpatsalou
- The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, Box 580, SE-751 23, Uppsala, Sweden
| | - Agnes Rodler
- The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, Box 580, SE-751 23, Uppsala, Sweden; The Swedish Drug Delivery Center, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23, Uppsala, Sweden
| | - Magdalena Jacobson
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Box 7054, SE-750 07, Uppsala, Sweden
| | - Eva Marie-Louise Karlsson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Betty Lomstein Pedersen
- Product Development & Drug Delivery, Global Pharmaceutical R&D, Ferring Pharmaceuticals A/S, Amager Strandvej 405, Kastrup 2770, Denmark
| | | |
Collapse
|
22
|
Mortensen JS, Bohr SSR, Harloff-Helleberg S, Hatzakis NS, Saaby L, Nielsen HM. Physical and barrier changes in gastrointestinal mucus induced by the permeation enhancer sodium 8-[(2-hydroxybenzoyl)amino]octanoate (SNAC). J Control Release 2022; 352:163-178. [PMID: 36314534 DOI: 10.1016/j.jconrel.2022.09.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022]
Abstract
Drug delivery systems (DDS) for oral delivery of peptide drugs contain excipients that facilitate and enhance absorption. However, little knowledge exists on how DDS excipients such as permeation enhancers interact with the gastrointestinal mucus barrier. This study aimed to investigate interactions of the permeation enhancer sodium 8-[(2-hydroxybenzoyl)amino]octanoate (SNAC) with ex vivo porcine intestinal mucus (PIM), ex vivo porcine gastric mucus (PGM), as well as with in vitro biosimilar mucus (BM) by profiling their physical and barrier properties upon exposure to SNAC. Bulk mucus permeability studies using the peptides cyclosporine A and vancomycin, ovalbumin as a model protein, as well as fluorescein-isothiocyanate dextrans (FDs) of different molecular weights and different surface charges were conducted in parallel to mucus retention force studies using a texture analyzer, rheological studies, cryo-scanning electron microscopy (cryo-SEM), and single particle tracking of fluorescence-labelled nanoparticles to investigate the effects of the SNAC-mucus interaction. The exposure of SNAC to PIM increased the mucus retention force, storage modulus, viscosity, increased nanoparticle confinement within PIM as well as decreased the permeation of cyclosporine A and ovalbumin through PIM. Surprisingly, the viscosity of PGM and the permeation of cyclosporine A and ovalbumin through PGM was unaffected by the presence of SNAC, thus the effect of SNAC depended on the regional site that mucus was collected from. In the absence of SNAC, the permeation of different molecular weight and differently charged FDs through PIM was comparable to that through BM. However, while bulk permeation of neither of the FDs through PIM was affected by SNAC, the presence of SNAC decreased the permeation of FD4 and increased the permeation of FD150 kDa through BM. Additionally, and in contrast to observations in PIM, nanoparticle confinement within BM remained unaffected by the presence of SNAC. In conclusion, the present study showed that SNAC altered the physical and barrier properties of PIM, but not of PGM. The effects of SNAC in PIM were not observed in the BM in vitro model. Altogether, the study highlights the need for further understanding how permeation enhancers influence the mucus barrier and illustrates that the selected mucus model for such studies should be chosen with care.
Collapse
Affiliation(s)
- J S Mortensen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - S S-R Bohr
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Department of Chemistry, Nano-Science Center, Faculty of Science, University of Copenhagen, Bülowsvej 17, DK-1870 Frederiksberg, Denmark
| | - S Harloff-Helleberg
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - N S Hatzakis
- Department of Chemistry, Nano-Science Center, Faculty of Science, University of Copenhagen, Bülowsvej 17, DK-1870 Frederiksberg, Denmark; Novo Nordisk Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - L Saaby
- CNS Drug Delivery and Barrier Modelling, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Bioneer A/S, Kogle Alle 2, DK-2970 Hørsholm, Denmark
| | - H M Nielsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
23
|
Aiyer A, Das T, Whiteley GS, Glasbey T, Kriel FH, Farrell J, Manos J. The Efficacy of an N-Acetylcysteine-Antibiotic Combination Therapy on Achromobacter xylosoxidans in a Cystic Fibrosis Sputum/Lung Cell Model. Biomedicines 2022; 10:2886. [PMID: 36359406 PMCID: PMC9687303 DOI: 10.3390/biomedicines10112886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 09/29/2023] Open
Abstract
Cystic fibrosis (CF) is a disorder causing dysfunctional ion transport resulting in the accumulation of viscous mucus. This environment fosters a chronic bacterial biofilm-associated infection in the airways. Achromobacter xylosoxidans, a gram-negative aerobic bacillus, has been increasingly associated with antibiotic resistance and chronic colonisation in CF. In this study, we aimed to create a reproducible model of CF infection using an artificial sputum medium (ASMDM-1) with bronchial (BEAS-2B) and macrophage (THP-1) cells to test A. xylosoxidans infection and treatment toxicity. This study was conducted in three distinct stages. First, the tolerance of BEAS-2B cell lines and two A. xylosoxidans strains against ASMDM-1 was optimised. Secondly, the cytotoxicity of combined therapy (CT) comprising N-acetylcysteine (NAC) and the antibiotics colistin or ciprofloxacin was tested on cells alone in the sputum model in both BEAS-2B and THP-1 cells. Third, the efficacy of CT was assessed in the context of a bacterial infection within the live cell/sputum model. We found that a model using 20% ASMDM-1 in both cell populations tolerated a colistin-NAC-based CT and could significantly reduce bacterial loads in vitro (~2 log10 CFU/mL compared to untreated controls). This pilot study provides the foundation to study other bacterial opportunists that infect the CF lung to observe infection and CT kinetics. This model also acts as a springboard for more complex co-culture models.
Collapse
Affiliation(s)
- Aditi Aiyer
- Charles Perkins Centre, Infection, Immunity and Inflammation, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Theerthankar Das
- Charles Perkins Centre, Infection, Immunity and Inflammation, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Gregory S. Whiteley
- Charles Perkins Centre, Infection, Immunity and Inflammation, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Whiteley Corporation, Level 5, 12 Mount Street North Sydney, Sydney, NSW 2060, Australia
- School of Medicine, Western Sydney University, Sydney, NSW 2566, Australia
| | - Trevor Glasbey
- Whiteley Corporation, 19-23 Laverick Avenue, Tomago, NSW 2322, Australia
| | - Frederik H. Kriel
- Whiteley Corporation, 19-23 Laverick Avenue, Tomago, NSW 2322, Australia
| | - Jessica Farrell
- Charles Perkins Centre, Infection, Immunity and Inflammation, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Whiteley Corporation, Level 5, 12 Mount Street North Sydney, Sydney, NSW 2060, Australia
| | - Jim Manos
- Charles Perkins Centre, Infection, Immunity and Inflammation, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
24
|
Suriano F, Nyström EEL, Sergi D, Gustafsson JK. Diet, microbiota, and the mucus layer: The guardians of our health. Front Immunol 2022; 13:953196. [PMID: 36177011 PMCID: PMC9513540 DOI: 10.3389/fimmu.2022.953196] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/19/2022] [Indexed: 12/12/2022] Open
Abstract
The intestinal tract is an ecosystem in which the resident microbiota lives in symbiosis with its host. This symbiotic relationship is key to maintaining overall health, with dietary habits of the host representing one of the main external factors shaping the microbiome-host relationship. Diets high in fiber and low in fat and sugars, as opposed to Western and high-fat diets, have been shown to have a beneficial effect on intestinal health by promoting the growth of beneficial bacteria, improve mucus barrier function and immune tolerance, while inhibiting pro-inflammatory responses and their downstream effects. On the contrary, diets low in fiber and high in fat and sugars have been associated with alterations in microbiota composition/functionality and the subsequent development of chronic diseases such as food allergies, inflammatory bowel disease, and metabolic disease. In this review, we provided an updated overview of the current understanding of the connection between diet, microbiota, and health, with a special focus on the role of Western and high-fat diets in shaping intestinal homeostasis by modulating the gut microbiota.
Collapse
Affiliation(s)
- Francesco Suriano
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Elisabeth E. L. Nyström
- Unit for Degradomics of the Protease Web, Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Domenico Sergi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Jenny K. Gustafsson
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
25
|
Dietary Inclusion of Dried Chicory Root Affects Cecal Mucosa Proteome of Nursery Pigs. Animals (Basel) 2022; 12:ani12131710. [PMID: 35804609 PMCID: PMC9264899 DOI: 10.3390/ani12131710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary A well-balanced diet seems to play a key role in disease prevention and health promotion in young animals. Therefore, many attempts have been made to supplement feeds with novel nutritional components, with potential prebiotic capacity. It seems that chicory root fulfils those criteria as it contains high amounts of inulin-type fructans. Hence, the aim of the study was to determine the effect of dietary supplementation with 4% dried chicory root on the cecal mucosa proteome of piglets. It is shown that this feed additive may affect cellular metabolism in the cecal epithelium and may be beneficial for gut health. Abstract Prebiotics are known to have many beneficial effects on intestinal health by modulating the gut microbiota composition, thereby affecting epithelial cell proliferation and metabolism. This study had two aims: (1) to identify the protein constituents in the cecal mucosa of 50-day-old healthy (PIC × Penarlan P76) barrows, and (2) to assess the effects of 4% inclusion of dried chicory root in a cereal-based diet on the cecal mucosa proteome changes. Pigs (eight per group) were randomly allotted to the groups and were fed a control diet from the tenth day of life (C) or a diet supplemented with 4% of died chicory root (CR), for 40 days. At the age of 50 days, animals were sacrificed and cecal tissue samples were collected. It was found that feeding a CR diet significantly decreased the expression of 16 cecal mucosa proteins. Among them, fifteen proteins were down-regulated, while only one (KRT20) was shown to be up-regulated when compared to the C group. Dietary supplementation with CR caused down-expression of metabolism-associated proteins including enzymes involved in the process of glycolysis (G6PD, TPI1, ALDH9A1, CKMT1 and AKR1A1) as well as those engaged in transcriptional and translational activity (PRPF19, EEF1G) and several structural proteins (ACTR3, KRT77, CAP1 and actin). From our findings, it is possible to conclude that dietary chicory root at 4% had beneficial effects on the gut health of pigs as indicated by a changed abundance of certain cecal proteins such as KRT20, SERPINB1, HSP27, ANAXA2 and ANAXA4.
Collapse
|
26
|
Telocytes’ Role in Modulating Gut Motility Function and Development: Medical Hypotheses and Literature Review. Int J Mol Sci 2022; 23:ijms23137017. [PMID: 35806023 PMCID: PMC9267102 DOI: 10.3390/ijms23137017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
This review article explores the telocytes’ roles in inflammatory bowel diseases (IBD), presenting the mechanisms and hypotheses related to epithelial regeneration, progressive fibrosis, and dysmotility as a consequence of TCs’ reduced or absent number. Based on the presented mechanisms and hypotheses, we aim to provide a functional model to illustrate TCs’ possible roles in the normal and pathological functioning of the digestive tract. TCs are influenced by the compression of nearby blood vessels and the degree of fibrosis of the surrounding tissues and mediate these processes in response. The changes in intestinal tube vascularization induced by the movement of the food bowl, and the consequent pH changes that show an anisotropy in the thickness of the intestinal tube wall, have led to the identification of a pattern of intestinal tube development based on telocytes’ ability to communicate and modulate surrounding cell functions. In the construction of the theoretical model, given the predictable occurrence of colic in the infant, the two-layer arrangement of the nerve plexuses associated with the intestinal tube was considered to be incompletely adapted to the motility required with a diversified diet. There is resulting evidence of possible therapeutic targets for diseases associated with changes in local nerve tissue development.
Collapse
|
27
|
Støvring Mortensen J, Saaby L, Harloff-Helleberg S, Mørck Nielsen H. Barrier properties of ex vivo porcine intestinal mucus are highly independent of isolation and storage conditions. Eur J Pharm Biopharm 2022; 174:106-110. [PMID: 35364256 DOI: 10.1016/j.ejpb.2022.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022]
Abstract
Porcine intestinal mucus (PIM) is often utilized as an ex vivo mucus model in mucus interaction studies. However, numerous isolation procedures and storage conditions for PIM are reported, yet their potential impact on preserving the critical properties of PIM remains unknown. This study investigated the effect of isolation procedures (rinsing and anatomical site of mucus isolation) and storage conditions (-20°C, -80°C, snap frozen in liquid nitrogen prior to storage at -80°C, or freeze-dried followed by storage at room temperature and reconstitution) of PIM in regard to the permeation of fluorescein-isothiocyanate-labelled dextran (FD) macromolecules of 4, 40 and 150 kDa, rheological properties as well as pH, osmolality, protein and water content. Rinsing intestines with tap water or phosphate-buffered saline as well as isolating PIM from different regions of the first five meters of the proximal jejunum did not affect the pH or osmolality of isolated PIM. The permeation of FD4, FD40 and FD150 through stored PIM was similar to permeation through fresh PIM. The rheological properties of stored PIM were similar to properties of fresh PIM. Osmolality, protein and water content were similar in stored and fresh PIM whereas pH decreased with 0.3 unit for all stored PIMs. Overall, PIM samples stored at -20°, -80°C, snap frozen or freeze-dried were found to have similar properties to freshly isolated PIM and can all be considered good alternatives to fresh PIM for mucus studies.
Collapse
Affiliation(s)
- Janni Støvring Mortensen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Lasse Saaby
- Bioneer:FARMA, Department of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Stine Harloff-Helleberg
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Hanne Mørck Nielsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
28
|
Khursheed R, Paudel KR, Gulati M, Vishwas S, Jha NK, Hansbro PM, Oliver BG, Dua K, Singh SK. Expanding the arsenal against pulmonary diseases using surface-functionalized polymeric micelles: breakthroughs and bottlenecks. Nanomedicine (Lond) 2022; 17:881-911. [PMID: 35332783 DOI: 10.2217/nnm-2021-0451] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pulmonary diseases such as lung cancer, asthma and tuberculosis have remained one of the common challenges globally. Polymeric micelles (PMs) have emerged as an effective technique for achieving targeted drug delivery for a local as well as a systemic effect. These PMs encapsulate and protect hydrophobic drugs, increase pulmonary targeting, decrease side effects and enhance drug efficacy through the inhalation route. In the current review, emphasis has been placed on the different barriers encountered by the drugs given via the pulmonary route and the mechanism of PMs in achieving drug targeting. The applications of PMs in different pulmonary diseases have also been discussed in detail.
Collapse
Affiliation(s)
- Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Keshav R Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, 2007, Australia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.,Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No. 32-34 Knowledge Park III Greater Noida, Uttar Pradesh, 201310, India
| | - Philip M Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, 2007, Australia
| | - Brian G Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, 2007, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.,Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
29
|
Cai J, Wang N, Chen J, Wu A, Nepovimova E, Valis M, Long M, Wu W, Kuca K. Bacillus velezensis A2 Inhibited the Cecal Inflammation Induced by Zearalenone by Regulating Intestinal Flora and Short-Chain Fatty Acids. Front Nutr 2022; 9:806115. [PMID: 35360686 PMCID: PMC8963806 DOI: 10.3389/fnut.2022.806115] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/09/2022] [Indexed: 12/16/2022] Open
Abstract
Zearalenone (ZEA) as an estrogen-like mycotoxin can cause the inflammatory injury of the cecum. How to reduce the harm that ZEA causes to humans and animals is a current concern for researchers. In this study, we aimed to ascertain whether Bacillus velezensis A2 (A2) could alleviate injury caused by ZEA by regulating the intestinal flora and the content of short chain fatty acids in the cecum among mice. Our results showed that Bacillus velezensis A2 improved the fold height, myometrial thickness, and crypt depth of the cecum induced by ZEA. Enzyme-linked immunosorbent assay and Western blotting results showed that A2 could decrease the ZEA-induced increase in expression levels of IL-2, IL-6, IFN-γ, TNF-α, and FC. Studies also showed that A2 increased the content of SCFA in the cecum which was decreased by ZEA. The microbial communities in the cecum were changed when given ZEA or A2. A2 was found to greatly reduce the ZEN-induced increase in the relative abundance of p_Actinobacteria, p_Protebacteria, o_Coriobacteriales, g_Anaerotruncus, g_Pseudoflavonifractor, g_Lachnoclostridium, g_Enterorhabdus, and f_Oscillospiraceae, and increase the ZEN-induced decrease in the relative abundance of f_Coriobacteriales. Results indicated that Bacillus velezensis A2 can largely ameliorate the intestinal inflammatory injury induced by ZEA in mice by regulating the microflora and short chain fatty acids content.
Collapse
Affiliation(s)
- Jing Cai
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Nan Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jia Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Martin Valis
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Miao Long,
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
- Wenda Wu,
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czechia
- Kamil Kuca, ;
| |
Collapse
|
30
|
Dubbelboer IR, Barmpatsalou V, Rodler A, Karlsson E, Filipe Nunes S, Holmberg J, Häggström J, A. S. Bergström C. Gastrointestinal mucus in dog: physiological characteristics, composition, and structural properties. Eur J Pharm Biopharm 2022; 173:92-102. [DOI: 10.1016/j.ejpb.2022.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/17/2021] [Accepted: 02/23/2022] [Indexed: 11/27/2022]
|