1
|
Białek A, Krysztofiak J, Hozakowska A, Wojszel Z, Osmałek T, Wojtyłko M, Froelich A. Novel Soft Dosage Forms for Paediatric Applications: Can We 3D-Print Them or Not? Gels 2025; 11:187. [PMID: 40136892 PMCID: PMC11942176 DOI: 10.3390/gels11030187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Over the past years, numerous novel dosage forms, including gels, have been investigated for paediatric treatment due to the need to provide flexible dose adjustment possibilities, as well as a patient-friendly approach to drug delivery. Simultaneously, 3D printing technology is continuously advancing and gaining interest as a tool for personalised formulation development. Multiple additive manufacturing methods, including the semi-solid extrusion, especially used in gel printing, provide flexibility regarding the dose of active ingredients and the adjustment of the design of soft dosage forms. 3D printing techniques can be considered as a possible answer to the demand for medicines tailored to small patients' needs. This review intends to present an overview of the current possibilities, comparing gel-like and non-gel-formulated dosage forms and crucial aspects of developing those cutting-edge dosage forms by 3D printing. This paper discusses soft formulations such as chewing gums, which still require extensive evaluation, and explores the question of the three-dimensional printing process. Furthermore, it highlights soft dosage forms, such as gel-based gummies and hydrogels, for which 3D fabrication has been intensively studied in previous years. However, the research still needs to advance.
Collapse
Affiliation(s)
- Antoni Białek
- Student’s Research Group of Pharmaceutical Technology, The Student Scientific Society of Poznan University of Medical Sciences, 5 Rokietnicka Street, 60-806 Poznań, Poland; (A.B.); (J.K.); (A.H.); (Z.W.)
| | - Julia Krysztofiak
- Student’s Research Group of Pharmaceutical Technology, The Student Scientific Society of Poznan University of Medical Sciences, 5 Rokietnicka Street, 60-806 Poznań, Poland; (A.B.); (J.K.); (A.H.); (Z.W.)
| | - Aleksandra Hozakowska
- Student’s Research Group of Pharmaceutical Technology, The Student Scientific Society of Poznan University of Medical Sciences, 5 Rokietnicka Street, 60-806 Poznań, Poland; (A.B.); (J.K.); (A.H.); (Z.W.)
| | - Zuzanna Wojszel
- Student’s Research Group of Pharmaceutical Technology, The Student Scientific Society of Poznan University of Medical Sciences, 5 Rokietnicka Street, 60-806 Poznań, Poland; (A.B.); (J.K.); (A.H.); (Z.W.)
| | - Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland;
| | - Monika Wojtyłko
- Chair and Department of Pharmaceutical Technology, 3D Printing Division, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland
- Doctoral School, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Anna Froelich
- Chair and Department of Pharmaceutical Technology, 3D Printing Division, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland
| |
Collapse
|
2
|
Auel T, Mentrup AFC, Oldfield LR, Seidlitz A. 3D printing of pharmaceutical dosage forms: Recent advances and applications. Adv Drug Deliv Rev 2025; 217:115504. [PMID: 39706526 DOI: 10.1016/j.addr.2024.115504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/13/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Three-dimensional (3D) printing, also referred to as additive manufacturing, is considered to be a game-changing technology in many industries and is also considered to have potential use cases in pharmaceutical manufacturing, especially if individualization is desired. In this review article the authors systematically researched literature published during the last 5 years (2019 - spring 2024) on the topic of 3D printed dosage forms. Besides all kinds of oral dosage forms ranging from tablets and capsules to films, pellets, etc., numerous reports were also identified on parenteral and cutaneous dosage forms and also rectal, vaginal, dental, intravesical, and ophthalmic preparations. In total, more than 500 publications were identified and grouped according to the site of administration, and an overview of the manuscripts is presented here. Furthermore, selected publications are described and discussed in more detail. The review highlights the very different approaches that are currently used in order to develop 3D printed dosage forms but also addresses remaining challenges.
Collapse
Affiliation(s)
- Tobias Auel
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Aaron Felix Christofer Mentrup
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany; INVITE GmbH, Formulation Technology, Otto-Bayer-Straße 32, 51061 Köln, Germany
| | - Lee Roy Oldfield
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Anne Seidlitz
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany; Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical Technology, Kelchstraße 31, 12169 Berlin, Germany.
| |
Collapse
|
3
|
Yilmaz A, Mutlu-Agardan NB, Takka S. Development of immediate release tablet formulations of lornoxicam with hot melt extrusion-based three-dimensional printing technology. Drug Dev Ind Pharm 2025; 51:64-76. [PMID: 39727292 DOI: 10.1080/03639045.2024.2447277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/10/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION This study aims to develop immediate release tablet formulations of lornoxicam (LRX) using hot melt extrusion (HME)-based fused deposition modeling (FDM) focusing on the adjustment of drug release by arranging infill densities and evaluating microcrystalline cellulose II (MCC II) as a disintegrating agent for HME-FDM purposes. LRX is a poorly soluble drug that exhibits pH-dependent solubility with a high thermal degradation temperature. These characteristics make it an ideal model drug for the HME-based FDM technique. METHODS Various filament formulations were extruded using an extruder, and suitable filaments were used to produce 3D-printed tablets. Filaments and tablets were characterized. Dissolution studies were performed on tablets with different infill densities. DSC, FTIR, XRD, and SEM analyses were conducted. RESULTS Although the solubility of LRX increases with pH, disintegrating agents such as MCC II had a more significant effect on the dissolution of LRX than sodium bicarbonate, which was used as the alkalinizing pore-forming agent. Dissolution studies revealed that the dissolution of LRX was enhanced by tablet erosion. Tablet erosion increased as the infill density decreased, and an immediate release profile was reached with tablets having 25% infill density. Despite the availability of conventional immediate release LRX tablets, this newly developed formulation offers the potential to be modulated for personalized therapy via the 3D printing technique. CONCLUSION This study demonstrates the feasibility of HME-based FDM printing technology for producing immediate-release LRX tablets with consistent quality, highlighting the utilization of MCC II as a disintegrating agent that enhances LRX dissolution in this process.
Collapse
Affiliation(s)
- Aysel Yilmaz
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Gazi University, Etiler, Turkey
| | - N Basaran Mutlu-Agardan
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Gazi University, Etiler, Turkey
| | - Sevgi Takka
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Gazi University, Etiler, Turkey
| |
Collapse
|
4
|
Qiu R, Wang G, Zhao P, Liu L, Awais M, Fan B, Huang Y, Tong L, Wang L, Accoroni C, Wang F. Modification of the texture of 3D printing soy protein isolate-based foods with proper nozzle sizes: A swallowing oriented strategy for dysphagia diet. Int J Biol Macromol 2024; 282:136694. [PMID: 39427795 DOI: 10.1016/j.ijbiomac.2024.136694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
3D printing could provide swallowing-friendly food with high nutrition for a dysphagia diet. The effects of printing nozzle size on texture modification were studied using the soy protein isolate (SPI)-beeswax (BWX)-based bigel ink system enriched with bio-actives. Smaller nozzle sizes (0.4 to 0.8 mm) decrease while bigger ones (1.6 to 2.0 mm) increase the texture profiles. Fortunately, the 1.0 mm nozzle size helps to regulate the rheology of mechanical strength and soften the texture of hardness, as well as maintain a higher proportion of semi-solid water. Consequently, the 1.0 mm nozzle achieved the highest printability and the product was classified as level-5 or level-6 minced and moist food. The decreasing nozzle sizes apply higher shearing force to the bigel ink, which leads to the aggregation of oleogel particles, crystal clusters, and the broken of the SPI hydrogel network. Increasing the nozzle sizes maintained structure stability but resulted in the fabrication of harder textures and slower release of bio-actives. The 1.00 mm kept the balance between the large and small nozzle effect, which might help to keep the microstructure stable and show high bio-accessibility of bio-actives. This work provides a novel insight into texture modification with 3D printing parameters.
Collapse
Affiliation(s)
- Runkang Qiu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Ge Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Peiyao Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Liya Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| | - Muhammad Awais
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yatao Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Litao Tong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Lili Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Cecilia Accoroni
- National Institute of agricultural technology (INTA), Oliveros 2206, Santa Fe, Argentina
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| |
Collapse
|
5
|
Murugan M, Ramasamy SK, Venkatesan G, Lee J, Barathi S, Kandasamy S, Sarangi PK. The comprehensive review on 3D printing- pharmaceutical drug delivery and personalized food and nutrition. Food Chem 2024; 459:140348. [PMID: 38991438 DOI: 10.1016/j.foodchem.2024.140348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Three-dimensional printing is one of the emerging technologies that is gaining interest from the pharmaceutical industry as it provides an opportunity to customize drugs according to each patient's needs. Combining different active pharmaceutical ingredients, using different geometries, and providing sustained release enhances the effectiveness of medicine. One of the most innovative uses of 3D printing is producing fabrics, medical devices, medical implants, orthoses, and prostheses. This review summarizes the various 3D printing techniques such as stereolithography, inkjet printing, thermal inkjet printing, fused deposition modelling, extrusion printing, semi-solid extrusion printing, selective laser sintering, and hot-melt extrusion. Also, discusses the drug relies profile and its mechanisms, characteristics, and applications of the most common types of 3D printed API formulations and its recent development. Here, Authors also, summarizes the central flow of 3D food printing process and knowledge extension toward personalized nutrition.
Collapse
Affiliation(s)
- Meenakshi Murugan
- Department of Pharmaceutics, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala -133207, Haryana, India
| | - Selva Kumar Ramasamy
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala -133207, Haryana, India
| | - Geetha Venkatesan
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai - 600 077, India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea..
| | - Sabariswaran Kandasamy
- Department of Biotechnology, PSGR Krishnammal College for Women, Peelamedu, Coimbatore - 641004, India
| | - Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal - 795004, Manipur, India..
| |
Collapse
|
6
|
Huang L, Guo J, Li Y, Yang W, Ni W, Jia Y, Yu M, Zhang J. Improve Solubility and Develop Personalized Itraconazole Dosages via Forming Amorphous Solid Dispersions with Hydrophilic Polymers Utilizing HME and 3D Printing Technologies. Polymers (Basel) 2024; 16:3302. [PMID: 39684047 DOI: 10.3390/polym16233302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Itraconazole (ITZ), a broad-spectrum triazole antifungal agent, exhibits remarkable pharmacodynamic and pharmacokinetic properties. However, the low solubility of ITZ significantly reduces its oral bioavailability. Furthermore, it has been reported that this medication can result in dose-related adverse effects. Therefore, the objective of this study was to enhance the solubility of ITZ through the utilization of various polymers and to manufacture personalized and programmable release ITZ tablets. Five different polymers were selected as water-soluble carriers. Thirty percent w/w ITZ was mixed with seventy percent w/w of the polymers, which were then extruded. A series of physical and chemical characterization studies were conducted, including DSC, PXRD, PLM, and in vitro drug release studies. The results demonstrated that ITZ was dispersed within the polymers, forming ASDs that markedly enhanced its solubility and dissolution rate. Consequently, soluplus® was employed as the polymer for the extrusion of ITZ-loaded filaments, which were subsequently designed and printed. The in vitro drug release studies indicated that the release of ITZ could be regulated by modifying the 3D structure design. Overall, this study found that the combination of HME and 3D printing technologies could represent an optimal approach for the development of personalized and precise drug delivery dosages.
Collapse
Affiliation(s)
- Lianghao Huang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Pharmaceutical Products Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266137, China
| | - Jingjing Guo
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Pharmaceutical Products Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266137, China
| | - Yusen Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Pharmaceutical Products Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266137, China
| | - Weiwei Yang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Wen Ni
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Pharmaceutical Products Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266137, China
| | - Yaru Jia
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Pharmaceutical Products Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266137, China
| | - Mingchao Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Pharmaceutical Products Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266137, China
| | - Jiaxiang Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Pharmaceutical Products Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266137, China
| |
Collapse
|
7
|
Poudel I, Mita N, Babu RJ. 3D printed dosage forms, where are we headed? Expert Opin Drug Deliv 2024; 21:1595-1614. [PMID: 38993098 DOI: 10.1080/17425247.2024.2379943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION 3D Printing (3DP) is an innovative fabrication technology that has gained enormous popularity through its paradigm shifts in manufacturing in several disciplines, including healthcare. In this past decade, we have witnessed the impact of 3DP in drug product development. Almost 8 years after the first USFDA approval of the 3D printed tablet Levetiracetam (Spritam), the interest in 3DP for drug products is high. However, regulatory agencies have often questioned its large-scale industrial practicability, and 3DP drug approval/guidelines are yet to be streamlined. AREAS COVERED In this review, major technologies involved with the fabrication of drug products are introduced along with the prospects of upcoming technologies, including AI (Artificial Intelligence). We have touched upon regulatory updates and discussed the burning limitations, which require immediate focus, illuminating status, and future perspectives on the near future of 3DP in the pharmaceutical field. EXPERT OPINION 3DP offers significant advantages in rapid prototyping for drug products, which could be beneficial for personalizing patient-based pharmaceutical dispensing. It seems inevitable that the coming decades will be marked by exponential growth in personalization, and 3DP could be a paradigm-shifting asset for pharmaceutical professionals.
Collapse
Affiliation(s)
- Ishwor Poudel
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
| | - Nur Mita
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
- Faculty of Pharmacy, Mulawarman University, Samarinda, Kalimantan Timur, Indonesia
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
| |
Collapse
|
8
|
Paccione N, Guarnizo-Herrero V, Ramalingam M, Larrarte E, Pedraz JL. Application of 3D printing on the design and development of pharmaceutical oral dosage forms. J Control Release 2024; 373:463-480. [PMID: 39029877 DOI: 10.1016/j.jconrel.2024.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
3D printing technologies confer an unparalleled degree of control over the material distribution on the structures they produce, which has led them to become an extremely attractive research topic in pharmaceutical dosage form development, especially for the design of personalized treatments. With fine tuning in material selection and careful design, these technologies allow to tailor not only the amount of drug administered but the biopharmaceutical behaviour of the dosage forms as well. While fused deposition modelling (FDM) is still the most studied 3D printing technology in this area, others are gaining more relevance, which has led to many new and exciting dosage forms developed during 2022 and 2023. Considering that these technologies, in time, will join the current manufacturing methods and with the ever-increasing knowledge on this topic, our review aims to explore the advantages and limitations of 3D printing technologies employed in the design and development of pharmaceutical oral dosage forms, giving special focus to the most important aspects governing the resulting drug release profiles.
Collapse
Affiliation(s)
- Nicola Paccione
- TECNALIA, Basque Research and Technology Alliance (BRTA), Leonardo Da Vinci 11, 01510 Miñano, Spain; Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain; NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006 Vitoria-Gasteiz, Spain
| | - Víctor Guarnizo-Herrero
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33, 600 28805 Madrid, Spain
| | - Murugan Ramalingam
- Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain; NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain.; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain; School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Eider Larrarte
- TECNALIA, Basque Research and Technology Alliance (BRTA), Leonardo Da Vinci 11, 01510 Miñano, Spain; Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain.
| | - José Luis Pedraz
- Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain; NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain..
| |
Collapse
|
9
|
Bei H, Zhao P, Shen L, Yang Q, Yang Y. Assembled pH-Responsive Gastric Drug Delivery Systems Based on 3D-Printed Shells. Pharmaceutics 2024; 16:717. [PMID: 38931841 PMCID: PMC11206575 DOI: 10.3390/pharmaceutics16060717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Gastric acid secretion is closely associated with the development and treatment of chronic gastritis, gastric ulcers, and reflux esophagitis. However, gastric acid secretion is affected by complex physiological and pathological factors, and real-time detection and control are complicated and expensive. A gastric delivery system for antacids and therapeutics in response to low pH in the stomach holds promise for smart and personalized treatment of stomach diseases. In this study, pH-responsive modular units were used to assemble various modular devices for self-regulation of pH and drug delivery to the stomach. The modular unit with a release window of 50 mm2 could respond to pH and self-regulate within 10 min, which is related to its downward floatation and internal gas production. The assembled devices could stably float downward in the medium and detach sequentially at specific times. The assembled devices loaded with antacids exhibited smart pH self-regulation under complex physiological and pathological conditions. In addition, the assembled devices loaded with antacids and acid suppressors could multi-pulse or prolong drug release after rapid neutralization of gastric acid. Compared with traditional coating technology, 3D printing can print the shell layer by layer, flexibly adjust the internal and external structure and composition, and assemble it into a multi-level drug release system. Compared with traditional coating, 3D-printed shells have the advantage of the flexible adjustment of internal and external structure and composition, and are easy to assemble into a complex drug delivery system. This provides a universal and flexible strategy for the personalized treatment of diseases with abnormal gastric acid secretion, especially for delivering acid-unstable drugs.
Collapse
Affiliation(s)
| | | | | | | | - Yan Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; (H.B.); (P.Z.); (L.S.); (Q.Y.)
| |
Collapse
|
10
|
Zhang P, Li J, Ashour EA, Chung S, Wang H, Vemula SK, Repka MA. Development of multiple structured extended release tablets via hot melt extrusion and dual-nozzle fused deposition modeling 3D printing. Int J Pharm 2024; 653:123905. [PMID: 38355075 DOI: 10.1016/j.ijpharm.2024.123905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
The study aims to fabricate extended release (ER) tablets using a dual-nozzle fused deposition modeling (FDM) three-dimensional (3D) printing technology based on hot melt extrusion (HME), using caffeine as the model compound. Three different ER tablets were developed, which obtained "delayed-release", "rapid-sustained release", and "release-lag-release" properties. Each type of tablet was printed with two different formulations. A novel printing method was employed in this study, which is to push the HME filament from behind with polylactic acid (PLA) to prevent sample damage by gears during the printing process. Powder X-ray diffractometry (PXRD) and differential scanning calorimetry (DSC) results showed that caffeine was predominately amorphous in the final tablets. The dissolution of 3D printed tablets was assessed using a USP-II dissolution apparatus. ER tablets containing PVA dissolved faster than those developed with Kollicoat IR. Overall, this study revealed that ER tablets were successfully manufactured through HME paired with dual-nozzle FDM 3D printing and demonstrated the power of 3D printing in developing multi-layer tablets with complex structures.
Collapse
Affiliation(s)
- Peilun Zhang
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Jinghan Li
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eman A Ashour
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Sooyeon Chung
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Honghe Wang
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Pii Center for Pharmaceutical Technology, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
11
|
Aguilar-de-Leyva Á, Casas M, Ferrero C, Linares V, Caraballo I. 3D Printing Direct Powder Extrusion in the Production of Drug Delivery Systems: State of the Art and Future Perspectives. Pharmaceutics 2024; 16:437. [PMID: 38675099 PMCID: PMC11054165 DOI: 10.3390/pharmaceutics16040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The production of tailored, on-demand drug delivery systems has gained attention in pharmaceutical development over the last few years, thanks to the application of 3D printing technology in the pharmaceutical field. Recently, direct powder extrusion (DPE) has emerged among the extrusion-based additive manufacturing techniques. It is a one-step procedure that allows the direct processing of powdered formulations. The aim of this systematic literature review is to analyze the production of drug delivery systems using DPE. A total of 27 articles have been identified through scientific databases (Scopus, PubMed, and ScienceDirect). The main characteristics of the three types of 3D printers based on DPE have been discussed. The selection of polymers and auxiliary excipients, as well as the flowability of the powder mixture, the rheological properties of the molten material, and the printing temperatures have been identified as the main critical parameters for successful printing. A wide range of drug delivery systems with varied geometries and different drug release profiles intended for oral, buccal, parenteral, and transdermal routes have been produced. The ability of this technique to manufacture personalized, on-demand drug delivery systems has been proven. For all these reasons, its implementation in hospital settings in the near future seems promising.
Collapse
Affiliation(s)
| | - Marta Casas
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.A.-d.-L.); (C.F.) (V.L.); (I.C.)
| | | | | | | |
Collapse
|
12
|
Ma XN, Feng W, Li N, Chen SL, Zhong XQ, Chen JX, Lin CS, Xu Q. Leonurine alleviates rheumatoid arthritis by regulating the Hippo signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155243. [PMID: 38056147 DOI: 10.1016/j.phymed.2023.155243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disease that can cause joint inflammation and damage. Leonurine (LE) is an alkaloid found in Leonurus heterophyllus. It has anti-inflammatory effects. HYPOTHESIS/PURPOSE The molecular mechanisms by which LE acts in RA are unclear and further investigation is required. METHODS Mice with collagen-induced arthritis (CIA), and RA-fibroblast-like synoviocytes (FLSs) isolated from them were used as in vivo and in vitro models of RA, respectively. The therapeutic effects of LE on CIA-induced joint injury were investigated by micro-computed tomography, and staining with hematoxylin and eosin and Safranin-O/Fast Green. Cell Counting Kit-8, a Transwell® chamber, enzyme-linked immunosorbent assays, RT-qPCR, and western blotting were used to investigate the effects of LE on RA-FLS viability, migratory capacity, inflammation, microRNA-21 (miR-21) levels, the Hippo signaling pathway, and the effects and intrinsic mechanisms of related proteins. Dual luciferase was used to investigate the binding of miR-21 to YOD1 deubiquitinase (YOD1) and yes-associated protein (YAP). Immunofluorescence was used to investigate the localization of YAP within the nucleus and cytoplasm. RESULTS Treatment with LE significantly inhibited joint swelling, bone damage, synovial inflammation, and proteoglycan loss in the CIA mice. It also reduced the proliferation, cell colonization, migration/invasion, and inflammation levels of RA-FLSs, and promoted miR-21 expression in vitro. The effects of LE on RA-FLSs were enhanced by an miR-21 mimic and reversed by an miR-21 inhibitor. The dual luciferase investigation confirmed that both YOD1 and YAP are direct targets of miR-21. Treatment with LE activated the Hippo signaling pathway, and promoted the downregulation and dephosphorylation of MST1 and LATS1 in RA, while inhibiting the activation of YOD1 and YAP. Regulation of the therapeutic effects of LE by miR-21 was counteracted by YOD1 overexpression, which caused the phosphorylation of YAP and prevented its nuclear ectopic position, thereby reducing LE effect on pro-proliferation-inhibiting apoptosis target genes. CONCLUSION LE regulates the Hippo signaling pathway through the miR-21/YOD1/YAP axis to reduce joint inflammation and bone destruction in CIA mice, thereby inhibiting the growth and inflammation of RA-FLSs. LE has potential for the treatment of RA.
Collapse
Affiliation(s)
- Xiao-Na Ma
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wei Feng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Nan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Shu-Lin Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiao-Qin Zhong
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jia-Xu Chen
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Chang-Song Lin
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qiang Xu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
13
|
Shojaie F, Ferrero C, Caraballo I. Development of 3D-Printed Bicompartmental Devices by Dual-Nozzle Fused Deposition Modeling (FDM) for Colon-Specific Drug Delivery. Pharmaceutics 2023; 15:2362. [PMID: 37765330 PMCID: PMC10535423 DOI: 10.3390/pharmaceutics15092362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Dual-nozzle fused deposition modeling (FDM) is a 3D printing technique that allows for the simultaneous printing of two polymeric filaments and the design of complex geometries. Hence, hybrid formulations and structurally different sections can be combined into the same dosage form to achieve customized drug release kinetics. The objective of this study was to develop a novel bicompartmental device by dual-nozzle FDM for colon-specific drug delivery. Hydroxypropylmethylcellulose acetate succinate (HPMCAS) and polyvinyl alcohol (PVA) were selected as matrix-forming polymers of the outer pH-dependent and the inner water-soluble compartments, respectively. 5-Aminosalicylic acid (5-ASA) was selected as the model drug. Drug-free HPMCAS and drug-loaded PVA filaments suitable for FDM were extruded, and their properties were assessed by thermal, X-ray diffraction, microscopy, and texture analysis techniques. 5-ASA (20% w/w) remained mostly crystalline in the PVA matrix. Filaments were successfully printed into bicompartmental devices combining an outer cylindrical compartment and an inner spiral-shaped compartment that communicates with the external media through an opening. Scanning electron microscopy and X-ray tomography analysis were performed to guarantee the quality of the 3D-printed devices. In vitro drug release tests demonstrated a pH-responsive biphasic release pattern: a slow and sustained release period (pH values of 1.2 and 6.8) controlled by drug diffusion followed by a faster drug release phase (pH 7.4) governed by polymer relaxation/erosion. Overall, this research demonstrates the feasibility of the dual-nozzle FDM technique to obtain an innovative 3D-printed bicompartmental device for targeting 5-ASA to the colon.
Collapse
Affiliation(s)
| | - Carmen Ferrero
- Departamento Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González No. 2, 41012 Sevilla, Spain; (F.S.); (I.C.)
| | | |
Collapse
|