1
|
Wang T, Zhang Y. Mechanisms and therapeutic targets of carbon monoxide poisoning: A focus on reactive oxygen species. Chem Biol Interact 2024; 403:111223. [PMID: 39237073 DOI: 10.1016/j.cbi.2024.111223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Carbon monoxide (CO) poisoning presents a substantial public health challenge that necessitates the identification of its pathological mechanisms and therapeutic targets. CO toxicity arises from tissue hypoxia-ischemia secondary to carboxyhemoglobin formation, and cellular damage mediated by CO at the cellular level. The mitochondria are the major targets of neuronal damage caused by CO. Under normal physiological conditions, mitochondria produce reactive oxygen species (ROS), which are byproducts of aerobic metabolism. While low ROS levels are crucial for essential cellular functions, including signal transduction, differentiation, responses to hypoxia and immunity, transcriptional regulation, and autophagy, excess ROS become pathological and exacerbate CO poisoning. This review presents the evidence of elevated ROS being associated with the progression of CO poisoning. Antioxidant treatments targeting ROS removal have been proven effective in mitigating CO poisoning, underscoring their therapeutic potential. In this review, we highlight the latest advances in the understanding of the role and the clinical implications of ROS in CO poisoning. We focus on cellular sources of ROS, the molecular mechanisms underlying mitochondrial oxidative stress, and potential therapeutic strategies for targeting ROS in CO poisoning.
Collapse
Affiliation(s)
- Tianhong Wang
- Department of Neurology, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Yanli Zhang
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
2
|
Hegazi OE, Alalalmeh SO, Shahwan M, Jairoun AA, Alourfi MM, Bokhari GA, Alkhattabi A, Alsharif S, Aljehani MA, Alsabban AM, Almtrafi M, Zakri YA, AlMahmoud A, Alghamdi KM, Ashour AM, Alorfi NM. Exploring Promising Therapies for Non-Alcoholic Fatty Liver Disease: A ClinicalTrials.gov Analysis. Diabetes Metab Syndr Obes 2024; 17:545-561. [PMID: 38327733 PMCID: PMC10847589 DOI: 10.2147/dmso.s448476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a common disease and has been increasing in recent years. To date, no FDA-approved drug specifically targets NAFLD. Methods The terms "Non-alcoholic Fatty Liver Disease" and "NAFLD" were used in a search of ClinicalTrials.gov on August 24, 2023. Two evaluators independently examined the trials using predetermined eligibility criteria. Studies had to be interventional, NAFLD focused, in Phase IV, and completed to be eligible for this review. Results The ClinicalTrials.gov database was searched for trials examining pharmacotherapeutics in NAFLD. The search revealed 1364 trials, with 31 meeting the inclusion criteria. Out of these, 19 were finalized for evaluation. The dominant intervention model was Parallel. The most prevalent studies were in Korea (26.3%) and China (21.1%). The most common intervention was metformin (12.1%), with others like Exenatide and Pioglitazone accounting for 9.1%. Conclusion Therapeutics used to manage NAFLD are limited. However, various medications offer potential benefits. Further investigations are definitely warranted.
Collapse
Affiliation(s)
- Omar E Hegazi
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Samer O Alalalmeh
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Moyad Shahwan
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Ammar Abdulrahman Jairoun
- Health and Safety Department, Dubai, United Arab Emirates
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Mansour M Alourfi
- Internal medicine Department, King Faisal Medical City for Southern Region, Abha, Saudi Arabia
- Department of gastroenterology, East Jeddah hospital, Jeddah, Saudi Arabia
| | | | | | - Saeed Alsharif
- Gastroenterology Department, Armed force Hospital of southern region, Khamis Mushait, Saudi Arabia
| | - Mohannad Abdulrahman Aljehani
- Division of Gastroenterology, Department of Medicine, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | | | - Mohammad Almtrafi
- Gastroenterology Section, Department of Medicine, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Ysear Abdulaziz Zakri
- Gastroenterology Section, Department of Medicine, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Abdullah AlMahmoud
- Gastroenterology Section, Internal Medicine Department, King Fahad Hospital, Jeddah, Saudi Arabia
| | - Khalid Mohammed Alghamdi
- Gastroenterology Section, Internal Medicine Department, King Fahad Hospital, Jeddah, Saudi Arabia
| | - Ahmed M Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nasser M Alorfi
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
3
|
Mudgal R, Singh S. Xanthine Oxidoreductase in the Pathogenesis of Endothelial Dysfunction: An Update. Curr Hypertens Rev 2024; 20:10-22. [PMID: 38318826 DOI: 10.2174/0115734021277772240124075120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024]
Abstract
Xanthine oxidoreductase (XOR) is a rate-limiting enzyme in the formation of uric acid (UA) and is involved in the generation of reactive oxygen species (ROS). Overproduction of ROS has been linked to the pathogenesis of hypertension, atherosclerosis, and cardiovascular disease, with multiple studies over the last 30 years demonstrating that XOR inhibition is beneficial. The involvement of XOR and its constituents in the advancement of chronic inflammation and ROS, which are responsible for endothelial dysfunction, is the focus of this evidence-based review. An overabundance of XOR products and ROS appears to drive the inflammatory response, resulting in significant endothelium damage. It has also been demonstrated that XOR activity and ED are connected. Diabetes, hypertension, and cardiovascular disease are all associated with endothelial dysfunction. ROS mainly modifies the activity of vascular cells and can be important in normal vascular physiology as well as the development of vascular disease. Suppressing XOR activity appears to decrease endothelial dysfunction, probably because it lessens the generation of reactive oxygen species and the oxidative stress brought on by XOR. Although there has long been a link between higher vascular XOR activity and worse clinical outcomes, new research suggests a different picture in which positive results are mediated by XOR enzymatic activity. Here in this study, we aimed to review the association between XOR and vascular endothelial dysfunction. The prevention and treatment approaches against vascular endothelial dysfunction in atherosclerotic disease.
Collapse
Affiliation(s)
- Rajat Mudgal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| |
Collapse
|
4
|
Ni X, Lu Y, Li M, Liu Y, Zhang M, Sun F, Dong S, Zhao L. Application of Se-Met to CdTe QDs significantly reduces toxicity by modulating redox balance and inhibiting apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115614. [PMID: 37890249 DOI: 10.1016/j.ecoenv.2023.115614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
Cadmium tellurium quantum dots (CdTe QDs) as one of the most widely used QDs have been reported the toxicity and biosafety in recent years, little work has been done to reduce their toxicity however. Based on the mechanisms of toxicity of CdTe QDs on liver target organs such as oxidative stress and apoptosis previously reported by other researchers, we investigated the mechanism of action of trace element selenium (Se) to mitigate the hepatotoxicity of CdTe QDs. The experimental results showed that Se-Met at 40-140 μg L-1 could enhance the function of intracellular antioxidant defense system and the molecular structure of related antioxidant enzymes by reduce the production of ROS by 45%, protecting the activity of antioxidants and up-regulating the expression of selenoproteins with antioxidant functions, Gpx1 increase 225% and Gpx4 upregulated 47%. In addition, Se-Met could alleviate CdTe QDs-induced apoptosis by regulating two apoptosis-inducing factors, as intracellular caspase 3/9 expression levels were reduced by 70% and 87%, decreased Ca2+ concentration, and increased mitochondrial membrane potential measurements. Overall, this study indicates that Se-Met has a significant protective effect on the hepatotoxicity of CdTe QDs. Se-Met can be applied to the preparation of CdTe QDs to inhibit its toxicity and break the application limitation.
Collapse
Affiliation(s)
- Xinyu Ni
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, PR China
| | - Yudie Lu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, PR China
| | - Meiyu Li
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, PR China
| | - Yue Liu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, PR China
| | - Miao Zhang
- College of Chemistry & Environmental Science, Hebei University, Baoding, Hebei 071002, PR China
| | - Fuqiang Sun
- Physical and Chemical Laboratory, Baoding Center for Disease Control and Prevention, Baoding, Hebei 071000, PR China
| | - Sijun Dong
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, PR China.
| | - Lining Zhao
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, PR China.
| |
Collapse
|
5
|
Zhang W, Dong E, Zhang J, Zhang Y. CaMKII, 'jack of all trades' in inflammation during cardiac ischemia/reperfusion injury. J Mol Cell Cardiol 2023; 184:48-60. [PMID: 37813179 DOI: 10.1016/j.yjmcc.2023.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023]
Abstract
Myocardial infarction and revascularization cause cardiac ischemia/reperfusion (I/R) injury featuring cardiomyocyte death and inflammation. The Ca2+/calmodulin dependent protein kinase II (CaMKII) family are serine/ threonine protein kinases that are involved in I/R injury. CaMKII exists in four different isoforms, α, β, γ, and δ. In the heart, CaMKII-δ is the predominant isoform,with multiple splicing variants, such as δB, δC and δ9. During I/R, elevated intracellular Ca2+ concentrations and reactive oxygen species activate CaMKII. In this review, we summarized the regulation and function of CaMKII in multiple cell types including cardiomyocytes, endothelial cells, and macrophages during I/R. We conclude that CaMKII mediates inflammation in the microenvironment of the myocardium, resulting in cell dysfunction, elevated inflammation, and cell death. However, different CaMKII-δ variants exhibit distinct or even opposite functions. Therefore, reagents/approaches that selectively target specific CaMKII isoforms and variants are needed for evaluating and counteracting the exact role of CaMKII in I/R injury and developing effective treatments against I/R injury.
Collapse
Affiliation(s)
- Wenjia Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Erdan Dong
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China; Haihe Laboratory of Cell Ecosystem, Beijing 100191, China
| | - Junxia Zhang
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China; Haihe Laboratory of Cell Ecosystem, Beijing 100191, China.
| | - Yan Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|
6
|
Adhikari R, Shiwakoti S, Kim E, Choi IJ, Park SH, Ko JY, Chang K, Oak MH. Niclosamide Inhibits Aortic Valve Interstitial Cell Calcification by Interfering with the GSK-3β/β-Catenin Signaling Pathway. Biomol Ther (Seoul) 2023; 31:515-525. [PMID: 37366053 PMCID: PMC10468423 DOI: 10.4062/biomolther.2022.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/07/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
The most common heart valve disorder is calcific aortic valve stenosis (CAVS), which is characterized by a narrowing of the aortic valve. Treatment with the drug molecule, in addition to surgical and transcatheter valve replacement, is the primary focus of researchers in this field. The purpose of this study is to determine whether niclosamide can reduce calcification in aortic valve interstitial cells (VICs). To induce calcification, cells were treated with a pro-calcifying medium (PCM). Different concentrations of niclosamide were added to the PCM-treated cells, and the level of calcification, mRNA, and protein expression of calcification markers was measured. Niclosamide inhibited aortic valve calcification as observed from reduced alizarin red s staining in niclosamide treated VICs and also decreased the mRNA and protein expressions of calcification-specific markers: runt-related transcription factor 2 and osteopontin. Niclosamide also reduced the formation of reactive oxygen species, NADPH oxidase activity and the expression of Nox2 and p22phox. Furthermore, in calcified VICs, niclosamide inhibited the expression of β-catenin and phosphorylated glycogen synthase kinase (GSK-3β), as well as the phosphorylation of AKT and ERK. Taken together, our findings suggest that niclosamide may alleviate PCM-induced calcification, at least in part, by targeting oxidative stress mediated GSK-3β/β-catenin signaling pathway via inhibiting activation of AKT and ERK, and may be a potential treatment for CAVS.
Collapse
Affiliation(s)
- Radhika Adhikari
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Saugat Shiwakoti
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Eunmin Kim
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ik Jun Choi
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sin-Hee Park
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ju-Young Ko
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Kiyuk Chang
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Min-Ho Oak
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| |
Collapse
|
7
|
Baharara H, Ghasemi H, Samadi S, Roohshad B, Jomehzadeh V, Ravankhah Moghaddam K, Mohammadpour AH, Arasteh O. The effect of preconditioning agents on cardiotoxicity and neurotoxicity of carbon monoxide poisoning in animal studies: a systematic review. Drug Chem Toxicol 2023; 46:256-270. [PMID: 35616381 DOI: 10.1080/01480545.2021.2021931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Carbon monoxide (CO) poisoning is a common intoxication and many people die yearly due to CO poisoning and preconditioning agents attenuate brain and cardiac injury caused by intoxication. It is critical to fully understand the efficacy of new methods to directly target the toxic effect of CO, such as conditioning agents, which are currently under development. This study aims to systematically investigate current evidence from animal experiments and the effects of administration preconditions in acute and late phases after CO poisoning on cardiotoxicity and neurotoxicity. METHODS Four databases (PubMed, Embase, Scopus, and Web of Science) were systematically searched without language restrictions, and hand searching was conducted until November 2021. We included studies that compare preconditioning agents with the control group after CO poisoning in animals. The SYRCLE RoB tool was used for risk of bias assessments. RESULTS Thirty-seven studies were included in the study. Erythropoietin, granulocyte colony-stimulating factor (GCSF), hydrogen-rich saline, and N-butylphthalide (NBP) were found to have positive effects on reducing neurotoxicity and cardiotoxicity. As other preconditions have fewer studies, no valuable results can be deduced. Most of the studies were unclear for sources of bias. DISCUSSION Administration of the examined preconditioning agents including NBP, hydrogen-rich saline, and GCSF in acute and late phases could attenuate neurotoxicity and cardiotoxicity of CO poisoned animals. For a better understanding of mechanisms and activities, and finding new and effective preconditioning agents, further preclinical and clinical studies should be performed to analyze the effects of preconditioning agents.
Collapse
Affiliation(s)
- Hamed Baharara
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Ghasemi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Samadi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahar Roohshad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Jomehzadeh
- Department of Surgery, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir Hooshang Mohammadpour
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Arasteh
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Liu P, Chen J, Qi J, Liu M, Zhang M, Xue Y, Li L, Liu Y, Shi J, Zhang Y, Chu L. Hesperetin ameliorates ischemia/hypoxia‐induced myocardium injury via inhibition of oxidative stress, apoptosis, and regulation of Ca
2+
homeostasis. Phytother Res 2022; 37:1787-1805. [PMID: 36437582 DOI: 10.1002/ptr.7693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/12/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022]
Abstract
Ischemia/hypoxia (I/H)-induced myocardial injury has a large burden worldwide. Hesperetin (HSP) has a cardioprotective effect, but the molecular mechanism underlying this is not clearly established. Here, we focused on the protective mechanisms of HSP against I/H-induced myocardium injury. H9c2 cardiomyocytes were challenged with CoCl2 for 22 h to imitate hypoxia after treatment groups received HSP for 4 h. The viability of H9c2 cardiomyocytes was evaluated, and cardiac function indices, reactive oxygen species, apoptosis, mitochondrial membrane potential (MMP), and intracellular Ca2+ concentration ([Ca2+ ]i ) were measured. L-type Ca2+ current (ICa-L ), myocardial contraction, and Ca2+ transients in isolated ventricular myocytes were also recorded. We found that HSP significantly increased the cell viability, and MMP while significantly decreasing cardiac impairment, oxidative stress, apoptosis, and [Ca2+ ]i caused by CoCl2 . Furthermore, HSP markedly attenuated ICa-L , myocardial contraction, and Ca2+ transients in a concentration-dependent manner. Our findings suggest a protective mechanism of HSP on I/H-induced myocardium injury by restoring oxidative balance, inhibiting apoptosis, improving mitochondrial function, and reducing Ca2+ influx via L-type Ca2+ channels (LTCCs). These data provide a new direction for HSP applied research as a LTCC inhibitor against I/H-induced myocardium injury.
Collapse
Affiliation(s)
- Panpan Liu
- School of Pharmacy Hebei University of Chinese Medicine Shijiazhuang Hebei People's Republic of China
| | - Jian Chen
- School of Pharmacy Hebei University of Chinese Medicine Shijiazhuang Hebei People's Republic of China
| | - Jiaying Qi
- School of Pharmacy Hebei University of Chinese Medicine Shijiazhuang Hebei People's Republic of China
| | - Miaomiao Liu
- School of Pharmacy Hebei University of Chinese Medicine Shijiazhuang Hebei People's Republic of China
| | - Muqing Zhang
- College of Integrative Medicine Hebei University of Chinese Medicine Shijiazhuang Hebei People's Republic of China
| | - Yucong Xue
- School of Pharmacy Hebei University of Chinese Medicine Shijiazhuang Hebei People's Republic of China
| | - Li Li
- School of Pharmacy Hebei Medical University Shijiazhuang Hebei People's Republic of China
| | - Yanshuang Liu
- College of Integrative Medicine Hebei University of Chinese Medicine Shijiazhuang Hebei People's Republic of China
| | - Jing Shi
- Department of Scientifc Research Management The Fourth Hospital of Hebei Medical University Shijiazhuang Hebei People's Republic of China
| | - Yixin Zhang
- School of Pharmacy Hebei University of Chinese Medicine Shijiazhuang Hebei People's Republic of China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province Shijiazhuang Hebei People's Republic of China
| | - Li Chu
- School of Pharmacy Hebei University of Chinese Medicine Shijiazhuang Hebei People's Republic of China
| |
Collapse
|
9
|
Fei J, Demillard LJ, Ren J. Reactive oxygen species in cardiovascular diseases: an update. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cardiovascular diseases are among the leading causes of death worldwide, imposing major health threats. Reactive oxygen species (ROS) are one of the most important products from the process of redox reactions. In the onset and progression of cardiovascular diseases, ROS are believed to heavily influence homeostasis of lipids, proteins, DNA, mitochondria, and energy metabolism. As ROS production increases, the heart is damaged, leading to further production of ROS. The vicious cycle continues on as additional ROS are generated. For example, recent evidence indicated that connexin 43 (Cx43) deficiency and pyruvate kinase M2 (PKM2) activation led to a loss of protection in cardiomyocytes. In this context, a better understanding of the mechanisms behind ROS production is vital in determining effective treatment and management strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Juanjuan Fei
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Laurie J. Demillard
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Zhang YS, Lu LQ, Jiang YQ, Li NS, Luo XJ, Peng JW, Peng J. Allopurinol attenuates oxidative injury in rat hearts suffered ischemia/reperfusion via suppressing the xanthine oxidase/vascular peroxidase 1 pathway. Eur J Pharmacol 2021; 908:174368. [PMID: 34302816 DOI: 10.1016/j.ejphar.2021.174368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 11/26/2022]
Abstract
Allopurinol, a xanthine oxidase (XO) inhibitor, is reported to alleviate myocardial ischemia/reperfusion (I/R) injury by reducing the production of reactive oxygen species (ROS). As an XO-derived product, H2O2 can act as a substrate of vascular peroxidase 1 (VPO1) to induce the generation of hypochlorous acid (HOCl), a potent oxidant. This study aims to explore whether the XO/VPO1 pathway is involved in the anti-oxidative effects of allopurinol on the myocardial I/R injury. In a rat heart model of I/R, allopurinol alleviated I/R oxidative injury accompanied by decreased XO activity, XO-derived products (H2O2 and uric acid), and VPO1 expression (mRNA and protein). In a cardiac cell model of hypoxia/reoxygenation (H/R), allopurinol or XO siRNA reduced H/R injury concomitant with decreased XO activity, VPO1 expression as well as the XO and VPO1-derived products (H2O2, uric acid, and HOCl). Although knockdown of VPO1 could also exert a beneficial effect on H/R injury, it did not affect XO activity, XO expression, and XO-derived products. Based on these observations, we conclude that the novel pathway of XO/VPO1 is responsible for, at least partly, myocardial I/R-induced oxidative injury, and allopurinol exerted the cardioprotective effects on myocardial I/R injury via inhibiting the XO/VPO1 pathway.
Collapse
Affiliation(s)
- Yi-Shuai Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Li-Qun Lu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Ya-Qian Jiang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Nian-Sheng Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jin-Wu Peng
- Department of Pathology, Xiangya Basic Medical School, Central South University, Changsha, 410013, Hunan, China.
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
11
|
Fischesser DM, Bo B, Benton RP, Su H, Jahanpanah N, Haworth KJ. Controlling Reperfusion Injury With Controlled Reperfusion: Historical Perspectives and New Paradigms. J Cardiovasc Pharmacol Ther 2021; 26:504-523. [PMID: 34534022 DOI: 10.1177/10742484211046674] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cardiac reperfusion injury is a well-established outcome following treatment of acute myocardial infarction and other types of ischemic heart conditions. Numerous cardioprotection protocols and therapies have been pursued with success in pre-clinical models. Unfortunately, there has been lack of successful large-scale clinical translation, perhaps in part due to the multiple pathways that reperfusion can contribute to cell death. The search continues for new cardioprotection protocols based on what has been learned from past results. One class of cardioprotection protocols that remain under active investigation is that of controlled reperfusion. This class consists of those approaches that modify, in a controlled manner, the content of the reperfusate or the mechanical properties of the reperfusate (e.g., pressure and flow). This review article first provides a basic overview of the primary pathways to cell death that have the potential to be addressed by various forms of controlled reperfusion, including no-reflow phenomenon, ion imbalances (particularly calcium overload), and oxidative stress. Descriptions of various controlled reperfusion approaches are described, along with summaries of both mechanistic and outcome-oriented studies at the pre-clinical and clinical phases. This review will constrain itself to approaches that modify endogenously-occurring blood components. These approaches include ischemic postconditioning, gentle reperfusion, controlled hypoxic reperfusion, controlled hyperoxic reperfusion, controlled acidotic reperfusion, and controlled ionic reperfusion. This review concludes with a discussion of the limitations of past approaches and how they point to potential directions of investigation for the future.
Collapse
Affiliation(s)
- Demetria M Fischesser
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Bin Bo
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Rachel P Benton
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Haili Su
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Newsha Jahanpanah
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Kevin J Haworth
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
12
|
Che X, Chai J, Fang Y, Zhang X, Zu A, Li L, Sun S, Yang W. Sestrin2 in hypoxia and hypoxia-related diseases. Redox Rep 2021; 26:111-116. [PMID: 34225572 PMCID: PMC8259815 DOI: 10.1080/13510002.2021.1948774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Objectives: Sestrin2 is a stress-inducible protein and play an important role in adapting stress states of cells. This article reviewed the role of Sestrin2 in hypoxia and hypoxia-related diseases to provide new perspectives for future research and new therapeutic targets for hypoxia-related diseases. Methods: A review was conducted through an electronic search of PubMed and Medline databases. Keywords included Sestrin2, ROS, hypoxia, and hypoxia-related disease. Articles from 2008 to 2021 were mostly included and older ones were not excluded. Results: Sestrin2 is upregulated under various stress conditions, especially hypoxia. Under hypoxic condition, Sestrin2 plays a protective role by reducing the generation of ROS through various pathways, such as adenosine monophosphatea-ctivated protein kinase (AMPK) / mammalian target of rapamycin (mTOR) pathway and nuclear factor-E2-related factor2 (Nrf2) pathway. In addition, Sestrin2 is involved in various hypoxia-related diseases, such as cerebral hypoxic disease, myocardial hypoxic disease, hypoxia-related respiratory disease, and diabetes. Discussion: Sestrin2 is involved in various hypoxia-related diseases and maybe a therapeutic target. Furthermore, most studies focus on cerebral and myocardial ischemia reperfusion. More researches on hypoxia-related respiratory diseases, kidney injury, and diabetes are needed in future.
Collapse
Affiliation(s)
- Xiaojing Che
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People's Republic of China.,Innovation Class & Second Class, 2017 Clinical Medicine, Kunming Medical University, Kunming, People's Republic of China
| | - Jiagui Chai
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People's Republic of China.,Innovation Class & Second Class, 2017 Clinical Medicine, Kunming Medical University, Kunming, People's Republic of China
| | - Yan Fang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People's Republic of China
| | - Xifeng Zhang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People's Republic of China
| | - Anju Zu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People's Republic of China
| | - Lin Li
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People's Republic of China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People's Republic of China.,School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, People's Republic of China
| | - Weimin Yang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, People's Republic of China
| |
Collapse
|
13
|
Li H, Zhang C, Zhang H, Li H. Xanthine oxidoreductase promotes the progression of colitis-associated colorectal cancer by causing DNA damage and mediating macrophage M1 polarization. Eur J Pharmacol 2021; 906:174270. [PMID: 34171392 DOI: 10.1016/j.ejphar.2021.174270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022]
Abstract
In addition to its pivotal role in purine metabolism, xanthine oxidoreductase (XOR) is one of the key enzymes involved in superoxide radical generation. Oxidative stress has been implicated in the etiology of colorectal cancer, but the contribution of XOR remains unclear. Here we investigated the role of XOR in colitis-associated colorectal cancer (CAC) and the underlying mechanisms. Using clinical samples, we demonstrated that XOR up-regulation was an early event in colonic carcinogenesis. Pharmacological inhibition of XOR effectively delayed the progression of CAC. Moreover, XOR activity positively correlated with tumor necrosis factor-alpha (TNFα) protein levels. Mechanistically, TNFα may activate XOR transcription via activator protein-1 and, thus, promote endogenous hydrogen peroxide generation, resulting in oxidative DNA damage in colon cancer cells. On the other hand, XOR may regulate the TNFα mRNA transcripts by mediating LPS-induced macrophage M1 polarization. Collectively, XOR promotes tumor development by programming the tumor microenvironment and stimulates CAC progression via DNA damage-induced genetic instability.
Collapse
Affiliation(s)
- Hongling Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Chengjuan Zhang
- Department of Bio-repository, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Haitao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
14
|
Mohapatra B, Phale PS. Microbial Degradation of Naphthalene and Substituted Naphthalenes: Metabolic Diversity and Genomic Insight for Bioremediation. Front Bioeng Biotechnol 2021; 9:602445. [PMID: 33791281 PMCID: PMC8006333 DOI: 10.3389/fbioe.2021.602445] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/09/2021] [Indexed: 12/21/2022] Open
Abstract
Low molecular weight polycyclic aromatic hydrocarbons (PAHs) like naphthalene and substituted naphthalenes (methylnaphthalene, naphthoic acids, 1-naphthyl N-methylcarbamate, etc.) are used in various industries and exhibit genotoxic, mutagenic, and/or carcinogenic effects on living organisms. These synthetic organic compounds (SOCs) or xenobiotics are considered as priority pollutants that pose a critical environmental and public health concern worldwide. The extent of anthropogenic activities like emissions from coal gasification, petroleum refining, motor vehicle exhaust, and agricultural applications determine the concentration, fate, and transport of these ubiquitous and recalcitrant compounds. Besides physicochemical methods for cleanup/removal, a green and eco-friendly technology like bioremediation, using microbes with the ability to degrade SOCs completely or convert to non-toxic by-products, has been a safe, cost-effective, and promising alternative. Various bacterial species from soil flora belonging to Proteobacteria (Pseudomonas, Pseudoxanthomonas, Comamonas, Burkholderia, and Novosphingobium), Firmicutes (Bacillus and Paenibacillus), and Actinobacteria (Rhodococcus and Arthrobacter) displayed the ability to degrade various SOCs. Metabolic studies, genomic and metagenomics analyses have aided our understanding of the catabolic complexity and diversity present in these simple life forms which can be further applied for efficient biodegradation. The prolonged persistence of PAHs has led to the evolution of new degradative phenotypes through horizontal gene transfer using genetic elements like plasmids, transposons, phages, genomic islands, and integrative conjugative elements. Systems biology and genetic engineering of either specific isolates or mock community (consortia) might achieve complete, rapid, and efficient bioremediation of these PAHs through synergistic actions. In this review, we highlight various metabolic routes and diversity, genetic makeup and diversity, and cellular responses/adaptations by naphthalene and substituted naphthalene-degrading bacteria. This will provide insights into the ecological aspects of field application and strain optimization for efficient bioremediation.
Collapse
Affiliation(s)
- Balaram Mohapatra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
15
|
Basnet R, Khadka S, Basnet BB, Basnet TB, Chidi BB, Nirala S, Gupta R, Sharma B. Xanthine Oxidase and Transforming Growth Factor Beta-activated Kinase 1: Potential Targets for Gout Intervention. Curr Rheumatol Rev 2020; 17:153-161. [PMID: 33243128 DOI: 10.2174/1573397116666201126162202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Gout, inflammatory arthritis caused by the deposition of monosodium urate crystals into affected joints and other tissues, has become one of the major health problems of today's world. The main risk factor for gout is hyperuricemia, which may be caused by excessive or insufficient excretion of uric acid. The incidence is usually in the age group of 30- 50 years, commonly in males. In developed countries, the incidence of gout ranges from 1 to 4%. Despite effective treatments, there has been an increase in the number of cases over the past few decades. OBJECTIVE In recent years, the development of targeted drugs in gout has made significant achievements. The global impact of gout continues to increase, and as a result, the focus of disease-modifying therapies remains elusive. In addition, the characterization of available instrumental compounds is urgently needed to explore the use of novel selective and key protein-ligand interactions for the effective treatment of gout. Xanthine oxidase (XO) is a key target in gout to consider the use of XO inhibitors in patients with mild to moderate condition, however, the costs are high, and no other direct progress has been made. Despite many XO inhibitors, a selective potent inhibitor for XO is limited. Likewise, in recent years, attention has been focused on different strategies for the discovery and development of new selectivity ligands against transforming growth factor beta- activated kinase 1 (TAK1), a potential therapeutic target for gout. Therefore, the insight on human XO structure and TAK1 provides a clue into protein-ligand interactions and provides the basis for molecular modeling and structure-based drug design. CONCLUSION In this review, we briefly introduce the clinical characteristics, the development of crystal, inhibitors, and crystal structure of XO and TAK1 protein.
Collapse
Affiliation(s)
- Rajesh Basnet
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Sandhya Khadka
- Department of Pharmacy, Hope International College, Purbanchal University, Lalitpur, Nepal
| | | | - Til Bahadur Basnet
- Little Buddha College of Health Sciences, Purbanchal University, Min Bhawan Kathmandu, Nepal
| | - Buddhi Bal Chidi
- Department of Drug Administration, Government of Nepal, Kathmandu, Nepal
| | - Sanjeev Nirala
- Department of Cardiology of the Ruijin Hospital affiliated to the Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Radheshyam Gupta
- Dept. of General Surgery, Bariatric and Metabolic Surgery, Nepal Korea Friendship Municipality Hospital, Madhyapur Thimi, Nepal, Qiqihar Medical University, Heilongjiang, China
| | - Bidur Sharma
- Department of Pharmacy, School of Science, Kathmandu University, Dhulikhel, Nepal
| |
Collapse
|
16
|
Tan Y, Mui D, Toan S, Zhu P, Li R, Zhou H. SERCA Overexpression Improves Mitochondrial Quality Control and Attenuates Cardiac Microvascular Ischemia-Reperfusion Injury. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 22:696-707. [PMID: 33230467 PMCID: PMC7585837 DOI: 10.1016/j.omtn.2020.09.013] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022]
Abstract
Despite significant advances in the treatment of myocardial ischemia-reperfusion (I/R) injury, coronary circulation is a so far neglected target of cardioprotection. In this study, we investigated the molecular mechanisms underlying I/R injury to cardiac microcirculation. Using gene delivery, we analyzed microvascular protective effects of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) on the reperfused heart and examined the role of SERCA in regulating mitochondrial quality control in cardiac microvascular endothelial cells (CMECs). Our data showed that SERCA overexpression attenuates lumen stenosis, inhibits microthrombus formation, reduces inflammation response, and improves endothelium-dependent vascular relaxation. In vitro experiments demonstrated that SERCA overexpression improves endothelial viability, barrier integrity, and cytoskeleton assembly in CMECs. Mitochondrial quality control, including mitochondrial fusion, mitophagy, bioenergetics, and biogenesis, were disrupted by I/R injury but were restored by SERCA overexpression. SERCA overexpression also restored mitochondrial quality control by inhibiting calcium overload, inactivating xanthine oxidase (XO), and reducing intracellular/mitochondrial reactive oxygen species (ROS). Administration of exogenous XO or a calcium channel agonist abolished the protective effects of SERCA overexpression on mitochondrial quality control and offset the beneficial effects of SERCA overexpression after cardiac microvascular I/R injury. These findings indicate that SERCA overexpression may be an effective approach to targeting cardiac microvascular I/R injury by regulating calcium/XO/ROS signaling and preserving mitochondrial quality control.
Collapse
Affiliation(s)
- Ying Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - David Mui
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN 55812, USA
| | - Pingjun Zhu
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing 100853, China
| | - Ruibing Li
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing 100853, China
| | - Hao Zhou
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing 100853, China
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China
- Corresponding author Hao Zhou, Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
17
|
Xu W, Zhang L, Zhang Y, Zhang K, Wu Y, Jin D. TRAF1 Exacerbates Myocardial Ischemia Reperfusion Injury via ASK1-JNK/p38 Signaling. J Am Heart Assoc 2019; 8:e012575. [PMID: 31650881 PMCID: PMC6898833 DOI: 10.1161/jaha.119.012575] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background After acute myocardial infarction, the recovery of ischemic myocardial blood flow may cause myocardial reperfusion injury, which reduces the efficacy of myocardial reperfusion. Ways to reduce and prevent myocardial ischemia/reperfusion (I/R) injury are of great clinical significance in the treatment of patients with acute myocardial infarction. TRAF1 (tumor necrosis factor receptor-associated factor 1) is an important adapter protein that is implicated in molecular events regulating immunity, inflammation, and cell death. Little is known about the role and impact of TRAF1 in myocardial I/R injury. Methods and Results TRAF1 expression is markedly induced in wild-type mice and cardiomyocytes after I/R or hypoxia/reoxygenation stimulation. I/R models were established in TRAF1 knockout mice and wild type mice (n=10 per group). We demonstrated that TRAF1 deficiency protects against myocardial I/R-induced loss of heat function, inflammation, and cardiomyocyte death. In addition, overexpression of TRAF1 in primary cardiomyocytes promotes hypoxia/reoxygenation-induced inflammation and apoptosis in vitro. Mechanistically, TRAF1 promotes myocardial I/R injury through regulating ASK1 (apoptosis signal-regulating kinase 1)-mediated JNK/p38 (c-Jun N-terminal kinase/p38) MAPK (mitogen-activated protein kinase) cascades. Conclusions Our results indicated that TRAF1 aggravates the development of myocardial I/R injury by enhancing the activation of ASK1-mediated JNK/p38 cascades. Targeting the TRAF1-ASK1-JNK/p38 pathway provide feasible therapies for cardiac I/R injury.
Collapse
Affiliation(s)
- Weipan Xu
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China.,Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention Huang Shi China
| | - Li Zhang
- Center for Animal Experiment Wuhan University Wuhan China
| | - Yi Zhang
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China
| | - Kai Zhang
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China
| | - Yongbo Wu
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China
| | - Daoqun Jin
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China
| |
Collapse
|
18
|
Yuan M, Meng XW, Ma J, Liu H, Song SY, Chen QC, Liu HY, Zhang J, Song N, Ji FH, Peng K. Dexmedetomidine protects H9c2 cardiomyocytes against oxygen-glucose deprivation/reoxygenation-induced intracellular calcium overload and apoptosis through regulating FKBP12.6/RyR2 signaling. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3137-3149. [PMID: 31564830 PMCID: PMC6730549 DOI: 10.2147/dddt.s219533] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/23/2019] [Indexed: 12/30/2022]
Abstract
Purpose Intracellular calcium ([Ca2+]i) overload is a major cause of cell injury during myocardial ischemia/reperfusion (I/R). Dexmedetomidine (DEX) has been shown to exert anti-inflammatory and organ protective effects. This study aimed to investigate whether pretreatment with DEX could protect H9c2 cardiomyocytes against oxygen-glucose deprivation/reoxygenation (OGD/R) injury through regulating the Ca2+ signaling. Methods H9c2 cardiomyocytes were subjected to OGD for 12 h, followed by 3 h of reoxygenation. DEX was administered 1 h prior to OGD/R. Cell viability, lactate dehydrogenase (LDH) release, level of [Ca2+]i, cell apoptosis, and the expression of 12.6-kd FK506-binding protein/ryanodine receptor 2 (FKBP12.6/RyR2) and caspase-3 were assessed. Results Cells exposed to OGD/R had decreased cell viability, increased LDH release, elevated [Ca2+]i level and apoptosis rate, down-regulated expression of FKBP12.6, and up-regulated expression of phosphorylated-Ser2814-RyR2 and cleaved caspase-3. Pretreatment with DEX significantly blocked the above-mentioned changes, alleviating the OGD/R-induced injury in H9c2 cells. Moreover, knockdown of FKBP12.6 by small interfering RNA abolished the protective effects of DEX. Conclusion This study indicates that DEX pretreatment protects the cardiomyocytes against OGD/R-induced injury by inhibiting [Ca2+]i overload and cell apoptosis via regulating the FKBP12.6/RyR2 signaling. DEX may be used for preventing cardiac I/R injury in the clinical settings.
Collapse
Affiliation(s)
- Mei Yuan
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China.,Department of Anesthesiology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, People's Republic of China
| | - Xiao-Wen Meng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Jiao Ma
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health System, Sacramento, CA 95817, USA
| | - Shao-Yong Song
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Qing-Cai Chen
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Hua-Yue Liu
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Juan Zhang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Nan Song
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Fu-Hai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Ke Peng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| |
Collapse
|
19
|
Paracrine Mechanisms of Redox Signalling for Postmitotic Cell and Tissue Regeneration. Trends Cell Biol 2019; 29:514-530. [DOI: 10.1016/j.tcb.2019.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 01/08/2023]
|
20
|
Zhenyukh O, González-Amor M, Rodrigues-Diez RR, Esteban V, Ruiz-Ortega M, Salaices M, Mas S, Briones AM, Egido J. Branched-chain amino acids promote endothelial dysfunction through increased reactive oxygen species generation and inflammation. J Cell Mol Med 2018; 22:4948-4962. [PMID: 30063118 PMCID: PMC6156282 DOI: 10.1111/jcmm.13759] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/08/2018] [Indexed: 12/12/2022] Open
Abstract
Branched‐chain amino acids (BCAA: leucine, isoleucine and valine) are essential amino acids implicated in glucose metabolism and maintenance of correct brain function. Elevated BCAA levels can promote an inflammatory response in peripheral blood mononuclear cells. However, there are no studies analysing the direct effects of BCAA on endothelial cells (ECs) and its possible modulation of vascular function. In vitro and ex vivo studies were performed in human ECs and aorta from male C57BL/6J mice, respectively. In ECs, BCAA (6 mmol/L) increased eNOS expression, reactive oxygen species production by mitochondria and NADPH oxidases, peroxynitrite formation and nitrotyrosine expression. Moreover, BCAA induced pro‐inflammatory responses through the transcription factor NF‐κB that resulted in the release of intracellular adhesion molecule‐1 and E‐selectin conferring endothelial activation and adhesion capacity to inflammatory cells. Pharmacological inhibition of mTORC1 intracellular signalling pathway decreased BCAA‐induced pro‐oxidant and pro‐inflammatory effects in ECs. In isolated murine aorta, BCAA elicited vasoconstrictor responses, particularly in pre‐contracted vessels and after NO synthase blockade, and triggered endothelial dysfunction, effects that were inhibited by different antioxidants, further demonstrating the potential of BCAA to induce oxidative stress with functional impact. In summary, we demonstrate that elevated BCAA levels generate inflammation and oxidative stress in ECs, thereby facilitating inflammatory cells adhesion and endothelial dysfunction. This might contribute to the increased cardiovascular risk observed in patients with elevated BCAA blood levels.
Collapse
Affiliation(s)
- Olha Zhenyukh
- Renal, Vascular and Diabetes Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria González-Amor
- Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid, IdiPaz, Spain.,Ciber de Enfermedades Cardiovasculares, Madrid, Spain
| | - Raul R Rodrigues-Diez
- Renal, Vascular and Diabetes Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Vanesa Esteban
- Laboratory of Immunoallergy, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Marta Ruiz-Ortega
- Renal, Vascular and Diabetes Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mercedes Salaices
- Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid, IdiPaz, Spain.,Ciber de Enfermedades Cardiovasculares, Madrid, Spain
| | - Sebastian Mas
- Renal, Vascular and Diabetes Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Ana M Briones
- Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid, IdiPaz, Spain.,Ciber de Enfermedades Cardiovasculares, Madrid, Spain
| | - Jesus Egido
- Renal, Vascular and Diabetes Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| |
Collapse
|
21
|
Shaban NZ, Ahmed Zahran AM, El-Rashidy FH, Abdo Kodous AS. Protective role of hesperidin against γ-radiation-induced oxidative stress and apoptosis in rat testis. ACTA ACUST UNITED AC 2017; 24:5. [PMID: 28265554 PMCID: PMC5333452 DOI: 10.1186/s40709-017-0059-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 01/04/2017] [Indexed: 01/21/2023]
Abstract
Background Gamma (γ) ray, an electromagnetic radiation, is occasionally accompanying the emission of an alpha or beta particle. Exposure to such radiation can cause cellular changes such as mutations, chromosome aberration and cellular damage which depend upon the total amount of energy, duration of exposure and the dose. Ionizing radiation can impair spermatogenesis and can cause mutations in germ cells. In general, type B spermatogonia are sensitive to this type of radiation. The current study was carried out to evaluate the protective role of hesperidin (H), as a polyphenolic compound, on rat testis injury induced by γ-radiation. Methods Rats were divided into groups including C group (control rats), R (irradiated) group (rats irradiated with γ-radiation), Vehicle (V) group (rats administered with dimethylsulfoxide “DMSO”), H group (rats administered with H only), HR and RH groups (rats treated with H before and after exposure to γ-radiation, respectively). Malondialdehyde (MDA: the end product of lipid peroxidation “LPO”) and xanthine oxidase (XO: it generates reactive oxygen species “ROS”) in testes homogenate as well as nitric oxide (NO: as ROS) in mitochondrial matrix were determined. The apoptotic markers including DNA-fragmentation (DNAF) in testes homogenate and calcium ions (Ca2+) in mitochondrial matrix were determined. Superoxide dismutase (SOD) and catalase (CAT) activities in testes homogenate, while reduced glutathione “GSH” in nuclear matrix were determined. Also histopathological examination for testes tissues through electron microscope was studied. Results Exposure of rats to γ-radiation (R group) increased the levels of MDA, NO, DNAF, Ca2+ and XO activity, while it decreased GSH level, SOD and CAT activities as compared to the C groups; γ-radiation increased oxidative stress (OS), LPO, apoptosis and induced testes injuries. These results are in agreement with the histopathological examination. In contrast, treatment with H before or after exposure to γ-radiation (HR and RH groups, respectively) decreased the levels of MDA, NO, DNAF and Ca2+ but increased GSH level and the activities of SOD, CAT and XO as compared to R group and this indicates that H decreased OS, LPO and apoptosis. Also, the histopathological results showed that H improved testis architecture and this is related to the antioxidant and anti-apoptotic activities of H contents. Protection is more effective when H is given before rather than after exposure. Finally, administration of H to healthy rats for a short period had no adverse affect on testes cells. Conclusion Hesperidin showed antioxidant and anti-apoptotic activities. It has a protective role against OS, injury and apoptosis induced by γ-radiation in testes. Protection is more effective when H is given before rather than after exposure.. ![]()
Collapse
Affiliation(s)
- Nadia Z Shaban
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed M Ahmed Zahran
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Fatma H El-Rashidy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmad S Abdo Kodous
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
22
|
Small Interfering RNA Targeting Mitochondrial Calcium Uniporter Improves Cardiomyocyte Cell Viability in Hypoxia/Reoxygenation Injury by Reducing Calcium Overload. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5750897. [PMID: 28337252 PMCID: PMC5350333 DOI: 10.1155/2017/5750897] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/24/2016] [Accepted: 01/05/2017] [Indexed: 12/16/2022]
Abstract
Intracellular Ca2+ mishandling is an underlying mechanism in hypoxia/reoxygenation (H/R) injury that results in mitochondrial dysfunction and cardiomyocytes death. These events are mediated by mitochondrial Ca2+ (mCa2+) overload that is facilitated by the mitochondrial calcium uniporter (MCU) channel. Along this line, we evaluated the effect of siRNA-targeting MCU in cardiomyocytes subjected to H/R injury. First, cardiomyocytes treated with siRNA demonstrated a reduction of MCU expression by 67%, which resulted in significant decrease in mitochondrial Ca2+ transport. siRNA treated cardiomyocytes showed decreased mitochondrial permeability pore opening and oxidative stress trigger by Ca2+ overload. Furthermore, after H/R injury MCU silencing decreased necrosis and apoptosis levels by 30% and 50%, respectively, and resulted in reduction in caspases 3/7, 9, and 8 activity. Our findings are consistent with previous conclusions that demonstrate that MCU activity is partly responsible for cellular injury induced by H/R and support the concept of utilizing siRNA-targeting MCU as a potential therapeutic strategy.
Collapse
|
23
|
Zhou JQ, Qiu T, Zhang L, Chen ZB, Wang ZS, Ma XX, Li D. Allopurinol preconditioning attenuates renal ischemia/reperfusion injury by inhibiting HMGB1 expression in a rat model. Acta Cir Bras 2016; 31:176-82. [PMID: 27050788 DOI: 10.1590/s0102-865020160030000005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/15/2016] [Indexed: 01/15/2023] Open
Abstract
PURPOSE To investigate the potential effects of pretreatment with allopurinol on renal ischemia/reperfusion injury (IRI) in a rat model. METHODS Twenty four rats were subjected to right kidney uninephrectomy were randomly distributed into the following three groups (n=8): Group A (sham-operated group); Group B (ischemic group) with 30 min of renal ischemia after surgery; and Group C (allopurinol + ischemia group) pretreated with allopurinol at 50 mg/kg for 14 days. At 72 h after renal reperfusion, the kidney was harvested to assess inflammation and apoptosis. RESULTS Pretreatment with allopurinol significantly improved renal functional and histological grade scores following I/R injury (p<0.05). Compared with Group B, the expression levels of caspase-3 and Bax were markedly reduced in Group C, meanwhile, whereas expression of bcl-2 was clearly increased (p<0.05). A newly described marker of inflammation, High Mobility Group Box 1(HMGB1), showed reduced expression in Group C (p<0.05). CONCLUSION Pretreatment with allopurinol had a protective effect on kidney ischemia/reperfusion injury, which might be related to the inhibition of HMGB1 expression.
Collapse
Affiliation(s)
- Jiang-qiao Zhou
- Department of Organ Transplantation, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Lu Zhang
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Zhong-bao Chen
- Department of Organ Transplantation, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Zhi-shun Wang
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Xiao-xiong Ma
- Department of Organ Transplantation, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Dongyu Li
- Intensive Care Unit, PuAi Hospital, Anlu, Hubei, China
| |
Collapse
|
24
|
Sulforaphane effects on postinfarction cardiac remodeling in rats: modulation of redox-sensitive prosurvival and proapoptotic proteins. J Nutr Biochem 2016; 34:106-17. [DOI: 10.1016/j.jnutbio.2016.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/26/2016] [Accepted: 05/11/2016] [Indexed: 12/24/2022]
|
25
|
Kang LL, Zhang DM, Ma CH, Zhang JH, Jia KK, Liu JH, Wang R, Kong LD. Cinnamaldehyde and allopurinol reduce fructose-induced cardiac inflammation and fibrosis by attenuating CD36-mediated TLR4/6-IRAK4/1 signaling to suppress NLRP3 inflammasome activation. Sci Rep 2016; 6:27460. [PMID: 27270216 PMCID: PMC4897702 DOI: 10.1038/srep27460] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 05/19/2016] [Indexed: 01/28/2023] Open
Abstract
Fructose consumption induces metabolic syndrome to increase cardiovascular disease risk. Cinnamaldehyde and allopurinol possess anti-oxidative and anti-inflammatory activity to relieve heart injury in metabolic syndrome. But the mechanisms of fructose-induced cardiac injury, and cardioprotective effects of cinnamaldehyde and allopurinol are not completely understood. In this study, fructose-fed rats displayed metabolic syndrome with elevated serum ox-LDL, cardiac oxidative stress, inflammation and fibrosis. Scavenger receptor CD36, Toll-like receptor 4 (TLR4), TLR6, IL-1R-associated kinase 4/1 (IRAK4/1), nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome, interleukin-1β, transforming growth factor-β (TGF-β), drosophila mothers against DPP homolog (Smad) 2/3 phosphorylation and Smad4 were increased in animal and H9c2 cell models. These pathological processes were further evaluated in ox-LDL or fructose-exposed H9c2 cells pretreated with ROS scavenger and CD36 specific inhibitor, or IRAK1/4 inhibitor, and transfected with CD36, NLRP3, or IRAK4/1 siRNA, demonstrating that NLPR3 inflammasome activation through CD36-mediated TLR4/6-IRAK4/1 signaling may promote cardiac inflammation and fibrosis. Cinnamaldehyde and allopurinol reduced cardiac oxidative stress to suppress NLPR3 inflammasome activation and TGF-β/Smads signaling by inhibiting CD36-mediated TLR4/6-IRAK4/1 signaling under fructose induction. These results suggest that the blockage of CD36-mediated TLR4/6-IRAK4/1 signaling to suppress NLRP3 inflammasome activation by cinnamaldehyde and allopurinol may protect against fructose-induced cardiac inflammation and fibrosis.
Collapse
Affiliation(s)
- Lin-Lin Kang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, People’s Republic of China
| | - Dong-Mei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, People’s Republic of China
| | - Chun-Hua Ma
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, People’s Republic of China
| | - Jian-Hua Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, People’s Republic of China
| | - Ke-Ke Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, People’s Republic of China
| | - Jia-Hui Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, People’s Republic of China
| | - Rong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, People’s Republic of China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
26
|
Pell VR, Chouchani ET, Frezza C, Murphy MP, Krieg T. Succinate metabolism: a new therapeutic target for myocardial reperfusion injury. Cardiovasc Res 2016; 111:134-41. [PMID: 27194563 DOI: 10.1093/cvr/cvw100] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/14/2016] [Indexed: 12/28/2022] Open
Abstract
Myocardial ischaemia/reperfusion (IR) injury is a major cause of death worldwide and remains a disease for which current clinical therapies are strikingly deficient. While the production of mitochondrial reactive oxygen species (ROS) is a critical driver of tissue damage upon reperfusion, the precise mechanisms underlying ROS production have remained elusive. More recently, it has been demonstrated that a specific metabolic mechanism occurs during ischaemia that underlies elevated ROS at reperfusion, suggesting a unifying model as to why so many different compounds have been found to be cardioprotective against IR injury. This review will discuss the role of the citric acid cycle intermediate succinate in IR pathology focusing on the mechanism by which this metabolite accumulates during ischaemia and how it can drive ROS production at Complex I via reverse electron transport. We will then examine the potential for manipulating succinate accumulation and metabolism during IR injury in order to protect the heart against IR damage and discuss targets for novel therapeutics designed to reduce reperfusion injury in patients.
Collapse
Affiliation(s)
- Victoria R Pell
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| |
Collapse
|
27
|
Abstract
Hypoxia induces several responses at cardiovascular, pulmonary and reproductive levels, which may lead to chronic diseases. This is relevant in human populations exposed to high altitude (HA), in either chronic continuous (permanent inhabitants) or intermittent fashion (HA workers, tourists and mountaineers). In Chile, it is estimated that 1.000.000 people live at highlands and more than 55.000 work in HA shifts. Initial responses to hypoxia are compensatory and induce activation of cardioprotective mechanisms, such as those seen under intermittent hypobaric (IH) hypoxia, events that could mediate preconditioning. However, whenever hypoxia is prolonged, the chronic activation of cellular responses induces long-lasting modifications that may result in acclimatization or produce maladaptive changes with increase in cardiovascular risk. HA exposure during pregnancy induces hypoxia and oxidative stress, which in turn may promote cellular responses and epigenetic modifications resulting in severe impairment in growth and development. Sadly, this condition is accompanied with an increased fetal and neonatal morbi-mortality. Further, developmental hypoxia may program cardio-pulmonary circulations later in postnatal life, ending in vascular structural and functional alterations with augmented risk on pulmonary and cardiovascular failure. Additionally, permanent HA inhabitants have augmented risk and prevalence of chronic hypoxic pulmonary hypertension, right ventricular hypertrophy and cardiopulmonary remodeling. Similar responses are seen in adults that are intermittently exposed to chronic hypoxia (CH) such as shift workers in HA areas. The mechanisms involved determining the immediate, short and long-lasting effects are still unclear. For several years, the study of the responses to hypoxic insults and pharmacological targets has been the motivation of our group. This review describes some of the mechanisms underlying hypoxic responses and potential therapeutic approaches with antioxidants such as melatonin, ascorbate, omega 3 (Ω3) or compounds that increase the nitric oxide (NO) bioavailability.
Collapse
|
28
|
Wang S, Li Y, Song X, Wang X, Zhao C, Chen A, Yang P. Febuxostat pretreatment attenuates myocardial ischemia/reperfusion injury via mitochondrial apoptosis. J Transl Med 2015; 13:209. [PMID: 26136232 PMCID: PMC4489215 DOI: 10.1186/s12967-015-0578-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/22/2015] [Indexed: 12/26/2022] Open
Abstract
Background Febuxostat is a selective inhibitor of xanthine oxidase (XO). XO is a critical source of reactive oxygen species (ROS) during myocardial ischemia/reperfusion (I/R) injury. Inhibition of XO is therapeutically effective in I/R injury. Evidence suggests that febuxostat exerts antioxidant effects by directly scavenging ROS. The present study was performed to investigate the effects of febuxostat on myocardial I/R injury and its underlying mechanisms. Methods We utilized an in vivo mouse model of myocardial I/R injury and an in vitro neonatal rat cardiomyocyte (NRC) model of hypoxia/reoxygenation (H/R) injury. Mice were randomized into five groups: Sham, I/R (I/R + Vehicle), I/R + FEB (I/R + febuxostat), AL + I/R (I/R + allopurinol) and FEB (febuxostat), respectively. The I/R + FEB mice were pretreated with febuxostat (5 mg/kg; i.p.) 24 and 1 h prior to I/R. NRCs received febuxostat (1 and 10 µM) at 24 and 1 h before exposure to hypoxia for 3 h followed by reoxygenation for 3 h. Cardiac function, myocardial infarct size, serum levels of creatine kinase (CK) and lactate dehydrogenase (LDH), and myocardial apoptotic index (AI) were measured in order to ascertain the effects of febuxostat on myocardial I/R injury. Hypoxia/reperfusion (H/R) injury in NRCs was examined using MTT, LDH leakage assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The underlying mechanisms were determined by measuring ROS production, mitochondrial membrane potential (ΔΨm), and expression of cytochrome c, cleaved caspases as well as Bcl-2 protein levels. Results Myocardial I/R led to an elevation in the myocardial infarct size, serum levels of CK and LDH, cell death and AI. Furthermore, I/R reduced cardiac function. These changes were significantly attenuated by pretreatment with febuxostat and allopurinol, especially by febuxostat. Febuxostat also protected the mitochondrial structure following myocardial I/R, inhibited H/R-induced ROS generation, stabilized the ΔΨm, alleviated cytosolic translocation of mitochondrial cytochrome C, inhibited activation of caspase-3 and -9, upregulated antiapoptotic proteins and downregulated proapoptotic proteins. Conclusions This study revealed that febuxostat pretreatment mediates the cardioprotective effects against I/R and H/R injury by inhibiting mitochondrial-dependent apoptosis.
Collapse
Affiliation(s)
- Shulin Wang
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253, Gongye Road, Guangzhou, 510280, China.
| | - Yunpeng Li
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253, Gongye Road, Guangzhou, 510280, China.
| | - Xudong Song
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253, Gongye Road, Guangzhou, 510280, China.
| | - Xianbao Wang
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253, Gongye Road, Guangzhou, 510280, China.
| | - Cong Zhao
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253, Gongye Road, Guangzhou, 510280, China.
| | - Aihua Chen
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253, Gongye Road, Guangzhou, 510280, China.
| | - Pingzhen Yang
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253, Gongye Road, Guangzhou, 510280, China.
| |
Collapse
|
29
|
Zhang YS, Liu B, Luo XJ, Zhang JJ, Li NS, Ma QL, Jiang JL, Li YJ, Li Q, Peng J. A novel function of nuclear nonmuscle myosin regulatory light chain in promotion of xanthine oxidase transcription after myocardial ischemia/reperfusion. Free Radic Biol Med 2015; 83:115-28. [PMID: 25701432 DOI: 10.1016/j.freeradbiomed.2015.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 12/12/2022]
Abstract
Nuclear myosin regulates gene transcription and this novel function might be modulated through phosphorylation of the myosin regulatory light chain (p-MLC20). Nonmuscle MLC20 (nmMLC20) is also present in the nuclei of cardiomyocytes and a potential nmMLC20 binding sequence has been identified in the promoter of the xanthine oxidase (XO) gene. Thus, we investigated its function in the regulation of XO transcription after myocardial ischemia/reperfusion (IR). In a rat model of myocardial IR and a cardiomyocyte model of hypoxia/reoxygenation (HR) injury, the cardiac or cell injury, myosin light chain kinase (MLCK) content, XO expression and activity, XO-derived products, and level of nuclear p-nmMLC20 were detected. Coimmunoprecipitation (co-IP), chromatin immunoprecipitation, DNA pull-down, and luciferase reporter gene assays were used to decipher the molecular mechanisms through which nmMLC20 promotes XO expression. IR or HR treatment dramatically elevated nuclear p-nmMLC20 level, accompanied by increased XO expression, activity, and products (H2O2 and uric acid), as well as the IR or HR injury; these effects were ameliorated by inhibition of MLCK or knockdown of nmMLC20. Our findings from these experiments demonstrated that nuclear p-nmMLC20 binds to the consensus sequence GTCGCC in the XO gene promoter, interacts with RNA polymerase II and transcription factor IIB to form a transcription preinitiation complex, and hence activates XO gene transcription. These results suggest that nuclear p-nmMLC20 plays an important role in IR/HR injury by transcriptionally upregulating XO gene expression to increase oxidative stress in myocardium. Our findings demonstrate nuclear nmMLC20 as a potential new therapeutic target to combat cardiac IR injury.
Collapse
Affiliation(s)
- Yi-Shuai Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Bin Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Xiu-Ju Luo
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Jie-Jie Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Nian-Sheng Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Qi-Lin Ma
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jun-Lin Jiang
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Yuan-Jian Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Qingjie Li
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555-1083, USA.
| | - Jun Peng
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| |
Collapse
|
30
|
Dong G, Ren M, Wang X, Jiang H, Yin X, Wang S, Wang X, Feng H. Allopurinol reduces severity of delayed neurologic sequelae in experimental carbon monoxide toxicity in rats. Neurotoxicology 2015; 48:171-9. [PMID: 25845300 DOI: 10.1016/j.neuro.2015.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/21/2015] [Accepted: 03/25/2015] [Indexed: 01/24/2023]
Abstract
Approximately half of those who survive severe carbon monoxide (CO) poisoning develop delayed neurologic sequelae. Growing evidence supports the crucial role of free radicals in delayed brain injury associated with CO toxicity. Xanthine oxidase (XO) has been reported to play a pivotal role in the generation of reactive oxygen species (ROS) in CO poisoning. A recent report indicates that allopurinol both attenuated oxidative stress and possessed anti-inflammatory properties in an animal model of acute liver failure. In this study, we aimed to explore the potential of allopurinol to reduce the severity of delayed neurologic sequelae. The rats were first exposed to 1000 ppm CO for 40 min and then to 3000 ppm CO for another 20 min. Following CO poisoning, the rats were injected with allopurinol (50 mg/kg, i.p.) six times. Results showed that allopurinol significantly reduced neuronal death and suppressed expression of pro-inflammatory factors, including tumor necrosis factor-α, intercellular adhesion molecule-1, ionized calcium-binding adapter molecule 1, and degraded myelin basic protein. Furthermore, behavioral studies revealed an improved performance in the Morris water maze test. Our findings indicated that allopurinol may have protective effects against delayed neurologic sequelae caused by CO toxicity.
Collapse
Affiliation(s)
- Guangtao Dong
- Department of Emergency Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China.
| | - Ming Ren
- Department of Neurology, The Affiliated Hospital of Weifang Medical University, Weifang, PR China
| | - Xiujie Wang
- Department of Emergency Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Hongquan Jiang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Xiang Yin
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Shuyu Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Xudong Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Honglin Feng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China.
| |
Collapse
|
31
|
Kim NH, Choi S, Han EJ, Hong BK, Choi SY, Kwon HM, Hwang SY, Cho CS, Kim WU. The xanthine oxidase-NFAT5 pathway regulates macrophage activation and TLR-induced inflammatory arthritis. Eur J Immunol 2014; 44:2721-36. [PMID: 25044064 DOI: 10.1002/eji.201343669] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/09/2014] [Accepted: 07/08/2014] [Indexed: 12/30/2022]
Abstract
NFAT5 (nuclear factor of activated T cells), a well-known osmoprotective factor, can be activated by isotonic stimuli such as Toll-like receptor (TLR) triggering. However, it is unclear how NFAT5 discriminates between isotonic and hypertonic stimuli to produce different functional and molecular outcomes. Here, we identified a novel XO-ROS-p38 MAPK-NFAT5 pathway (XO is xanthine oxidase, ROS is reactive oxygen species) that is activated in RAW 264.7 macrophages upon isotonic TLR stimulation. Unlike what is seen under hypertonic conditions, XO-derived ROS were selectively required for the TLR-induced NFAT5 activation and NFAT5 binding to the IL-6 promoter in RAW 264.7 macrophages under isotonic conditions. In mouse peritoneal macrophages and human macrophages, TLR ligation also induced NFAT5 activation, which was dependent on XO and p38 kinase. The involvement of XO in NFAT5 activation by TLR was confirmed in RAW 264.7 macrophages implanted in BALB/c mice. Moreover, allopurinol, an XO inhibitor, suppressed arthritis severity and decreased the expression of NFAT5 and IL-6 in splenic macrophages in C57BL/6 mice. Collectively, these data support a novel function of the XO-NFAT5 axis in macrophage activation and TLR-induced arthritis, and suggest that XO inhibitor(s) could serve as a therapeutic agent for chronic inflammatory arthritis.
Collapse
Affiliation(s)
- Nam-Hoon Kim
- POSTECH-CATHOLIC BioMedical Engineering Institute, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
ERK1/2-Egr-1 Signaling Pathway-Mediated Protective Effects of Electroacupuncture in a Mouse Model of Myocardial Ischemia-Reperfusion. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:253075. [PMID: 24883066 PMCID: PMC4026842 DOI: 10.1155/2014/253075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/10/2014] [Indexed: 11/21/2022]
Abstract
Early growth response- (Egr-) 1 is an upstream master switch in controlling inflammatory responses following myocardial ischemia-reperfusion (I/R). Activation of extracellular signal-regulated protein kinase-1 and kinase-2 (ERK1/2) signaling is known to upregulate Egr-1. ERK1/2 pathway has been previously shown to mediate the therapeutic action of electroacupucture (EA). Thus, we hypothesized that EA would reduce myocardial I/R injury and inflammatory responses through inhibiting Egr-1 expression via the ERK1/2 pathway. Mice were pretreated with EA, U0126, or combination of EA and U0126 and then underwent 1 h myocardial ischemia and 3 h reperfusion. We investigated that EA significantly attenuated the I/R-induced upregulation of both Egr-1 and phosporylated-ERK1/2 (p-ERK1/2), decreased myocardial inflammatory cytokines including tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and reduced the infarct size and the release of cardiac troponin I (cTnI). U0126 treatment also exhibited the same effect as EA on Egr-1 level and subsequent cardioprotective effects. There was no additive effect of cotreatment with EA and U0126 on the expression of Egr-1 and its downstream target genes (TNF-α, IL-1β) or serum cTnI level. Collectively, these observations suggested that EA attenuates myocardial I/R injury, possibly through inhibiting the ERK1/2-Egr-1 signaling pathway and reducing the release of proinflammatory cytokines.
Collapse
|
33
|
Han L, Li M. Protection of vascular endothelial cells injured by angiotensin II and hypoxia in vitro by Ginkgo biloba (Ginaton). Vasc Endovascular Surg 2013; 47:546-50. [PMID: 23883785 DOI: 10.1177/1538574413497106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The objective of this study was to explore the protective effect and the possible mechanism of Ginkgo biloba extract (Ginaton) on human vascular endothelial cells (VECs) injured by angiotensin II (Ang-II) and hypoxia. The human aortic VECs were divided into different groups to observe the changes in endothelin (ET), calcium concentration ([Ca(2+)]i), and mitochondrial membrane potential (MMP). The results showed that Ginaton had inhibited ET secretion induced by hypoxia and Ang-II (P < .01). the protection offered by Ginaton at mid (10 mg/mL) and low (5 mg/mL) concentrations was obviously better than that offered at high concentration (25 mg/mL). The [Ca(2+)]i increased and MMP decreased significantly in both hypoxia group and Ang-II group (P < .01); however, the changes in [Ca(2+)]i and MMP could be meliorated by Ginaton. This study suggested that Ginaton could effectively protect VECs against injury, and the dose used clinically would rather be low than too high for getting better results.
Collapse
Affiliation(s)
- Lei Han
- 1Aerospace and Diving Medical Center of Navy General Hospital, Beijing, China
| | | |
Collapse
|
34
|
Han L, Li M. Protective Effects of Ginaton on Vascular Endothelial Cells Injured by Angiotensin II and Hypoxia In Vitro. Vasc Endovascular Surg 2013; 47:368-73. [PMID: 23696390 DOI: 10.1177/1538574413486361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The objective of this study was to explore the protective effect and possible mechanism of Ginkgo biloba extract (Ginaton) on human vascular endothelial cells (VECs) injured by angiotensin II (Ang-II) and hypoxia. The human aortic VECs were divided into different groups to observe the changes in endothelin (ET), intracellular calcium concentration ([Ca2+]i), and mitochondrial membrane potential (MMP). The results showed that Ginaton had inhibited ET secretion induced by hypoxia and Ang-II ( P < .01); the protective effects of mid (10 mg/mL) and low concentrations (5 mg/mL) of Ginaton was obviously higher than that of the high concentration (25 mg/mL); [Ca2+]i increased and MMP decreased significantly in both the hypoxia and the Ang-II groups ( P < .01); however, the changes in [Ca2+]i and MMP could be meliorated by Ginaton. This study suggested that Ginaton could effectively protect VECs against injury, and lower dose would be used clinically rather than the higher dose for obtaining better results.
Collapse
Affiliation(s)
- Lei Han
- Aerospace and Diving Medical Center of Navy General Hospital, Beijing, China
| | - Minggao Li
- Aerospace and Diving Medical Center of Navy General Hospital, Beijing, China
| |
Collapse
|
35
|
Zhang Y, Chen G, Zhong S, Zheng F, Gao F, Chen Y, Huang Z, Cai W, Li W, Liu X, Zheng Y, Xu H, Shi G. N-n-butyl haloperidol iodide ameliorates cardiomyocytes hypoxia/reoxygenation injury by extracellular calcium-dependent and -independent mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:912310. [PMID: 24392181 PMCID: PMC3857550 DOI: 10.1155/2013/912310] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 09/28/2013] [Accepted: 09/28/2013] [Indexed: 02/05/2023]
Abstract
N-n-butyl haloperidol iodide (F2) has been shown to antagonize myocardial ischemia/reperfusion injury by blocking calcium channels. This study explores the biological functions of ERK pathway in cardiomyocytes hypoxia/reoxygenation injury and clarifies the mechanisms by which F2 ameliorates cardiomyocytes hypoxia/reoxygenation injury through the extracellular-calcium-dependent and -independent ERK1/2-related pathways. In extracellularcalcium-containing hypoxia/reoxygenation cardiomyocytes, PKCα and ERK1/2 were activated, Egr-1 protein level and cTnI leakage increased, and cell viability decreased. The ERK1/2 inhibitors suppressed extracellular-calcium-containing-hypoxia/reoxygenation-induced Egr-1 overexpression and cardiomyocytes injury. PKCα inhibitor downregulated extracellularcalcium-containing-hypoxia/reoxygenation-induced increase in p-ERK1/2 and Egr-1 expression. F2 downregulated hypoxia/reoxygenation-induced elevation of p-PKCα, p-ERK1/2, and Egr-1 expression and inhibited cardiomyocytes damage. The ERK1/2 and PKCα activators antagonized F2's effects. In extracellular-calcium-free-hypoxia/reoxygenation cardiomyocytes, ERK1/2 was activated, LDH and cTnI leakage increased, and cell viability decreased. F2 and ERK1/2 inhibitors antagonized extracellular-calcium-free-hypoxia/reoxygenation-induced ERK1/2 activation and suppressed cardiomyocytes damage. The ERK1/2 activator antagonized F2's above effects. F2 had no effect on cardiomyocyte cAMP content or PKA and Egr-1 expression. Altogether, ERK activation in extracellular-calcium-containing and extracellular-calcium-free hypoxia/reoxygenation leads to cardiomyocytes damage. F2 may ameliorate cardiomyocytes hypoxia/reoxygenation injury by regulating the extracellular-calcium-dependent PKCα/ERK1/2/Egr-1 pathway and through the extracellular-calcium-independent ERK1/2 activation independently of the cAMP/PKA pathway or Egr-1 overexpression.
Collapse
Affiliation(s)
- Yanmei Zhang
- Department of Pharmacology, Shantou University Medical College, 22 Xin Ling Road, Shantou, 515041 Guangdong, China
| | - Gaoyong Chen
- Department of Pharmacology, Shantou University Medical College, 22 Xin Ling Road, Shantou, 515041 Guangdong, China
| | - Shuping Zhong
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Fuchun Zheng
- Department of Pharmacy, The First Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, 22 Xin Ling Road, Shantou, 515041 Guangdong, China
| | - Yicun Chen
- Department of Pharmacology, Shantou University Medical College, 22 Xin Ling Road, Shantou, 515041 Guangdong, China
| | - Zhanqin Huang
- Department of Pharmacology, Shantou University Medical College, 22 Xin Ling Road, Shantou, 515041 Guangdong, China
| | - Wenfeng Cai
- Department of Pharmacology, Shantou University Medical College, 22 Xin Ling Road, Shantou, 515041 Guangdong, China
| | - Weiqiu Li
- Analytical Cytology Laboratory, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xingping Liu
- Department of Pharmacology, Shantou University Medical College, 22 Xin Ling Road, Shantou, 515041 Guangdong, China
| | - Yanshan Zheng
- Department of Pharmacology, Shantou University Medical College, 22 Xin Ling Road, Shantou, 515041 Guangdong, China
| | - Han Xu
- Department of Pharmacology, Shantou University Medical College, 22 Xin Ling Road, Shantou, 515041 Guangdong, China
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, 22 Xin Ling Road, Shantou, 515041 Guangdong, China
- Department of Cardiovascular Diseases, The First Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
- *Ganggang Shi:
| |
Collapse
|
36
|
Pérez-Mazliah D, Albareda MC, Alvarez MG, Lococo B, Bertocchi GL, Petti M, Viotti RJ, Laucella SA. Allopurinol reduces antigen-specific and polyclonal activation of human T cells. Front Immunol 2012; 3:295. [PMID: 23049532 PMCID: PMC3448060 DOI: 10.3389/fimmu.2012.00295] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/04/2012] [Indexed: 11/13/2022] Open
Abstract
Allopurinol is the most popular commercially available xanthine oxidase inhibitor and it is widely used for treatment of symptomatic hyperuricaemia, or gout. Although, several anti-inflammatory actions of allopurinol have been demonstrated in vivo and in vitro, there have been few studies on the action of allopurinol on T cells. In the current study, we have assessed the effect of allopurinol on antigen-specific and mitogen-driven activation and cytokine production in human T cells. Allopurinol markedly decreased the frequency of IFN-γ and IL-2-producing T cells, either after polyclonal or antigen-specific stimulation with Herpes Simplex virus 1, Influenza (Flu) virus, tetanus toxoid and Trypanosoma cruzi-derived antigens. Allopurinol attenuated CD69 upregulation after CD3 and CD28 engagement and significantly reduced the levels of spontaneous and mitogen-induced intracellular reactive oxygen species in T cells. The diminished T cell activation and cytokine production in the presence of allopurinol support a direct action of allopurinol on human T cells, offering a potential pharmacological tool for the management of cell-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Damián Pérez-Mazliah
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben" Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang YM, Wang CY, Zheng FC, Gao FF, Chen YC, Huang ZQ, Xia ZY, Irwin MG, Li WQ, Liu XP, Zheng YS, Xu H, Shi GG. Effects of N-n-butyl haloperidol iodide on the rat myocardial sarcoplasmic reticulum Ca(2+)-ATPase during ischemia/reperfusion. Biochem Biophys Res Commun 2012; 425:426-30. [PMID: 22846577 DOI: 10.1016/j.bbrc.2012.07.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 07/20/2012] [Indexed: 02/05/2023]
Abstract
We have previously shown that N-n-butyl haloperidol iodide (F(2)), a newly synthesized compound, reduces ischemia/reperfusion (I/R) injury by preventing intracellular Ca(2+) overload through inhibiting L-type calcium channels and outward current of Na(+)/Ca(2+) exchanger. This study was to investigate the effects of F(2) on activity and protein expression of the rat myocardial sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) during I/R to discover other molecular mechanisms by which F(2) maintains intracellular Ca(2+) homeostasis. In an in vivo rat model of myocardial I/R achieved by occluding coronary artery for 30-60 min followed by 0-120 min reperfusion, treatment with F(2) (0.25, 0.5, 1, 2 and 4 mg/kg, respectively) dose-dependently inhibited the I/R-induced decrease in SERCA activity. However, neither different durations of I/R nor different doses of F(2) altered the expression levels of myocardial SERCA2a protein. These results indicate that F(2) exerts cardioprotective effects against I/R injury by inhibiting I/R-mediated decrease in SERCA activity by a mechanism independent of SERCA2a protein levels modulation.
Collapse
Affiliation(s)
- Yan-Mei Zhang
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Maejima Y, Kuroda J, Matsushima S, Ago T, Sadoshima J. Regulation of myocardial growth and death by NADPH oxidase. J Mol Cell Cardiol 2011; 50:408-16. [PMID: 21215757 DOI: 10.1016/j.yjmcc.2010.12.018] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 12/28/2010] [Accepted: 12/28/2010] [Indexed: 11/26/2022]
Abstract
The NADPH oxidases (Nox) are transmembrane proteins dedicated to producing reactive oxygen species (ROS), including superoxide and hydrogen peroxide, by transferring electrons from NAD(P)H to molecular oxygen. Nox2 and Nox4 are expressed in the heart and play an important role in mediating oxidative stress at baseline and under stress. Nox2 is primarily localized on the plasma membrane, whereas Nox4 is found primarily on intracellular membranes, on mitochondria, the endoplasmic reticulum or the nucleus. Although Nox2 plays an important role in mediating angiotensin II-induced cardiac hypertrophy, Nox4 mediates cardiac hypertrophy and heart failure in response to pressure overload. Expression of Nox4 is upregulated by hypertrophic stimuli, and Nox4 in mitochondria plays an essential role in mediating oxidative stress during pressure overload-induced cardiac hypertrophy. Upregulation of Nox4 induces oxidation of mitochondrial proteins, including aconitase, thereby causing mitochondrial dysfunction and myocardial cell death. On the other hand, Noxs also appear to mediate physiological functions, such as erythropoiesis and angiogenesis. In this review, we discuss the role of Noxs in mediating oxidative stress and both pathological and physiological functions of Noxs in the heart.
Collapse
Affiliation(s)
- Yasuhiro Maejima
- Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|
39
|
Rodrigo R, Miranda A, Vergara L. Modulation of endogenous antioxidant system by wine polyphenols in human disease. Clin Chim Acta 2010; 412:410-24. [PMID: 21130758 DOI: 10.1016/j.cca.2010.11.034] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 11/24/2010] [Accepted: 11/25/2010] [Indexed: 02/07/2023]
Abstract
Numerous studies indicate that moderate red wine consumption is associated with a protective effect against all-cause mortality. Since oxidative stress constitutes a unifying mechanism of injury of many types of disease processes, it should be expected that polyphenolic antioxidants account for this beneficial effect. Nevertheless, beyond the well-known antioxidant properties of these compounds, they may exert several other protective mechanisms. Indeed, the overall protective effect of polyphenols is due to their large array of biological actions, such as free radical-scavenging, metal chelation, enzyme modulation, cell signalling pathways modulation and gene expression effects, among others. Wine possesses a variety of polyphenols, being resveratrol its most outstanding representative, due to its pleiotropic biological properties. The presence of ethanol in wine aids to polyphenol absorption, thereby contributing to their bioavailability. Before absorption, polyphenols must be hydrolyzed by intestinal enzymes or by colonic microflora. Then, they undergo intestinal and liver metabolism. There have been no reported polyphenol adverse effects derived from intakes currently associated with the normal diet. However, supplements for health-protection should be cautiously used as no level definition has been given to make sure the dose is safe. The role of oxidative stress and the beneficial effects of wine polyphenols against cardiovascular, cancer, diabetes, microbial, inflammatory, neurodegenerative and kidney diseases and ageing are reviewed. Future large scale randomized clinical trials should be conducted to fully establish the therapeutic use of each individual wine polyphenol against human disease.
Collapse
Affiliation(s)
- Ramón Rodrigo
- Institute of Biomedical Sciences, University of Chile, Santiago, Chile.
| | | | | |
Collapse
|
40
|
Wechter J, Phillips LJ, Toledo AH, Anaya-Prado R, Toledo-Pereyra LH. Allopurinol protection in patients undergoing coronary artery bypass graft surgery. J INVEST SURG 2010; 23:285-293. [PMID: 20874485 DOI: 10.3109/08941939.2010.513758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Through the evaluation of randomized clinical trials using a statistical methodology consisting of comparative assessment, we sought to determine the conditions under which allopurinol was a protective agent for patients undergoing coronary artery bypass grafting (CABG). METHODS The medical literature was searched for all human clinical trials from 1966 to 2008 examining the use of allopurinol in CABG. The final articles were divided into two groups based on the effectiveness of allopurinol, as determined by the requirement of postoperative inotropic/mechanical LV support. In four of the studies patients had high risk factors for CABG and this group was considered the high-risk (HR) group. The other four studies found that allopurinol-treated patients did as well as their own controls. This group had few risk factors and was considered the low-risk (LR) group. RESULTS This study demonstrated that HR patients who received allopurinol during CABG had significantly better results than the HR patients without allopurinol treatment. Patients receiving allopurinol in the group with LR factors had no significant differences compared with the LR controls. HR allopurinol patients did significantly better (p <. 05) than LR allopurinol patients undergoing CABG. CONCLUSIONS It was observed that patients with HR factors benefited more from allopurinol than patients with LR factors. Our findings lead us to believe that it is possible that allopurinol is efficacious in patients with a potentially higher oxidant buildup as a result of increased cardiovascular risk. This hypothesis needs to be confirmed.
Collapse
Affiliation(s)
- John Wechter
- Orthopaedic Resident, University of Minnesota, USA
| | | | | | | | | |
Collapse
|
41
|
NADPH oxidase inhibition ameliorates cardiac dysfunction in rabbits with heart failure. Mol Cell Biochem 2010; 343:143-53. [PMID: 20567884 DOI: 10.1007/s11010-010-0508-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 06/02/2010] [Indexed: 02/07/2023]
Abstract
Increased NADPH oxidase activity is found in both experimental and clinical HF. Here, we investigated the effects and mechanisms of NADPH oxidase inhibition on cardiac function in rabbits with HF. HF was induced by combined volume and pressure overload. Rabbits with HF or sham operation were randomized to orally receive apocynin, an inhibitor of NADPH oxidase (15 mg per day) or placebo for 8 weeks. Echocardiography was performed to examine the cardiac function and structure of the rabbits. Cardiac fibrosis was evaluated by masson's trichrome staining. The transforming growth factor-beta (TGF-β), connective tissue growth factor (CTGF), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-9 (MMP-9) expression were measured by real-time PCR. The expression of SERCA2a and phospholamban (PLB) was detected by reverse transcription-polymerase chain reaction and Western Blot. SERCA2a activity was evaluated by measuring the Pi liberated from ATP hydrolysis. Rabbits with HF exhibited cardiac dysfunction and fibrosis. These changes were associated with significant increases in myocardial NADPH oxidase activity and oxidative stress. Compared with sham-operated rabbits, the TGF-β, CTGF, MMP-2, and MMP-9 mRNA expression significantly increased, the expression of SERCA2a and PLB dramatically decreased, and the SERCA2a activity was lower in HF rabbits. Apocynin reduced NADPH oxidase activity and oxidative stress, decreased TGF-β, CTGF, MMP-2, and MMP-9 expression, attenuated cardiac fibrosis, increased SERCA2a and PLB expression, restored SERCA2a activity, and thereby ameliorated cardiac dysfunction. Thus, chronic NADPH oxidase inhibition ameliorated cardiac dysfunction by decreasing cardiac fibrosis and preserving SERCA2a expression and activity.
Collapse
|
42
|
Kim HS, Cho JE, Hwang KC, Shim YH, Lee JH, Kwak YL. Diabetes mellitus mitigates cardioprotective effects of remifentanil preconditioning in ischemia-reperfused rat heart in association with anti-apoptotic pathways of survival. Eur J Pharmacol 2009; 628:132-9. [PMID: 19944681 DOI: 10.1016/j.ejphar.2009.11.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 11/02/2009] [Accepted: 11/16/2009] [Indexed: 02/05/2023]
Abstract
Diabetes mellitus has been known to mitigate ischemic or pharmacologic preconditioning in ischemia-reperfusion injuries. Remifentanil is a widely used opioid in cardiac anesthesia that possesses a cardioprotective effect against ischemia-reperfusion. We evaluated whether diabetes affected remifentanil preconditioning induced cardioprotection in ischemia-reperfusion rat hearts in view of anti-apoptotic pathways of survival and Ca(2+) homeostasis. Streptozotocin-induced, diabetic rats and age-matched wild-type Sprague-Dawley rats were subjected to a left anterior descending coronary artery occlusion for 30min followed by 1h of reperfusion. Each diabetic and wild-type rat was randomly assigned to the sham, ischemia-reperfusion only, or remifentanil preconditioning group. Myocardial infarct size, activities of ERK1/2, Bcl2, Bax and cytochrome c, and gene expression influencing Ca(2+) homeostasis were assessed. Remifentanil preconditioning significantly reduced myocardial infarct size compared to ischemia-reperfusion only in wild-type rats but not in diabetic rats. Remifentanil preconditioning increased expression of ERK1/2 and anti-apoptotic protein Bcl-2 and decreased expression of pro-apoptotic proteins, Bax and cytochrome c, compared to ischemia-reperfusion only in wild-type rats. In diabetic rat hearts, however, remifentanil preconditioning failed to recover the phosphorylation state of ERK1/2 and to repress apoptotic signaling. In addition, diabetes minimized remifentanil induced modulation of abnormal changes in sarcoplasmic reticulum genes and proteins in ischemia-reperfusion rat hearts. In conclusion, diabetes mitigated remifentanil induced cardioprotection against ischemia-reperfusion, which might be associated with reduced recovery of the activities of proteins involved in anti-apoptotic pathways including ERK1/2 and the abnormal expression of sarcoplasmic reticulum genes as a result of ischemia-reperfusion in rat hearts.
Collapse
Affiliation(s)
- Hyun Soo Kim
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Tziomalos K, Hare JM. Role of xanthine oxidoreductase in cardiac nitroso-redox imbalance. FRONT BIOSCI-LANDMRK 2009; 14:237-262. [PMID: 19273066 PMCID: PMC4745900 DOI: 10.2741/3243] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Emerging evidence supports the importance of nitroso-redox balance in the cardiovascular system. Xanthine oxidoreductase (XOR) is a major oxidative enzyme and increased XOR activity, leading to both increased production of reactive oxygen species and uric acid, is implicated in heart failure. Within the heart, XOR activity stimulates cardiomyocyte hypertrophy, apoptosis, and impairs matrix structure. The underpinnings of these derangements can be linked not solely to oxidative stress, but may also involve the process of nitroso-redox imbalance. In this regard, XOR interacts with nitric oxide signaling at numerous levels, including a direct protein-protein interaction with neuronal nitric oxide synthase (NOS1) in the sarcoplasmic reticulum. Deficiency or translocation of NOS1 away from this microdomain leads to increased activity of XOR, which in turn impairs excitation-contraction coupling and myofilament calcium sensitivity. There is a mounting abundance of preclinical data supporting beneficial effects of inhibiting XOR, but translation to the clinic continues to be incomplete. A growing understanding of XOR and its role in nitroso-redox imbalance has great potential to lead to improved pathophysiologic insights and possibly therapeutic advances.
Collapse
Affiliation(s)
- Konstantinos Tziomalos
- Interdisciplinary Stem Cell Institute and Division of Cardiology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | | |
Collapse
|
45
|
Hool LC. The L-type Ca(2+) channel as a potential mediator of pathology during alterations in cellular redox state. Heart Lung Circ 2008; 18:3-10. [PMID: 19119068 DOI: 10.1016/j.hlc.2008.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The L-type Ca(2+) channel is the main route for calcium influx into cardiac myocytes and an important determinant of calcium homeostasis. There is now considerable evidence that the function of the L-type Ca(2+) channel is influenced by the cell's redox state. Reactive oxygen species such as hydrogen peroxide and superoxide can regulate biological function by directly altering the thiol redox state of proteins. Under conditions where cellular redox state varies, L-type Ca(2+) channel function and diastolic calcium levels can be significantly altered. This article will present the evidence for alterations in L-type Ca(2+) channel function by reactive oxygen species and the potential role for the channel in development of acute electrophysiological instability or chronic pathological remodelling under conditions of persistent oxidative stress.
Collapse
Affiliation(s)
- Livia C Hool
- School of Biomedical, Biomolecular and Chemical Sciences and The Western Australian Institute for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia.
| |
Collapse
|
46
|
Xu XL, Ji H, Gu SY, Shao Q, Huang QJ, Cheng YP. Cardioprotective effects of Astragali Radix against isoproterenol-induced myocardial injury in rats and its possible mechanism. Phytother Res 2008; 22:389-94. [PMID: 18058992 DOI: 10.1002/ptr.2332] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The purpose of the present study was to investigate the effects of the Chinese medical herb Astragali Radix on myocardial injury in vivo and its possible mechanisms. Myocardial injury in rats was induced by the subcutaneous injection of a high dose of isoproterenol for 10 days, and the therapeutic effects of Astragali Radix were observed. Cardiac hemodynamics, heart coefficient and marker enzymes in serum showed that Astragali Radix prevented isoproterenol-induced myocardial damage. Astragali Radix also improved the antioxidant status by decreasing the lipid peroxidative product malondialdehyde and increasing the activity of the antioxidant enzyme superoxide dismutase. The observed depressions in sarcoplasmic reticulum Ca2+-ATPase mRNA and protein expression as well as Ser(16)-phosphorylated phospholamban protein expression in isoproterenol-treated rats were attenuated by Astragali Radix treatment. Moreover, treatment with Astragali Radix showed higher myocardial cAMP content compared with the isoproterenol-alone group. These results suggest that the antioxidant property and partial prevention of changes in protein and gene expression of cardiac sarcoplasmic reticulum Ca2+ regulatory proteins which may be mediated through the cAMP pathway could help to explain the beneficial effects of Astragali Radix on myocardial injury in vivo.
Collapse
Affiliation(s)
- Xiao-Le Xu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, P. R. China
| | | | | | | | | | | |
Collapse
|
47
|
Protective effects of glycyrrhizin in a gut hypoxia (ischemia)-reoxygenation (reperfusion) model. Intensive Care Med 2008; 35:687-97. [PMID: 18953525 DOI: 10.1007/s00134-008-1334-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 10/04/2008] [Indexed: 11/27/2022]
|
48
|
Powers SK, Quindry JC, Kavazis AN. Exercise-induced cardioprotection against myocardial ischemia-reperfusion injury. Free Radic Biol Med 2008; 44:193-201. [PMID: 18191755 DOI: 10.1016/j.freeradbiomed.2007.02.006] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 02/02/2007] [Accepted: 02/07/2007] [Indexed: 12/27/2022]
Abstract
Myocardial ischemia-reperfusion (IR) injury is a major contributor to the morbidity and mortality associated with coronary artery disease. Muscular exercise is a countermeasure to protect against IR-induced cardiac injury in both young and old animals. Specifically, regular bouts of endurance exercise protect the heart against all levels of IR-induced injury. Proposed mechanisms to explain the cardioprotective effects of exercise include alterations in coronary circulation, expression of endoplasmic reticulum stress proteins, increased cyclooxygenase-2 activity, induction of myocardial heat shock proteins, improved cardiac antioxidant capacity, and/or elevation of ATP-sensitive potassium channels on both the sarcolemmal and the mitochondrial inner membranes. Moreover, it seems possible that other, yet to be defined, mechanisms of exercise-induced cardioprotection may also exist. Of the known putative cardioprotective mechanisms, current evidence suggests that elevated myocardial levels of antioxidants and increased expression of sarcolemmal ATP-sensitive potassium channels are both contributors to exercise-induced cardioprotection against IR injury. At present, it is unclear if these two protective mediators act independently or interact to contribute to exercise-induced cardioprotection. Understanding the molecular basis for exercise-induced cardioprotection will provide the required knowledge base to develop therapeutic approaches to protect the heart during an IR insult.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA.
| | | | | |
Collapse
|
49
|
Xu XL, Chen XJ, Ji H, Li P, Bian YY, Yang D, Xu JD, Bian ZP, Zhang JN. Astragaloside IV Improved Intracellular Calcium Handling in Hypoxia-Reoxygenated Cardiomyocytes via the Sarcoplasmic Reticulum Ca 2+-ATPase. Pharmacology 2008; 81:325-32. [DOI: 10.1159/000121335] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 10/16/2007] [Indexed: 12/11/2022]
|
50
|
Assimakopoulos SF, Maroulis I, Patsoukis N, Vagenas K, Scopa CD, Georgiou CD, Vagianos CE. Effect of antioxidant treatments on the gut-liver axis oxidative status and function in bile duct-ligated rats. World J Surg 2007; 31:2023-32. [PMID: 17665241 DOI: 10.1007/s00268-007-9191-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Experimental and clinical studies have demonstrated the pivotal role of oxidative stress in the promotion of hepatic and intestinal injury in obstructive jaundice. The present study was undertaken to investigate the effect of well known antioxidant treatments on the gut-liver axis oxidative status and function in bile duct-ligated rats. METHODS A total of 60 male Wistar rats were randomly divided into six groups of 10 animals each: controls, sham operated, bile duct ligated (BDL), and BDL treated with either N-acetylcysteine (NAC), allopurinol, or alpha-tocopherol (alpha-TC). Ten days after treatment, the hepatic and intestinal oxidative status was estimated by measuring lipid peroxidation and a battery of biochemical markers comprising the organ's thiol redox state (i.e., glutathione, cysteine, protein thiols, oxidized glutathione, nonprotein mixed disulfides, oxidized cysteine derivatives, protein symmetrical disulfides, and protein mixed disulfides). Portal and aortic endotoxin concentrations and alanine aminotransferase (ALT) levels were also determined. RESULTS All antioxidant treatments significantly improved intestinal barrier function and protected from cholestatic liver injury, as evidenced by reduction of the portal and aortic endotoxin concentration and ALT levels, respectively. This effect accompanied their significant antioxidant action in both organs, mediated by a certain influence profile on the thiol redox state by each treatment. CONCLUSION NAC, allopurinol, and alpha-TC, exerting a potent combined antioxidant effect on the intestine and liver in experimental obstructive jaundice, significantly prevented intestinal barrier dysfunction and liver injury. The variety of results depending on the antioxidant agent that was administered and the marker of oxidative stress that was estimated, indicates that a battery of biomarkers would be more appropriate in assessing pharmacologic responses to therapeutic interventions.
Collapse
|