1
|
Yamamura K, Ohno F, Yotsumoto S, Sato Y, Kimura N, Nishio K, Inoue K, Ichiki T, Kuba-Fuyuno Y, Fujishima K, Ito T, Kido-Nakahara M, Tsuji G, Nakahara T. Extracellular ATP Contributes to Barrier Function and Inflammation in Atopic Dermatitis: Potential for Topical Treatment of Atopic Dermatitis by Targeting Extracellular ATP. Int J Mol Sci 2024; 25:12294. [PMID: 39596359 PMCID: PMC11595171 DOI: 10.3390/ijms252212294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Atopic dermatitis (AD) is characterized by chronic inflammation, barrier dysfunction, and pruritus, exacerbated by external stimuli, such as scratching. This study investigates the role of extracellular adenosine triphosphate (ATP) in the pathophysiology of AD and assesses the therapeutic potential of clodronate, an ATP release inhibitor. Our research demonstrates that extracellular ATP impairs skin barrier function by reducing the filaggrin expression in the keratinocytes, a critical protein for barrier integrity. Furthermore, ATP release, triggered by IL-4 and mechanical stimuli, amplifies inflammation by promoting cytokine and chemokine production by the immune cells. Clodronate, by inhibiting ATP release, restores the filaggrin levels in the keratinocytes, reduces TARC production in the dendritic cells, and alleviates AD symptoms in a mouse model. These findings suggest that targeting extracellular ATP could offer a novel therapeutic approach to improving skin barrier function and reducing inflammation in AD. Future studies should explore the long-term efficacy and safety of ATP-targeted therapies in clinical settings.
Collapse
Affiliation(s)
- Kazuhiko Yamamura
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.Y.)
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Fumitaka Ohno
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.Y.)
| | - Shu Yotsumoto
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.Y.)
| | - Yuki Sato
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.Y.)
| | - Nanae Kimura
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.Y.)
| | - Kiichiro Nishio
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.Y.)
| | - Keiichi Inoue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.Y.)
| | - Toshio Ichiki
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.Y.)
| | - Yoko Kuba-Fuyuno
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.Y.)
| | - Kei Fujishima
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.Y.)
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.Y.)
| | - Makiko Kido-Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.Y.)
| | - Gaku Tsuji
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.Y.)
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Takeshi Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.Y.)
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan
| |
Collapse
|
2
|
Gao X, Di X, Li J, Kang Y, Xie W, Sun L, Zhang J. Extracellular ATP-induced calcium oscillations regulating the differentiation of osteoblasts through aerobic oxidation metabolism pathways. J Bone Miner Metab 2023; 41:606-620. [PMID: 37418073 DOI: 10.1007/s00774-023-01449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023]
Abstract
INTRODUCTION The increase of ATP concentration in the extracellular space represents one of the effective signals that stimulate the physiological activities of cells when the bone is exposed to external mechanical stimulation such as stretching and shear stress force throughout life. However, the effects of ATP on osteoblast differentiation and related mechanisms are not well understood. MATERIALS AND METHODS In this study, the roles of extracellular ATP on osteoblast differentiation, intracellular calcium ([Ca2+]i) levels, metabolomics, and the expression of proteins related to energy metabolism were investigated. RESULTS Our results showed that 100 μM extracellular ATP initiated intracellular calcium ([Ca2+]i) oscillations via the calcium-sensing receptor (P2R) and promoted the differentiation of MC3T3-E1 cells. Metabolomics analysis showed that the differentiation of MC3T3-E1 cells depended on aerobic oxidation, but little glycolysis. Moreover, the differentiation of MC3T3-E1 cells and aerobic oxidation were suppressed with the inhibition of AMP-activated protein kinase (AMPK). CONCLUSION These results indicate that calcium oscillations triggered by extracellular ATP can activate aerobic oxidation through AMPK-related signaling pathways and thus promote osteoblast differentiation.
Collapse
Affiliation(s)
- Xiaohang Gao
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 711049, China
| | - Xiaohui Di
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 711049, China
| | - Jingjing Li
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 711049, China
| | - Yiting Kang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 711049, China
| | - Wenjun Xie
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 711049, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China.
| | - Jianbao Zhang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 711049, China.
| |
Collapse
|
3
|
McEwan TBD, Sophocleous RA, Cuthbertson P, Mansfield KJ, Sanderson-Smith ML, Sluyter R. Autocrine regulation of wound healing by ATP release and P2Y 2 receptor activation. Life Sci 2021; 283:119850. [PMID: 34314735 DOI: 10.1016/j.lfs.2021.119850] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 12/19/2022]
Abstract
AIMS Application of exogenous nucleotides can modulate wound healing via the activation of purinergic receptors. However, evidence for the release of endogenous nucleotides and the subsequent activation of purinergic receptors in this process has not been well defined. Therefore, the current study aimed to investigate wound-mediated nucleotide release and autocrine purinergic signalling during HaCaT keratinocyte wound closure following scratch injury. MAIN METHODS An in vitro scratch wound apparatus was employed to study wound healing over 24-h in the presence of modulators of ATP release, P2 receptors and pathways downstream of P2 receptor activation. KEY FINDINGS Adenosine 5'-triphosphate (ATP) was released from scratched cells. The ectonucleotidase apyrase and pharmacological inhibition of the nucleotide release hemichannel, pannexin-1, decreased wound closure over time. The non-selective P2Y receptor antagonist suramin and the selective P2Y2 receptor antagonist AR-C118925XX, but not other P2 antagonists, decreased wound closure. AR-C118925XX decreased wound closure in a concentration-dependent fashion. However, exogenous P2Y2 receptor agonists, ATP or uridine 5'-triphosphate, did not enhance wound closure. PCR and immunoblotting confirmed P2Y2 receptor expression in HaCaT cells. U73122, a phospholipase C antagonist, and 2-aminoethoxydiphenylborate, an inositol 1,4,5-trisphosphate receptor-sensitive Ca2+-release channel antagonist, decreased wound closure consistent with P2Y2 receptor activation. Absence of extracellular or intracellular Ca2+ or inhibition of intracellular Ca2+-release also impaired wound closure. SIGNIFICANCE These data describe a novel autocrine signalling mechanism in which wound-mediated release of endogenous ATP in response to mechanical scratching of HaCaT cells activates P2Y2 receptors to facilitate wound closure.
Collapse
Affiliation(s)
- T B-D McEwan
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - R A Sophocleous
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - P Cuthbertson
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - K J Mansfield
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| | - M L Sanderson-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - R Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
4
|
Borges PA, Waclawiak I, Georgii JL, Fraga-Junior VDS, Barros JF, Lemos FS, Russo-Abrahão T, Saraiva EM, Takiya CM, Coutinho-Silva R, Penido C, Mermelstein C, Meyer-Fernandes JR, Canto FB, Neves JS, Melo PA, Canetti C, Benjamim CF. Adenosine Diphosphate Improves Wound Healing in Diabetic Mice Through P2Y 12 Receptor Activation. Front Immunol 2021; 12:651740. [PMID: 33828561 PMCID: PMC8019717 DOI: 10.3389/fimmu.2021.651740] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/01/2021] [Indexed: 01/13/2023] Open
Abstract
Chronic wounds are a public health problem worldwide, especially those related to diabetes. Besides being an enormous burden to patients, it challenges wound care professionals and causes a great financial cost to health system. Considering the absence of effective treatments for chronic wounds, our aim was to better understand the pathophysiology of tissue repair in diabetes in order to find alternative strategies to accelerate wound healing. Nucleotides have been described as extracellular signaling molecules in different inflammatory processes, including tissue repair. Adenosine-5'-diphosphate (ADP) plays important roles in vascular and cellular response and is immediately released after tissue injury, mainly from platelets. However, despite the well described effect on platelet aggregation during inflammation and injury, little is known about the role of ADP on the multiple steps of tissue repair, particularly in skin wounds. Therefore, we used the full-thickness excisional wound model to evaluate the effect of local ADP application in wounds of diabetic mice. ADP accelerated cutaneous wound healing, improved new tissue formation, and increased both collagen deposition and transforming growth factor-β (TGF-β) production in the wound. These effects were mediated by P2Y12 receptor activation since they were inhibited by Clopidogrel (Clop) treatment, a P2Y12 receptor antagonist. Furthermore, P2Y1 receptor antagonist also blocked ADP-induced wound closure until day 7, suggesting its involvement early in repair process. Interestingly, ADP treatment increased the expression of P2Y12 and P2Y1 receptors in the wound. In parallel, ADP reduced reactive oxygen species (ROS) formation and tumor necrosis factor-α (TNF-α) levels, while increased IL-13 levels in the skin. Also, ADP increased the counts of neutrophils, eosinophils, mast cells, and gamma delta (γδ) T cells (Vγ4+ and Vγ5+ cells subtypes of γδ+ T cells), although reduced regulatory T (Tregs) cells in the lesion. In accordance, ADP increased fibroblast proliferation and migration, myofibroblast differentiation, and keratinocyte proliferation. In conclusion, we provide strong evidence that ADP acts as a pro-resolution mediator in diabetes-associated skin wounds and is a promising intervention target for this worldwide problem.
Collapse
Affiliation(s)
- Paula Alvarenga Borges
- Institute of Biomedical Sciences, Center of Health Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Fluminense Federal Institute (IFF), Rio de Janeiro, Brazil
| | - Ingrid Waclawiak
- Institute of Biomedical Sciences, Center of Health Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Janaína Lima Georgii
- Institute of Biomedical Sciences, Center of Health Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Janaína Figueiredo Barros
- Institute of Biomedical Sciences, Center of Health Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Felipe Simões Lemos
- Institute of Biomedical Sciences, Center of Health Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Thaís Russo-Abrahão
- Institute of Medical Biochemistry Leopoldo de Meis, Center of Health Sciences, UFRJ, Rio de Janeiro, Brazil
| | - Elvira Maria Saraiva
- Institute of Microbiology Paulo de Góes, Center of Health Sciences, UFRJ, Rio de Janeiro, Brazil
| | - Christina M. Takiya
- Institute of Biophysics Carlos Chagas Filho (IBCCF), Center of Health Sciences, UFRJ, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Institute of Biophysics Carlos Chagas Filho (IBCCF), Center of Health Sciences, UFRJ, Rio de Janeiro, Brazil
| | - Carmen Penido
- Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of Applied Pharmacology, Institute of Drug Technology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Claudia Mermelstein
- Institute of Biomedical Sciences, Center of Health Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Fábio B. Canto
- Department of Immunobiology, Institute of Biology, Fluminense Federal University (UFF), Niterói, Brazil
| | - Josiane Sabbadini Neves
- Institute of Biomedical Sciences, Center of Health Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Paulo A. Melo
- Institute of Biomedical Sciences, Center of Health Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Claudio Canetti
- Institute of Biophysics Carlos Chagas Filho (IBCCF), Center of Health Sciences, UFRJ, Rio de Janeiro, Brazil
| | - Claudia Farias Benjamim
- Institute of Biomedical Sciences, Center of Health Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Biophysics Carlos Chagas Filho (IBCCF), Center of Health Sciences, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Garcia-Vega L, O’Shaughnessy EM, Albuloushi A, Martin PE. Connexins and the Epithelial Tissue Barrier: A Focus on Connexin 26. BIOLOGY 2021; 10:biology10010059. [PMID: 33466954 PMCID: PMC7829877 DOI: 10.3390/biology10010059] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Tissues that face the external environment are known as ‘epithelial tissue’ and form barriers between different body compartments. This includes the outer layer of the skin, linings of the intestine and airways that project into the lumen connecting with the external environment, and the cornea of the eye. These tissues do not have a direct blood supply and are dependent on exchange of regulatory molecules between cells to ensure co-ordination of tissue events. Proteins known as connexins form channels linking cells directly and permit exchange of small regulatory signals. A range of environmental stimuli can dysregulate the level of connexin proteins and or protein function within the epithelia, leading to pathologies including non-healing wounds. Mutations in these proteins are linked with hearing loss, skin and eye disorders of differing severity. As such, connexins emerge as prime therapeutic targets with several agents currently in clinical trials. This review outlines the role of connexins in epithelial tissue and how their dysregulation contributes to pathological pathways. Abstract Epithelial tissue responds rapidly to environmental triggers and is constantly renewed. This tissue is also highly accessible for therapeutic targeting. This review highlights the role of connexin mediated communication in avascular epithelial tissue. These proteins form communication conduits with the extracellular space (hemichannels) and between neighboring cells (gap junctions). Regulated exchange of small metabolites less than 1kDa aide the co-ordination of cellular activities and in spatial communication compartments segregating tissue networks. Dysregulation of connexin expression and function has profound impact on physiological processes in epithelial tissue including wound healing. Connexin 26, one of the smallest connexins, is expressed in diverse epithelial tissue and mutations in this protein are associated with hearing loss, skin and eye conditions of differing severity. The functional consequences of dysregulated connexin activity is discussed and the development of connexin targeted therapeutic strategies highlighted.
Collapse
|
6
|
Silva-Vilches C, Ring S, Mahnke K. ATP and Its Metabolite Adenosine as Regulators of Dendritic Cell Activity. Front Immunol 2018; 9:2581. [PMID: 30473700 PMCID: PMC6237882 DOI: 10.3389/fimmu.2018.02581] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Adenosine (Ado) is a well-studied neurotransmitter, but it also exerts profound immune regulatory functions. Ado can (i) actively be released by various cells into the tissue environment and can (ii) be produced through the degradation of extracellular ATP by the concerted action of CD39 and CD73. In this sequence of events, the ectoenzyme CD39 degrades ATP into ADP and AMP, respectively, and CD73 catalyzes the last step leading to the production of Ado. Extracellular ATP acts as a “danger” signal and stimulates immune responses, i.e. by inflammasome activation. Its degradation product Ado on the other hand acts rather anti-inflammatory, as it down regulates functions of dendritic cells (DCs) and dampens T cell activation and cytokine secretion. Thus, the balance of proinflammatory ATP and anti-inflammatory Ado that is regulated by CD39+/CD73+ immune cells, is important for decision making on whether tolerance or immunity ensues. DCs express both ectoenzymes, enabling them to produce Ado from extracellular ATP by activity of CD73 and CD39 and thus allow dampening of the proinflammatory activity of adjacent leukocytes in the tissue. On the other hand, as most DCs express at least one out of four so far known Ado receptors (AdoR), DC derived Ado can also act back onto the DCs in an autocrine manner. This leads to suppression of DC functions that are normally involved in stimulating immune responses. Moreover, ATP and Ado production thereof acts as “find me” signal that guides cellular interactions of leukocytes during immune responses. In this review we will state the means by which Ado producing DCs are able to suppress immune responses and how extracellular Ado conditions DCs for their tolerizing properties.
Collapse
Affiliation(s)
- Cinthia Silva-Vilches
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, University Hospital, Heidelberg, Germany
| | - Sabine Ring
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, University Hospital, Heidelberg, Germany
| | - Karsten Mahnke
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, University Hospital, Heidelberg, Germany
| |
Collapse
|
7
|
Ohsaki A, Miyano Y, Tanaka R, Tanuma SI, Kojima S, Tsukimoto M. A Novel Mechanism of γ-Irradiation-Induced IL-6 Production Mediated by P2Y11 Receptor in Epidermal Keratinocytes. Biol Pharm Bull 2018; 41:925-936. [DOI: 10.1248/bpb.b18-00075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Airi Ohsaki
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Yuki Miyano
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Rei Tanaka
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Sei-ichi Tanuma
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Shuji Kojima
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
8
|
Extracellular ATP activates hyaluronan synthase 2 ( HAS2) in epidermal keratinocytes via P2Y 2, Ca 2+ signaling, and MAPK pathways. Biochem J 2018; 475:1755-1772. [PMID: 29626161 DOI: 10.1042/bcj20180054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 01/04/2023]
Abstract
Extracellular nucleotides are used as signaling molecules by several cell types. In epidermis, their release is triggered by insults such as ultraviolet radiation, barrier disruption, and tissue wounding, and by specific nerve terminals firing. Increased synthesis of hyaluronan, a ubiquitous extracellular matrix glycosaminoglycan, also occurs in response to stress, leading to the attractive hypothesis that nucleotide signaling and hyaluronan synthesis could also be linked. In HaCaT keratinocytes, ATP caused a rapid and strong but transient activation of hyaluronan synthase 2 (HAS2) expression via protein kinase C-, Ca2+/calmodulin-dependent protein kinase II-, mitogen-activated protein kinase-, and calcium response element-binding protein-dependent pathways by activating the purinergic P2Y2 receptor. Smaller but more persistent up-regulation of HAS3 and CD44, and delayed up-regulation of HAS1 were also observed. Accumulation of peri- and extracellular hyaluronan followed 4-6 h after stimulation, an effect further enhanced by the hyaluronan precursor glucosamine. AMP and adenosine, the degradation products of ATP, markedly inhibited HAS2 expression and, despite concomitant up-regulation of HAS1 and HAS3, inhibited hyaluronan synthesis. Functionally, ATP moderately increased cell migration, whereas AMP and adenosine had no effect. Our data highlight the strong influence of adenosinergic signaling on hyaluronan metabolism in human keratinocytes. Epidermal insults are associated with extracellular ATP release, as well as rapid up-regulation of HAS2/3, CD44, and hyaluronan synthesis, and we show here that the two phenomena are linked. Furthermore, as ATP is rapidly degraded, the opposite effects of its less phosphorylated derivatives facilitate a rapid shut-off of the hyaluronan response, providing a feedback mechanism to prevent excessive reactions when more persistent signals are absent.
Collapse
|
9
|
Jokela T, Kärnä R, Rauhala L, Bart G, Pasonen-Seppänen S, Oikari S, Tammi MI, Tammi RH. Human Keratinocytes Respond to Extracellular UTP by Induction of Hyaluronan Synthase 2 Expression and Increased Hyaluronan Synthesis. J Biol Chem 2017; 292:4861-4872. [PMID: 28188289 DOI: 10.1074/jbc.m116.760322] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 01/26/2017] [Indexed: 12/16/2022] Open
Abstract
The release of nucleotides into extracellular space is triggered by insults like wounding and ultraviolet radiation, resulting in stimulatory or inhibitory signals via plasma membrane nucleotide receptors. As similar insults are known to activate hyaluronan synthesis we explored the possibility that extracellular UTP or its breakdown products UDP and UMP act as mediators for hyaluronan synthase (HAS) activation in human epidermal keratinocytes. UTP increased hyaluronan both in the pericellular matrix and in the culture medium of HaCaT cells. 10-100 μm UTP strongly up-regulated HAS2 expression, although the other hyaluronan synthases (HAS1, HAS3) and hyaluronidases (HYAL1, HYAL2) were not affected. The HAS2 response was rapid and transient, with the maximum stimulation at 1.5 h. UDP exerted a similar effect, but higher concentrations were required for the response, and UMP showed no stimulation at all. Specific siRNAs against the UTP receptor P2Y2, and inhibitors of UDP receptors P2Y6 and P2Y14, indicated that the response to UTP was mediated mainly through P2Y2 and to a lesser extent via UDP receptors. UTP increased the phosphorylation of p38, ERK, CREB, and Ser-727 of STAT3 and induced nuclear translocation of pCaMKII. Inhibitors of PKC, p38, ERK, CaMKII, STAT3, and CREB partially blocked the activation of HAS2 expression, confirming the involvement of these pathways in the UTP-induced HAS2 response. The present data reveal a selective up-regulation of HAS2 expression by extracellular UTP, which is likely to contribute to the previously reported rapid activation of hyaluronan metabolism in response to tissue trauma or ultraviolet radiation.
Collapse
Affiliation(s)
- Tiina Jokela
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Riikka Kärnä
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Leena Rauhala
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Genevieve Bart
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | | | - Sanna Oikari
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Markku I Tammi
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Raija H Tammi
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
10
|
Matsuo K, Nishiuma S, Hasegawa Y, Kawabata F, Kitahata K, Nakayama T. Vaccination with Antigen Combined with αβ-ATP as a Vaccine Adjuvant Enhances Antigen-Specific Antibody Production via Dendritic Cell Activation. Biol Pharm Bull 2017; 39:1073-6. [PMID: 27251512 DOI: 10.1248/bpb.b16-00087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adjuvants are required to enhance antigen-specific immune responses by vaccines. Extracellular ATP serves as a danger signal to alert the immune system of tissue damage by acting on P2X and P2Y receptors and triggers the activation of dendritic cells (DCs). Here we investigated the in vivo adjuvant efficacy of α,β-methylene-ATP (αβ-ATP), a non-hydrolysable form of ATP. We found that intradermal injection of ovalbumin (OVA), as a model antigen, combined with αβ-ATP, as the adjuvant, enhanced OVA-specific immune responses more than OVA alone. Additionally, DCs in the skin of mice injected with OVA and αβ-ATP had increased expression of major histocompatibility complex class II and co-stimulator molecules, CD40, CD80, and CD86, suggesting that αβ-ATP activated DC. These findings indicate that αβ-ATP functions as a potent vaccine adjuvant.
Collapse
Affiliation(s)
- Kazuhiko Matsuo
- Division of Chemotherapy, Faculty of Pharmacy, Kindai University
| | | | | | | | | | | |
Collapse
|
11
|
Zimmermann H. Extracellular ATP and other nucleotides-ubiquitous triggers of intercellular messenger release. Purinergic Signal 2015; 12:25-57. [PMID: 26545760 DOI: 10.1007/s11302-015-9483-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/29/2015] [Indexed: 12/21/2022] Open
Abstract
Extracellular nucleotides, and ATP in particular, are cellular signal substances involved in the control of numerous (patho)physiological mechanisms. They provoke nucleotide receptor-mediated mechanisms in select target cells. But nucleotides can considerably expand their range of action. They function as primary messengers in intercellular communication by stimulating the release of other extracellular messenger substances. These in turn activate additional cellular mechanisms through their own receptors. While this applies also to other extracellular messengers, its omnipresence in the vertebrate organism is an outstanding feature of nucleotide signaling. Intercellular messenger substances released by nucleotides include neurotransmitters, hormones, growth factors, a considerable variety of other proteins including enzymes, numerous cytokines, lipid mediators, nitric oxide, and reactive oxygen species. Moreover, nucleotides activate or co-activate growth factor receptors. In the case of hormone release, the initially paracrine or autocrine nucleotide-mediated signal spreads through to the entire organism. The examples highlighted in this commentary suggest that acting as ubiquitous triggers of intercellular messenger release is one of the major functional roles of extracellular nucleotides. While initiation of messenger release by nucleotides has been unraveled in many contexts, it may have been overlooked in others. It can be anticipated that additional nucleotide-driven messenger functions will be uncovered with relevance for both understanding physiology and development of therapy.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Goethe University, Max-von-Laue-Str. 13, Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Sumi D, Asao M, Okada H, Yogi K, Miyataka H, Himeno S. Synergistic augmentation of ATP-induced interleukin-6 production by arsenite in HaCaT cells. Arch Toxicol 2015; 90:1307-13. [PMID: 26104857 DOI: 10.1007/s00204-015-1553-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/09/2015] [Indexed: 12/20/2022]
Abstract
Chronic arsenic exposure causes cutaneous diseases such as hyperkeratosis and skin cancer. However, little information has been available regarding the molecular mechanisms underlying these symptoms. Because extracellular ATP and interleukin-6 (IL-6) are involved in pathological aspects of cutaneous diseases, we examined whether sodium arsenite (As(III)) affects ATP-induced IL-6 production in human epidermal keratinocyte HaCaT cells. The results showed that the addition of As(III) into the medium of HaCaT cells dose dependently increased the production of IL-6 induced by extracellular ATP, although As(III) alone had no effect on IL-6 production. To elucidate the mechanism of the synergistic effect of As(III) on IL-6 production by extracellular ATP, we next examined the phosphorylation of p38, ERK and epidermal growth factor receptor (EGFR), since we found that these signaling molecules were stimulated by exposure to extracellular ATP. The results indicated that ATP-induced phosphorylation of p38, ERK and EGFR was synergistically enhanced by co-exposure to As(III). To clarify the mechanisms underlying the enhanced phosphorylation of p38, ERK and EGFR by As(III), we explored two possible mechanisms: the inhibition of extracellular ATP degradation and the inhibition of protein tyrosine phosphatases (PTPs) activity by As(III). The degradation of extracellular ATP was not changed by As(III), whereas the activity of PTPs was significantly inhibited by As(III). Our results suggest that As(III) augments ATP-induced IL-6 production in HaCaT cells through enhanced phosphorylation of the EGFR and p38/ERK pathways, which is associated with the inhibition of PTPs activity.
Collapse
Affiliation(s)
- Daigo Sumi
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Masashi Asao
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Hideta Okada
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Kuniko Yogi
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Hideki Miyataka
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Seiichiro Himeno
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan.
| |
Collapse
|
13
|
Kawano A, Kadomatsu R, Ono M, Kojima S, Tsukimoto M, Sakamoto H. Autocrine Regulation of UVA-Induced IL-6 Production via Release of ATP and Activation of P2Y Receptors. PLoS One 2015; 10:e0127919. [PMID: 26030257 PMCID: PMC4452185 DOI: 10.1371/journal.pone.0127919] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/20/2015] [Indexed: 01/29/2023] Open
Abstract
Extracellular nucleotides, such as ATP, are released from cells in response to various stimuli and act as intercellular signaling molecules through activation of P2 receptors. Exposure to the ultraviolet radiation A (UVA) component of sunlight causes molecular and cellular damage, and in this study, we investigated the involvement of extracellular nucleotides and P2 receptors in the UVA-induced cellular response. Human keratinocyte-derived HaCaT cells were irradiated with a single dose of UVA (2.5 J/cm2), and ATP release and interleukin (IL)-6 production were measured. ATP was released from cells in response to UVA irradiation, and the release was blocked by pretreatment with inhibitors of gap junction hemichannels or P2X7 receptor antagonist. IL-6 production was increased after UVA irradiation, and this increase was inhibited by ecto-nucleotidase or by antagonists of P2Y11 or P2Y13 receptor. These results suggest that UVA-induced IL-6 production is mediated by release of ATP through hemichannels and P2X7 receptor, followed by activation of P2Y11 and P2Y13 receptors. Interestingly, P2Y11 and P2Y13 were associated with the same pattern of IL-6 production, though they trigger different intracellular signaling cascades: Ca2+-dependent and PI3K-dependent, respectively. Thus, IL-6 production in response to UVA-induced ATP release involves at least two distinct pathways, mediated by activation of P2Y11 and P2Y13 receptors.
Collapse
Affiliation(s)
- Ayumi Kawano
- Radioisotope Research Laboratory, School of Pharmacy, Kitasato University, Shirokane, Minato-ku Tokyo, Japan
| | - Remi Kadomatsu
- Radioisotope Research Laboratory, School of Pharmacy, Kitasato University, Shirokane, Minato-ku Tokyo, Japan
| | - Miyu Ono
- Radioisotope Research Laboratory, School of Pharmacy, Kitasato University, Shirokane, Minato-ku Tokyo, Japan
| | - Shuji Kojima
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki, Noda-shi Chiba, Japan
| | - Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki, Noda-shi Chiba, Japan
| | - Hikaru Sakamoto
- Radioisotope Research Laboratory, School of Pharmacy, Kitasato University, Shirokane, Minato-ku Tokyo, Japan
- * E-mail:
| |
Collapse
|
14
|
Christensen MG, Fagerberg SK, de Bruijn PI, Bjaelde RG, Jakobsen H, Leipziger J, Skals M, Praetorius HA. [Ca2+]i Oscillations and IL-6 Release Induced by α-Hemolysin from Escherichia coli Require P2 Receptor Activation in Renal Epithelia. J Biol Chem 2015; 290:14776-84. [PMID: 25911098 DOI: 10.1074/jbc.m115.639526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Indexed: 02/02/2023] Open
Abstract
Urinary tract infections are commonly caused by α-hemolysin (HlyA)-producing Escherichia coli. In erythrocytes, the cytotoxic effect of HlyA is strongly amplified by P2X receptors, which are activated by extracellular ATP released from the cytosol of the erythrocytes. In renal epithelia, HlyA causes reversible [Ca(2+)]i oscillations, which trigger interleukin-6 (IL-6) and IL-8 release. We speculate that this effect is caused by HlyA-induced ATP release from the epithelial cells and successive P2 receptor activation. Here, we demonstrate that HlyA-induced [Ca(2+)]i oscillations in renal epithelia were completely prevented by scavenging extracellular ATP. In accordance, HlyA was unable to inflict any [Ca(2+)]i oscillations in 132-1N1 cells, which lack P2R completely. After transfecting these cells with the hP2Y2 receptor, HlyA readily triggered [Ca(2+)]i oscillations, which were abolished by P2 receptor antagonists. Moreover, HlyA-induced [Ca(2+)]i oscillations were markedly reduced in medullary thick ascending limbs isolated from P2Y2 receptor-deficient mice compared with wild type. Interestingly, the following HlyA-induced IL-6 release was absent in P2Y2 receptor-deficient mice. This suggests that HlyA induces ATP release from renal epithelia, which via P2Y2 receptors is the main mediator of HlyA-induced [Ca(2+)]i oscillations and IL-6 release. This supports the notion that ATP signaling occurs early during bacterial infection and is a key player in the further inflammatory response.
Collapse
Affiliation(s)
- Mette G Christensen
- From the Department of Biomedicine, Physiology, Aarhus University, 8000 Aarhus, Denmark
| | - Steen K Fagerberg
- From the Department of Biomedicine, Physiology, Aarhus University, 8000 Aarhus, Denmark
| | - Pauline I de Bruijn
- From the Department of Biomedicine, Physiology, Aarhus University, 8000 Aarhus, Denmark
| | - Randi G Bjaelde
- From the Department of Biomedicine, Physiology, Aarhus University, 8000 Aarhus, Denmark
| | - Helle Jakobsen
- From the Department of Biomedicine, Physiology, Aarhus University, 8000 Aarhus, Denmark
| | - Jens Leipziger
- From the Department of Biomedicine, Physiology, Aarhus University, 8000 Aarhus, Denmark
| | - Marianne Skals
- From the Department of Biomedicine, Physiology, Aarhus University, 8000 Aarhus, Denmark
| | - Helle A Praetorius
- From the Department of Biomedicine, Physiology, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
15
|
Takada H, Furuya K, Sokabe M. Mechanosensitive ATP release from hemichannels and Ca²⁺ influx through TRPC6 accelerate wound closure in keratinocytes. J Cell Sci 2014; 127:4159-71. [PMID: 25097230 DOI: 10.1242/jcs.147314] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cutaneous wound healing is accelerated by exogenous mechanical forces and is impaired in TRPC6-knockout mice. Therefore, we designed experiments to determine how mechanical force and TRPC6 channels contribute to wound healing using HaCaT keratinocytes. HaCaT cells were pretreated with hyperforin, a major component of a traditional herbal medicine for wound healing and also a TRPC6 activator, and cultured in an elastic chamber. At 3 h after scratching the confluent cell layer, the ATP release and intracellular Ca(2+) increases in response to stretching (20%) were live-imaged. ATP release was observed only in cells at the frontier facing the scar. The diffusion of released ATP caused intercellular Ca(2+) waves that propagated towards the rear cells in a P2Y-receptor-dependent manner. The Ca(2+) response and wound healing were inhibited by ATP diphosphohydrolase apyrase, the P2Y antagonist suramin, the hemichannel blocker CBX and the TRPC6 inhibitor diC8-PIP2. Finally, the hemichannel-permeable dye calcein was taken up only by ATP-releasing cells. These results suggest that stretch-accelerated wound closure is due to the ATP release through mechanosensitive hemichannels from the foremost cells and the subsequent Ca(2+) waves mediated by P2Y and TRPC6 activation.
Collapse
Affiliation(s)
- Hiroya Takada
- Department of Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya, 466-8550, Japan
| | - Kishio Furuya
- Department of Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya, 466-8550, Japan Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya, 466-8550, Japan
| | - Masahiro Sokabe
- Department of Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya, 466-8550, Japan Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya, 466-8550, Japan
| |
Collapse
|
16
|
Nagakura C, Negishi Y, Tsukimoto M, Itou S, Kondo T, Takeda K, Kojima S. Involvement of P2Y11 receptor in silica nanoparticles 30-induced IL-6 production by human keratinocytes. Toxicology 2014; 322:61-8. [PMID: 24793913 DOI: 10.1016/j.tox.2014.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/12/2014] [Accepted: 03/30/2014] [Indexed: 11/27/2022]
Abstract
We have previously reported that P2Y11 receptor mediates IFN-γ-induced IL-6 production in human keratinocytes, suggesting the importance of purinergic signaling in skin inflammatory diseases. In this study, the involvement of various P2 receptors in IL-6 production induced by silica nanoparticle 30 (SNP30) was examined in a human keratinocyte cell line, HaCaT. Exposure to SNP30 increased IL-6 production in the cells. Ecto-nucleotidase (apyrase), a non-selective antagonist of P2Y receptors (suramin), and a selective P2Y11 receptor antagonist (NF157) all inhibited IL-6 production. Nucleotides such as ATP and UTP themselves also significantly increased IL-6 production in the cells. It was further confirmed that ATP was released from HaCaT cells exposed to SNP30. These results support the possible role of ATP in SNP30-induced IL-6 production by HaCaT cells. In conclusion, these data demonstrate that P2Y11 receptor also mediates SNP30-induced IL-6 production in human keratinocytes, confirming that the ATP-P2Y11 purinergic signaling is a common pathway of IL-6 production leading to induction of skin inflammatory diseases.
Collapse
Affiliation(s)
- Chihiro Nagakura
- Department of Radiation Biosciences, Tokyo University of Science (TUS), 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | - Yusuke Negishi
- Department of Radiation Biosciences, Tokyo University of Science (TUS), 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | - Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Tokyo University of Science (TUS), 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | - Satomi Itou
- Research Institute for Science and Technology, Tokyo University of Science (TUS), 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | - Takeshi Kondo
- Research Institute for Science and Technology, Tokyo University of Science (TUS), 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | - Ken Takeda
- Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS), 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | - Shuji Kojima
- Department of Radiation Biosciences, Tokyo University of Science (TUS), 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan.
| |
Collapse
|
17
|
Altamirano F, Valladares D, Henríquez-Olguín C, Casas M, López JR, Allen PD, Jaimovich E. Nifedipine treatment reduces resting calcium concentration, oxidative and apoptotic gene expression, and improves muscle function in dystrophic mdx mice. PLoS One 2013; 8:e81222. [PMID: 24349043 PMCID: PMC3857175 DOI: 10.1371/journal.pone.0081222] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/09/2013] [Indexed: 11/18/2022] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a recessive X-linked genetic disease, caused by mutations in the gene encoding dystrophin. DMD is characterized in humans and in mdx mice by a severe and progressive destruction of muscle fibers, inflammation, oxidative/nitrosative stress, and cell death. In mdx muscle fibers, we have shown that basal ATP release is increased and that extracellular ATP stimulation is pro-apoptotic. In normal fibers, depolarization-induced ATP release is blocked by nifedipine, leading us to study the potential therapeutic effect of nifedipine in mdx muscles and its relation with extracellular ATP signaling. Acute exposure to nifedipine (10 µM) decreased [Ca(2+)]r, NF-κB activity and iNOS expression in mdx myotubes. In addition, 6-week-old mdx mice were treated with daily intraperitoneal injections of nifedipine, 1 mg/Kg for 1 week. This treatment lowered the [Ca(2+)]r measured in vivo in the mdx vastus lateralis. We demonstrated that extracellular ATP levels were higher in adult mdx flexor digitorum brevis (FDB) fibers and can be significantly reduced after 1 week of treatment with nifedipine. Interestingly, acute treatment of mdx FDB fibers with apyrase, an enzyme that completely degrades extracellular ATP to AMP, reduced [Ca(2+)]r to a similar extent as was seen in FDB fibers after 1-week of nifedipine treatment. Moreover, we demonstrated that nifedipine treatment reduced mRNA levels of pro-oxidative/nitrosative (iNOS and gp91(phox)/p47(phox) NOX2 subunits) and pro-apoptotic (Bax) genes in mdx diaphragm muscles and lowered serum creatine kinase (CK) levels. In addition, nifedipine treatment increased muscle strength assessed by the inverted grip-hanging test and exercise tolerance measured with forced swimming test in mdx mice. We hypothesize that nifedipine reduces basal ATP release, thereby decreasing purinergic receptor activation, which in turn reduces [Ca(2+)]r in mdx skeletal muscle cells. The results in this work open new perspectives towards possible targets for pharmacological approaches to treat DMD.
Collapse
Affiliation(s)
- Francisco Altamirano
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Denisse Valladares
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carlos Henríquez-Olguín
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mariana Casas
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jose R. López
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Paul D. Allen
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Enrique Jaimovich
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
18
|
Ho CL, Yang CY, Lin WJ, Lin CH. Ecto-nucleoside triphosphate diphosphohydrolase 2 modulates local ATP-induced calcium signaling in human HaCaT keratinocytes. PLoS One 2013; 8:e57666. [PMID: 23536768 PMCID: PMC3594229 DOI: 10.1371/journal.pone.0057666] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/23/2013] [Indexed: 11/18/2022] Open
Abstract
Keratinocytes are the major building blocks of the human epidermis. In many physiological and pathophysiological conditions, keratinocytes release adenosine triphosphate (ATP) as an autocrine/paracrine mediator that regulates cell proliferation, differentiation, and migration. ATP receptors have been identified in various epidermal cell types; therefore, extracellular ATP homeostasis likely determines its long-term, trophic effects on skin health. We investigated the possibility that human keratinocytes express surface-located enzymes that modulate ATP concentration, as well as the corresponding receptor activation, in the pericellular microenvironment. We observed that the human keratinocyte cell line HaCaT released ATP and hydrolyzed extracellular ATP. Interestingly, ATP hydrolysis resulted in adenosine diphosphate (ADP) accumulation in the extracellular space. Pharmacological inhibition by ARL 67156 or gene silencing of the endogenous ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) isoform 2 resulted in a 25% reduction in both ATP hydrolysis and ADP formation. Using intracellular calcium as a reporter, we found that although NTPDase2 hydrolyzed ATP and generated sustainable ADP levels, only ATP contributed to increased intracellular calcium via P2Y2 receptor activation. Furthermore, knocking down NTPDase2 potentiated the nanomolar ATP-induced intracellular calcium increase, suggesting that NTPDase2 globally attenuates nucleotide concentration in the pericellular microenvironment as well as locally shields receptors in the vicinity from being activated by extracellular ATP. Our findings reveal an important role of human keratinocyte NTPDase2 in modulating nucleotide signaling in the extracellular milieu of human epidermis.
Collapse
Affiliation(s)
- Chia-Lin Ho
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yung Yang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Wen-Jie Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Hung Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
19
|
Ishimaru M, Tsukimoto M, Harada H, Kojima S. Involvement of P2Y₁₁ receptor in IFN-γ-induced IL-6 production in human keratinocytes. Eur J Pharmacol 2013; 703:67-73. [PMID: 23461851 DOI: 10.1016/j.ejphar.2013.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/05/2013] [Accepted: 02/07/2013] [Indexed: 11/16/2022]
Abstract
Extracellular ATP and P2 receptors are reported to be involved in interleukin-6 (IL-6) production by human keratinocytes, but the role of extracellular ATP in cytokine-induced IL-6 production remains unclear. In this study, we investigated the involvement of various P2 receptors in IL-6 production induced by the Th1 cytokine interferon-gamma (IFN-γ) in a human keratinocyte cell line, HaCaT. IFN-γ increased IL-6 production in HaCaT cells. A non-selective antagonist of P2Y receptors (suramin), a selective P2Y11 receptor antagonist (NF157), ecto-nucleotidase (apyrase), and a soluble adenylate cyclase inhibitor (KH7) all inhibited IL-6 production. It was further confirmed that ATP was released from HaCaT cells stimulated with IFN-γ. These results suggest that extracellular ATP and P2Y11 receptor are involved in IFN-γ-induced IL-6 production. Knockdown of P2Y11 receptor suppressed IL-6 production, strongly supporting this idea. In conclusion, these data demonstrate that P2Y11 receptor mediates IFN-γ-induced IL-6 production in human keratinocytes, and suggest the importance of purinergic signaling in IFN-γ-induced skin inflammatory conditions, such as psoriasis.
Collapse
Affiliation(s)
- Makiko Ishimaru
- Department of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | | | | | | |
Collapse
|
20
|
Raoux M, Azorin N, Colomban C, Rivoire S, Merrot T, Delmas P, Crest M. Chemicals inducing acute irritant contact dermatitis mobilize intracellular calcium in human keratinocytes. Toxicol In Vitro 2012; 27:402-8. [PMID: 22906572 DOI: 10.1016/j.tiv.2012.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 04/16/2012] [Accepted: 08/02/2012] [Indexed: 01/30/2023]
Abstract
Intracellular Ca(2+) increase is a common feature of multiple cellular pathways associated with receptor and channel activation, mediator secretion and gene regulation. We investigated the possibility of using this Ca(2+) signal as a biomarker for a reaction to chemical irritants of normal human keratinocytes (NHK) in submerged primary cell culture. We tested 14 referenced chemical compounds classified as strong (seven), weak (four) or non- (three) irritants in acute irritant contact dermatitis. We found that the strong irritant compounds tested at 20-40 mM induced an intracellular Ca(2+) increase measurable by spectrofluorimetry in an automated test. Weak and non-irritant compounds however did not increase intracellular Ca(2+) concentration. We further investigated the mechanisms by which the amine heptylamine, classified as a R34 corrosive compound, increases intracellular Ca(2+). Heptylamine (20mM) induced an ATP release that persisted in the absence of intra- and extra-cellular Ca(2+). In addition, we found that this ATP activates NHK purinergic receptors that subsequently cause the increase in intracellular Ca(2+) from sarcoplasmic reticular stores. We conclude that measuring the intracellular Ca(2+) concentration in NHK is a suitable and easy way of determining any potential reaction to soluble chemical compounds.
Collapse
Affiliation(s)
- Matthieu Raoux
- Université de la Méditerranée, Centre National de la Recherche Scientifique UMR 6231, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Faure E, Garrouste F, Parat F, Monferran S, Leloup L, Pommier G, Kovacic H, Lehmann M. P2Y2 receptor inhibits EGF-induced MAPK pathway to stabilise keratinocyte hemidesmosomes. J Cell Sci 2012; 125:4264-77. [PMID: 22718344 DOI: 10.1242/jcs.097600] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
α6β4 integrin is the main component of hemidesmosomes (HD) that stably anchor the epithelium to the underlying basement membrane. Epithelial cell migration requires HD remodelling, which can be promoted by epidermal growth factor (EGF). We previously showed that extracellular nucleotides inhibit growth factor-induced keratinocyte migration. Here, we investigate the effect of extracellular nucleotides on α6β4 integrin localisation in HD during EGF-induced cell migration. Using a combination of pharmacological inhibition and gene silencing approaches, we found that UTP activates the P2Y2 purinergic receptor and Gαq protein to inhibit EGF/ERK1/2-induced cell migration in keratinocytes. Using a keratinocyte cell line expressing an inducible form of the Raf kinase, we show that UTP inhibits the EGF-induced ERK1/2 pathway activation downstream of Raf. Moreover, we established that ERK1/2 activation by EGF leads to the mobilisation of α6β4 integrin from HD. Importantly, activation of P2Y2R and Gαq by UTP promotes HD formation and protects these structures from EGF-triggered dissolution as revealed by confocal analysis of the distribution of α6β4 integrin, plectin, BPAG1, BPAG2 and CD151 in keratinocytes. Finally, we demonstrated that the activation of p90RSK, downstream of ERK1/2, is sufficient to promote EGF-mediated HD dismantling and that UTP does not stabilise HD in cells expressing an activated form of p90RSK. Our data underline an unexpected role of P2Y2R and Gαq in the inhibition of the ERK1/2 signalling pathway and in the modulation of hemidesmosome dynamics and keratinocyte migration.
Collapse
Affiliation(s)
- Emilie Faure
- Aix-Marseille Université, INSERM UMR 911, Centre de Recherche en Oncologie Biologique et en Oncopharmacologie, Marseille 13005, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Sommer A, Fries A, Cornelsen I, Speck N, Koch-Nolte F, Gimpl G, Andrä J, Bhakdi S, Reiss K. Melittin modulates keratinocyte function through P2 receptor-dependent ADAM activation. J Biol Chem 2012; 287:23678-89. [PMID: 22613720 DOI: 10.1074/jbc.m112.362756] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Melittin, the major component of the bee venom, is an amphipathic, cationic peptide with a wide spectrum of biological properties that is being considered as an anti-inflammatory and anti-cancer agent. It modulates multiple cellular functions but the underlying mechanisms are not clearly understood. Here, we report that melittin activates disintegrin-like metalloproteases (ADAMs) and that downstream events likely contribute to the biological effects evoked by the peptide. Melittin stimulated the proteolysis of ADAM10 and ADAM17 substrates in human neutrophil granulocytes, endothelial cells and murine fibroblasts. In human HaCaT keratinocytes, melittin induced shedding of the adhesion molecule E-cadherin and release of TGF-α, which was accompanied by transactivation of the EGF receptor and ERK1/2 phosphorylation. This was followed by functional consequences such as increased keratinocyte proliferation and enhanced cell migration. Evidence is provided that ATP release and activation of purinergic P2 receptors are involved in melittin-induced ADAM activation. E-cadherin shedding and EGFR phosphorylation were dose-dependently reduced in the presence of ATPases or P2 receptor antagonists. The involvement of P2 receptors was underscored in experiments with HEK cells, which lack the P2X7 receptor and showed strikingly increased response to melittin stimulation after transfection with this receptor. Our study provides new insight into the mechanism of melittin function which should be of interest particularly in the context of its potential use as an anti-inflammatory or anti-cancer agent.
Collapse
Affiliation(s)
- Anselm Sommer
- Department of Dermatology, Christian-Albrecht University Kiel, 24098 Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Satoh E, Tsukimoto M, Kojima S. Involvement of P2Y receptors in the protective effect of ATP towards the cell damage in HaCaT cells exposed to H₂O₂. J Toxicol Sci 2012; 36:741-50. [PMID: 22129738 DOI: 10.2131/jts.36.741] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
It has recently been reported that activation of P2Y(1) receptor, one of the purine receptors, by extracellular nucleotides induces cytoprotection against oxidative stress. In this study, we examined the protective effect of ATP on the cell damage in human epidermal keratinocyte HaCaT cells exposed to H(2)O(2) via the P2Y receptor-mediated induction of intracellular antioxidants. The cells were damaged by exposure to H(2)O(2) in a dose- and time-dependent manner. The damage induced by 7.5 mM H(2)O(2) was blocked by pretreatment of the cells with ATP (1-10 µM). The protective effect of ATP was significantly reduced by P2Y receptor antagonists. Exogenously added ATP induced various intracellular antioxidants, including thiol-containing proteins, Cu/Zn superoxide dismutase (SOD) and thioredoxin-1, in HaCaT cells. In conclusion, it was found that ATP protected the cells from the H(2)O(2)-induced cell damages via the P2Y receptor-mediated induction of intracellular antioxidants.
Collapse
Affiliation(s)
- Emi Satoh
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda-shi, Chiba, Japan
| | | | | |
Collapse
|
24
|
Burnstock G, Knight GE, Greig AV. Purinergic Signaling in Healthy and Diseased Skin. J Invest Dermatol 2012; 132:526-46. [DOI: 10.1038/jid.2011.344] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
25
|
Shikano M, Ueda T, Kamiya T, Ishida Y, Yamada T, Mizushima T, Shimura T, Mizoshita T, Tanida S, Kataoka H, Shimada S, Ugawa S, Joh T. Acid inhibits TRPV4-mediated Ca²⁺ influx in mouse esophageal epithelial cells. Neurogastroenterol Motil 2011; 23:1020-8, e497. [PMID: 21883699 DOI: 10.1111/j.1365-2982.2011.01767.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The transient receptor potential vanilloid 4 (TRPV4), a thermo-sensitive stretch-activated cation channel, is expressed in the skin stratified squamous epithelium, contributing to the acquisition of barrier function. Similarly, functional TRPV4 may be located in the stratified squamous epithelial lining of the esophagus, being involved in the pathogenesis of gastroesophageal reflux disease (GERD). Here we investigated the expression of TRPV4 in the mouse esophageal epithelium. METHODS TRPV4 expression at the mRNA and protein levels was examined by reverse transcription-polymerase chain reaction (RT-PCR), in situ hybridization, and immunohistochemistry. A calcium imaging technique and ATP assay were used to evaluate the functionality of TRPV4 in freshly isolated esophageal epithelial cells. KEY RESULTS Transcripts and proteins encoding TRPV4 were colocalized in the basal and intermediate layers of the esophageal epithelium. Both 4α-phorbol 12,13- didecanoate (4α-PDD), a selective agonist for TRPV4, and hypo-osmolar solution (160 mOsm) elevated the intracellular calcium concentration ([Ca(2+) ](i) ) in a subset of the isolated cells (70%). These [Ca(2+) ](i) increases were potently inhibited by ruthenium red (RuR), a TRPV4 channel antagonist, and were suppressed by extracellular protons (pH 5.0). Finally, application of 4α-PDD evoked ATP release in primary esophageal epithelial cells. CONCLUSIONS & INFERENCES Acid-sensitive TRPV4 channels were mainly expressed in the esophageal epithelial cells of the basal and intermediate layers. Direct exposure of TRPV4-expressing cells to gastric acid, as would occur in cases of GERD, could influence their cellular functions, possibly aggravating the disease state.
Collapse
Affiliation(s)
- M Shikano
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kim J, Lee CW, Kim EK, Lee SJ, Park NH, Kim HS, Kim HK, Char K, Jang YP, Kim JW. Inhibition effect of Gynura procumbens extract on UV-B-induced matrix-metalloproteinase expression in human dermal fibroblasts. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:427-33. [PMID: 21672616 DOI: 10.1016/j.jep.2011.04.072] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 04/20/2011] [Indexed: 05/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gynura procumbens Merr. (Asteraceae) has been used as a traditional remedy for various skin diseases in certain areas of Southeast Asia. AIM OF THE STUDY In order to evaluate the protective activity of Gynura procumbens extract on skin photoaging and elucidate its mode of action. MATERIALS AND METHODS Matrix-metalloproteinase (MMP)-1 and -9 expressions were induced by UV-B irradiation in human primary dermal fibroblasts. MMP-1 expression level was measured by enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. Zymography was employed for evaluating the enzymatic activity of MMP-9. Anti-inflammatory activity and anti-oxidative capacity of the extract were evaluated by ELISA and dichlorodihydrofluorescein diacetate (DCF-DA) assay. RESULTS The ethanolic extract of Gynura procumbens inhibited MMP-1 expression up to 70% compare to negative control group. The enzymatic activity of MMP-9 was inhibited around 73% by the treatment of 20μg/mL of the extract. The extract markedly reduced the production of reactive oxygen species (ROS). Gynura procumbens extract showed an inhibitory effect on releasing pro-inflammatory cytokines (IL-6 and IL-8) in human HaCat keratinocyte. CONCLUSION The ethanolic extract of Gynura procumbens inhibited MMP-1 and MMP-9 expressions induced by UV-B irradiation via inhibition of pro-inflammatory cytokine mediator release and ROS production.
Collapse
Affiliation(s)
- Junoh Kim
- Amore-Pacific Co. R&D Center, 314-1, Bora-dong, Giheung-gu, Yongin-si, Gyeonggi-Do 446-729, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ueda T, Shikano M, Kamiya T, Joh T, Ugawa S. The TRPV4 channel is a novel regulator of intracellular Ca2+ in human esophageal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2011; 301:G138-47. [PMID: 21493730 DOI: 10.1152/ajpgi.00511.2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The esophageal epithelium has sensory properties that enable it to sustain normal barrier function. Transient receptor potential vanilloid 4 (TRPV4) is a Ca(2+)-permeable channel that is activated by extracellular hypotonicity, polyunsaturated fatty acids, phorbol esters, and elevated temperature. We found that TRPV4 is expressed in both human esophageal tissue and in HET-1A cells, a human esophageal epithelial cell line. Specific activation of TRPV4 by the phorbol ester 4α-phorbol 12,13-didecanoate (4α-PDD) increased intracellular Ca(2+) in a subset of HET-1A cells. Elevated temperature strongly potentiated this effect at low concentrations of 4α-PDD, and all of the responses were inhibited by the TRPV antagonist ruthenium red. TRPV4 activation differentially affected cell proliferation and cell viability; HET-1A cell proliferation was increased by 1 μM 4α-PDD, whereas higher concentrations (10 μM and 30 μM) significantly decreased cell viability. Transient TRPV4 activation triggered ATP release in a concentration-dependent manner via gap-junction hemichannels, including pannexin 1 and connexin 43. Furthermore, TRPV4 activation for 24 h did not increase the production of interleukin 8 (IL-8) but reduced IL-1β-induced IL-8 production. Small-interference RNA targeted to TRPV4 significantly attenuated all of the 4α-PDD-induced responses in HET-1A cells. Collectively, these findings suggest that TRPV4 is a novel regulator of Ca(2+)-dependent signaling pathways linked to cell proliferation, cell survival, ATP release, and IL-8 production in human esophageal epithelial cells.
Collapse
Affiliation(s)
- Takashi Ueda
- Department of Neurobiology and Anatomy, Graduate School of Medical Sciences, Nagoya City University, Japan.
| | | | | | | | | |
Collapse
|
28
|
Gendaszewska-Darmach E, Kucharska M. Nucleotide receptors as targets in the pharmacological enhancement of dermal wound healing. Purinergic Signal 2011; 7:193-206. [PMID: 21519856 PMCID: PMC3146642 DOI: 10.1007/s11302-011-9233-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 04/10/2011] [Indexed: 12/15/2022] Open
Abstract
With a growing interest of the involvement of extracellular nucleotides in both normal physiology and pathology, it has become evident that P2 receptor agonists and antagonists may have therapeutic potential. The P2Y2 receptor agonists (diquafosol tetrasodium and denufosol tetrasodium) are in the phase 3 of clinical trials for dry eye and cystic fibrosis, respectively. The thienopyridine derivatives clopidogrel and ticlopidine (antagonists of the platelet P2Y12 receptor) have been used in cardiovascular medicine for nearly a decade. Purines and pyrimidines may be of therapeutic potential also in wound healing since ATP and UTP have been shown to have many hallmarks of wound healing factors. Recent studies have demonstrated that extracellular nucleotides take part in all phases of wound repair: hemostasis, inflammation, tissue formation, and tissue remodeling. This review is focused on the potent purines and pyrimidines which regulate many physiological processes important for wound healing.
Collapse
Affiliation(s)
- Edyta Gendaszewska-Darmach
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Stefanowskiego 4/10, 90-924, Lodz, Poland,
| | | |
Collapse
|
29
|
Takai E, Tsukimoto M, Harada H, Kojima S. Involvement of P2Y6 receptor in p38 MAPK-mediated COX-2 expression in response to UVB irradiation of human keratinocytes. Radiat Res 2010; 175:358-66. [PMID: 21388279 DOI: 10.1667/rr2375.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ultraviolet B (UVB) radiation induces inflammation in human skin. Extracellular nucleotides are released from cells in response to various stimuli and act as intercellular signaling molecules through activation of P2 receptors. In this study, we investigated the involvement of extracellular nucleotides and P2 receptors in UVB-radiation-induced inflammation using human keratinocyte-derived HaCaT cells. UVB radiation induced rapid ATP release from HaCaT cells; this was inhibited by pretreatment with anion transporter blockers or maxi-anion channel blockers. In addition, the radiation-induced activation of p38 MAPK was significantly blocked by pretreatment with ecto-nucleotidase (apyrase) or P2Y6 receptor antagonist (MRS2578). Expression of COX-2, mediated by activation of p38 MAPK, was also induced by UVB radiation. Both pretreatment with MRS2578 and knockdown of the P2Y6 receptor by siRNA transfection attenuated the induction of COX-2 in HaCaT cells exposed to UVB radiation. Our results indicate that UVB radiation evokes ATP release from human keratinocytes and also that activation of P2Y6 receptor mediates the UVB-radiation-induced activation of p38 MAPK and expression of COX-2. Thus P2Y6 receptor is a mediator of UVB-radiation-induced inflammatory responses in keratinocytes.
Collapse
Affiliation(s)
- Erina Takai
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi Chiba, Japan
| | | | | | | |
Collapse
|
30
|
Park J, Halliday GM, Surjana D, Damian DL. Nicotinamide prevents ultraviolet radiation-induced cellular energy loss. Photochem Photobiol 2010; 86:942-8. [PMID: 20492562 DOI: 10.1111/j.1751-1097.2010.00746.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
UV radiation is carcinogenic by causing mutations in the skin and also by suppressing cutaneous antitumor immunity. We previously found nicotinamide (vitamin B3) to be highly effective at reducing UV-induced immunosuppression in human volunteers, with microarray studies on in vivo irradiated human skin suggesting that nicotinamide normalizes subsets of apoptosis, immune function and energy metabolism-related genes that are downregulated by UV exposure. Using human adult low calcium temperature keratinocytes, we further investigated nicotinamide's effects on cellular energy metabolism. We found that nicotinamide prevented UV-induced cellular ATP loss and protected against UV-induced glycolytic blockade. To determine whether nicotinamide alters the effects of UV-induced oxidative stress posttranslationally, we also measured UV-induced reactive oxygen species (ROS). Nicotinamide had no effect on ROS formation, and at the low UV doses used in these studies, equivalent to ambient daily sun exposure, there was no evidence of apoptosis. Hence, nicotinamide appears to exert its UV protective effects on the skin via its role in cellular energy pathways.
Collapse
Affiliation(s)
- Joohong Park
- Discipline of Dermatology, Bosch Institute, Sydney Cancer Centre at Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia
| | | | | | | |
Collapse
|
31
|
Tsukimoto M, Homma T, Ohshima Y, Kojima S. Involvement of purinergic signaling in cellular response to gamma radiation. Radiat Res 2010; 173:298-309. [PMID: 20199215 DOI: 10.1667/rr1732.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Recent studies have suggested a bystander effect in nonirradiated cells adjacent to irradiated cells; however, the mechanism is poorly understood. In this study, we investigated the involvement of both extracellular nucleotides and activation of P2 receptors in cellular responses to gamma radiation using human HaCaT keratinocytes. The concentration of ATP in culture medium was increased after gamma irradiation (0.1-1.0 Gy), suggesting that radiation induces ATP release from cells. Intracellular Ca(2+) concentration was elevated when conditioned medium from irradiated cells was transferred to nonirradiated cells, and this elevation was suppressed by apyrase (ecto-nucleotidase), indicating the involvement of extracellular nucleotides in this event. Further, we examined the activation of ERK1/2 by gamma radiation and nucleotides (ATP and UTP). Both gamma radiation and nucleotides induced activation of ERK1/2. Next, the effect of inhibitors of P2 receptors on radiation-induced activation of ERK1/2 was examined. The activation of ERK1/2 was blocked by suramin (P2Y inhibitor), MRS2578 (P2Y(6) antagonist) and apyrase. These results suggest that both released nucleotides and activation of P2Y receptors are involved in gamma-radiation-induced activation of ERK1/2. We conclude that ionizing radiation induces release of nucleotides from cells, leading to activation of P2Y receptors, which in turn would result in a variety of biological effects.
Collapse
|
32
|
Taboubi S, Garrouste F, Parat F, Pommier G, Faure E, Monferran S, Kovacic H, Lehmann M. Gq-coupled purinergic receptors inhibit insulin-like growth factor-I/phosphoinositide 3-kinase pathway-dependent keratinocyte migration. Mol Biol Cell 2010; 21:946-55. [PMID: 20089844 PMCID: PMC2836975 DOI: 10.1091/mbc.e09-06-0497] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
After skin wound, released growth factors and extracellular nucleotides regulate the different phases of healing, including re-epithelialization. Here, we show that, in keratinocytes, purinergic P2Y2 receptors inhibit the motogenic IGF-I/PI3K pathway. Therefore, extracellular nucleotides may play key roles during skin remodelling after wound. Insulin-like growth factor-I (IGF-I) activation of phosphoinositol 3-kinase (PI3K) is an essential pathway for keratinocyte migration that is required for epidermis wound healing. We have previously reported that activation of Gα(q/11)-coupled-P2Y2 purinergic receptors by extracellular nucleotides delays keratinocyte wound closure. Here, we report that activation of P2Y2 receptors by extracellular UTP inhibits the IGF-I–induced p110α-PI3K activation. Using siRNA and pharmacological inhibitors, we demonstrate that the UTP antagonistic effects on PI3K pathway are mediated by Gα(q/11)—and not G(i/o)—independently of phospholipase Cβ. Purinergic signaling does not affect the formation of the IGF-I receptor/insulin receptor substrate-I/p85 complex, but blocks the activity of a membrane-targeted active p110α mutant, indicating that UTP acts downstream of PI3K membrane recruitment. UTP was also found to efficiently attenuate, within few minutes, the IGF-I–induced PI3K-controlled translocation of the actin-nucleating protein cortactin to the plasma membrane. This supports the UTP ability to alter later migratory events. Indeed, UTP inhibits keratinocyte spreading and migration promoted by either IGF-I or a membrane-targeted active p110α mutant, in a Gα(q/11)-dependent manner both. These findings provide new insight into the signaling cross-talk between receptor tyrosine kinase and Gα(q/11)-coupled receptors, which mediate opposite effects on p110α-PI3K activity and keratinocyte migration.
Collapse
Affiliation(s)
- Salma Taboubi
- INSERM UMR 911, Centre de Recherche en Oncologie Biologique et en Oncopharmacologie, Université Aix-Marseille, Marseille 13005, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Corriden R, Insel PA. Basal release of ATP: an autocrine-paracrine mechanism for cell regulation. Sci Signal 2010; 3:re1. [PMID: 20068232 DOI: 10.1126/scisignal.3104re1] [Citation(s) in RCA: 268] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cells release adenosine triphosphate (ATP), which activates plasma membrane-localized P2X and P2Y receptors and thereby modulates cellular function in an autocrine or paracrine manner. Release of ATP and the subsequent activation of P2 receptors help establish the basal level of activation (sometimes termed "the set point") for signal transduction pathways and regulate a wide array of responses that include tissue blood flow, ion transport, cell volume regulation, neuronal signaling, and host-pathogen interactions. Basal release and autocrine or paracrine responses to ATP are multifunctional, evolutionarily conserved, and provide an economical means for the modulation of cell, tissue, and organismal biology.
Collapse
Affiliation(s)
- Ross Corriden
- Departments of Pharmacology and Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
34
|
Tsutakawa S, Kobayashi D, Kusama M, Moriya T, Nakahata N. Nicotine enhances skin necrosis and expression of inflammatory mediators in a rat pressure ulcer model. Br J Dermatol 2009; 161:1020-7. [PMID: 19673871 DOI: 10.1111/j.1365-2133.2009.09349.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Many bedridden patients develop pressure ulcers, not only in hospital but also at home. Clinical studies have indicated cigarette smoking to be a risk factor for pressure ulcers. However, the contribution of nicotine to pressure ulcer formation has not been identified. OBJECTIVES We aimed to clarify the effect of nicotine on pressure ulcer formation, and its mechanism. METHODS Ischaemia-reperfusion (I/R) was performed in rat dorsal skin to induce pressure ulcers. The extent of the resulting necrotic area was determined. To clarify the mechanism of the effect of nicotine, mRNA levels of cyclooxygenase-2 (COX-2), interleukin (IL)-1beta, IL-6 and inducible nitric oxide synthase (iNOS) and protein expression of COX-2 and iNOS in the necrotic area were investigated by real-time reverse transcription-polymerase chain reaction and Western blotting, respectively. Furthermore, the effects of the COX-2 inhibitor NS-398 and the iNOS inhibitor aminoguanidine on necrosis were examined. RESULTS Skin necrosis in the I/R-treated area was significantly increased by intraperitoneal administration of nicotine (0.175 mg kg(-1) daily). Repeated nicotine administration had little effect on systolic and diastolic blood pressure. I/R treatment increased mRNA levels of COX-2, IL-1beta, IL-6 and iNOS, which were further augmented by nicotine in a dose-dependent manner. Correspondingly, nicotine (0.35 mg kg(-1) daily) markedly enhanced the protein expression of COX-2 and iNOS. Moreover, NS-398 and aminoguanidine showed a tendency to abrogate the increase of I/R-induced skin necrosis caused by nicotine. CONCLUSIONS These results suggest that the increased risk of pressure ulcers due to cigarette smoking is mediated, in part, by nicotine. They also indicated that the effect of nicotine is not mediated by a change in blood pressure, but is elicited via an increase of inflammatory mediators in the I/R-treated skin.
Collapse
Affiliation(s)
- S Tsutakawa
- Department of Cellular Signalling, Graduate School of Pharmaceutical Science, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | |
Collapse
|
35
|
Slow spontaneous [Ca2+] i oscillations reflect nucleotide release from renal epithelia. Pflugers Arch 2007; 455:1105-17. [PMID: 18026749 DOI: 10.1007/s00424-007-0366-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 09/05/2007] [Accepted: 10/02/2007] [Indexed: 10/22/2022]
Abstract
Renal epithelia can be provoked mechanically to release nucleotides, which subsequently increases the intracellular Ca(2+) concentration [Ca(2+)](i) through activation of purinergic (P2) receptors. Cultured cells often show spontaneous [Ca(2+)](i) oscillations, a feature suggested to involve nucleotide signalling. In this study, fluo-4 loaded Madin-Darby canine kidney (MDCK) cells are used as a model for quantification and characterisation of spontaneous [Ca(2+)](i) increases in renal epithelia. Spontaneous [Ca(2+)](i) increases occurred randomly as single cell events. During an observation period of 1 min, 10.9 +/- 6.7% (n = 23) of the cells showed spontaneous [Ca(2+)](i) increases. Spontaneous adenosine triphosphate (ATP) release from MDCK cells was detected directly by luciferin/luciferase. Scavenging of ATP by apyrase or hexokinase markedly reduced the [Ca(2+)](i) oscillatory activity, whereas inhibition of ecto-ATPases (ARL67156) enhanced the [Ca(2+)](i) oscillatory activity. The association between spontaneous [Ca(2+)](i) increases and nucleotide signalling was further tested in 132-1N1 cells lacking P2 receptors. These cells hardly showed any spontaneous [Ca(2+)](i) increases. Transfection with either hP2Y(6) or hP2Y(2) receptors revealed a striking degree of oscillations. Similar spontaneous [Ca(2+)](i) increases were observed in freshly isolated, perfused mouse medullary thick ascending limb (mTAL). The oscillatory activity was reduced by basolateral apyrase and substantially lower in mTAL from P2Y(2) knock out mice (0.050 +/- 0.020 events per second, n = 8) compared to the wild type (0.147 +/- 0.018 events per second, n = 9). These findings indicate that renal epithelia spontaneously release nucleotides leading to P2-receptor-dependent [Ca(2+)](i) oscillations. Thus, tonic nucleotide release is likely to modify steady state renal function.
Collapse
|
36
|
Kobayashi D, Ohkubo S, Nakahata N. Cooperation of calcineurin and ERK for UTP-induced IL-6 production in HaCaT keratinocytes. Eur J Pharmacol 2007; 573:249-52. [PMID: 17761160 DOI: 10.1016/j.ejphar.2007.07.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 07/25/2007] [Accepted: 07/26/2007] [Indexed: 10/23/2022]
Abstract
UTP causes IL-6 production in HaCaT keratinocytes, which is partially inhibited by PD98059, a mitogen-activated protein kinase kinase (MEK) inhibitor, suggesting that a pathway other than the extracellular signal-regulated kinase (ERK) pathway is involved in the production. In the present study, we examined the involvement of calcineurin in the UTP-induced interleukin (IL)-6 production in HaCaT keratinocytes. FK506 and cyclosporine A, calcineurin inhibitors, partially inhibited UTP-induced IL-6 mRNA expression and protein production. In addition, combined application of FK506 and PD98059 synergistically inhibited the UTP-induced IL-6 production. These results suggest that ERK and calcineurin are cooperatively involved in UTP-induced IL-6 production.
Collapse
Affiliation(s)
- Daisaku Kobayashi
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | | | | |
Collapse
|
37
|
Taboubi S, Milanini J, Delamarre E, Parat F, Garrouste F, Pommier G, Takasaki J, Hubaud JC, Kovacic H, Lehmann M. G alpha(q/11)-coupled P2Y2 nucleotide receptor inhibits human keratinocyte spreading and migration. FASEB J 2007; 21:4047-58. [PMID: 17609252 DOI: 10.1096/fj.06-7476com] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Reepithelialization is a critical step in wound healing. It is initiated by keratinocyte migration at the wound edges. After wounding, extracellular nucleotides are released by keratinocytes and other skin cells. Here, we report that activation of P2Y2 nucleotide receptor by ATP/UTP inhibits keratinocyte cell spreading and induces lamellipodium withdrawal. Kymography analysis demonstrates that these effects correlate with a durable decrease of lamellipodium dynamics. P2Y2 receptor activation also induces a dramatic dismantling of the actin network, the loss of alpha3 integrin expression at the cell periphery, and the dissolution of focal contacts as indicated by the alteration of alpha(v) integrins and focal contact protein distribution. In addition, activation of P2Y2R prevents growth factor-induced phosphorylation of Erk(1,2) and Akt/PkB. The use of a specific pharmacological inhibitor (YM-254890), the depletion of G alpha(q/11) by siRNA, or the expression of a constitutively active G alpha(q/11) mutant (Q209L) show that activation of G alpha(q/11) is responsible for these ATP/UTP-induced effects. Finally, we report that ATP delays growth factor-induced wound healing of keratinocyte monolayers. Collectively, these findings provide evidence for a unique and important role for extracellular nucleotides as efficient autocrine/paracrine regulators of keratinocyte shape and migration during wound healing.
Collapse
Affiliation(s)
- Salma Taboubi
- CISMET, FRE CNRS 2737, Faculté de Pharmacie, Université d'Aix-Marseille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
39
|
Kobayashi D, Ohkubo S, Nakahata N. Contribution of extracellular signal-regulated kinase to UTP-induced interleukin-6 biosynthesis in HaCaT keratinocytes. J Pharmacol Sci 2006; 102:368-76. [PMID: 17130674 DOI: 10.1254/jphs.fp0060669] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
UTP causes interleukin (IL)-6 production via mRNA expression through P2Y(2)/P2Y(4) receptors in human HaCaT keratinocytes. In the present study, we analyzed the mechanism of UTP-induced IL-6 production in these cells. UTP, an agonist of P2Y(2)/P2Y(4) receptors, induced phosphorylation of extracellular signal-regulated kinase (ERK) in a concentration- and time-dependent manner. PD98059, a MEK (mitogen-activated protein kinase kinase) inhibitor, and BAPTA-AM [O,O'-bis(2-aminophenyl)ethyleneglycol-N,N,N',N'-tetraacetic acid, tetraacetoxymethyl ester], an intracellular Ca(2+) chelator, reduced UTP-induced ERK phosphorylation and IL-6 mRNA expression. 2-APB [(2-aminoethoxy)diphenylborane], an inositol 1,4,5-trisphosphate (IP(3))-receptor antagonist, inhibited UTP-induced IL-6 mRNA expression; and the action of A23187, a Ca(2+) ionophore, resembled the action of UTP. In contrast, protein kinase C (PKC) downregulation and pertussis toxin did not affect UTP-induced IL-6 mRNA expression, suggesting that PKC and G(i) are not involved in the UTP-induced IL-6 production. However, AG1478, an epidermal growth factor (EGF)-receptor inhibitor, partially decreased UTP-induced ERK phosphorylation and IL-6 expression. These results suggest that UTP-induced IL-6 production is in part mediated via phosphorylation of ERK through G(q/11)/IP(3)/[Ca(2+)](i) and transactivation of the EGF receptor.
Collapse
MESH Headings
- Calcium Channel Blockers/pharmacology
- Calcium Signaling/drug effects
- Cells, Cultured
- Chelating Agents/pharmacology
- Dose-Response Relationship, Drug
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/metabolism
- Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors
- Extracellular Signal-Regulated MAP Kinases/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/antagonists & inhibitors
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Humans
- Inositol 1,4,5-Trisphosphate Receptors/antagonists & inhibitors
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Interleukin-6/biosynthesis
- Ionophores/pharmacology
- Keratinocytes/drug effects
- Keratinocytes/metabolism
- Pertussis Toxin/pharmacology
- Phosphorylation
- Protein Kinase C/metabolism
- Protein Kinase Inhibitors/pharmacology
- Purinergic P2 Receptor Agonists
- RNA, Messenger/biosynthesis
- Receptors, Purinergic P2
- Receptors, Purinergic P2Y2
- Time Factors
- Uridine Triphosphate/pharmacology
Collapse
Affiliation(s)
- Daisaku Kobayashi
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Sendai, Japan
| | | | | |
Collapse
|