1
|
Joseph D. The Unified Theory of Neurodegeneration Pathogenesis Based on Axon Deamidation. Int J Mol Sci 2025; 26:4143. [PMID: 40362380 PMCID: PMC12071446 DOI: 10.3390/ijms26094143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/21/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Until now, neurodegenerative diseases like Alzheimer's and Parkinson's have been studied separately in biochemistry and therapeutic drug development, and no causal link has ever been established between them. This study has developed a Unified Theory, which establishes that the regulation of axon and dendrite-specific 4E-BP2 deamidation rates controls the occurrence and progression of neurodegenerative diseases. This is based on identifying axon-specific 4E-BP2 deamidation as a universal denominator for the biochemical processes of deamidation, translational control, oxidative stress, and neurodegeneration. This was achieved by conducting a thorough and critical review of 224 scientific publications regarding (a) deamidation, (b) translational control in protein synthesis initiation, (c) neurodegeneration and (d) oxidative stress, and by applying my discovery of the fundamental neurobiological mechanism behind neuron-specific 4E-BP2 deamidation to practical applications in medicine. Based on this newly developed Unified Theory and my critical review of the scientific literature, I also designed three biochemical flowsheets of (1) in-vivo deamidation, (2) protein synthesis initiation and translational control, and (3) 4E-BP2 deamidation as a control system of the four biochemical processes. The Unified Theory of Neurodegeneration Pathogenesis based on axon deamidation, developed in this work, paves the way to controlling the occurrence and progression of neurodegenerative diseases such as Alzheimer's and Parkinson's through a unique, neuron-specific regulatory system that is 4E-BP2 deamidation, caused by the proteasome-poor environment in neuronal projections, consisting mainly of axons.
Collapse
Affiliation(s)
- Davis Joseph
- Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada;
- Flogen Technologies Inc., Mount Royal, QC H3P 2T1, Canada
| |
Collapse
|
2
|
Yao C, Shan Y, Cui B, Chen Z, Bi S, Wang T, Yan S, Lu J. Hyperconnectivity and Connectome Gradient Dysfunction of Cerebello-Thalamo-Cortical Circuitry in Alzheimer's Disease Spectrum Disorders. CEREBELLUM (LONDON, ENGLAND) 2025; 24:43. [PMID: 39913059 DOI: 10.1007/s12311-025-01792-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/17/2025] [Indexed: 02/07/2025]
Abstract
Cerebellar functional connectivity changes have been reported in Alzheimer's disease (AD), but a comprehensive framework integrating these findings is lacking. This retrospective study investigates the cerebello-thalamo-cortical (CTC) circuit in AD, using functional gradient analysis to elucidate deficits and potential biomarkers. We analyzed data from 246 participants enrolled in the Alzheimer's Disease Neuroimaging Initiative (ADNI-3; NCT02854033), including 58 with AD, 103 with mild cognitive impairment (MCI), and 85 cognitively normal (CN) controls, matched for age and sex. All individuals underwent comprehensive neuropsychological assessments (MMSE, MoCA, ADAS-Cog) and MRI scans. We extracted mean time series for 270 brain regions (an extended Power atlas) and computed pairwise functional connectivity, focusing on CTC circuitry. Thalamic and cerebellar connectivity gradients were derived using voxel-wise correlation matrices and the BrainSpace toolbox, defining thalamic and cerebellar masks from the Melbourne subcortical atlas and AAL atlas, respectively. ANCOVA with post hoc analyses, controlling for age and sex, was conducted to assess abnormal CTC connectivity across AD, MCI, and CN groups. LASSO regression identified edges within the CTC circuitry that significantly differed between AD and CN, MCI and CN, AD and MCI, as well as was used to construct Logistic classification model. Pearson correlations were performed to examine relationships between mean CTC connectivity, individual edges, and cognitive scores (MMSE, MoCA, ADAS-Cog). To explore the hierarchical organization of the thalamus and cerebellum, global gradient distributions were compared across groups using two-sample Kolmogorov-Smirnov tests. Additionally, ANCOVA was applied to compare subfield- and functional-level gradients of the thalamus and cerebellum among AD, MCI, and CN. False discovery rate (FDR) corrections were used, setting the statistical significance threshold was set at P < 0.05. AD and MCI individuals exhibited increased CTC connectivity compared to CN (all P < 0.05). Average CTC connectivity did not correlate with cognitive scores (P > 0.05), but specific CTC edges were correlated. LASSO regression identified 20 discriminative edges, achieving high accuracy in AD-CN classification (AUC = 0.92 training, AUC = 0.80 test). Thalamic and cerebellar gradient distributions differed significantly across groups (all P < 0.05), with specific regions showing distinct gradient scores. Five cerebellar functional networks exhibited decreased gradient scores. Significant CTC hyperconnectivity in AD and MCI compared with CN suggests early thalamic and cerebellar dysregulation. Classification analyses effectively distinguished AD vs. CN but were moderate for MCI vs. CN and limited for MCI vs. AD. Gradient analyses revealed global- and subfield-level disruptions in AD, emphasizing the role of thalamic and cerebellar interactions in cognitive decline and offering potential diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Chenyang Yao
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Yi Shan
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Bixiao Cui
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Zhigeng Chen
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Sheng Bi
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Tao Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Shaozhen Yan
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China.
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China.
| |
Collapse
|
3
|
Kang X, Wang D, Lin J, Yao H, Zhao K, Song C, Chen P, Qu Y, Yang H, Zhang Z, Zhou B, Han T, Liao Z, Chen Y, Lu J, Yu C, Wang P, Zhang X, Li M, Zhang X, Jiang T, Zhou Y, Liu B, Han Y, Liu Y. Convergent Neuroimaging and Molecular Signatures in Mild Cognitive Impairment and Alzheimer's Disease: A Data-Driven Meta-Analysis with N = 3,118. Neurosci Bull 2024; 40:1274-1286. [PMID: 38824231 PMCID: PMC11365916 DOI: 10.1007/s12264-024-01218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/24/2023] [Indexed: 06/03/2024] Open
Abstract
The current study aimed to evaluate the susceptibility to regional brain atrophy and its biological mechanism in Alzheimer's disease (AD). We conducted data-driven meta-analyses to combine 3,118 structural magnetic resonance images from three datasets to obtain robust atrophy patterns. Then we introduced a set of radiogenomic analyses to investigate the biological basis of the atrophy patterns in AD. Our results showed that the hippocampus and amygdala exhibit the most severe atrophy, followed by the temporal, frontal, and occipital lobes in mild cognitive impairment (MCI) and AD. The extent of atrophy in MCI was less severe than that in AD. A series of biological processes related to the glutamate signaling pathway, cellular stress response, and synapse structure and function were investigated through gene set enrichment analysis. Our study contributes to understanding the manifestations of atrophy and a deeper understanding of the pathophysiological processes that contribute to atrophy, providing new insight for further clinical research on AD.
Collapse
Affiliation(s)
- Xiaopeng Kang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dawei Wang
- Department of Radiology, Qilu Hospital of Shandong University, Ji'nan, 250063, China
| | - Jiaji Lin
- Department of Neurology, the Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, China
- Department of Radiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hongxiang Yao
- Department of Radiology, the Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Kun Zhao
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100191, China
| | - Chengyuan Song
- Department of Neurology, Qilu Hospital of Shandong University, Ji'nan, 250063, China
| | - Pindong Chen
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yida Qu
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongwei Yang
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Zengqiang Zhang
- Branch of Chinese, PLA General Hospital, Sanya, 572013, China
| | - Bo Zhou
- Department of Neurology, the Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Tong Han
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin, 300222, China
| | - Zhengluan Liao
- Department of Psychiatry, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Yan Chen
- Department of Psychiatry, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Pan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, 300222, China
| | - Xinqing Zhang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xi Zhang
- Department of Neurology, the Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Tianzi Jiang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuying Zhou
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, 300222, China
| | - Bing Liu
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- State Key Lab of Cognition Neuroscience & Learning, Beijing Normal University, Beijing, 100875, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
- National Clinical Research Center for Geriatric Disorders, Beijing, 100053, China.
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China.
| | - Yong Liu
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100191, China.
| |
Collapse
|
4
|
Lane RM, Darreh-Shori T, Junge C, Li D, Yang Q, Edwards AL, Graham DL, Moore K, Mummery CJ. Onset of Alzheimer disease in apolipoprotein ɛ4 carriers is earlier in butyrylcholinesterase K variant carriers. BMC Neurol 2024; 24:116. [PMID: 38594621 PMCID: PMC11003149 DOI: 10.1186/s12883-024-03611-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND The authors sought to examine the impact of the K-variant of butyrylcholinesterase (BCHE-K) carrier status on age-at-diagnosis of Alzheimer disease (AD) in APOE4 carriers. METHODS Patients aged 50-74 years with cerebrospinal fluid (CSF) biomarker-confirmed AD, were recruited to clinical trial (NCT03186989 since June 14, 2017). Baseline demographics, disease characteristics, and biomarkers were evaluated in 45 patients according to BCHE-K and APOE4 allelic status in this post-hoc study. RESULTS In APOE4 carriers (N = 33), the mean age-at-diagnosis of AD in BCHE-K carriers (n = 11) was 6.4 years earlier than in BCHE-K noncarriers (n = 22, P < .001, ANOVA). In APOE4 noncarriers (N = 12) there was no observed influence of BCHE-K. APOE4 carriers with BCHE-K also exhibited slightly higher amyloid and tau accumulations compared to BCHE-K noncarriers. A predominantly amyloid, limited tau, and limbic-amnestic phenotype was exemplified by APOE4 homozygotes with BCHE-K. In the overall population, multiple regression analyses demonstrated an association of amyloid accumulation with APOE4 carrier status (P < .029), larger total brain ventricle volume (P < .021), less synaptic injury (Ng, P < .001), and less tau pathophysiology (p-tau181, P < .005). In contrast, tau pathophysiology was associated with more neuroaxonal damage (NfL, P = .002), more synaptic injury (Ng, P < .001), and higher levels of glial activation (YKL-40, P = .01). CONCLUSION These findings have implications for the genetic architecture of prognosis in early AD, not the genetics of susceptibility to AD. In patients with early AD aged less than 75 years, the mean age-at-diagnosis of AD in APOE4 carriers was reduced by over 6 years in BCHE-K carriers versus noncarriers. The functional status of glia may explain many of the effects of APOE4 and BCHE-K on the early AD phenotype. TRIAL REGISTRATION NCT03186989 since June 14, 2017.
Collapse
Affiliation(s)
- Roger M Lane
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA.
| | - Taher Darreh-Shori
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatric, Karolinska Institutet, Stockholm, Sweden
| | - Candice Junge
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | - Dan Li
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | - Qingqing Yang
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | | | | | - Katrina Moore
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | | |
Collapse
|
5
|
Fessel J. Personalized, Precision Medicine to Cure Alzheimer's Dementia: Approach #1. Int J Mol Sci 2024; 25:3909. [PMID: 38612719 PMCID: PMC11012190 DOI: 10.3390/ijms25073909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
The goal of the treatment for Alzheimer's dementia (AD) is the cure of dementia. A literature review revealed 18 major elements causing AD and 29 separate medications that address them. For any individual with AD, one is unlikely to discern which major causal elements produced dementia. Thus, for personalized, precision medicine, all causal elements must be treated so that each individual patient will have her or his causal elements addressed. Twenty-nine drugs cannot concomitantly be administered, so triple combinations of drugs taken from that list are suggested, and each triple combination can be administered sequentially, in any order. Ten combinations given over 13 weeks require 2.5 years, or if given over 26 weeks, they require 5.0 years. Such sequential treatment addresses all 18 elements and should cure dementia. In addition, any comorbid risk factors for AD whose first presence or worsening was within ±1 year of when AD first appeared should receive appropriate, standard treatment together with the sequential combinations. The article outlines a randomized clinical trial that is necessary to assess the safety and efficacy of the proposed treatments; it includes a triple-drug Rx for equipoise. Clinical trials should have durations of both 2.5 and 5.0 years unless the data safety monitoring board (DSMB) determines earlier success or futility since it is uncertain whether three or six months of treatment will be curative in humans, although studies in animals suggest that the briefer duration of treatment might be effective and restore defective neural tracts.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Clinical Medicine, Department of Medicine, University of California, 2069 Filbert Street, San Francisco, CA 94123, USA
| |
Collapse
|
6
|
Freyssin A, Carles A, Guehairia S, Rubinstenn G, Maurice T. Fluoroethylnormemantine (FENM) shows synergistic protection in combination with a sigma-1 receptor agonist in a mouse model of Alzheimer's disease. Neuropharmacology 2024; 242:109733. [PMID: 37844867 DOI: 10.1016/j.neuropharm.2023.109733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
Fluoroethylnormemantine (FENM) is a Memantine derivative with anti-amnesic and neuroprotective activities showed in the Aβ25-35 pharmacological mouse model of Alzheimer's disease (AD). As AD is a complex multi-factorial neurodegenerative pathology, combination therapies relying on drugs acting through different pathways, have been suggested to more adequately address neuroprotection. As several agonists of the sigma-1 receptor (S1R), an intracellular chaperone, are presently in phase 2 or 3 clinical trials in neurodegenetrative diseases including AD, we examined the potentialities of S1R drug-based combinations with FENM, or Memantine. Aβ25-35-treated mice were treated with S1R agonists (PRE-084, Igmesine, Cutamesine) and/or FENM, or Memantine, during 7 days after intracerebroventricular administration of oligomerized Aβ25-35. Mice were then tested for spatial short-term memory on day 8 and non-spatial long-term memory on days 9-10, using the spontaneous alternation or passive avoidance tests, respectively. The FENM or Memantine combination with Donepezil, that non-selectively inhibits acetylcholinesterase and activates S1R, was also tested. The efficacy of combinations using maximal non-active or minimal active doses of S1R agonist or FENM was analyzed using calculations of the combination index, based on simple isobologram representation. Data showed that most of the FENM-based combinations led to synergistic protection against Aβ25-35-induced learning deficits, for both long- and short-term memory responses, with a higher efficiency on the latter. Memantine led to synergistic combination in short-term memory but poorly in long-term memory responses, with either PRE-084 or Donepezil. These study showed that drug combinations based on FENM and S1R agonists may lead to highly effective and synergistic protection in AD, particularly on short-term memory.
Collapse
Affiliation(s)
- Aline Freyssin
- MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France; ReST Therapeutics, Montpellier, France
| | - Allison Carles
- MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France
| | | | | | - Tangui Maurice
- MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France.
| |
Collapse
|
7
|
Dan L, Zhang Z. Alzheimer's disease: an axonal injury disease? Front Aging Neurosci 2023; 15:1264448. [PMID: 37927337 PMCID: PMC10620718 DOI: 10.3389/fnagi.2023.1264448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 11/07/2023] Open
Abstract
Alzheimer's disease (AD) is the primary cause of dementia and is anticipated to impose a substantial economic burden in the future. Over a significant period, the widely accepted amyloid cascade hypothesis has guided research efforts, and the recent FDA approval of an anti- amyloid-beta (Aβ) protofibrils antibody, believed to decelerate AD progression, has further solidified its significance. However, the excessive emphasis placed on the amyloid cascade hypothesis has overshadowed the physiological nature of Aβ and tau proteins within axons. Axons, specialized neuronal structures, sustain damage during the early stages of AD, exerting a pivotal influence on disease progression. In this review, we present a comprehensive summary of the relationship between axonal damage and AD pathology, amalgamating the physiological roles of Aβ and tau proteins, along with the impact of AD risk genes such as APOE and TREM2. Furthermore, we underscore the exceptional significance of axonal damage in the context of AD.
Collapse
Affiliation(s)
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
8
|
Christensen KR, Combs B, Richards C, Grabinski T, Alhadidy MM, Kanaan NM. Phosphomimetics at Ser199/Ser202/Thr205 in Tau Impairs Axonal Transport in Rat Hippocampal Neurons. Mol Neurobiol 2023; 60:3423-3438. [PMID: 36859689 PMCID: PMC10122714 DOI: 10.1007/s12035-023-03281-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/16/2023] [Indexed: 03/03/2023]
Abstract
Our understanding of the biological functions of the tau protein now includes its role as a scaffolding protein involved in signaling regulation, which also has implications for tau-mediated dysfunction and degeneration in Alzheimer's disease and other tauopathies. Recently, we found that pseudophosphorylation at sites linked to the pathology-associated AT8 phosphoepitope of tau disrupts normal fast axonal transport through a protein phosphatase 1 (PP1)-dependent pathway in squid axoplasm. Activation of the pathway and the resulting transport deficits required tau's N-terminal phosphatase-activating domain (PAD) and PP1 but the connection between tau and PP1 was not well defined. Here, we studied functional interactions between tau and PP1 isoforms and their effects on axonal transport in mammalian neurons. First, we found that wild-type tau interacted with PP1α and PP1γ primarily through its microtubule-binding repeat domain. Pseudophosphorylation of tau at S199/S202/T205 (psTau) increased PAD exposure, enhanced interactions with PP1γ, and increased active PP1γ levels in mammalian cells. Expression of psTau also significantly impaired axonal transport in primary rat hippocampal neurons. Deletion of PAD in psTau significantly reduced the interaction with PP1γ, eliminated increases of active PP1γ levels, and rescued axonal transport impairment in neurons. These data suggest that a functional consequence of phosphorylation within S199-T205 in tau, which occurs in AD and several other tauopathies, may be aberrant interaction with and activation of PP1γ and subsequent axonal transport disruption in a PAD-dependent fashion.
Collapse
Affiliation(s)
- Kyle R Christensen
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Benjamin Combs
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - Collin Richards
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - Tessa Grabinski
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - Mohammed M Alhadidy
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Nicholas M Kanaan
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA.
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA.
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
9
|
Bagheri S, Rashno M, Salehi I, Karimi SA, Raoufi S, Komaki A. Geraniol improves passive avoidance memory and hippocampal synaptic plasticity deficits in a rat model of Alzheimer's disease. Eur J Pharmacol 2023; 951:175714. [PMID: 37054939 DOI: 10.1016/j.ejphar.2023.175714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
Alzheimer's disease (AD) is the most progressive and irreversible neurodegenerative disease that leads to synaptic loss and cognitive decline. The present study was designed to evaluate the effects of geraniol (GR), a valuable acyclic monoterpene alcohol, with protective and therapeutic effects, on passive avoidance memory, hippocampal synaptic plasticity, and amyloid-beta (Aβ) plaques formation in an AD rat model induced by intracerebroventricular (ICV) microinjection of Aβ1-40. Seventy male Wistar rats were randomly into sham, control, control-GR (100 mg/kg; P.O. (orally), AD, GR-AD (100 mg/kg; P.O.; pretreatment), AD-GR (100 mg/kg; P.O.; treatment), and GR-AD-GR (100 mg/kg; P.O.; pretreatment & treatment). Administration of GR was continued for four consecutive weeks. Training for the passive avoidance test was carried out on the 36th day and a memory retention test was performed 24 h later. On day 38, hippocampal synaptic plasticity (long-term potentiation; LTP) was recorded in perforant path-dentate gyrus (PP-DG) synapses to assess field excitatory postsynaptic potentials (fEPSPs) slope and population spike (PS) amplitude. Subsequently, Aβ plaques were identified in the hippocampus by Congo red staining. The results showed that Aβ microinjection increased passive avoidance memory impairment, suppressed of hippocampal LTP induction, and enhanced of Aβ plaque formation in the hippocampus. Interestingly, oral administration of GR improved passive avoidance memory deficit, ameliorated hippocampal LTP impairment, and reduced Aβ plaque accumulation in the Aβ-infused rats. The results suggest that GR mitigates Aβ-induced passive avoidance memory impairment, possibly through alleviation of hippocampal synaptic dysfunction and inhibition of Aβ plaque formation.
Collapse
Affiliation(s)
- Shokufeh Bagheri
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masome Rashno
- Asadabad School of Medical Sciences, Asadabad, Iran; Student Research Committee, Asadabad School of Medical Sciences, Asadabad, Iran
| | - Iraj Salehi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Safoura Raoufi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran. http://umsha.ac.ir
| |
Collapse
|
10
|
Orciani C, Hall H, Pentz R, Foret MK, Do Carmo S, Cuello AC. Long-term nucleus basalis cholinergic depletion induces attentional deficits and impacts cortical neurons and BDNF levels without affecting the NGF synthesis. J Neurochem 2022; 163:149-167. [PMID: 35921478 DOI: 10.1111/jnc.15683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/26/2022]
Abstract
Basal forebrain cholinergic neurons (BFCNs) represent the main source of cholinergic innervation to the cortex and hippocampus and degenerate early in Alzheimer's disease (AD) progression. Phenotypic maintenance of BFCNs depends on levels of mature nerve growth factor (mNGF) and mature brain-derived neurotrophic factor (mBDNF), produced by target neurons and retrogradely transported to the cell body. Whether a reciprocal interaction where BFCN inputs impact neurotrophin availability and affect cortical neuronal markers is unknown. To address our hypothesis, we immunolesioned the nucleus basalis (nb), a basal forebrain cholinergic nuclei projecting mainly to the cortex, by bilateral stereotaxic injection of 192-IgG-Saporin (the cytotoxin Saporin binds p75ntr receptors expressed exclusively by BFCNs) in 2.5-month-old Wistar rats. At six months post-lesion, Saporin-injected rats (SAP) showed an impairment in a modified version of the 5-Choice Serial Reaction Time Task (5-choice task). Post-mortem analyses of the brain revealed a reduction of Choline Acetyltransferase-immunoreactive neurons compared to wild-type controls. A diminished number of cortical vesicular acetylcholine transporter-immunoreactive boutons was accompanied by a reduction in BDNF mRNA, mBDNF protein levels, markers of glutamatergic (vGluT1) and GABAergic (GAD65) neurons in the SAP-group compared to the controls. NGF mRNA, NGF precursor and mNGF protein levels were not affected. Additionally, cholinergic markers correlated with the attentional deficit and BDNF levels. Our findings demonstrate that while cholinergic nb loss impairs cognition and reduces cortical neuron markers, it produces differential effects on neurotrophin availability, affecting BDNF but not NGF levels.
Collapse
Affiliation(s)
- Chiara Orciani
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Helene Hall
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Rowan Pentz
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Morgan K Foret
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - A Claudio Cuello
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.,Department of Pharmacology, Oxford University, US (Visiting Professor)
| |
Collapse
|
11
|
Alterations of the Sympathoadrenal Axis Related to the Development of Alzheimer’s Disease in the 3xTg Mouse Model. BIOLOGY 2022; 11:biology11040511. [PMID: 35453710 PMCID: PMC9027376 DOI: 10.3390/biology11040511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Alzheimer’s disease (AD), the most common form of dementia, is becoming a global health problem and public health priority. In the advanced stages of AD, besides the initial cognitive symptoms, behavioral problems, particularly agitation and aggressiveness, become prevalent in AD patients. These non-cognitive symptoms could be related to alterations in the regulatory mechanism of the sympathetic nervous system. In this study, we used chromaffin cells (CCs) isolated from the adrenal gland of 3xTg (an AD mouse model) mice to characterize potential alterations in the regulation of the responses to stress mediated by the secretion of catecholamines. We compared these regulatory mechanisms in mice at two different ages: in 2-month-old mice, where no AD symptoms were observed, and in mice over 12 months of age, when AD-related cognitive impairment related was fully established. We found that the modulation of neurotransmitter release was stronger in CCs isolated from the adrenal medulla of 3xTg mice older than 12 months of age, an effect likely related to disease progression as it was not observed in CCs from age-matched wild-type (WT) mice. This enhanced modulation leads to an increased catecholamine release in response to stressful situations, which may explain the non-cognitive behavioral problems found in AD patients. Abstract Alzheimer’s disease (AD), the most common form of dementia, is becoming a global health problem and public health priority. In the advanced stages of AD, besides the initial cognitive symptoms, behavioral problems, particularly agitation and aggressiveness, become prevalent in AD patients. These non-cognitive symptoms could be related to a noradrenergic overactivation. In this study, we used chromaffin cells (CCs) isolated from the adrenal gland of 3xTg AD model mice to characterize potential alterations in the autocrine-paracrine modulation of voltage-dependent calcium channels (VDCCs), which in turn serve to regulate the release of catecholamines. We used mice at the presymptomatic stage (2 months) and mice over 12 months of age, when AD-related cognitive impairment was fully established. We found that the modulation of inward currents through VDCCs induced by extracellular ATP was stronger in CCs isolated from the adrenal medulla of 3xTg mice older than 12 months of age, an effect likely related to disease progression as it was not observed in CCs from age-matched WT mice. This enhanced modulation leads to increased catecholamine release in response to stressful situations, which may explain the non-cognitive behavioral problems found in AD patients.
Collapse
|
12
|
Singh YP, Kumar N, Priya K, Chauhan BS, Shankar G, Kumar S, Singh GK, Srikrishna S, Garg P, Singh G, Rai G, Modi G. Exploration of Neuroprotective Properties of a Naturally Inspired Multifunctional Molecule (F24) against Oxidative Stress and Amyloid β Induced Neurotoxicity in Alzheimer's Disease Models. ACS Chem Neurosci 2022; 13:27-42. [PMID: 34931800 DOI: 10.1021/acschemneuro.1c00443] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The pathological hallmarks of Alzheimer's disease (AD) are manifested as an increase in the level of oxidative stress and aggregation of the amyloid-β protein. In vitro, in vivo, and in silico experiments were designed and carried out with multifunctional cholinergic inhibitor, F24 (EJMC-7a) to explore its neuroprotective effects in AD models. The neuroprotection ability of F24 was tested in SH-SY5Y cells, a widely used neuronal cell line. The pretreatment and subsequent co-treatment of SH-SY5Y cells with different doses of F24 was effective in rescuing the cells from H2O2 induced neurotoxicity. F24 treated cells were found to be effective in the reduction of cellular reactive oxygen species, DNA damage, and Aβ1-42 induced neurotoxicity, which validated its neuroprotective effectiveness. F24 exhibited efficacy in an in vivo Drosophila model by rescuing eye phenotypes from degeneration caused by Aβ toxicity. Further, computational studies were carried out to monitor the interaction between F24 and Aβ1-42 aggregates. The computational studies corroborated our in vitro and in vivo studies suggesting Aβ1-42 aggregation modulation ability of F24. The brain entry ability of F24 was studied in the parallel artificial membrane permeability assay. Finally, F24 was tested at doses of 1 and 2.5 mg/kg in the Morris water maze AD model. The neuroprotective properties shown by F24 strongly suggest that multifunctional features of this molecule provide symptomatic relief and act as a disease-modifying agent in the treatment of AD. The results from our experiments strongly indicated that natural template-based F24 could serve as a lead molecule for further investigation to explore multifunctional therapeutic agents for AD management.
Collapse
Affiliation(s)
- Yash Pal Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Navneet Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160062 Punjab, India
| | - Khushbu Priya
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Brijesh Singh Chauhan
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Gauri Shankar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Gireesh Kumar Singh
- Department of Pharmacy, School of Health Science, Central University of South Bihar, Gaya, 824236 Bihar, India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160062 Punjab, India
| | - Gourav Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Geeta Rai
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
13
|
Burgaletto C, Di Benedetto G, Munafò A, Bernardini R, Cantarella G. Beneficial Effects of Choline Alphoscerate on Amyloid-β Neurotoxicity in an In vitro Model of Alzheimer's Disease. Curr Alzheimer Res 2021; 18:298-309. [PMID: 34102970 DOI: 10.2174/1567205018666210608093658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/17/2021] [Accepted: 04/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of neurodegenerative disorder characterized by cognitive impairment, which represents an urgent public health concern. Given the worldwide impact of AD, there is a compelling need for effective therapies to slow down or halt this disorder. OBJECTIVE Choline alphoscerate (α-GPC) represents a potentially effective cholinergic neurotrans- mission enhancing agent with an interesting clinical profile in cognitive dysfunctions improve- ment, although only scanty data are available about the mechanisms underlying such beneficial ef- fects. METHOD The SH-SY5Y neuronal cell line, differentiated for 1 week with 10 μm of all-trans-reti- noic acid (RA), to achieve a switch towards a cholinergic phenotype, was used as an in vitro model of AD. SH-SY5Y cells were pre-treated for 1h with α-GPC (100nM) and treated for 72 h with Aβ25-35 (10μM). RESULTS α-GPC was able to antagonize Aβ25-35 mediated neurotoxicity and attenuate the Aβ-in- duced phosphorylation of the Tau protein. Moreover, α-GPC exerted its beneficial effects by em- ploying the NGF/TrkA system, knocked down in AD and, consequently, by sustaining the expres- sion level of synaptic vesicle proteins, such as synaptophysin. CONCLUSION Taken together, our data suggest that α-GPC can have a role in neuroprotection in the course of toxic challenges with Aβ. Thus, a deeper understanding of the mechanism underlying its beneficial effect, could provide new insights into potential future pharmacological applications of its functional cholinergic enhancement, with the aim to mitigate AD and could represent the basis for innovative therapy.Recent Advances in Anti-Infective Drug Discovery.
Collapse
Affiliation(s)
- Chiara Burgaletto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Antonio Munafò
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy
| |
Collapse
|
14
|
Sublingual AKBA Exerts Antidepressant Effects in the Aβ-Treated Mouse Model. Biomolecules 2021; 11:biom11050686. [PMID: 34063630 PMCID: PMC8170916 DOI: 10.3390/biom11050686] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
The 3-O-acetyl-11-keto-β-boswellic acid (AKBA) is the most active compound of Boswellia serrata proposed for treating neurodegenerative disorders, including Alzheimer’s disease (AD), characterized in its early phase by alteration in mood. Accordingly, we have previously demonstrated that an intracerebroventricular injection of soluble amyloid beta 1-42 (Aβ) peptide evokes a depressive-like phenotype in rats. We tested the protective effects of AKBA in the mouse model of an Aβ-induced depressive-like phenotype. We evaluated the depressive-like behavior by using the tail suspension test (TST) and the splash test (ST). Behavioral analyses were accompanied by neurochemical quantifications, such as glutamate (GLU), kynurenine (KYN) and monoamines, and by biochemical measurements, such as glial fibrillary acid protein (GFAP), CD11b and nuclear factor kappa B (NF-kB), in mice prefrontal cortex (PFC) and hippocampus (HIPP). AKBA prevented the depressive-like behaviors induced by Aβ administration, since we recorded a reduction in latency to initiate self-care and total time spent to perform self-care in the ST and reduced time of immobility in the TST. Likewise, the increase in GLU and KYN levels in PFC and HIPP induced by the peptide injection were reverted by AKBA administration, as well as the displayed increase in levels of GFAP and NF-kB in both PFC and HIPP, but not in CD11b. Therefore, AKBA might represent a food supplement suitable as an adjuvant for therapy of depression in early-stage AD.
Collapse
|
15
|
Kim S, Kim HK, Baek AR, Sung B, Yang BW, Kim YH, Lee JJ, Yang JU, Shin CH, Jung H, Kim M, Cho AE, Lee T, Chang Y. Rose bengal conjugated gadolinium complex as a new multimodal imaging agent targeting presynaptic vesicular glutamate transporters. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Effects of vanillic acid on Aβ 1-40-induced oxidative stress and learning and memory deficit in male rats. Brain Res Bull 2021; 170:264-273. [PMID: 33652070 DOI: 10.1016/j.brainresbull.2021.02.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/14/2021] [Accepted: 02/24/2021] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, in which the accumulation of β-amyloid (Aβ) peptide in the extracellular space causes a progressive reduction in cognitive performance. Aβ stimulates active oxygen species generation leading to oxidative stress and neural cell death. Vanillic Acid (VA) is the oxidant form of vanillin widely found in vanilla beans. VA has many properties, such as suppressing apoptosis and eliminating the harmful effects of oxidative stress in animal models. The VA effects on impaired learning and memory in Aβ rats were assessed. Forty adults male Wistar rats were assigned to the following five groups in random: the control, sham (received saline (vehicle) via intracerebroventricular (ICV) injection), Aβ (received Aβ1-40 via ICV injection), VA (50 mg/kg by oral gavage once a day through four weeks), and Aβ + VA (50 mg/kg) groups. Open field test, novel object recognition (NOR) test, Morris water maze (MWM) test, and passive avoidance learning (PAL) task were performed, and finally, we determined the malondialdehyde (MDA), total antioxidant capacity (TAC) and total oxidant status (TOS) levels. Aβ decreased the cognitive memory in NOR, spatial memory in MWM, and passive avoidance memory in PAL tests. In contrast, VA improved learning and memory in the treated group. Aβ significantly increased MDA and TOS and decreased TAC levels, whereas VA treatment significantly reversed TAC, TOS and MDA levels. In conclusion, VA decreased the Aβ effects on learning and memory by suppressing oxidative stress and can be regarded as a neuroprotective substance in AD.
Collapse
|
17
|
Fernández-Pérez EJ, Gallegos S, Armijo-Weingart L, Araya A, Riffo-Lepe NO, Cayuman F, Aguayo LG. Changes in neuronal excitability and synaptic transmission in nucleus accumbens in a transgenic Alzheimer's disease mouse model. Sci Rep 2020; 10:19606. [PMID: 33177601 PMCID: PMC7659319 DOI: 10.1038/s41598-020-76456-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022] Open
Abstract
Several previous studies showed that hippocampus and cortex are affected in Alzheimer's disease (AD). However, other brain regions have also been found to be affected and could contribute with new critical information to the pathophysiological basis of AD. For example, volumetric studies in humans have shown a significant atrophy of the striatum, particularly in the nucleus Accumbens (nAc). The nAc is a key component of the limbic reward system and it is involved in cognition and emotional behaviors such as pleasure, fear, aggression and motivations, all of which are affected in neurodegenerative diseases such as AD. However, its role in AD has not been extensively studied. Therefore, using an AD mouse model, we investigated if the nAc was affected in 6 months old transgenic 2xTg (APP/PS1) mice. Immunohistochemistry (IHC) analysis in 2xTg mice showed increased intraneuronal Aβ accumulation, as well as occasional extracellular amyloid deposits detected through Thioflavin-S staining. Interestingly, the intracellular Aβ pathology was associated to an increase in membrane excitability in dissociated medium spiny neurons (MSNs) of the nAc. IHC and western blot analyses showed a decrease in glycine receptors (GlyR) together with a reduction in the pre- and post-synaptic markers SV2 and gephyrin, respectively, which correlated with a decrease in glycinergic miniature synaptic currents in nAc brain slices. Additionally, voltage-clamp recordings in dissociated MSNs showed a decrease in AMPA- and Gly-evoked currents. Overall, these results showed intracellular Aβ accumulation together with an increase in excitability and synaptic alterations in this mouse model. These findings provide new information that might help to explain changes in motivation, anhedonia, and learning in the onset of AD pathogenesis.
Collapse
Affiliation(s)
- E J Fernández-Pérez
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Barrio Universitario S/N, P. O. Box 160-C, Concepción, Chile.
| | - S Gallegos
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Barrio Universitario S/N, P. O. Box 160-C, Concepción, Chile.
| | - L Armijo-Weingart
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Barrio Universitario S/N, P. O. Box 160-C, Concepción, Chile
| | - A Araya
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Barrio Universitario S/N, P. O. Box 160-C, Concepción, Chile
| | - N O Riffo-Lepe
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Barrio Universitario S/N, P. O. Box 160-C, Concepción, Chile
| | - F Cayuman
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Barrio Universitario S/N, P. O. Box 160-C, Concepción, Chile
| | - L G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Barrio Universitario S/N, P. O. Box 160-C, Concepción, Chile.
| |
Collapse
|
18
|
Salvadores N, Gerónimo-Olvera C, Court FA. Axonal Degeneration in AD: The Contribution of Aβ and Tau. Front Aging Neurosci 2020; 12:581767. [PMID: 33192476 PMCID: PMC7593241 DOI: 10.3389/fnagi.2020.581767] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/09/2020] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) represents the most common age-related neurodegenerative disorder, affecting around 35 million people worldwide. Despite enormous efforts dedicated to AD research over decades, there is still no cure for the disease. Misfolding and accumulation of Aβ and tau proteins in the brain constitute a defining signature of AD neuropathology, and mounting evidence has documented a link between aggregation of these proteins and neuronal dysfunction. In this context, progressive axonal degeneration has been associated with early stages of AD and linked to Aβ and tau accumulation. As the axonal degeneration mechanism has been starting to be unveiled, it constitutes a promising target for neuroprotection in AD. A comprehensive understanding of the mechanism of axonal destruction in neurodegenerative conditions is therefore critical for the development of new therapies aimed to prevent axonal loss before irreversible neuronal death occurs in AD. Here, we review current evidence of the involvement of Aβ and tau pathologies in the activation of signaling cascades that can promote axonal demise.
Collapse
Affiliation(s)
- Natalia Salvadores
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Fondap Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Cristian Gerónimo-Olvera
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Fondap Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Felipe A Court
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Fondap Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,Buck Institute for Research on Aging, Novato, CA, United States
| |
Collapse
|
19
|
Tripathi RKP, Ayyannan SR. Exploration of dual fatty acid amide hydrolase and cholinesterase inhibitory potential of some 3‐hydroxy‐3‐phenacyloxindole analogs. Arch Pharm (Weinheim) 2020; 353:e2000036. [DOI: 10.1002/ardp.202000036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 01/15/2023]
Affiliation(s)
- Rati K. P. Tripathi
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of TechnologyBanaras Hindu University Varanasi Uttar Pradesh India
- Department of Pharmaceutical Science, Sushruta School of Medical and Paramedical SciencesAssam University (A Central University) Silchar Assam India
| | - Senthil R. Ayyannan
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of TechnologyBanaras Hindu University Varanasi Uttar Pradesh India
| |
Collapse
|
20
|
Mucke HA. Drug Repurposing Patent Applications July–September 2019. Assay Drug Dev Technol 2020. [DOI: 10.1089/adt.2019.969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
21
|
Vyas Y, Montgomery JM, Cheyne JE. Hippocampal Deficits in Amyloid-β-Related Rodent Models of Alzheimer's Disease. Front Neurosci 2020; 14:266. [PMID: 32317913 PMCID: PMC7154147 DOI: 10.3389/fnins.2020.00266] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is the most common cause of dementia. Symptoms of AD include memory loss, disorientation, mood and behavior changes, confusion, unfounded suspicions, and eventually, difficulty speaking, swallowing, and walking. These symptoms are caused by neuronal degeneration and cell loss that begins in the hippocampus, and later in disease progression spreading to the rest of the brain. While there are some medications that alleviate initial symptoms, there are currently no treatments that stop disease progression. Hippocampal deficits in amyloid-β-related rodent models of AD have revealed synaptic, behavioral and circuit-level defects. These changes in synaptic function, plasticity, neuronal excitability, brain connectivity, and excitation/inhibition imbalance all have profound effects on circuit function, which in turn could exacerbate disease progression. Despite, the wealth of studies on AD pathology we don't yet have a complete understanding of hippocampal deficits in AD. With the increasing development of in vivo recording techniques in awake and freely moving animals, future studies will extend our current knowledge of the mechanisms underpinning how hippocampal function is altered in AD, and aid in progression of treatment strategies that prevent and/or delay AD symptoms.
Collapse
Affiliation(s)
| | - Johanna M. Montgomery
- Department of Physiology, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Juliette E. Cheyne
- Department of Physiology, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
Shamsimeymandi R, Pourshojaei Y, Eskandari K, Mohammadi-Khanaposhtani M, Abiri A, Khodadadi A, Langarizadeh A, Sharififar F, Amirheidari B, Akbarzadeh T, Lotfian H, Foroumadi A, Asadipour A. Design, synthesis, biological evaluation, and molecular dynamics of novel cholinesterase inhibitors as anti-Alzheimer's agents. Arch Pharm (Weinheim) 2019; 352:e1800352. [PMID: 31136018 DOI: 10.1002/ardp.201800352] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 11/08/2022]
Abstract
A series of novel chroman-4-one derivatives were designed and synthesized successfully with good to excellent yield (3a-l). In addition, the obtained products were evaluated for their cholinesterase (ChE) inhibitory activities. The results show that among the various synthesized compounds, analogs bearing the piperidinyl ethoxy side chain with 4-hydroxybenzylidene on the 3-positions of chroman-4-one (3l) showed the most potent activity with respect to acetylcholinesterase (anti-AChE activity; IC50 = 1.18 μM). In addition, the structure-activity relationship was studied and the results revealed that the electron-donating groups on the aryl ring of the 3-benzylidene fragment (3k, 3l) resulted in the designed compounds to be more potent ChE inhibitors in comparison with those having electron-withdrawing groups (3h). In this category, the strongest ChE inhibition was found for the compound containing piperidine as cyclic amine, and a hydroxyl group (for AChE, compound 3l) and fluoro group (for butyrylcholinesterase (BuChE, compound 3i) on the para-position of the aryl ring of the benzylidene group. The molecular docking and dynamics studies of the most potent compounds (3i and 3l against BuChE and AChE, respectively) demonstrated remarkable interactions with the binding pockets of the ChE enzymes and confirmed the results obtained through in vitro experiments.
Collapse
Affiliation(s)
- Reza Shamsimeymandi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaghoub Pourshojaei
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khalil Eskandari
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Arash Khodadadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Amin Langarizadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fariba Sharififar
- Department of Pharmacognosy, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Bagher Amirheidari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahmineh Akbarzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hania Lotfian
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Foroumadi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Drug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Asadipour
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
23
|
Zhu Y, Shi Y, Cao C, Han Z, Liu M, Qi M, Huang R, Zhu Z, Qian D, Duan JA. Jia-Wei-Kai-Xin-San, an Herbal Medicine Formula, Ameliorates Cognitive Deficits via Modulating Metabolism of Beta Amyloid Protein and Neurotrophic Factors in Hippocampus of Aβ 1-42 Induced Cognitive Deficit Mice. Front Pharmacol 2019; 10:258. [PMID: 30941041 PMCID: PMC6433786 DOI: 10.3389/fphar.2019.00258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 02/28/2019] [Indexed: 12/20/2022] Open
Abstract
Jia-Wei-Kai-Xin-San (JWKXS) is a Chinese medicine formula applied for treating morbid forgetfulness in ancient China. Today, this formula is frequently applied for Alzheimer's disease and vascular dementia (VD) in clinic. Here, we developed it as granules and aimed to evaluate its anti-AD effect on β amyloid protein 1-42 (Aβ1-42) induced cognitive deficit mice and reveal the possible molecular mechanisms. Firstly, daily intra-gastric administration of chemically standardized of JWKXS granules for 7 days significantly ameliorated the cognitive deficit symptoms and inhibited cell apoptosis in hippocampus on Aβ1-42 injection mice. JWKXS granules significantly decreased Aβ level, increased superoxide dismutase activity and decreased malondialdehyde level in hippocampus of model mice. It also restored acetylcholine amounts, inhibited acetylcholinesterase activities and increased choline acetyltransferase activities. In addition, JWKXS granules enabled the transformation of precursors of NGF and BDNF into mature forms. Furthermore, JWKXS granules could regulate gene expressions related to Aβ production, transportation, degradation and neurotrophic factor transformation, which led to down-regulation of Aβ and up-regulation of NGF and BDNF. These findings suggested that JWKXS granules ameliorated cognitive deficit via decreasing Aβ levels, protecting neuron from oxidation damages and nourishing neuron, which could serve as alternative medicine for patients suffering from AD.
Collapse
Affiliation(s)
- Yue Zhu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiwei Shi
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng Cao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenxiang Han
- Department of Neurology and Rehabilitation, Shanghai Seventh People’s Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengqiu Liu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingzhu Qi
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Renjie Huang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziqiang Zhu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dawei Qian
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-ao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
24
|
Christensen KR, Beach TG, Serrano GE, Kanaan NM. Pathogenic tau modifications occur in axons before the somatodendritic compartment in mossy fiber and Schaffer collateral pathways. Acta Neuropathol Commun 2019; 7:29. [PMID: 30819250 PMCID: PMC6394076 DOI: 10.1186/s40478-019-0675-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 12/19/2022] Open
Abstract
The deposition of tau pathology in Alzheimer's disease (AD) may occur first in axons of neurons and then progress back into the cell bodies to form neurofibrillary tangles, however, studies have not directly analyzed this relationship in relatively discrete circuits within the human hippocampus. In the early phases of tau deposition, both AT8 phosphorylation and exposure of the amino terminus of tau occurs in tauopathies, and these modifications are linked to mechanisms of synaptic and axonal dysfunction. Here, we examined the localization of these tau pathologies in well-characterized post-mortem human tissue samples from the hippocampus of 44 cases ranging between non-demented and mild cognitively impaired to capture a time at which intrahippocampal pathways show a range in the extent of tau deposition. The tissue sections were analyzed for AT8 (AT8 antibody), amino terminus exposure (TNT2 antibody), and amyloid-β (MOAB2 antibody) pathology in hippocampal strata containing the axons and neuronal cell bodies of the CA3-Schaffer collateral and dentate granule-mossy fiber pathways. We show that tau pathology first appears in the axonal compartment of affected neurons in the absence of observable tau pathology in the corresponding cell bodies in several cases. Additionally, deposition of tau in these intrahippocampal pathways was independent of the presence of Aβ plaques. We confirmed that the majority of tau pathology positive neuropil threads were axonal in origin and not dendritic using an axonal marker (i.e. SMI312 antibody) and somatodendritic marker (i.e. MAP2 antibody). Taken together, these results support the hypothesis that AT8 phosphorylation and amino terminus exposure are early pathological events and that the deposition of tau pathology, at least in the studied pathways, occurs first in the axonal compartment prior to observable pathology in the somata. These findings highlight the importance on targeting tau deposition, ideally in the initial phases of its deposition in axons.
Collapse
Affiliation(s)
- Kyle R Christensen
- Department of Translational Science and Molecular Medicine, Michigan State University, College of Human Medicine, 400 Monroe Ave NW, Grand Rapids, MI, 49053, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | | | | | - Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine, Michigan State University, College of Human Medicine, 400 Monroe Ave NW, Grand Rapids, MI, 49053, USA.
- Neuroscience Program, Michigan State University, East Lansing, MI, USA.
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, USA.
| |
Collapse
|
25
|
Emerging Role of microRNAs in Dementia. J Mol Biol 2019; 431:1743-1762. [PMID: 30738891 DOI: 10.1016/j.jmb.2019.01.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/30/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022]
Abstract
MicroRNAs are small non-coding RNAs regulating mRNA translation. They play a crucial role in regulating homeostasis in neurons, especially in regulating local and stimulation dependent protein synthesis. Since activity-mediated protein synthesis in neurons is critical for memory and cognition, microRNAs have become key players in modulating these processes. Dementia is a broad term used for symptoms involving decline of memory and cognition. Several studies have implicated the dysregulation of microRNAs in many brain diseases like neurodegenerative diseases, neurodevelopmental disorders, brain injuries and dementia. In this review, we give an overview of microRNA-mediated regulation of proteins and cellular processes affected in dementia pathology, hence illustrating the importance of microRNAs in normal functioning. We also focus on a relatively less explored area in dementia pathology-the importance of activity-mediated protein synthesis at the synapse and the role of microRNAs in modulating this. Overall, this review will be helpful in looking at the significance of microRNAs in dementia from the perspective of defective regulation of protein synthesis and synaptic dysfunction.
Collapse
|
26
|
Merlo S, Spampinato SF, Beneventano M, Sortino MA. The contribution of microglia to early synaptic compensatory responses that precede β-amyloid-induced neuronal death. Sci Rep 2018; 8:7297. [PMID: 29740062 PMCID: PMC5940848 DOI: 10.1038/s41598-018-25453-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/17/2018] [Indexed: 12/31/2022] Open
Abstract
Glial-neuronal cross-talk has a critical role in the development of neurodegenerative conditions, including Alzheimer's Disease, where it affects neuronal responses to β-amyloid peptide (Aβ)-induced toxicity. We set out to identify factors regulating synaptic responses to Aβ, dissecting the specific role of glial signaling. A low concentration of aggregated Aβ42 induced selective up-regulation of mature brain-derived neurotrophic factor (BDNF) expression and release in rat organotypic hippocampal cultures as well as in cortical pure microglia. Conditioned media from resting (CMC) or Aβ42-treated (CMA) microglia were tested for their effects on synaptophysin expression in SH-SY5Y neuronal-like cells during challenge with Aβ42. Both CMC and CMA prevented Aβ-induced synaptophysin loss. In the presence of Aβ + CMA, synaptophysin was over-expressed, although it appeared partly clumped in cell bodies. Synaptophysin over-expression was not directly dependent on BDNF signaling on neuronal-like cells, but relied on autocrine BDNF action on microglia. FM1-43 labeling experiments revealed compromised synaptic vesicle recycling in Aβ42-treated neuronal-like cells, rescued by microglial conditioned medium. In these conditions, significant and prolonged neuroprotection was observed. Our results point to microglia as a target for early intervention, given its positive role in supporting neuronal compensatory responses to Aβ synaptotoxicity, which potentially lead to their extended survival.
Collapse
Affiliation(s)
- Sara Merlo
- Department of Biomedical and Biotechnological Sciences, section of Pharmacology, University of Catania, Catania, Italy
| | - Simona Federica Spampinato
- Department of Biomedical and Biotechnological Sciences, section of Pharmacology, University of Catania, Catania, Italy
| | - Martina Beneventano
- Department of Biomedical and Biotechnological Sciences, section of Pharmacology, University of Catania, Catania, Italy
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, section of Pharmacology, University of Catania, Catania, Italy.
| |
Collapse
|
27
|
Baazaoui N, Flory M, Iqbal K. Synaptic Compensation as a Probable Cause of Prolonged Mild Cognitive Impairment in Alzheimer's Disease: Implications from a Transgenic Mouse Model of the Disease. J Alzheimers Dis 2018; 56:1385-1401. [PMID: 28222506 DOI: 10.3233/jad-160845] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is a slow, progressive neurodegenerative disease in which cognitive decline takes place over a period of several years with a very variable period of mild cognitive impairment (MCI) and, in some cases, relatively long period before progression to dementia. The cognitive deficit during MCI is probably due to neuronal loss, an intermediate level of amyloid-β (Aβ) plaques and neurofibrillary tangles (NFT) and synaptosis, which is interrupted with a transient compensatory increase. We found impairment in reference memory accompanied by a decrease in the expression of synaptophysin, β-III tubulin, and MAP2 and a trend for GluR1, at 12 weeks of age in 3xTg-AD mice (hAPPSwe, P301L tau, PS1 [M146V] knock-in), a widely used transgenic model of AD. Past 12 weeks, the cross-sectional analysis of different age groups showed a compensatory increase in synaptic markers relative to that in wild type animals in a topographic and time-dependent manner. When studied across time we found that in 3xTg-AD mice, the compensatory phenomenon occurred in parallel in different regions of the brain. However, this attempt of the brain to repair itself was able to only partially rescue cognitive impairment. These findings for the first time raise the intriguing possibility that AD causing mutated transgenes may initially cause an increase in synaptic and dendritic markers as a compensatory mechanism for synaptic deficit, and this phenomenon, though transient, could be the biological basis of the period of MCI seen in AD.
Collapse
Affiliation(s)
- Narjes Baazaoui
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, NY, USA.,Graduate Program in Biology (Neuroscience), College of Staten Island (CSI), City University of New York (CUNY) Graduate Center, New York, NY, USA
| | - Michael Flory
- Research Design and Analysis Service, New York State Institute for Basic Research in DevelopmentalDisabilities, NY, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, NY, USA
| |
Collapse
|
28
|
Ntsapi C, Lumkwana D, Swart C, du Toit A, Loos B. New Insights Into Autophagy Dysfunction Related to Amyloid Beta Toxicity and Neuropathology in Alzheimer's Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 336:321-361. [DOI: 10.1016/bs.ircmb.2017.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Choi JG, Kim SY, Kim JW, Oh MS. Optimized-SopungSunkiwon, a Herbal Formula, Attenuates A β Oligomer-Induced Neurotoxicity in Alzheimer's Disease Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:7601486. [PMID: 29238386 PMCID: PMC5697377 DOI: 10.1155/2017/7601486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/28/2017] [Accepted: 10/17/2017] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD), the most common form of dementia, is an age-related neurodegenerative disease that is characterized by memory dysfunction, neuronal cell damage, and neuroinflammation. It is believed that AD-related pathology is mostly due to the overproduction of Aβ, especially the oligomeric form (AβO), in the brain. Evidence of the effects of multifunctional medicinal herbs in the treatment of AD has been steadily increasing. Optimized-SopungSunkiwon (OSS), a multiherbal formulation that is composed of six medicinal herbs derived from SopungSunkiwon, is a traditional medicine that is prescribed for neurodegenerative disorders in elderly patients. We previously reported that OSS showed an antiamnesic and memory enhancing effect in mice, but it is unknown whether OSS has a protective effect against AβO neurotoxicity. In this study, we investigated the effects of OSS in AD models induced by AβO in vitro and in vivo. We found that OSS protected neuronal cells and inhibited the generation of nitric oxide and reactive oxygen species against AβO toxicity in vitro. These results were confirmed by in vivo data that oral administration of OSS for 14 days attenuated memory impairments and neuronal cell death by modulating gliosis, glutathione depletion, and synaptic damage in the mouse hippocampus induced by AβO.
Collapse
Affiliation(s)
- Jin Gyu Choi
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21999, Republic of Korea
| | - Jong Woo Kim
- Department of Korean Neuropsychiatry, College of Korean Medicine and Institute of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
30
|
Synaptic Adhesion Molecule Pcdh-γC5 Mediates Synaptic Dysfunction in Alzheimer's Disease. J Neurosci 2017; 37:9259-9268. [PMID: 28842416 DOI: 10.1523/jneurosci.1051-17.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/22/2017] [Accepted: 08/14/2017] [Indexed: 11/21/2022] Open
Abstract
Synaptic dysfunction and neuronal excitatory/inhibitory imbalance have been implicated in Alzheimer's disease (AD) pathogenesis. Although intensive studies have been focused on the excitatory synaptic system, much less is known concerning the mechanisms mediating inhibitory synaptic dysfunction in AD. We reported previously that protocadherin-γC5 (Pcdh-γC5), a member of clustered Pcdh-γ subfamily of cadherin-type synaptic adhesion proteins, functions to promote GABAergic synaptic transmission. We reveal here that Pcdh-γC5 is enriched in vesicular GABA transporter-positive synaptic puncta and its expression levels are increased in neuronal hyperexcitation conditions, upon β-amyloid (Aβ) treatment, and in amyloid precursor protein (APP)/presenilin-1 (PS1)-transgenic mice of both sexes. This is associated with elevated levels of GABAergic proteins and enhanced synaptic inhibition. Genetic knock-down experiments showed that Pcdh-γC5 modulates spontaneous synaptic currents and Aβ-induced synaptic alterations directly. Our results support a model in which Pcdh-γC5 senses neuronal hyperexcitation to augment GABAergic inhibition. This adaptive mechanism may be dysregulated under chronic excitation conditions such as AD, leading to aberrant Pcdh-γC5 expression and associated synaptic dysfunction.SIGNIFICANCE STATEMENT Synaptic dysfunction is causal for Alzheimer's disease (AD). Here, we reveal a novel pathway that contributes GABAergic synaptic dysfunction in AD mediated by protocadherin-γC5. Our study not only identifies a new mechanism mediating excitatory/inhibitory balance in AD, but may also offer a new target for potential therapeutic intervention.
Collapse
|
31
|
Canu N, Amadoro G, Triaca V, Latina V, Sposato V, Corsetti V, Severini C, Ciotti MT, Calissano P. The Intersection of NGF/TrkA Signaling and Amyloid Precursor Protein Processing in Alzheimer's Disease Neuropathology. Int J Mol Sci 2017. [PMID: 28632177 PMCID: PMC5486140 DOI: 10.3390/ijms18061319] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Dysfunction of nerve growth factor (NGF) and its high-affinity Tropomyosin receptor kinase A (TrkA) receptor has been suggested to contribute to the selective degeneration of basal forebrain cholinergic neurons (BFCN) associated with the progressive cognitive decline in Alzheimer's disease (AD). The aim of this review is to describe our progress in elucidating the molecular mechanisms underlying the dynamic interplay between NGF/TrkA signaling and amyloid precursor protein (APP) metabolism within the context of AD neuropathology. This is mainly based on the finding that TrkA receptor binding to APP depends on a minimal stretch of ~20 amino acids located in the juxtamembrane/extracellular domain of APP that carries the α- and β-secretase cleavage sites. Here, we provide evidence that: (i) NGF could be one of the “routing” proteins responsible for modulating the metabolism of APP from amyloidogenic towards non-amyloidogenic processing via binding to the TrkA receptor; (ii) the loss of NGF/TrkA signaling could be linked to sporadic AD contributing to the classical hallmarks of the neuropathology, such as synaptic loss, β-amyloid peptide (Aβ) deposition and tau abnormalities. These findings will hopefully help to design therapeutic strategies for AD treatment aimed at preserving cholinergic function and anti-amyloidogenic activity of the physiological NGF/TrkA pathway in the septo-hippocampal system.
Collapse
Affiliation(s)
- Nadia Canu
- Department of System Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00137 Rome, Italy.
- Institute of Cellular Biology and Neurobiology, National Council of Research Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology, National Research Council (CNR) Rome, Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Viviana Triaca
- Institute of Cellular Biology and Neurobiology, National Council of Research Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| | - Valentina Latina
- Institute of Translational Pharmacology, National Research Council (CNR) Rome, Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Valentina Sposato
- European Brain Research Institute Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| | - Veronica Corsetti
- European Brain Research Institute Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| | - Cinzia Severini
- Institute of Cellular Biology and Neurobiology, National Council of Research Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| | - Maria Teresa Ciotti
- Institute of Cellular Biology and Neurobiology, National Council of Research Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| | - Pietro Calissano
- European Brain Research Institute Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| |
Collapse
|
32
|
Abstract
Autophagy is an essential degradation pathway in clearing abnormal protein aggregates in mammalian cells and is responsible for protein homeostasis and neuronal health. Several studies have shown that autophagy deficits occurred in early stage of Alzheimer's disease (AD). Autophagy plays an important role in generation and metabolism of β-amyloid (Aβ), assembling of tau and thus its malfunction may lead to the progress of AD. By considering the above evidences, autophagy may be a new target in developing drugs for AD. So far, a number of mammalian target of rapamycin (mTOR)-dependent and independent autophagy modulators have been identified to have positive effects in AD treatment. In this review, we summarized the latest progress supporting the role for autophagy deficits in AD and the potential therapeutic effects of autophagy modulators in AD.
Collapse
Affiliation(s)
- Qian Li
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Yi Liu
- Department of Neurology, Dalian Municipal Central Hospital, Affiliated Hospital of Dalian Medical University, Dalian, 116033, China
| | - Miao Sun
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 675 Hoes Lane West, Piscataway, NJ, 08854, USA.
| |
Collapse
|
33
|
Kocahan S, Doğan Z. Mechanisms of Alzheimer's Disease Pathogenesis and Prevention: The Brain, Neural Pathology, N-methyl-D-aspartate Receptors, Tau Protein and Other Risk Factors. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2017; 15:1-8. [PMID: 28138104 PMCID: PMC5290713 DOI: 10.9758/cpn.2017.15.1.1] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 12/31/2022]
Abstract
The characteristic features of Alzheimer’s disease (AD) are the appearance of extracellular amyloid-beta (Aβ) plaques and neurofibrillary tangles in the intracellular environment, neuronal death and the loss of synapses, all of which contribute to cognitive decline in a progressive manner. A number of hypotheses have been advanced to explain AD. Abnormal tau phosphorylation may contribute to the formation of abnormal neurofibrillary structures. Many different structures are susceptible to AD, including the reticular formation, the nuclei in the brain stem (e.g., raphe nucleus), thalamus, hypothalamus, locus ceruleus, amygdala, substantia nigra, striatum, and claustrum. Excitotoxicity results from continuous, low-level activation of N-methyl-D-aspartate (NMDA) receptors. Premature synaptotoxicity, changes in neurotransmitter expression, neurophils loss, accumulation of amyloid β-protein deposits (amyloid/senile plaques), and neuronal loss and brain atrophy are all associated with stages of AD progression. Several recent studies have examined the relationship between Aβ and NMDA receptors. Aβ-induced spine loss is associated with a decrease in glutamate receptors and is dependent upon the calcium-dependent phosphatase calcineurin, which has also been linked to long-term depression.
Collapse
Affiliation(s)
- Sayad Kocahan
- Department of Physiology, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey.,International Scientific Center, Baku State University, Baku, Azerbaijan
| | - Zumrut Doğan
- Department of Anatomy, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| |
Collapse
|
34
|
Tiernan CT, Combs B, Cox K, Morfini G, Brady ST, Counts SE, Kanaan NM. Pseudophosphorylation of tau at S422 enhances SDS-stable dimer formation and impairs both anterograde and retrograde fast axonal transport. Exp Neurol 2016; 283:318-29. [PMID: 27373205 PMCID: PMC4992631 DOI: 10.1016/j.expneurol.2016.06.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/22/2016] [Accepted: 06/28/2016] [Indexed: 12/17/2022]
Abstract
In Alzheimer's disease (AD), tau undergoes numerous modifications, including increased phosphorylation at serine-422 (pS422). In the human brain, pS422 tau protein is found in prodromal AD, correlates well with cognitive decline and neuropil thread pathology, and appears associated with increased oligomer formation and exposure of the N-terminal phosphatase-activating domain (PAD). However, whether S422 phosphorylation contributes to toxic mechanisms associated with disease-related forms of tau remains unknown. Here, we report that S422-pseudophosphorylated tau (S422E) lengthens the nucleation phase of aggregation without altering the extent of aggregation or the types of aggregates formed. When compared to unmodified tau aggregates, the S422E modification significantly increased the amount of SDS-stable tau dimers, despite similar levels of immunoreactivity with an oligomer-selective antibody (TOC1) and another antibody that reports PAD exposure (TNT1). Vesicle motility assays in isolated squid axoplasm further revealed that S422E tau monomers inhibited anterograde, kinesin-1 dependent fast axonal transport (FAT). Unexpectedly, and unlike unmodified tau aggregates, which selectively inhibit anterograde FAT, aggregates composed of S422E tau were found to inhibit both anterograde and retrograde FAT. Highlighting the relevance of these findings to human disease, pS422 tau was found to colocalize with tau oligomers and with a fraction of tau showing increased PAD exposure in the human AD brain. This study identifies novel effects of pS422 on tau biochemical properties, including prolonged nucleation and enhanced dimer formation, which correlate with a distinct inhibitory effect on FAT. Taken together, these findings identify a novel mechanistic basis by which pS422 confers upon tau a toxic effect that may directly contribute to axonal dysfunction in AD and other tauopathies.
Collapse
Affiliation(s)
- Chelsea T Tiernan
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Benjamin Combs
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Kristine Cox
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, IL 60612, USA
| | - Scott T Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, IL 60612, USA
| | - Scott E Counts
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Department of Family Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's Hospital, Grand Rapids, MI 49503, USA
| | - Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's Hospital, Grand Rapids, MI 49503, USA.
| |
Collapse
|
35
|
Montanari S, Scalvini L, Bartolini M, Belluti F, Gobbi S, Andrisano V, Ligresti A, Di Marzo V, Rivara S, Mor M, Bisi A, Rampa A. Fatty Acid Amide Hydrolase (FAAH), Acetylcholinesterase (AChE), and Butyrylcholinesterase (BuChE): Networked Targets for the Development of Carbamates as Potential Anti-Alzheimer's Disease Agents. J Med Chem 2016; 59:6387-406. [PMID: 27309570 DOI: 10.1021/acs.jmedchem.6b00609] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The modulation of the endocannabinoid system is emerging as a viable avenue for the treatment of neurodegeneration, being involved in neuroprotective and anti-inflammatory processes. In particular, indirectly enhancing endocannabinoid signaling to therapeutic levels through FAAH inhibition might be beneficial for neurodegenerative disorders such as Alzheimer's disease, effectively preventing or slowing the progression of the disease. Hence, in the search for a more effective treatment for Alzheimer's disease, in this paper, the multitarget-directed ligand paradigm was applied to the design of carbamates able to simultaneously target the recently proposed endocannabinoid system and the classic cholinesterase system, and achieve effective dual FAAH/cholinesterase inhibitors. Among the two series of synthesized compounds, while some derivatives proved to be extremely potent on a single target, compounds 9 and 19 were identified as effective dual FAAH/ChE inhibitors, with well-balanced nanomolar activities. Thus, 9 and 19 might be considered as new promising candidates for Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Serena Montanari
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna , Via Belmeloro 6, 40126 Bologna, Italy
| | - Laura Scalvini
- Department of Pharmacy, University of Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna , Via Belmeloro 6, 40126 Bologna, Italy
| | - Federica Belluti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna , Via Belmeloro 6, 40126 Bologna, Italy
| | - Silvia Gobbi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna , Via Belmeloro 6, 40126 Bologna, Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna , Corso d'Augusto 237, 47921 Rimini, Italy
| | - Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council , Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council , Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Silvia Rivara
- Department of Pharmacy, University of Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Marco Mor
- Department of Pharmacy, University of Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Alessandra Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna , Via Belmeloro 6, 40126 Bologna, Italy
| | - Angela Rampa
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna , Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
36
|
Rodriguez-Perdigon M, Tordera RM, Gil-Bea FJ, Gerenu G, Ramirez MJ, Solas M. Down-regulation of glutamatergic terminals (VGLUT1) driven by Aβ in Alzheimer's disease. Hippocampus 2016; 26:1303-12. [PMID: 27258819 DOI: 10.1002/hipo.22607] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2016] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is characterized phenotypically by memory impairment, histologically by accumulation of pTau and β-amyloid peptide and morphologically by a loss of nerve terminals in cortical and hippocampal regions. As glutamate is the principle excitatory neurotransmitter of the central nervous system (CNS), the glutamatergic system may play an important role in AD. To date, not many studies have addressed the deleterious effects of Aβ on glutamatergic terminals; therefore the aim of this study was to investigate how Aβ affects glutamatergic terminals and to assess the extent to which alterations in the glutamatergic neurotransmission could impact susceptibility to the illness. The present study shows that Aβ caused a loss of glutamatergic terminals, measured by VGLUT1 protein levels, in Tg2576 primary cell cultures, Tg2576 mice and AD patient brains, and also when Aβ was added exogenously to hippocampal cell cultures. Interestingly, no correlation was found between cognition and decreased VGLUT1 levels. Moreover, when Aβ1-42 was intracerebroventricularlly administered into VGLUT1+/- mice, altered synaptic plasticity and increased neuroinflammation was observed in the hippocampus of those animals. In conclusion, the present study not only revealed susceptibility of glutamatergic nerve terminals to Aβ induced toxicity but also underlined the importance of VGLUT1 in the progression of AD, as the decrease of this protein levels could increase the susceptibility to subsequent deleterious inputs by exacerbating Aβ induced neuroinflammation and synaptic plasticity disruption. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Rosa María Tordera
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona 31008, Spain.,IdiSNA Navarra Institute for Health Research, Pamplona, Spain
| | - Francisco Javier Gil-Bea
- Center for Applied Medical Research (CIMA), Neuroscience, University of Navarra, Pamplona, Spain
| | - Gorka Gerenu
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona 31008, Spain
| | - Maria Javier Ramirez
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona 31008, Spain.,IdiSNA Navarra Institute for Health Research, Pamplona, Spain
| | - Maite Solas
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona 31008, Spain. .,IdiSNA Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
37
|
Pan W, Han S, Kang L, Li S, Du J, Cui H. Effects of dihydrotestosterone on synaptic plasticity of the hippocampus in mild cognitive impairment male SAMP8 mice. Exp Ther Med 2016; 12:1455-1463. [PMID: 27588067 PMCID: PMC4997989 DOI: 10.3892/etm.2016.3470] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 06/21/2016] [Indexed: 01/03/2023] Open
Abstract
The current study focused on how dihydrotestosterone (DHT) regulates synaptic plasticity in the hippocampus of mild cognitive impairment male senescence-accelerated mouse prone 8 (SAMP8) mice. Five-month-old SAMP8 mice were divided into the control, castrated and castrated-DHT groups, in which the mice were castrated and treated with physiological doses of DHT for a period of 2 months. To determine the regulatory mechanisms of DHT in the cognitive capacity, the effects of DHT on the morphology of the synapse and the expression of synaptic marker proteins in the hippocampus were investigated using immunohistochemistry, qPCR and western blot analysis. The results showed that the expression of cAMP-response element binding protein (CREB), postsynaptic density protein 95 (PSD95), synaptophysin (SYN) and developmentally regulated brain protein (Drebrin) was reduced in the castrated group compared to the control group. However, DHT promoted the expression of CREB, PSD95, SYN and Drebrin in the hippocampus of the castrated-DHT group. Thus, androgen depletion impaired the synaptic plasticity in the hippocampus of SAMP8 and accelerated the development of Alzheimer's disease (AD)-like neuropathology, suggesting that a similar mechanism may underlie the increased risk for AD in men with low testosterone. In addition, DHT regulated synaptic plasticity in the hippocampus of mild cognitive impairment (MCI) SAMP8 mice and delayed the progression of disease to Alzheimer's dementia. In conclusion, androgen-based hormone therapy is a potentially useful strategy for preventing the progression of MCI in aging men. Androgens enhance synaptic markers (SYN, PSD95, and Drebrin), activate CREB, modulate the fundamental biology of synaptic structure, and lead to the structural changes of plasticity in the hippocampus, all of which result in improved cognitive function.
Collapse
Affiliation(s)
- Wensen Pan
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China; Department of Respiration Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Shuo Han
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Lin Kang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Sha Li
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Juan Du
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China; Hebei Key Laboratory for Brain Aging and Cognitive Neuroscience, Shijiazhuang, Hebei 050031, P.R. China
| |
Collapse
|
38
|
Li Y, Sun H, Chen Z, Xu H, Bu G, Zheng H. Implications of GABAergic Neurotransmission in Alzheimer's Disease. Front Aging Neurosci 2016; 8:31. [PMID: 26941642 PMCID: PMC4763334 DOI: 10.3389/fnagi.2016.00031] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/08/2016] [Indexed: 01/02/2023] Open
Abstract
Alzheimer's disease (AD) is characterized pathologically by the deposition of β-amyloid peptides (Aβ) and the accumulation of neurofibrillary tangles (NFTs) composed of hyper-phosphorylated tau. Regardless of the pathological hallmarks, synaptic dysfunction is widely accepted as a causal event in AD. Of the two major types of synapses in the central nervous system (CNS): glutamatergic and GABAergic, which provide excitatory and inhibitory outputs respectively, abundant data implicate an impaired glutamatergic system during disease progression. However, emerging evidence supports the notion that disrupted default neuronal network underlies impaired memory, and that alterations of GABAergic circuits, either plays a primary role or as a compensatory response to excitotoxicity, may also contribute to AD by disrupting the overall network function. The goal of this review is to provide an overview of the involvement of Aβ, tau and apolipoprotein E4 (apoE4), the major genetic risk factor in late-onset AD (LOAD), in GABAergic neurotransmission and the potential of modulating the GABAergic function as AD therapy.
Collapse
Affiliation(s)
- Yanfang Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University Xiamen, China
| | - Hao Sun
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University Xiamen, China
| | - Zhicai Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University Xiamen, China
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen UniversityXiamen, China; Neurodegenerative Disease Research Program, Sanford-Burnham Medical Research InstituteLa Jolla, CA, USA
| | - Guojun Bu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen UniversityXiamen, China; Department of Neuroscience, Mayo ClinicJacksonville, FL, USA
| | - Hui Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen UniversityXiamen, China; The Interdepartmental Program of Translational Biology and Molecular Medicine, Huffington Center on Aging, Baylor College of MedicineHouston, TX, USA
| |
Collapse
|
39
|
Parodi J, Ormeño D, Ochoa-de la Paz LD. Amyloid pore-channel hypothesis: effect of ethanol on aggregation state using frog oocytes for an Alzheimer's disease study. BMB Rep 2015; 48:13-8. [PMID: 25047445 PMCID: PMC4345636 DOI: 10.5483/bmbrep.2015.48.1.125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/01/2014] [Accepted: 07/17/2014] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease severely compromises cognitive function. One of the mechanisms to explain the pathology of Alzheimer’s disease has been the hypotheses of amyloid-pore/channel formation by complex Aβ-aggregates. Clinical studies suggested the moderate alcohol consumption can reduces probability developing neurodegenerative pathologies. A recent report explored the ability of ethanol to disrupt the generation of complex Aβ in vitro and reduce the toxicity in two cell lines. Molecular dynamics simulations were applied to understand how ethanol blocks the aggregation of amyloid. On the other hand, the in silico modeling showed ethanol effect over the dynamics assembling for complex Aβ-aggregates mediated by break the hydrosaline bridges between Asp 23 and Lys 28, was are key element for amyloid dimerization. The amyloid pore/channel hypothesis has been explored only in neuronal models, however recently experiments suggested the frog oocytes such an excellent model to explore the mechanism of the amyloid pore/channel hypothesis. So, the used of frog oocytes to explored the mechanism of amyloid aggregates is new, mainly for amyloid/pore hypothesis. Therefore, this experimental model is a powerful tool to explore the mechanism implicates in the Alzheimer’s disease pathology and also suggests a model to prevent the Alzheimer’s disease pathology. [BMB Reports 2015; 48(1): 13-18]
Collapse
Affiliation(s)
- Jorge Parodi
- Laboratorio de Fisiología de la Reproducción, Núcleo de Investigaciónen Producción Alimentaria, Facultad de Recursos Naturales, Escuela de Medicina Veterinaria, Universidad Católica de Temuco, Temuco, Chile
| | - David Ormeño
- Laboratorio de Fisiología de la Reproducción, Núcleo de Investigaciónen Producción Alimentaria, Facultad de Recursos Naturales, Escuela de Medicina Veterinaria, Universidad Católica de Temuco, Temuco, Chile
| | - Lenin D Ochoa-de la Paz
- Laboratorio de Fisiología Celular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, México
| |
Collapse
|
40
|
MRZ-99030 – A novel modulator of Aβ aggregation: II – Reversal of Aβ oligomer-induced deficits in long-term potentiation (LTP) and cognitive performance in rats and mice. Neuropharmacology 2015; 92:170-82. [DOI: 10.1016/j.neuropharm.2014.12.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/28/2014] [Accepted: 12/02/2014] [Indexed: 11/21/2022]
|
41
|
Sil S, Ghosh R, Sanyal M, Guha D, Ghosh T. A comparison of neurodegeneration linked with neuroinflammation in different brain areas of rats after intracerebroventricular colchicine injection. J Immunotoxicol 2015; 13:181-90. [PMID: 25812625 DOI: 10.3109/1547691x.2015.1030804] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Colchicine induces neurodegeneration, but the extent of neurodegeneration in different areas of the brain in relation to neuroinflammation remains unclear. Such information may be useful to allow for the development of a model to compare colchicine-induced neurodegeneration with other neurodegenerative diseases such as Alzheimer's Disease (AD). The present study was designed to investigate the extent of neurodegeneration along with neuroinflammation in different areas of the brain, e.g. frontal cortex, parietal cortex, occipital cortex, corpus striatum, amygdala and hippocampus, in rats along with memory impairment 21 days after a single intracerebroventricular (icv) injection of colchicine. Memory parameters were measured before and after icv colchicine injection in all test groups of rats (control, sham-operated, colchicine-injected [ICIR] rats). On Day 21 post-injection, rats from all groups were anesthesized and tissues from the various brain areas were collected for assessment of biomarkers of neuroinflammation (i.e. levels of ROS, nitrite and proinflammatory cytokines TNFα and IL-1β) and neurodegeneration (assessed histologically). The single injection of colchicine resulted in impaired memory and neurodegeneration (significant presence of plaques, Nissl granule chromatolysis) in various brain areas (frontal cortex, amygdala, parietal cortex, corpus striatum), with maximum severity in the hippocampus. While IL-1β, TNFα, ROS and nitrite levels were altered in different brain areas in the ICIR rats, these parameters had their greatest change in the hippocampus. This study showed that icv injection of colchicine caused strong neurodegeneration and neuroinflammation in the hippocampus of rats and the increases in neurodegeneration were corroborated with those of neuroinflammation at the site. The present study also showed that the extent of neurodegeneration and neuroinflammation in different brain areas of the colchicine-injected rats were AD-like and supported the fact that such rats might have the ability to serve as a sporadic model of AD.
Collapse
Affiliation(s)
- Susmita Sil
- a Department of Physiology , University College of Science and Technology and
| | - Rupsa Ghosh
- a Department of Physiology , University College of Science and Technology and
| | - Moumita Sanyal
- a Department of Physiology , University College of Science and Technology and
| | - Debjani Guha
- b S. N. Pradhan Centre for Neurosciences, University of Calcutta , West Bengal , India
| | - Tusharkanti Ghosh
- a Department of Physiology , University College of Science and Technology and
| |
Collapse
|
42
|
Lauzon MA, Daviau A, Marcos B, Faucheux N. Growth factor treatment to overcome Alzheimer's dysfunctional signaling. Cell Signal 2015; 27:1025-38. [PMID: 25744541 DOI: 10.1016/j.cellsig.2015.02.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/16/2015] [Indexed: 10/23/2022]
Abstract
The number of people suffering from Alzheimer's disease (AD) will increase as the world population ages, creating a huge socio-economic burden. The three pathophysiological hallmarks of AD are the cholinergic system dysfunction, the β-amyloid peptide deposition and the Tau protein hyperphosphorylation. Current treatments have only transient effects and each tends to concentrate on a single pathophysiological aspect of AD. This review first provides an overall view of AD in terms of its pathophysiological symptoms and signaling dysfunction. We then examine the therapeutic potential of growth factors (GFs) by showing how they can overcome the dysfunctional cell signaling that occurs in AD. Finally, we discuss new alternatives to GFs that help overcome the problem of brain uptake, such as small peptides, with evidence from some of our unpublished data on human neuronal cell line.
Collapse
Affiliation(s)
- Marc-Antoine Lauzon
- Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Alex Daviau
- Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Bernard Marcos
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Nathalie Faucheux
- Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada.
| |
Collapse
|
43
|
Parsons CG, Ruitenberg M, Freitag CE, Sroka-Saidi K, Russ H, Rammes G. MRZ-99030 - A novel modulator of Aβ aggregation: I - Mechanism of action (MoA) underlying the potential neuroprotective treatment of Alzheimer's disease, glaucoma and age-related macular degeneration (AMD). Neuropharmacology 2015; 92:158-69. [PMID: 25634238 DOI: 10.1016/j.neuropharm.2014.12.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/28/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
Therapeutic approaches addressing β-amyloid1-42 (Aβ1-42) aggregation represent a promising neuroprotective strategy for the treatment of Alzheimer's disease, dry age-related macular degeneration (AMD) and glaucoma. MRZ-99030 is a dipeptide containing d-tryptophan and 2-amino-2-methylpropionic acid in clinical development for the topical treatment of glaucoma and AMD. MRZ-99030 is an Aβ aggregation modulator, previously reported to prevent the formation of soluble toxic oligomeric Aβ species. The present study confirmed that MRZ-99030 prevents the formation of oligomeric Aβ species using similar SDS-PAGE experiments. However, additional data from TR-FRET, DLS and AFM experiments revealed that MRZ-99030 does not directly prevent early protein/protein interactions between monomeric Aβ, but rather promotes the formation of large, non-amyloidogenic, amorphous Aβ aggregates and thereby reduces the amount of intermediate toxic soluble oligomeric Aβ species. The affinity of MRZ-99030 to Aβ1-42 determined by SPR was 28.4 nM but the ratio of compound to Aβ is also important: a 10-20 fold excess of MRZ-99030 over Aβ is probably required for effective modulation of protein/protein interactions. For example, in glaucoma, assuming a maximal Aβ concentration of 1-15 nM in the retina, up to 150 nM MRZ-99030 could be required at the protein target. In line with this consideration, MRZ-99030 was able to prevent Aβ-induced toxicity on PC12 cells, retinal ganglion cells and retinal pigment epithelium cells when present at a 10-20 fold stoichiometric excess over Aβ. Moreover, in vivo studies demonstrate the neuroprotective potential of MRZ-99030 after systemic and topical administration in animal models of Alzheimer's disease and glaucoma/AMD respectively.
Collapse
Affiliation(s)
| | - Maarten Ruitenberg
- Merz Pharmaceuticals, Eckenheimer Landstrasse 100, D-60318 Frankfurt, Germany
| | - Christine E Freitag
- Merz Pharmaceuticals, Eckenheimer Landstrasse 100, D-60318 Frankfurt, Germany
| | - Kamila Sroka-Saidi
- Merz Pharmaceuticals, Eckenheimer Landstrasse 100, D-60318 Frankfurt, Germany
| | - Hermann Russ
- Merz Pharmaceuticals, Eckenheimer Landstrasse 100, D-60318 Frankfurt, Germany
| | - Gerhard Rammes
- Department of Anaesthesiology, Technische Universität München, D-81675, Germany
| |
Collapse
|
44
|
Nimmrich V, Eckert A. Calcium channel blockers and dementia. Br J Pharmacol 2014; 169:1203-10. [PMID: 23638877 DOI: 10.1111/bph.12240] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/15/2013] [Accepted: 04/22/2013] [Indexed: 12/25/2022] Open
Abstract
Degenerative dementia is mainly caused by Alzheimer's disease and/or cerebrovascular abnormalities. Disturbance of the intracellular calcium homeostasis is central to the pathophysiology of neurodegeneration. In Alzheimer's disease, enhanced calcium load may be brought about by extracellular accumulation of amyloid-β. Recent studies suggest that soluble forms facilitate influx through calcium-conducting ion channels in the plasma membrane, leading to excitotoxic neurodegeneration. Calcium channel blockade attenuates amyloid-β-induced neuronal decline in vitro and is neuroprotective in animal models. Vascular dementia, on the other hand, is caused by cerebral hypoperfusion and may benefit from calcium channel blockade due to relaxation of the cerebral vasculature. Several calcium channel blockers have been tested in clinical trials of dementia and the outcome is heterogeneous. Nimodipine as well as nilvadipine prevent cognitive decline in some trials, whereas other calcium channel blockers failed. In trials with a positive outcome, BP reduction did not seem to play a role in preventing dementia, indicating a direct protecting effect on neurons. An optimization of calcium channel blockers for the treatment of dementia may involve an increase of selectivity for presynaptic calcium channels and an improvement of the affinity to the inactivated state. Novel low molecular weight compounds suitable for proof-of-concept studies are now available.
Collapse
Affiliation(s)
- V Nimmrich
- Neuroscience Research, GPRD, AbbVie GmbH, Ludwigshafen, Germany.
| | | |
Collapse
|
45
|
Rai S, Kamat PK, Nath C, Shukla R. Glial Activation and Synaptic Neurotoxicity in Alzheimer's disease: A Focus on Neuroinflammation. ACTA ACUST UNITED AC 2014. [DOI: 10.5567/pharmacologia.2014.286.297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Iulita MF, Cuello AC. Nerve growth factor metabolic dysfunction in Alzheimer's disease and Down syndrome. Trends Pharmacol Sci 2014; 35:338-48. [PMID: 24962069 DOI: 10.1016/j.tips.2014.04.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/16/2014] [Accepted: 04/30/2014] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative condition and the most common type of amnestic dementia in the elderly. Individuals with Down syndrome (DS) are at increased risk of developing AD in adulthood as a result of chromosome 21 trisomy and triplication of the amyloid precursor protein (APP) gene. In both conditions, the central nervous system (CNS) basal forebrain cholinergic system progressively degenerates, and such changes contribute to the manifestation of cognitive decline and dementia. Given the strong dependency of these neurons on nerve growth factor (NGF), it was hypothesized that their atrophy was caused by NGF deficits. However, in AD, the synthesis of NGF is not affected at the transcript level and there is a marked increase in its precursor, proNGF. This apparent paradox remained elusive for many years. In this review, we discuss the recent evidence supporting a CNS deficit in the extracellular metabolism of NGF, both in AD and in DS brains. We describe the nature of this trophic disconnection and its implication for the atrophy of basal forebrain cholinergic neurons. We further discuss the potential of NGF pathway markers as diagnostic indicators of a CNS trophic disconnection.
Collapse
Affiliation(s)
- M Florencia Iulita
- Department of Pharmacology and Therapeutics, McGill University, Montreal, H3G1Y6, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, H3G1Y6, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, H3G1Y6, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, H3G1Y6, Canada.
| |
Collapse
|
47
|
Canas PM, Simões AP, Rodrigues RJ, Cunha RA. Predominant loss of glutamatergic terminal markers in a β-amyloid peptide model of Alzheimer's disease. Neuropharmacology 2014; 76 Pt A:51-6. [DOI: 10.1016/j.neuropharm.2013.08.026] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/18/2013] [Accepted: 08/28/2013] [Indexed: 12/18/2022]
|
48
|
Crouzin N, Baranger K, Cavalier M, Marchalant Y, Cohen-Solal C, Roman FS, Khrestchatisky M, Rivera S, Féron F, Vignes M. Area-specific alterations of synaptic plasticity in the 5XFAD mouse model of Alzheimer's disease: dissociation between somatosensory cortex and hippocampus. PLoS One 2013; 8:e74667. [PMID: 24069328 PMCID: PMC3775744 DOI: 10.1371/journal.pone.0074667] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/04/2013] [Indexed: 11/27/2022] Open
Abstract
Transgenic mouse models of Alzheimer’s disease (AD) that overproduce the amyloid beta peptide (Aβ) have highlighted impairments of hippocampal long-term synaptic plasticity associated with the progression of the disease. Here we examined whether the characteristics of one of the hallmarks of AD, i.e. Aβ deposition, in both the somatosensory cortex and the hippocampus, correlated with specific losses of synaptic plasticity in these areas. For this, we evaluated the occurrence of long-term potentiation (LTP) in the cortex and the hippocampus of 6-month old 5xFAD transgenic mice that exhibited massive Aβ deposition in both regions but with different features: in cortical areas a majority of Aβ deposits comprised a dense core surrounded by a diffuse corona while such kind of Aβ deposition was less frequently observed in the hippocampus. In order to simultaneously monitor synaptic changes in both areas, we developed a method based on the use of Multi-Electrode Arrays (MEA). When compared with wild-type (WT) mice, basal transmission was significantly reduced in both areas in 5xFAD mice, while short-term synaptic plasticity was unaffected. The induction of long-term changes of synaptic transmission by different protocols revealed that in 5xFAD mice, LTP in the layer 5 of the somatosensory cortex was more severely impaired than LTP triggered in the CA1 area of the hippocampus. We conclude that cortical plasticity is deficient in the 5xFAD model and that this deficit could be correlated with the proportion of diffuse plaques in 5xFAD mice.
Collapse
Affiliation(s)
- Nadine Crouzin
- Laboratory UMR7259 ‘Neurobiologie des Interactions Cellulaires et Neurophysiopathologie’, Aix-Marseille University, Marseille, France
- Laboratory UMR7259 ‘Neurobiologie des Interactions Cellulaires et Neurophysiopathologie’, CNRS, Marseille, France
| | - Kevin Baranger
- Laboratory UMR7259 ‘Neurobiologie des Interactions Cellulaires et Neurophysiopathologie’, Aix-Marseille University, Marseille, France
- Laboratory UMR7259 ‘Neurobiologie des Interactions Cellulaires et Neurophysiopathologie’, CNRS, Marseille, France
| | - Mélanie Cavalier
- Laboratory UMR5247 ‘Institut des Biomolécules Max Mousseron’, University of Montpellier 1, University of Montpellier 2, CNRS, Montpellier, France
| | - Yannick Marchalant
- Laboratory UMR7259 ‘Neurobiologie des Interactions Cellulaires et Neurophysiopathologie’, Aix-Marseille University, Marseille, France
- Laboratory UMR7259 ‘Neurobiologie des Interactions Cellulaires et Neurophysiopathologie’, CNRS, Marseille, France
| | - Catherine Cohen-Solal
- Laboratory UMR5247 ‘Institut des Biomolécules Max Mousseron’, University of Montpellier 1, University of Montpellier 2, CNRS, Montpellier, France
| | - François S. Roman
- Laboratory UMR7259 ‘Neurobiologie des Interactions Cellulaires et Neurophysiopathologie’, Aix-Marseille University, Marseille, France
- Laboratory UMR7259 ‘Neurobiologie des Interactions Cellulaires et Neurophysiopathologie’, CNRS, Marseille, France
| | - Michel Khrestchatisky
- Laboratory UMR7259 ‘Neurobiologie des Interactions Cellulaires et Neurophysiopathologie’, Aix-Marseille University, Marseille, France
- Laboratory UMR7259 ‘Neurobiologie des Interactions Cellulaires et Neurophysiopathologie’, CNRS, Marseille, France
| | - Santiago Rivera
- Laboratory UMR7259 ‘Neurobiologie des Interactions Cellulaires et Neurophysiopathologie’, Aix-Marseille University, Marseille, France
- Laboratory UMR7259 ‘Neurobiologie des Interactions Cellulaires et Neurophysiopathologie’, CNRS, Marseille, France
| | - François Féron
- Laboratory UMR7259 ‘Neurobiologie des Interactions Cellulaires et Neurophysiopathologie’, Aix-Marseille University, Marseille, France
- Laboratory UMR7259 ‘Neurobiologie des Interactions Cellulaires et Neurophysiopathologie’, CNRS, Marseille, France
| | - Michel Vignes
- Laboratory UMR5247 ‘Institut des Biomolécules Max Mousseron’, University of Montpellier 1, University of Montpellier 2, CNRS, Montpellier, France
- * E-mail:
| |
Collapse
|
49
|
Mota SI, Ferreira IL, Rego AC. Dysfunctional synapse in Alzheimer's disease - A focus on NMDA receptors. Neuropharmacology 2013; 76 Pt A:16-26. [PMID: 23973316 DOI: 10.1016/j.neuropharm.2013.08.013] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/03/2013] [Accepted: 08/08/2013] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly. Alterations capable of causing brain circuitry dysfunctions in AD may take several years to develop. Oligomeric amyloid-beta peptide (Aβ) plays a complex role in the molecular events that lead to progressive loss of function and eventually to neurodegeneration in this devastating disease. Moreover, N-methyl-D-aspartate (NMDA) receptors (NMDARs) activation has been recently implicated in AD-related synaptic dysfunction. Thus, in this review we focus on glutamatergic neurotransmission impairment and the changes in NMDAR regulation in AD, following the description on the role and location of NMDARs at pre- and post-synaptic sites under physiological conditions. In addition, considering that there is currently no effective ways to cure AD or stop its progression, we further discuss the relevance of NMDARs antagonists to prevent AD symptomatology. This review posits additional information on the role played by Aβ in AD and the importance of targeting the tripartite glutamatergic synapse in early asymptomatic and possible reversible stages of the disease through preventive and/or disease-modifying therapeutic strategies. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- Sandra I Mota
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal.
| | | | | |
Collapse
|
50
|
Kanaan NM, Pigino GF, Brady ST, Lazarov O, Binder LI, Morfini GA. Axonal degeneration in Alzheimer's disease: when signaling abnormalities meet the axonal transport system. Exp Neurol 2013; 246:44-53. [PMID: 22721767 PMCID: PMC3465504 DOI: 10.1016/j.expneurol.2012.06.003] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 04/17/2012] [Accepted: 06/09/2012] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is characterized by progressive, age-dependent degeneration of neurons in the central nervous system. A large body of evidence indicates that neurons affected in AD follow a dying-back pattern of degeneration, where abnormalities in synaptic function and axonal connectivity long precede somatic cell death. Mechanisms underlying dying-back degeneration of neurons in AD remain elusive but several have been proposed, including deficits in fast axonal transport (FAT). Accordingly, genetic evidence linked alterations in FAT to dying-back degeneration of neurons, and FAT defects have been widely documented in various AD models. In light of these findings, we discuss experimental evidence linking several AD-related pathogenic polypeptides to aberrant activation of signaling pathways involved in the phosphoregulation of microtubule-based motor proteins. While each pathway appears to affect FAT in a unique manner, in the context of AD, many of these pathways might work synergistically to compromise the delivery of molecular components critical for the maintenance and function of synapses and axons. Therapeutic approaches aimed at preventing FAT deficits by normalizing the activity of specific protein kinases may help prevent degeneration of vulnerable neurons in AD.
Collapse
Affiliation(s)
- Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | | | | | | | | | | |
Collapse
|