1
|
The Role and Regulation of Thromboxane A2 Signaling in Cancer-Trojan Horses and Misdirection. Molecules 2022; 27:molecules27196234. [PMID: 36234768 PMCID: PMC9573598 DOI: 10.3390/molecules27196234] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Over the last two decades, there has been an increasing awareness of the role of eicosanoids in the development and progression of several types of cancer, including breast, prostate, lung, and colorectal cancers. Several processes involved in cancer development, such as cell growth, migration, and angiogenesis, are regulated by the arachidonic acid derivative thromboxane A2 (TXA2). Higher levels of circulating TXA2 are observed in patients with multiple cancers, and this is accompanied by overexpression of TXA2 synthase (TBXAS1, TXA2S) and/or TXA2 receptors (TBXA2R, TP). Overexpression of TXA2S or TP in tumor cells is generally associated with poor prognosis, reduced survival, and metastatic disease. However, the role of TXA2 signaling in the stroma during oncogenesis has been underappreciated. TXA2 signaling regulates the tumor microenvironment by modulating angiogenic potential, tumor ECM stiffness, and host immune response. Moreover, the by-products of TXA2S are highly mutagenic and oncogenic, adding to the overall phenotype where TXA2 synthesis promotes tumor formation at various levels. The stability of synthetic enzymes and receptors in this pathway in most cancers (with few mutations reported) suggests that TXA2 signaling is a viable target for adjunct therapy in various tumors to reduce immune evasion, primary tumor growth, and metastasis.
Collapse
|
2
|
Bettegazzi B, Bellani S, Cattaneo S, Codazzi F, Grohovaz F, Zacchetti D. Gα13 Contributes to LPS-Induced Morphological Alterations and Affects Migration of Microglia. Mol Neurobiol 2021; 58:6397-6414. [PMID: 34529232 DOI: 10.1007/s12035-021-02553-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/26/2021] [Indexed: 11/24/2022]
Abstract
Microglia are the resident immune cells of the CNS that are activated in response to a variety of stimuli. This phenotypical change is aimed to maintain the local homeostasis, also by containing the insults and repair the damages. All these processes are tightly regulated and coordinated and a failure in restoring homeostasis by microglia can result in the development of neuroinflammation that can facilitate the progression of pathological conditions. Indeed, chronic microglia activation is commonly recognized as a hallmark of many neurological disorders, especially at an early stage. Many complex pathways, including cytoskeletal remodeling, are involved in the control of the microglial phenotypical and morphological changes that occur during activation. In this work, we focused on the small GTPase Gα13 and its role at the crossroad between RhoA and Rac1 signaling when microglia is exposed to pro-inflammatory stimulation. We propose the direct involvement of Gα13 in the cytoskeletal rearrangements mediated by FAK, LIMK/cofilin, and Rac1 during microglia activation. In fact, we show that Gα13 knockdown significantly inhibited LPS-induced microglial cell activation, in terms of both changes in morphology and migration, through the modulation of FAK and one of its downstream effectors, Rac1. In conclusion, we propose Gα13 as a critical factor in the regulation of morphological and functional properties of microglia during activation, which might become a target of intervention for the control of microglia inflammation.
Collapse
Affiliation(s)
- Barbara Bettegazzi
- IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy.
- Vita-Salute San Raffaele University, via Olgettina 58, 20132, Milan, Italy.
| | - Serena Bellani
- IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Stefano Cattaneo
- IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, via Olgettina 58, 20132, Milan, Italy
| | - Franca Codazzi
- IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, via Olgettina 58, 20132, Milan, Italy
| | - Fabio Grohovaz
- IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, via Olgettina 58, 20132, Milan, Italy
| | - Daniele Zacchetti
- IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
3
|
Honma S, Tani I, Sakai M, Soma I, Toriyabe K, Yoshida M. Effect of N-Acetyl Cysteine on Renal Interstitial Fibrosis in Mice. Biol Pharm Bull 2021; 43:1940-1944. [PMID: 33268712 DOI: 10.1248/bpb.b20-00657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined the effect of N-acetyl cysteine (NAC), a reactive oxygen species (ROS) inhibitor, on renal interstitial fibrosis induced by unilateral ureteral obstruction (UUO) in mice. UUO led to a significant increase in the fibrotic area of obstructed kidneys, which was attenuated by NAC (84.8 mg/kg/d) in the drinking water. Renal expression of type III collagen and tumor necrosis factor (TNF)-α mRNAs was elevated in UUO mice and inhibited by NAC. Extracellular signal-regulated kinase (ERK1/2) phosphorylation was significantly elevated by UUO, and NAC significantly attenuated the elevation. UUO inhibited the activity of glutathione peroxidase, while NAC restored its activity. Together, the results of this study suggest that renal interstitial fibrosis induced by UUO was ameliorated by NAC via several mechanisms including increased glutathione peroxidase activity, reduced phosphorylation of ERK1/2, and reduced expression of TNF-α and type III collagen mRNAs.
Collapse
Affiliation(s)
- Shigeyoshi Honma
- Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Iori Tani
- Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Mayu Sakai
- Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Iori Soma
- Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Kohei Toriyabe
- Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Makoto Yoshida
- Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare
| |
Collapse
|
4
|
Orr K, Buckley NE, Haddock P, James C, Parent JL, McQuaid S, Mullan PB. Thromboxane A2 receptor (TBXA2R) is a potent survival factor for triple negative breast cancers (TNBCs). Oncotarget 2018; 7:55458-55472. [PMID: 27487152 PMCID: PMC5342429 DOI: 10.18632/oncotarget.10969] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 06/12/2016] [Indexed: 12/19/2022] Open
Abstract
Triple Negative Breast Cancer (TNBC) is defined by the lack of ERα, PR expression and HER2 overexpression and is the breast cancer subtype with the poorest clinical outcomes. Our aim was to identify genes driving TNBC proliferation and/or survival which could represent novel therapeutic targets. We performed microarray profiling of primary TNBCs and generated differential genelists based on clinical outcomes following the chemotherapy regimen FEC (5-Fluorouracil/Epirubicin/Cyclophosphamide -‘good’ outcome no relapse > 3 years; ‘poor’ outcome relapse < 3 years). Elevated expression of thromboxane A2 receptor (TBXA2R) was observed in ‘good’ outcome TNBCs. TBXA2R expression was higher specifically in TNBC cell lines and TBXA2R knockdowns consistently showed dramatic cell killing in TNBC cells. TBXA2R mRNA and promoter activities were up-regulated following BRCA1 knockdown, with c-Myc being required for BRCA1-mediated transcriptional repression. We demonstrated that TBXA2R enhanced TNBC cell migration, invasion and activated Rho signalling, phenotypes which could be reversed using Rho-associated Kinase (ROCK) inhibitors. TBXA2R also protected TNBC cells from DNA damage by negatively regulating reactive oxygen species levels. In summary, TBXA2R is a novel breast cancer-associated gene required for the survival and migratory behaviour of a subset of TNBCs and could provide opportunities to develop novel, more effective treatments.
Collapse
Affiliation(s)
- Katy Orr
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Niamh E Buckley
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Paula Haddock
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Colin James
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | | | - Stephen McQuaid
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Paul B Mullan
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| |
Collapse
|
5
|
Honma S, Nakamura K, Shinohara M, Mitazaki S, Abe S, Yoshida M. Effect of amlodipine on mouse renal interstitial fibrosis. Eur J Pharmacol 2016; 780:136-41. [DOI: 10.1016/j.ejphar.2016.03.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/02/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
|
6
|
Effect of brefelamide on HGF-induced survival of 1321N1 human astrocytoma cells. In Vitro Cell Dev Biol Anim 2016; 52:705-11. [PMID: 27130674 DOI: 10.1007/s11626-016-0019-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/17/2016] [Indexed: 10/21/2022]
Abstract
Malignant gliomas are characterized by their high level of resistance to chemo- and radiotherapy and new treatment options are urgently required. We previously demonstrated that brefelamide, an aromatic amide isolated from methanol extracts of cellular slime molds Dictyostelium brefeldianum and D. giganteum, had antiproliferative effects on 1321N1 human astrocytoma cells, a model of glioma. In this study, we investigated the mechanisms by which brefelamide inhibited 1321N1 and PC12 rat pheochromocytoma cell proliferation. When cells were cultured in serum-free medium, hepatocyte growth factor (HGF) increased survival of 1321N1 cells but not PC12 cells. HGF receptor, c-MET, was strongly expressed in 1321N1 cells, but not in PC12 cells. Pretreatment of 1321N1 cells with brefelamide inhibited both HGF-induced cell survival and expression of c-MET. Phosphorylation of extracellular signal-regulated kinase (ERK) and AKT was increased by HGF, but these changes were inhibited by brefelamide pretreatment. Moreover, HGF mRNA levels and secretion were reduced by brefelamide. These results suggest that brefelamide reduces survival of 1321N1 cells via multiple effects including suppression of HGF receptor expression and HGF secretion and inhibition of ERK and AKT phosphorylation.
Collapse
|
7
|
Yang W, Yan A, Zhang T, Shao J, Liu T, Yang X, Xia W, Fu Y. Thromboxane A2 Receptor Stimulation Enhances Microglial Interleukin-1β and NO Biosynthesis Mediated by the Activation of ERK Pathway. Front Aging Neurosci 2016; 8:8. [PMID: 26858639 PMCID: PMC4731520 DOI: 10.3389/fnagi.2016.00008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/08/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Thromboxane A2 (TXA2) receptors (TP) interact with the ligand TXA2 to induce platelet aggregation and regulate hemostasis. Recently TP-mediated signaling has been suggested to function in multiple cell types in the brain. In this report, we aim to study the expression and physiological role of TP in microglia, in particular after brain ischemia. METHODS Ischemic brain sections were analyzed for TP expression. Microglial cell line and primary microglia were cultured, or neuronal cell line co-culture system was used to determine the TP mediated signaling in inflammation and microglia activation. RESULTS We found that the TP level was significantly increased in ipsilateral mouse brain tissue at 24 h after ischemia-reperfusion, which was also found to partly co-localize with CD11b, a marker for microglial and infiltrated monocyte/macrophage, in peri-infarct area. Immunofluorescence staining of primary microglia and microglial cell line BV2 revealed the predominant membrane distribution of TP. Conditioned culture media from TP agonist U46619-treated BV2 cells decreased neuronal SH-SY5Y cell viability and induced apoptotic morphological changes. Furthermore, U46619 enhanced IL-1β, IL-6, and iNOS mRNA expression as well as IL-1β and NO releases in BV2 cells or primary microglia. Such stimulation could be attenuated by TP antagonist SQ29548 or MEK inhibitor U0126. The dose- and time-dependent extracellular-signal-regulated kinase (ERK) phosphorylation induced by U46619 further demonstrated ERK signaling-mediated microglia activation by TP agonist. CONCLUSION This study has shown a novel role of TP in microglia activation via the ERK signaling pathway, which provides insights for the management of neuroinflammation in diseases like cerebral infarction.
Collapse
Affiliation(s)
- Wanlin Yang
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong UniversityShanghai, China
| | - Aijuan Yan
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong UniversityShanghai, China
| | - Tingting Zhang
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong UniversityShanghai, China
| | - Jiaxiang Shao
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong UniversityShanghai, China
| | - Tengyuan Liu
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong UniversityShanghai, China
| | - Xiao Yang
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong UniversityShanghai, China
| | - Weiliang Xia
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong UniversityShanghai, China
| | - Yi Fu
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
8
|
Yu L, Yang B, Wang J, Zhao L, Luo W, Jiang Q, Yang J. Time course change of COX2-PGI2/TXA2 following global cerebral ischemia reperfusion injury in rat hippocampus. Behav Brain Funct 2014; 10:42. [PMID: 25388440 PMCID: PMC4240876 DOI: 10.1186/1744-9081-10-42] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 10/22/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuroinflammation plays pivotal roles in the progression of cerebral ischemia injury. Prostaglandins (PGs) as the major inflammatory mediators in the brain participate in the pathophysiological processes of cerebral ischemia injury. Cyclooxygenase-2 (COX2) is the rate-limiting enzyme of PGs, and thus it is necessary to characterize of the expression patterns of COX2 and its downstream products at the same time in a cerebral ischemia/reperfusion (I/R) model. METHODS The levels of prostacyclin (PGI2) and thromboxane (TXA2) and the expression of COX2 were detected in the rat hippocampus at different time points after reperfusion (30 min, 2 h, 6 h, 24 h, 48 h, 7 d, and 15 d). RESULTS The COX2 mRNA and protein expressions in hippocampus both remarkably increased at 30 min, and peaked at 7 d after global cerebral I/R compared with the sham-operated group. The level of PGI2 significantly increased at 2 h after reperfusion, with a peak at 48 h, but was still significantly higher than the sham-operated animals at 15 d. TXA2 level decreased at 30 min and 2 h after reperfusion, but significantly increased at 6 h and peaked at 48 h. PGI2/TXA2 ratio increased at 30 min after reperfusion, and peaked at 48 h compared with the sham-operated animals. CONCLUSIONS I/R injury significantly increased the COX2 expression, PGI2 and TXA2 levels, and the PGI2/TXA2 ratio in rat hippocampus in a time-dependent manner. As a consequence, the increased PGI2 level and PGI2/TXA2 ratio may represent a physiological mechanism to protect the brain against the neuronal damage produced by I/R injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Junqing Yang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Medical College Rd, No 1, Chongqing 400016, China.
| |
Collapse
|
9
|
Effect of cyclooxygenase (COX)-2 inhibition on mouse renal interstitial fibrosis. Eur J Pharmacol 2014; 740:578-83. [PMID: 24975097 DOI: 10.1016/j.ejphar.2014.06.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/03/2014] [Accepted: 06/10/2014] [Indexed: 11/21/2022]
Abstract
Unilateral ureteral obstruction (UUO) is a well-established model for the study of interstitial fibrosis in the kidney. In this study, we investigated the effects of a COX-2 inhibitor, meloxicam, on UUO-induced renal interstitial fibrosis in mice. Serum creatinine, blood urea nitrogen and urinary glucose were significantly increased by UUO. However, all of these changes were attenuated by meloxicam (1 mg/kg/day). Masson׳s trichrome staining showed that interstitial fibrosis was significantly increased by UUO, but that meloxicam also significantly diminished the area of UUO-induced fibrosis. Heat shock protein (HSP) 47 protein, a collagen-specific molecular chaperone essential for the biosynthesis of collagen molecules, and type IV collagen mRNA were increased in kidneys of UUO mice. Meloxicam reduced the expression of both HSP47 protein and type IV collagen mRNA. The phosphorylation of extracellular regulated kinase (ERK) and c-jun-N-terminal kinase (JNK) was increased by UUO, but these changes were inhibited by meloxicam. Collectively, these results suggest that COX-2 may be involved in the expression of HSP47 and type IV collagen through the phosphorylation of ERK and JNK, accelerating renal interstitial fibrosis.
Collapse
|
10
|
Amelioration of cisplatin-induced mouse renal lesions by a cyclooxygenase (COX)-2 selective inhibitor. Eur J Pharmacol 2013; 715:181-8. [PMID: 23747596 DOI: 10.1016/j.ejphar.2013.05.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 05/01/2013] [Accepted: 05/20/2013] [Indexed: 12/21/2022]
Abstract
In this study, we investigated the effects of the cyclooxygenase (COX)-2 selective inhibitor, meloxicam, on cisplatin-induced inflammation, oxidative stress and renal lesions in BALB/c mice. A single cisplatin injection (13 mg/kg, i.p.) significantly increased plasma creatinine, blood urea nitrogen and urinary glucose accompanied by a concomitant increase in COX-2 mRNA and COX-2 protein levels. These changes in renal lesion parameters were diminished by simultaneous treatment of meloxicam (0.7 mg/kg/day in drinking water). The expression of oxidative stress markers, p47(phox), p67(phox), hemoxygenase-1 (HO-1), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and 4-hydroxy-2-nonenal (4-HNE)-modified protein were increased with cisplatin injection. Simultaneous treatment of meloxicam with cisplatin significantly inhibited the increase in p47(phox), HO-1 and 4-HNE-modified protein. The phosphorylation of extracellular regulated kinase (ERK) and c-jun-N-terminal kinase (JNK) were increased with cisplatin injection, but these changes were inhibited by meloxicam. Moreover, concomitant meloxicam treatment also prevented the cisplatin-induced infiltration of macrophages to the tubulointerstitial area. These results suggest that meloxicam can ameliorate cisplatin-induced mouse renal lesions, potentially through the inhibition of inflammatory and oxidative stress responses.
Collapse
|
11
|
Mohan S, Ahmad AS, Glushakov AV, Chambers C, Doré S. Putative role of prostaglandin receptor in intracerebral hemorrhage. Front Neurol 2012; 3:145. [PMID: 23097645 PMCID: PMC3477820 DOI: 10.3389/fneur.2012.00145] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/30/2012] [Indexed: 01/21/2023] Open
Abstract
Each year, approximately 795,000 people experience a new or recurrent stroke. Of all strokes, 84% are ischemic, 13% are intracerebral hemorrhage (ICH) strokes, and 3% are subarachnoid hemorrhage strokes. Despite the decreased incidence of ischemic stroke, there has been no change in the incidence of hemorrhagic stroke in the last decade. ICH is a devastating disease 37–38% of patients between the ages of 45 and 64 die within 30 days. In an effort to prevent ischemic and hemorrhagic strokes we and others have been studying the role of prostaglandins and their receptors. Prostaglandins are bioactive lipids derived from the metabolism of arachidonic acid. They sustain homeostatic functions and mediate pathogenic mechanisms, including the inflammatory response. Most prostaglandins are produced from specific enzymes and act upon cells via distinct G-protein coupled receptors. The presence of multiple prostaglandin receptors cross-reactivity and coupling to different signal transduction pathways allow differentiated cells to respond to prostaglandins in a unique manner. Due to the number of prostaglandin receptors, prostaglandin-dependent signaling can function either to promote neuronal survival or injury following acute excitotoxicity, hypoxia, and stress induced by ICH. To better understand the mechanisms of neuronal survival and neurotoxicity mediated by prostaglandin receptors, it is essential to understand downstream signaling. Several groups including ours have discovered unique roles for prostaglandin receptors in rodent models of ischemic stroke, excitotoxicity, and Alzheimer disease, highlighting the emerging role of prostaglandin receptor signaling in hemorrhagic stroke with a focus on cyclic-adenosine monophosphate and calcium (Ca2+) signaling. We review current ICH data and discuss future directions notably on prostaglandin receptors, which may lead to the development of unique therapeutic targets against hemorrhagic stroke and brain injuries alike.
Collapse
Affiliation(s)
- Shekher Mohan
- Department of Anesthesiology, College of Medicine, University of Florida Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
12
|
Involvement of lipid rafts in multiple signal transductions mediated by two isoforms of thromboxane A₂ receptor: dependency on receptor isoforms and downstream signaling types. Eur J Pharmacol 2012; 693:15-24. [PMID: 22963705 DOI: 10.1016/j.ejphar.2012.07.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 07/13/2012] [Accepted: 07/27/2012] [Indexed: 11/21/2022]
Abstract
Lipid rafts, microdomains in the plasma membrane, are known to be involved in G protein-coupled receptor signal transduction; however, their involvement in thromboxane A(2) receptor (TP) signaling remains to be clarified. We examined whether two isoforms of TP, TPα and TPβ, utilize lipid rafts for multiple G protein signal transduction. Sucrose density gradient centrifugation followed by western blotting of HEK cells expressing TPα or TPβ revealed the localization of both TPα and TPβ in lipid rafts. Furthermore, methyl-β-cyclodextrin, which destroys lipid raft structure by depleting cholesterol, influenced G protein signaling elicited by TPα and TPβ to varying degrees. Phosphatidylinositol hydrolysis and cAMP accumulation induced by TPα or TPβ stimulation was markedly inhibited by methyl-β-cyclodextrin. In contrast, treatment with methyl-β-cyclodextrin partially inhibited RhoA activation induced by TPα stimulation, but failed to affect TPβ stimulation. Furthermore, the inhibitory action of methyl-β-cyclodextrin on cAMP accumulation was specific to TPα and TPβ, because methyl-β-cyclodextrin enhanced forskolin and β-adrenergic stimulation-induced cAMP accumulation. These results indicate that TP isoforms depend on lipid rafts during G(q) and G(s) signaling, while G(13) signaling mediated by TP isoforms does not. Moreover, TPα seems to be more lipid raft-dependent with respect to RhoA activation than TPβ. These results indicate that the two isoforms of the TP mediate multiple signal transductions with varying degrees of lipid raft dependency. Moreover, our results provide a deeper understanding of the function of lipid rafts in G protein signaling and the physiological meaning of TP isoforms.
Collapse
|
13
|
Fediuk J, Gutsol A, Nolette N, Dakshinamurti S. Thromboxane-induced actin polymerization in hypoxic pulmonary artery is independent of Rho. Am J Physiol Lung Cell Mol Physiol 2012; 302:L13-26. [DOI: 10.1152/ajplung.00016.2011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Actin polymerization (APM), regulated by Rho GTPases, promotes myocyte force generation. Hypoxia is known to impede postnatal disassembly of the actin cytoskeleton in pulmonary arterial (PA) myocytes. We compared basal and agonist-induced APM in myocytes from PA and descending aorta (Ao), under hypoxic and normoxic conditions. We also examined effects of thromboxane challenge on force generation and cytoskeletal assembly in resistance PA and renal arteries from neonatal swine with persistent pulmonary hypertension (PPHN) induced by 72-h normobaric hypoxia, compared with age-matched controls. Synthetic and contractile phenotype myocytes from neonatal porcine PA or Ao were grown in hypoxia (10% O2) or normoxia (21% O2) for 7 days, then challenged with 10−6 M thromboxane mimetic U46619. F/G actin ratio was quantified by laser-scanning cytometry and by cytoskeletal fractionation. Thromboxane receptor (TP) G protein coupling was measured by immunoprecipitation and probing for Gαq, G12, or G13, RhoA activation by Rhotekin-RBD affinity precipitation, and LIM kinase (LIMK) and cofilin phosphorylation by Western blot. Isometric force to serial concentrations of U46619 was measured in muscular pulmonary and renal arteries from PPHN and control swine; APM was quantified in fixed contracted vessels. Contractile PA myocytes exhibit marked Rho-dependent APM in hypoxia, with increased active RhoA and LIMK phosphorylation. Their additional APM response to U46619 challenge is independent of RhoA, reflecting decreased TP association with G12/13 in favor of Gαq. In contrast, hypoxic contractile Ao myocytes polymerize actin modestly and depolymerize to U46619. Both basal APM and the APM response to U46619 are increased in PPHN PA. APM corresponds with increased force generation to U46619 challenge in PPHN PA but not renal arteries.
Collapse
Affiliation(s)
- Jena Fediuk
- Departments of 1Physiology and
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Alexey Gutsol
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Nora Nolette
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Shyamala Dakshinamurti
- Departments of 1Physiology and
- Pediatrics, University of Manitoba
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| |
Collapse
|
14
|
Hetero-oligomerization between adenosine A₁ and thromboxane A₂ receptors and cellular signal transduction on stimulation with high and low concentrations of agonists for both receptors. Eur J Pharmacol 2011; 677:5-14. [PMID: 22200626 DOI: 10.1016/j.ejphar.2011.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 12/05/2011] [Accepted: 12/09/2011] [Indexed: 11/22/2022]
Abstract
Growing evidence indicates that G protein-coupled receptors can form homo- and hetero-oligomers to diversify signal transduction. However, the molecular mechanisms and physiological significance of G protein-coupled receptor-oligomers are not fully understood. Both ADOR1 (adenosine A(1) receptor) and TBXA2R (thromboxane A(2) receptor α; TPα receptor), members of the G protein-coupled receptor family, act on astrocytes and renal mesangial cells, suggesting certain functional correlations. In this study, we explored the possibility that adenosine A(1) and TPα receptors form hetero-oligomers with novel pharmacological profiles. We showed that these receptors hetero-oligomerize by conducting coimmunoprecipitation and bioluminescence resonance energy transfer (BRET(2)) assays in adenosine A(1) receptor and TPα receptor-cotransfected HEK293T cells. Furthermore, coexpression of the receptors affected signal transduction including the accumulation of cyclic AMP and phosphorylation of extracellular signal-regulated kinase-1 and -2 was significantly increased by high and low concentrations of adenosine A(1) receptor agonist and TPα agonists, respectively. Our study provides evidence of hetero-oligomerization between adenosine A(1) and TPα receptors for the first time, and suggests that this oligomerization affects signal transduction responding to different concentrations of receptor agonists.
Collapse
|
15
|
Woodward DF, Jones RL, Narumiya S. International Union of Basic and Clinical Pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 years of progress. Pharmacol Rev 2011; 63:471-538. [PMID: 21752876 DOI: 10.1124/pr.110.003517] [Citation(s) in RCA: 332] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It is now more than 15 years since the molecular structures of the major prostanoid receptors were elucidated. Since then, substantial progress has been achieved with respect to distribution and function, signal transduction mechanisms, and the design of agonists and antagonists (http://www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=58). This review systematically details these advances. More recent developments in prostanoid receptor research are included. The DP(2) receptor, also termed CRTH2, has little structural resemblance to DP(1) and other receptors described in the original prostanoid receptor classification. DP(2) receptors are more closely related to chemoattractant receptors. Prostanoid receptors have also been found to heterodimerize with other prostanoid receptor subtypes and nonprostanoids. This may extend signal transduction pathways and create new ligand recognition sites: prostacyclin/thromboxane A(2) heterodimeric receptors for 8-epi-prostaglandin E(2), wild-type/alternative (alt4) heterodimers for the prostaglandin FP receptor for bimatoprost and the prostamides. It is anticipated that the 15 years of research progress described herein will lead to novel therapeutic entities.
Collapse
Affiliation(s)
- D F Woodward
- Dept. of Biological Sciences RD3-2B, Allergan, Inc., 2525 Dupont Dr., Irvine, CA 92612, USA.
| | | | | |
Collapse
|
16
|
Obara Y, Ueno S, Yanagihata Y, Nakahata N. Lysophosphatidylinositol causes neurite retraction via GPR55, G13 and RhoA in PC12 cells. PLoS One 2011; 6:e24284. [PMID: 21904624 PMCID: PMC3164175 DOI: 10.1371/journal.pone.0024284] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 08/08/2011] [Indexed: 12/26/2022] Open
Abstract
GPR55 was recently identified as a putative receptor for certain cannabinoids, and lysophosphatidylinositol (LPI). Recently, the role of cannabinoids as GPR55 agonists has been disputed by a number of reports, in part, because studies investigating GPR55 often utilized overexpression systems, such as the GPR55-overexpressing HEK293 cells, which make it difficult to deduce the physiological role of endogenous GPR55. In the present study, we found that PC12 cells, a neural model cell line, express endogenous GPR55, and by using these cells, we were able to examine the role of endogenous GPR55. Although GPR55 mRNA and protein were expressed in PC12 cells, neither CB1 nor CB2 mRNA was expressed in these cells. GPR55 was predominantly localized on the plasma membrane in undifferentiated PC12 cells. However, GPR55 was also localized in the growth cones or the ruffled border in differentiated PC12 cells, suggesting a potential role for GPR55 in the regulation of neurite elongation. LPI increased intracellular Ca2+ concentration and RhoA activity, and induced ERK1/2 phosphorylation, whereas endogenous and synthetic cannabinoids did not, thereby suggesting that cannabinoids are not GPR55 agonists. LPI also caused neurite retraction in a time-dependent manner accompanied by the loss of neurofilament light chain and redistribution of actin in PC12 cells differentiated by NGF. This LPI-induced neurite retraction was found to be Gq-independent and G13-dependent. Furthermore, inactivation of RhoA function via C3 toxin and GPR55 siRNA knockdown prevented LPI-induced neurite retraction. These results suggest that LPI, and not cannabinoids, causes neurite retraction in differentiated PC12 cells via a GPR55, G13 and RhoA signaling pathway.
Collapse
Affiliation(s)
- Yutaro Obara
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | | | | | | |
Collapse
|
17
|
Mitazaki S, Honma S, Suto M, Kato N, Hiraiwa K, Yoshida M, Abe S. Interleukin-6 plays a protective role in development of cisplatin-induced acute renal failure through upregulation of anti-oxidative stress factors. Life Sci 2011; 88:1142-8. [PMID: 21570986 DOI: 10.1016/j.lfs.2011.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 04/20/2011] [Indexed: 11/28/2022]
Abstract
AIMS Cisplatin, a major chemotherapeutic agent, accumulates in proximal tubules of the kidneys and causes acute renal failure dose-dependently. We previously reported that cisplatin induced more severe renal dysfunction in interleukin-6 (IL-6) knockout (IL-6(-/-)) mice than in wild-type (WT) mice. Expression of a pro-apoptotic protein was significantly increased with cisplatin in IL-6(-/-) mice compared to that in WT mice. IL-6, locally expressed in renal tubular cells after cisplatin administration, prevents the development of renal dysfunction at an early stage. In the present study, we focused on downstream signals of IL-6 and oxidative stress induced by cisplatin in order to evaluate the protective role of IL-6 in the development of acute renal failure. MAIN METHODS WT and IL-6(-/-) mice were given either cisplatin (30 mg/kg) or saline intraperitoneally. Blood and kidney samples were collected at 24h and 72 h after cisplatin administration. The changes in expression of 4-hydroxy-2-nonenal protein (4-HNE, oxidative stress marker) and cyclooxygenase-2 (cox-2), activities of superoxide dismutases and caspase-3, and phosphorylation of extracellular signal-regulated kinase (ERK) were examined. KEY FINDINGS Cisplatin increased the expression of 4-HNE and cox-2, and phosphorylation of ERK in IL-6(-/-) mice than in WT mice. On the other hand, activity of superoxide dismutase, an anti-oxidative enzyme, was significantly decreased in the kidney obtained from IL-6(-/-) mice after cisplatin administration. SIGNIFICANCE Our findings suggest that IL-6 plays a protective role in the development of cisplatin-induced acute renal failure through upregulation of anti-oxidative stress factors.
Collapse
Affiliation(s)
- Satoru Mitazaki
- Laboratory of Forensic Toxicology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki 370-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Transient receptor potential canonical 3 (TRPC3) mediates thrombin-induced astrocyte activation and upregulates its own expression in cortical astrocytes. J Neurosci 2010; 30:13116-29. [PMID: 20881130 DOI: 10.1523/jneurosci.1890-10.2010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Reactive astrogliosis, defined by abnormal morphology and excessive cell proliferation, is a characteristic response of astrocytes to CNS injuries, including intracerebral hemorrhage. Thrombin, a major blood-derived serine protease, leaks into the brain parenchyma upon blood-brain barrier disruption and can induce brain injury and astrogliosis. Transient receptor potential canonical (TRPC) channels, Ca(2+)-permeable, nonselective cation channels, are expressed in astrocytes and involved in Ca(2+) influx after receptor stimulation; however, their pathophysiological functions in reactive astrocytes remain unknown. We investigated the pathophysiological roles of TRPC in thrombin-activated cortical astrocytes. Application of thrombin (1 U/ml, 20 h) upregulated TRPC3 protein, which was associated with increased Ca(2+) influx after thapsigargin treatment. Pharmacological manipulations revealed that the TRPC3 upregulation was mediated by protease-activated receptor 1 (PAR-1), extracellular signal-regulated protein kinase, c-Jun NH(2)-terminal kinase, and nuclear factor-κB signaling and required de novo protein synthesis. The Ca(2+) signaling blockers BAPTA-AM, cyclopiazonic acid, and 2-aminoethoxydiphenyl borate and a selective TRPC3 inhibitor, pyrazole-3, attenuated TRPC3 upregulation, suggesting that Ca(2+) signaling through TRPC3 contributes to its increased expression. Thrombin-induced morphological changes at 3 h upregulated S100B, a marker of reactive astrocytes, at 20 h and increased astrocytic proliferation by 72 h, all of which were inhibited by Ca(2+)-signaling blockers and specific knockdown of TRPC3 using small interfering RNA. Intracortical injection of SFLLR-NH(2), a PAR-1 agonist peptide, induced proliferation of astrocytes, most of which were TRPC3 immunopositive. These results suggest that thrombin dynamically upregulates TRPC3 and that TRPC3 contributes to the pathological activation of astrocytes in part through a feedforward upregulation of its own expression.
Collapse
|
19
|
Ando K, Obara Y, Sugama J, Kotani A, Koike N, Ohkubo S, Nakahata N. P2Y2 receptor-Gq/11 signaling at lipid rafts is required for UTP-induced cell migration in NG 108-15 cells. J Pharmacol Exp Ther 2010; 334:809-19. [PMID: 20511347 DOI: 10.1124/jpet.110.167528] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lipid rafts, formed by sphingolipids and cholesterol within the membrane bilayer, are believed to have a critical role in signal transduction. P2Y(2) receptors are known to couple with G(q) family G proteins, causing the activation of phospholipase C (PLC) and an increase in intracellular Ca(2+) ([Ca(2+)](i)) levels. In the present study, we investigated the involvement of lipid rafts in P2Y(2) receptor-mediated signaling and cell migration in NG 108-15 cells. When NG 108-15 cell lysates were fractionated by sucrose density gradient centrifugation, Galpha(q/11) and a part of P2Y(2) receptors were distributed in a fraction where the lipid raft markers, cholesterol, flotillin-1, and ganglioside GM1 were abundant. Methyl-beta-cyclodextrin (CD) disrupted not only lipid raft markers but also Galpha(q/11) and P2Y(2) receptors in this fraction. In the presence of CD, P2Y(2) receptor-mediated phosphoinositide hydrolysis and [Ca(2+)](i) elevation were inhibited. It is noteworthy that UTP-induced cell migration was inhibited by CD or the G(q/11)-selective inhibitor YM254890 [(1R)-1-{(3S,6S,9S,12S,18R,21S,22R)-21-acetamido-18-benzyl-3-[(1R)-1-methoxyethyl]-4,9,10,12,16, 22-hexamethyl-15-methylene-2,5,8,11,14,17,-20-heptaoxo-1,19-dioxa-4,7,10,13,16-pentaazacyclodocosan-6-yl}-2-methylpropyl rel-(2S,3R)-2-acetamido-3-hydroxy-4-methylpentanoate]. Moreover CD and YM254890 completely inhibited Rho-A activation. Downstream of Rho-A signaling, stress fiber formation and phosphorylation of cofilin were also inhibited by CD or YM254890. However, UTP-induced phosphorylation of cofilin was not affected by the expression of p115-regulator of G protein signaling, which inhibits the G(12/13) signaling pathway. This implies that UTP-induced Rho-A activation was relatively regulated by the G(q/11) signaling pathway. These results suggest that lipid rafts are critical for P2Y(2) receptor-mediated G(q/11)-PLC-Ca(2+) signaling and this cascade is important for cell migration in NG 108-15 cells.
Collapse
Affiliation(s)
- Koji Ando
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Nakahata N. [The regulation of thromboxane A(2)-receptor function by dimerization and receptor-associated protein]. Nihon Yakurigaku Zasshi 2010; 134:259-63. [PMID: 19915285 DOI: 10.1254/fpj.134.259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Uchiyama K, Saito M, Sasaki M, Obara Y, Higashiyama S, Nakahata N. Thromboxane A2 receptor-mediated epidermal growth factor receptor transactivation: involvement of PKC-delta and PKC-epsilon in the shedding of epidermal growth factor receptor ligands. Eur J Pharm Sci 2009; 38:504-11. [PMID: 19804825 DOI: 10.1016/j.ejps.2009.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 07/31/2009] [Accepted: 09/24/2009] [Indexed: 11/28/2022]
Abstract
We examined thromboxane A(2) receptor (TP)-mediated transactivation of epidermal growth factor receptor (EGFR) through the shedding of EGFR ligands. A TP agonist U46619 caused the phosphorylation of EGFR in 1321N1 human astrocytoma cells, which was inhibited by an EGFR selective inhibitor AG1478 and by a disintegrin and metalloproteinase (ADAM) inhibitor TAPI-2, indicating TP stimulation caused the EGFR transactivation through the EGFR ligand shedding. Since 1321N1 cells expressed heparin-binding EGF (HB-EGF) mRNA, the mechanism of TP-mediated EGFR transactivation was examined in HEK293 cells expressing alkaline phosphatase-conjugated HB-EGF and TP. U46619 caused the shedding of HB-EGF in a time- and concentration-dependent manner. The TP-mediated shedding was inhibited by a furin inhibitor CMK, TAP-2, dominant-negative G alpha(q), a G(q/11) inhibitor YM254890, and also by a non-selective PKC inhibitor GF109203X and PKC down-regulation, but not by a conventional PKC inhibitor Gö6976. Furthermore, siRNAs of PKC-delta and PKC-epsilon inhibited U46619-induced HB-EGF shedding. Although BAPTA/AM had no effect on U46619-induced shedding of HB-EGF, EGTA inhibited it. These results suggest that TP-mediated EGFR transactivation is partially caused by shedding of HB-EGF, which involves furin and ADAM via novel types of PKCs (PKC-delta and PKC-epsilon) through G alpha(q/11) proteins in an extracellular Ca(2+)-dependent manner.
Collapse
Affiliation(s)
- Kotomi Uchiyama
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Wright WS, McElhatten RM, Harris NR. Expression of thromboxane synthase and the thromboxane-prostanoid receptor in the mouse and rat retina. Exp Eye Res 2009; 89:532-7. [PMID: 19523949 PMCID: PMC2755196 DOI: 10.1016/j.exer.2009.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 05/18/2009] [Accepted: 05/20/2009] [Indexed: 12/31/2022]
Abstract
Experimental models of the diabetic retina have suggested a pathological role for thromboxane. To date however, little information is available as to the cellular locations of retinal thromboxane synthase (TxS), or its receptor, even in non-diabetic controls. In this study, C57BL/6 mice and Wistar rats were injected with streptozotocin to induce diabetes, or with buffer for non-diabetic controls. Four weeks following the injection, eyes were enucleated and labeled for TxS and the thromboxane-prostanoid (TP) receptor. Immunofluorescent intensity was quantified in the ganglion cell plus inner plexiform layers, inner nuclear layer, outer plexiform layer, outer nuclear layer, and photoreceptor inner segment. Even in control mice and rats, all layers of the retina showed immunoreactivity for TxS and the TP receptor: however, the pattern of expression demonstrated an inverse relationship, with the highest TxS staining in the inner retina, and the highest TP receptor staining in the outer retina (more specifically, in the photoreceptor inner segment). Four weeks of hyperglycemia did not increase the retinal levels of TxS or TP receptor; however, TP receptor intensities in the outer retina of diabetic rats were highly variable (mostly high but some low), with no values from the photoreceptor inner segment in the same range as obtained from controls.
Collapse
Affiliation(s)
- William S. Wright
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130, USA
| | - Robert M. McElhatten
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130, USA
| | - Norman R. Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130, USA
| |
Collapse
|
23
|
Involvement of aquaporin in thromboxane A2 receptor-mediated, G 12/13/RhoA/NHE-sensitive cell swelling in 1321N1 human astrocytoma cells. Cell Signal 2009; 22:41-6. [PMID: 19772916 DOI: 10.1016/j.cellsig.2009.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 09/09/2009] [Indexed: 11/22/2022]
Abstract
The physiological role of the thromboxane A(2) (TXA(2)) receptor expressed on glial cells remains unclear. We previously reported that 1321N1 human astrocytoma cells pretreated with dibutyryl cyclic AMP (dbcAMP) became swollen in response to U46619, a TXA(2) analogue. In the present study, we examined the detailed mechanisms of TXA(2) receptor-mediated cell swelling in 1321N1 cells. The cell swelling caused by U46619 was suppressed by expression of p115-RGS, an inhibitory peptide of G alpha(12/13) pathway and C3 toxin, an inhibitory protein for RhoA. The swelling was also inhibited by treatment with Y27632, a Rho kinase inhibitor and 5-(ethyl-N-isopropyl)amiloride (EIPA), a Na(+)/H(+)-exchanger inhibitor. Furthermore, cell swelling was suppressed by the pretreatment with aquaporin inhibitors mercury chloride or phloretin in a concentration-dependent manner, suggesting that aquaporins are involved in U46619-induced 1321N1 cell swelling. In fact, U46619 caused [(3)H]H(2)O influx into the cells, which was inhibited by p115-RGS, C3 toxin, EIPA, mercury chloride and phloretin. This is the first report that the TXA(2) receptor mediates water influx through aquaporins in astrocytoma cells via TXA(2) receptor-mediated activation of G alpha(12/13), Rho A, Rho kinase and Na(+)/H(+)-exchanger.
Collapse
|
24
|
OU J, KUMAR Y, ALIOUA A, SAILER C, STEFANI E, TORO L. Ca2+- and thromboxane-dependent distribution of MaxiK channels in cultured astrocytes: from microtubules to the plasma membrane. Glia 2009; 57:1280-95. [PMID: 19170178 PMCID: PMC2713352 DOI: 10.1002/glia.20847] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Large-conductance, voltage- and Ca2+-activated K+ channels (MaxiK) are broadly expressed ion channels minimally assembled by four pore-forming alpha-subunits (MaxiKalpha) and typically observed as plasma membrane proteins in various cell types. In murine astrocyte primary cultures, we show that MaxiKalpha is predominantly confined to the microtubule network. Distinct microtubule distribution of MaxiKalpha was visualized by three independent labeling approaches: (1) MaxiKalpha-specific antibodies, (2) expressed EGFP-labeled MaxiKalpha, and (3) fluorophore-conjugated iberiotoxin, a specific MaxiK pore-blocker. This MaxiKalpha association with microtubules was further confirmed by in vitro His-tag pulldown, co-immunoprecipitation from brain lysates, and microtubule depolymerization experiments. Changes in intracellular Ca2+ elicited by general pharmacological agents, caffeine or thapsigargin, resulted in increased MaxiKalpha labeling at the plasma membrane. More notably, U46619, an analog of thromboxane A2 (TXA2), which triggers Ca2+-release pathways and whose levels increase during cerebral hemorrhage/trauma, also elicits a similar increase in MaxiKalpha surface labeling. Whole-cell patch clamp recordings of U46619-stimulated cells develop a approximately 3-fold increase in current amplitude indicating that TXA2 stimulation results in the recruitment of additional, functional MaxiK channels to the surface membrane. While microtubules are largely absent in mature astrocytes, immunohistochemistry results in brain slices show that cortical astrocytes in the newborn mouse (P1) exhibit a robust expression of microtubules that significantly colocalize with MaxiK. The results of this study provide the novel insight that suggests that Ca2+ released from intracellular stores may play a key role in regulating the traffic of intracellular, microtubule-associated MaxiK stores to the plasma membrane of developing murine astrocytes.
Collapse
Affiliation(s)
- J.W. OU
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, CA 90095
| | - Y. KUMAR
- Department of Anesthesiology, University of California at Los Angeles, Los Angeles, CA 90095
| | - A. ALIOUA
- Department of Anesthesiology, University of California at Los Angeles, Los Angeles, CA 90095
| | - C. SAILER
- Division for Molecular and Cellular Pharmacology, Medical University, Innsbruck, Peter Mayr-Strasse 1, A-6020 Innsbruck, Austria
| | - E. STEFANI
- Department of Anesthesiology, University of California at Los Angeles, Los Angeles, CA 90095
- Department of Physiology, University of California at Los Angeles, Los Angeles, CA 90095
- Brain Research Institute, University of California at Los Angeles, Los Angeles, CA 90095
| | - L. TORO
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, CA 90095
- Department of Anesthesiology, University of California at Los Angeles, Los Angeles, CA 90095
- Brain Research Institute, University of California at Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
25
|
Honma S, Saito M, Kikuchi H, Saito Y, Oshima Y, Nakahata N, Yoshida M. A reduction of epidermal growth factor receptor is involved in brefelamide-induced inhibition of phosphorylation of ERK in human astrocytoma cells. Eur J Pharmacol 2009; 616:38-42. [DOI: 10.1016/j.ejphar.2009.06.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 06/02/2009] [Accepted: 06/12/2009] [Indexed: 10/20/2022]
|
26
|
Tokue SI, Sasaki M, Nakahata N. Thromboxane A2-induced signal transduction is negatively regulated by KIAA1005 that directly interacts with thromboxane A2 receptor. Prostaglandins Other Lipid Mediat 2009; 89:8-15. [DOI: 10.1016/j.prostaglandins.2009.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Revised: 01/29/2009] [Accepted: 02/03/2009] [Indexed: 11/28/2022]
|
27
|
Suzuki N, Hajicek N, Kozasa T. Regulation and physiological functions of G12/13-mediated signaling pathways. Neurosignals 2009; 17:55-70. [PMID: 19212140 DOI: 10.1159/000186690] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 10/10/2008] [Indexed: 12/12/2022] Open
Abstract
Accumulating data indicate that G12 subfamily (Galpha12/13)-mediated signaling pathways play pivotal roles in a variety of physiological processes, while aberrant regulation of this pathway has been identified in various human diseases. It has been demonstrated that Galpha12/13-mediated signals form networks with other signaling proteins at various levels, from cell surface receptors to transcription factors, to regulate cellular responses. Galpha12/13 have slow rates of nucleotide exchange and GTP hydrolysis, and specifically target RhoGEFs containing an amino-terminal RGS homology domain (RH-RhoGEFs), which uniquely function both as a GAP and an effector for Galpha12/13. In this review, we will focus on the mechanisms regulating the Galpha12/13 signaling system, particularly the Galpha12/13-RH-RhoGEF-Rho pathway, which can regulate a wide variety of cellular functions from migration to transformation.
Collapse
Affiliation(s)
- Nobuchika Suzuki
- Laboratory of Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
| | | | | |
Collapse
|
28
|
Blum AE, Joseph SM, Przybylski RJ, Dubyak GR. Rho-family GTPases modulate Ca(2+) -dependent ATP release from astrocytes. Am J Physiol Cell Physiol 2008; 295:C231-41. [PMID: 18495810 DOI: 10.1152/ajpcell.00175.2008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Previously, we reported that activation of G protein-coupled receptors (GPCR) in 1321N1 human astrocytoma cells elicits a rapid release of ATP that is partially dependent on a G(q)/phophospholipase C (PLC)/Ca(2+) mobilization signaling cascade. In this study we assessed the role of Rho-family GTPase signaling as an additional pathway for the regulation of ATP release in response to activation of protease-activated receptor-1 (PAR1), lysophosphatidic acid receptor (LPAR), and M3-muscarinic (M3R) GPCRs. Thrombin (or other PAR1 peptide agonists), LPA, and carbachol triggered quantitatively similar Ca(2+) mobilization responses, but only thrombin and LPA caused rapid accumulation of active GTP-bound Rho. The ability to elicit Rho activation correlated with the markedly higher efficacy of thrombin and LPA, relative to carbachol, as ATP secretagogues. Clostridium difficile toxin B and Clostridium botulinum C3 exoenzyme, which inhibit Rho-GTPases, attenuated the thrombin- and LPA-stimulated ATP release but did not decrease carbachol-stimulated release. Thus the ability of certain G(q)-coupled receptors to additionally stimulate Rho-GTPases acts to strongly potentiate a Ca(2+)-activated ATP release pathway. However, pharmacological inhibition of Rho kinase I/II or myosin light chain kinase did not attenuate ATP release. PAR1-induced ATP release was also reduced twofold by brefeldin treatment suggesting the possible mobilization of Golgi-derived, ATP-containing secretory vesicles. ATP release was also markedly repressed by the gap junction channel inhibitor carbenoxolone in the absence of any obvious thrombin-induced change in membrane permeability indicative of hemichannel gating.
Collapse
Affiliation(s)
- Andrew E Blum
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
29
|
Nakahata N. Thromboxane A2: physiology/pathophysiology, cellular signal transduction and pharmacology. Pharmacol Ther 2008; 118:18-35. [PMID: 18374420 DOI: 10.1016/j.pharmthera.2008.01.001] [Citation(s) in RCA: 317] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 01/02/2008] [Indexed: 12/22/2022]
Abstract
Thromboxane A(2) (TXA(2)), an unstable arachidonic acid metabolite, elicits diverse physiological/pathophysiological actions, including platelet aggregation and smooth muscle contraction. TXA(2) has been shown to be involved in allergies, modulation of acquired immunity, atherogenesis, neovascularization, and metastasis of cancer cells. The TXA(2) receptor (TP) communicates mainly with G(q) and G(13), resulting in phospholipase C activation and RhoGEF activation, respectively. In addition, TP couples with G(11), G(12), G(13), G(14), G(15), G(16), G(i), G(s) and G(h). TP is widely distributed in the body, and is expressed at high levels in thymus and spleen. The second extracellular loop of TP is an important ligand-binding site, and Asp(193) is a key amino acid. There are two alternatively spliced isoforms of TP, TPalpha and TPbeta, which differ only in their C-terminals. TPalpha and TPbeta communicate with different G proteins, and undergo hetero-dimerization, resulting in changes in intracellular traffic and receptor protein conformations. TP cross-talks with receptor tyrosine kinases, such as EGF receptor, to induce cell proliferation and differentiation. TP is glycosylated in the N-terminal region for recruitment to plasma membranes. Furthermore, TP conformation is changed by coupling to G proteins, showing several states of agonist binding. Finally, several drugs modify TP-mediated events; these include cyclooxygenase inhibitors, TXA(2) synthase inhibitors and TP antagonists. Some flavonoids of natural origin also have TP receptor antagonistic activity. Recent advances in TP research have clarified TXA(2)-mediated events in detail, and further study will supply more beneficial information about TXA(2) pathophysiology.
Collapse
Affiliation(s)
- Norimichi Nakahata
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-0815, Japan
| |
Collapse
|
30
|
Nakahata N, Saito M. [Regulation of G protein-coupled receptor function by its binding proteins]. YAKUGAKU ZASSHI 2007; 127:3-14. [PMID: 17202780 DOI: 10.1248/yakushi.127.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
G protein-coupled receptors (GPCRs) are seven transmembrane receptors with an N-terminus in the extracellular region and C-terminus in the intracellular region. When an agonist binds to a GPCR, a signal is transduced into a cell through the activation of trimeric G proteins. Recently, it has been shown that the activities of GPCRs are regulated by multiple mechanisms. One of the mechanisms is regulation through the binding proteins to the carboxy (C)-terminus of GPCRs. In the present study, the binding partners for the C-terminus of the parathyroid hormone receptor (PTHR) and thromboxane A(2) receptor (TP) were searched for using yeast two-hybrid screening, and the functions of these proteins were investigated. We identified t-complex testis expressed-1 (Tctex-1) and 4.1G as associated proteins for the PTHR. Tctex-1 is one of the light chains of cytoplasmic dynein, which is a motor protein across microtubles. We found that Tctex-1 was involved in agonist-induced internalization of the PTHR. 4.1G, a cytoskeletal protein, facilitated the cell surface localization of the PTHR and augmented PHTR-mediated signal transduction. TPs consists of two splicing variants, TPalpha and TPbeta. As a result of yeast two-hybrid screening, two proteasomal proteins, proteasome activator PA28gamma and proteasome subunit alpha7, were identified as direct interacting proteins for TPbeta. TPbeta has a tendency to be retained in the intracellular compartment, probably due to its binding to proteasomes. We also demonstrated that TPalpha and TPbeta formed heterodimers, and the signal transduction through TPalpha was reduced by the formation of heterodimers. In conclusion, the proteins bound to GPCRs may regulate the intracellular traffic of GPCRs.
Collapse
Affiliation(s)
- Norimichi Nakahata
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai City, Japan.
| | | |
Collapse
|