1
|
Ahmadzadeh AM, Aliabadi MM, Mirheidari SB, Hamedi-Asil M, Garousi S, Mottahedi M, Sahebkar A. Beneficial effects of resveratrol on diabetes mellitus and its complications: focus on mechanisms of action. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2407-2442. [PMID: 39446148 DOI: 10.1007/s00210-024-03527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Diabetes mellitus (DM) is a significant global health issue, associated with various microvascular and macrovascular complications that significantly impair patients' quality of life as well as healthspan and lifespan. Despite the availability of several anti-diabetic medications with different mechanisms of action, there remains no definite curative treatment. Hence, discovering new efficient complementary therapies is essential. Natural products have received significant attention due to their advantages in various pathological conditions. Resveratrol is a natural polyphenol that possesses antioxidant and anti-inflammatory properties, and its efficacy has been previously investigated in several diseases, including DM. Herein, we aimed to provide a holistic view of the signaling pathways and mechanisms of action through which resveratrol exerts its effects against DM and its complications.
Collapse
Affiliation(s)
- Amir Mahmoud Ahmadzadeh
- Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Mahdie Hamedi-Asil
- School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Department of Surgical and Interventional Sciences, McGill University, Montreal, Quebec, Canada
| | - Mehran Mottahedi
- Department of Surgical and Interventional Sciences, McGill University, Montreal, Quebec, Canada
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Joshi D, Kothari C, Patel N. Derivatization-Based Novel Chromatographic and Spectrophotometric Methods for the Simultaneous Determination of Gymnemic Acid and Resveratrol in Antidiabetic Polyherbal Formulation. J Chromatogr Sci 2024; 62:101-107. [PMID: 37963414 DOI: 10.1093/chromsci/bmad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 08/25/2023] [Indexed: 11/16/2023]
Abstract
Herbal medicine is widely used for the treatment and prevention of various ailments, highlighting the importance of ensuring its consistency and quality. This research focuses on the simultaneous detection of Gymnemic acid (GYM) and Resveratrol (RES) in an antidiabetic polyherbal formulation as no reported method exists for their simultaneously detection. The objective of this study is to develop and validate novel derivatization-based spectrometric and HPTLC methods for the simultaneous determination of GYM and RES. The spectrophotometric method involved derivatization of GYM with benzoyl chloride, followed by measurement of absorbance at 349 nm an isoabsorptive point. The HPTLC method utilized post derivatization with vanillin-sulfuric acid, and its separation was achieved on pre-coated silica gel 60GF254 using chloroform:methanol:glacial acetic acid (13:4:0.1, v/v/v) as mobile phase and estimated at 575 nm. The developed method exhibits linearity, accuracy, precision, LOD, LOQ, specificity and robustness in accordance with the ICH Q2 (R1) guideline. The percent assay of GYM and RES in the marketed capsule formulation was statistically compared using an unpaired t-test, resulting in a range of 99.51-102.65%. These indicate no significant difference between the proposed method and the marketed formulation. Therefore, both novel methods can be interchangeably used for quality control of GYM and RES in polyherbal formulations.
Collapse
Affiliation(s)
- Dhruv Joshi
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, SG Highway, Ahmedabad 382481, Gujarat, India
| | - Charmy Kothari
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, SG Highway, Ahmedabad 382481, Gujarat, India
| | - Nrupesh Patel
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, SG Highway, Ahmedabad 382481, Gujarat, India
| |
Collapse
|
3
|
Liu T, Han R, Yan Y. Preliminary study on molecular mechanism of COVID-19 intervention by Polygonum cuspidatum through computer bioinformatics. Medicine (Baltimore) 2024; 103:e36918. [PMID: 38215091 PMCID: PMC10783314 DOI: 10.1097/md.0000000000036918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024] Open
Abstract
To explore the mechanism of action of Polygonum cuspidatum in intervening in coronavirus disease 2019 using a network pharmacology approach and to preliminarily elucidate its mechanism. The active ingredients and action targets of P cuspidatum were classified and summarized using computer virtual technology and molecular informatics methods. The active ingredients and relevant target information of P cuspidatum were identified using the TCM Systematic Pharmacology Database and Analysis Platform, the TCM Integrated Pharmacology Research Platform v2.0, and the SwissTarget database. The GENECARDS database was used to search for COVID-19 targets. The STRING database was analyzed and combined with Cytoscape 3.7.1 software to construct a protein interaction network map to screen the core targets. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis was then performed. The core compound, polydatin, was selected and the core targets were analyzed by computer virtual docking using software such as discovery studio autodock tool. In vitro cell models were constructed to experimentally validate the activity of the core compound, polydatin. By computer screening, we identified 9 active ingredients and their corresponding 286 targets from P cuspidatum. A search of the GENECARDS database for COVID-19 yielded 303 core targets. By mapping the active ingredient targets to the disease targets, 27 overlapping targets could be extracted as potential targets for the treatment of COVID-19 with P cuspidatum. In addition, the enrichment analysis of Kyoto Encyclopedia of Genes and Genomes pathway on core targets showed that the coronavirus disease, MAPK signaling pathway, NF kappa B signaling pathway, and other signaling pathways were highly enriched. Combined with the degree-high target analysis in the protein interaction network, it was found to be mainly concentrated in the NF-kappaB (NF-κB) signaling pathway, indicating that the NF-κB signaling pathway may be an important pathway for P cuspidatum intervention. In vitro assays showed no effect of 0.1 to 10 μM polydatin on cell viability, but an inhibitory effect on the transcriptional activity of NF-κB-RE. Molecular docking showed stable covalent bonding of polydatin molecules with Il-1β protein at residue leu-26, TNF protein ser-60, residue gly-121, and residue ile-258 of ICAM-1 protein, indicating a stable docking result. The treatment of COVID-19 with P cuspidatum is characterized by multi-component, multi-target, and multi-pathway, which can exert a complex network of regulatory effects through the interaction between different targets, providing a new idea and basis for further exploration of the mechanism of action of P cuspidatum in the treatment of COVID-19.
Collapse
Affiliation(s)
- Tao Liu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Han
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiqi Yan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Li B, Pan LL, Pan X, Dong X, Ren Z, Zhang H, Chen W, de Vos P, Sun J. Opportunities and challenges of polyphenols and polysaccharides for type 1 diabetes intervention. Crit Rev Food Sci Nutr 2022; 64:2811-2823. [PMID: 36168918 DOI: 10.1080/10408398.2022.2126962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder characterized by the destruction of insulin-producing pancreatic β cell. It contributes to high mortality, frequent diabetic complications, poor quality of life in patients and also puts a significant economic burden on health care systems. Therefore, the development of new therapeutic strategies is urgently needed. Recently, certain dietary compounds with potential applications in food industry, particularly polyphenols and polysaccharides, have gained increasing attention with their prominent anti-diabetic effects on T1D by modulating β cell function, the gut microbiota and/or the immune system. In this review, we critically discuss the recent findings of several dietary polyphenols and polysaccharides with the potential to protect against T1D and the underlying anti-diabetic mechanisms. More importantly, we highlight the current trends, major issues, and future directions of industrial production of polyphenols- and polysaccharides-based functional foods for preventing or delaying T1D.
Collapse
Affiliation(s)
- Binbin Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li-Long Pan
- School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaohua Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Zhengnan Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Su M, Zhao W, Xu S, Weng J. Resveratrol in Treating Diabetes and Its Cardiovascular Complications: A Review of Its Mechanisms of Action. Antioxidants (Basel) 2022; 11:antiox11061085. [PMID: 35739982 PMCID: PMC9219679 DOI: 10.3390/antiox11061085] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Diabetes mellitus (DM) is one of the most prevalent chronic diseases worldwide. High morbidity and mortality caused by DM are closely linked to its complications in multiple organs/tissues, including cardiovascular complications, diabetic nephropathy, and diabetic neuropathy. Resveratrol is a plant-derived polyphenolic compound with pleiotropic protective effects, ranging from antioxidant and anti-inflammatory to hypoglycemic effects. Recent studies strongly suggest that the consumption of resveratrol offers protection against diabetes and its cardiovascular complications. The protective effects of resveratrol involve the regulation of multiple signaling pathways, including inhibition of oxidative stress and inflammation, enhancement of insulin sensitivity, induction of autophagy, regulation of lipid metabolism, promotion of GLUT4 expression, and translocation, and activation of SIRT1/AMPK signaling axis. The cardiovascular protective effects of resveratrol have been recently reviewed in the literature, but the role of resveratrol in preventing diabetes mellitus and its cardiovascular complications has not been systematically reviewed. Therefore, in this review, we summarize the pharmacological effects and mechanisms of action of resveratrol based on in vitro and in vivo studies, highlighting the therapeutic potential of resveratrol in the prevention and treatment of diabetes and its cardiovascular complications.
Collapse
|
6
|
Shahwan M, Alhumaydhi F, Ashraf GM, Hasan PMZ, Shamsi A. Role of polyphenols in combating Type 2 Diabetes and insulin resistance. Int J Biol Macromol 2022; 206:567-579. [PMID: 35247420 DOI: 10.1016/j.ijbiomac.2022.03.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 02/09/2023]
Abstract
Compromised carbohydrate metabolism leading to hyperglycemia is the primary metabolic disorder of non-insulin-dependent diabetes mellitus. Reformed digestion and altered absorption of carbohydrates, exhaustion of glycogen stock, enhanced gluconeogenesis and overproduced hepatic glucose, dysfunction of β-cell, resistance to insulin in peripheral tissue, and impaired insulin signaling pathways are essential reasons for hyperglycemia. Although oral anti-diabetic drugs like α-glucosidase inhibitors, sulfonylureas and insulin therapies are commonly used to manage Type 2 Diabetes (T2D) and hyperglycemia, natural compounds in diet also play a significant role in combating the effect of diabetes. Due to their vast bioavailability and anti-hyperglycemic effect with least or no side effects, polyphenolic compounds have gained wide popularity. Polyphenols such as flavonoids and tannins play a significant role in carbohydrate metabolism by inhibiting key enzymes responsible for the digestion of carbohydrates to glucose like α-glucosidase and α-amylase. Several polyphenols such as resveratrol, epigallocatechin-3-gallate (EGCG) and quercetin enhanced glucose uptake in the muscle and adipocytes by translocating GLUT4 to plasma membrane mainly by the activation of the AMP-activated protein kinase (AMPK) pathway. This review provides an insight into the protective role of polyphenols in T2D, highlighting the aspects of insulin resistance.
Collapse
Affiliation(s)
- Moyad Shahwan
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, United Arab Emirates; College of Pharmacy & Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Fahad Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Prince M Z Hasan
- Centre of Nanotechnology, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, United Arab Emirates; Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
7
|
Keshtkar S, Kaviani M, Jabbarpour Z, Al-Abdullah IH, Aghdaei MH, Nikeghbalian S, Shamsaeefar A, Geramizadeh B, Azarpira N, Ghahremani MH. Significant reduction of apoptosis induced via hypoxia and oxidative stress in isolated human islet by resveratrol. Nutr Metab Cardiovasc Dis 2020; 30:1216-1226. [PMID: 32482454 DOI: 10.1016/j.numecd.2020.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Successful islet transplantation as a promising treatment of diabetes type 1 is threatened with the loss of islets during the pre-transplant culture due to hypoxia and oxidative stress-induced apoptosis. Therefore, optimization of culture in order to preserve the islets is a critical point. In this study, we investigated the effect of resveratrol, as a cytoprotective agent, on the cultured human islets. METHODS AND RESULTS Isolated islets were treated with different concentrations of resveratrol for 24 and 72 h. Islets' viability, apoptosis, apoptosis markers, and insulin and C-peptide secretion, along with the production of reactive oxygen species (ROS), hypoxia inducible factor 1 alpha (HIF-1α), and its target genes in the islets were investigated. Our findings showed that the islets were exposed to hypoxia and oxidative stress after isolation and during culture. This insult induced apoptosis and decreased viability during 72 h. The presence of resveratrol significantly attenuated HIF-1α and ROS production, reduced apoptosis, promoted the VEGF secretion, and increased the insulin and C-peptide secretion. In this regard, resveratrol improved the islet's survival and function in the culture period. CONCLUSIONS Using resveratrol can attenuate the stressful condition for the islets in the pre-transplant culture and subsequently ameliorate their viability and functionality that lead to successful outcome after clinical transplantation.
Collapse
Affiliation(s)
- Somayeh Keshtkar
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Jabbarpour
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ismail H Al-Abdullah
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, USA
| | - Mahdokht H Aghdaei
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saman Nikeghbalian
- Shiraz Organ Transplant Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Shamsaeefar
- Shiraz Organ Transplant Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bita Geramizadeh
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Institute of Stem Cell and Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad H Ghahremani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology-Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Luo G, Xiao L, Wang D, Wang N, Luo C, Yang X, Hao L. Resveratrol protects against ethanol-induced impairment of insulin secretion in INS-1 cells through SIRT1-UCP2 axis. Toxicol In Vitro 2020; 65:104808. [PMID: 32087266 DOI: 10.1016/j.tiv.2020.104808] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
SIRT1 has been proposed to enhance insulin secretion in β-cell through repressing the expression of uncoupling protein2 (UCP2), but whether ethanol-induced β-cell dysfunction is mediated by the disrupted SIRT1-UCP2 axis remains unknown. This study was conducted to explore the underlying mechanisms by which ethanol resulted in β-cell dysfunction and the potential protective effects of resveratrol in this process. INS-1 cells (rat pancreatic β-cell line) were cultured with ethanol in the presence or absence of resveratrol (2.5, 12.5 μmol/L). The results showed that ethanol exposure reduced glucose-stimulated insulin secretion, ATP production and SIRT1 expression but increased UCP2 expression, while supplementation with resveratrol restored the function of INS-1 cell by upregulating SIRT1 and inhibiting UCP2. Moreover, the critical role of SIRT1-UCP2 axis was further supported by the results that SIRT1 activator SRT1720 reversed ethanol-induced impairment of glucose-stimulated insulin secretion by decreasing UCP2, while SIRT1 inhibitor Ex527 abolished the beneficial effects of resveratrol. Meanwhile, NAD+ booster nicotinamide mononucleotide also counteracted the deleterious effects of ethanol by increasing SIRT1, suggesting the regulation of SIRT1-UCP2 axis may be associated with cellular NAD+/NADH ratio. In conclusion, our observations imply that ethanol induces impaired insulin secretion from INS-1 cell through disrupting SIRT1-UCP2 axis, while resveratrol may reverse this process by augmenting SIRT1 and inhibiting UCP2.
Collapse
Affiliation(s)
- Gang Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lin Xiao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dongxia Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ning Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Can Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liping Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
9
|
Biotechnological Advances in Resveratrol Production and its Chemical Diversity. Molecules 2019; 24:molecules24142571. [PMID: 31311182 PMCID: PMC6680439 DOI: 10.3390/molecules24142571] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/01/2019] [Indexed: 12/14/2022] Open
Abstract
The very well-known bioactive natural product, resveratrol (3,5,4'-trihydroxystilbene), is a highly studied secondary metabolite produced by several plants, particularly grapes, passion fruit, white tea, and berries. It is in high demand not only because of its wide range of biological activities against various kinds of cardiovascular and nerve-related diseases, but also as important ingredients in pharmaceuticals and nutritional supplements. Due to its very low content in plants, multi-step isolation and purification processes, and environmental and chemical hazards issues, resveratrol extraction from plants is difficult, time consuming, impracticable, and unsustainable. Therefore, microbial hosts, such as Escherichia coli, Saccharomyces cerevisiae, and Corynebacterium glutamicum, are commonly used as an alternative production source by improvising resveratrol biosynthetic genes in them. The biosynthesis genes are rewired applying combinatorial biosynthetic systems, including metabolic engineering and synthetic biology, while optimizing the various production processes. The native biosynthesis of resveratrol is not present in microbes, which are easy to manipulate genetically, so the use of microbial hosts is increasing these days. This review will mainly focus on the recent biotechnological advances for the production of resveratrol, including the various strategies used to produce its chemically diverse derivatives.
Collapse
|
10
|
Brouwer S, Hoffmeister T, Gresch A, Schönhoff L, Düfer M. Resveratrol Influences Pancreatic Islets by Opposing Effects on Electrical Activity and Insulin Release. Mol Nutr Food Res 2019; 62. [PMID: 29341416 DOI: 10.1002/mnfr.201700902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/19/2017] [Indexed: 01/27/2023]
Abstract
SCOPE Resveratrol is suggested to improve glycemic control by activation of sirtuin 1 (SIRT1) and has already been tested clinically. Our investigation characterizes the targets of resveratrol in pancreatic beta cells and their contribution to short- and long-term effects on insulin secretion. METHODS AND RESULTS Islets or beta cells are isolated from C57BL/6N mice. Electrophysiology is performed with microelectrode arrays and patch-clamp technique, insulin secretion and content are determined by radioimmunoassay, cAMP is measured by enzyme-linked immunosorbent assay, and cytosolic Ca2+ concentration by fluorescence methods. Resveratrol (25 μmol L-1 ) elevates [Ca2+ ]c and potentiates glucose-stimulated insulin secretion. These effects are associated with increased intracellular cAMP and are sensitive to the SIRT1 blocker Ex-527. Inhibition of EPAC1 by CE3F4 also abolishes the stimulatory effect of resveratrol. The underlying mechanism does not involve membrane depolarization as resveratrol even reduces electrical activity despite blocking KATP channels. Importantly, after prolonged exposure to resveratrol (14 days), the beneficial influence of the polyphenol on insulin release is lost. CONCLUSION Resveratrol addresses multiple targets in pancreatic islets. Potentiation of insulin secretion is mediated by SIRT1-dependent activation of cAMP/EPAC1. Considering resveratrol as therapeutic supplement for patients with type 2 diabetes mellitus, the inhibitory influence on electrical excitability attenuates positive effects.
Collapse
Affiliation(s)
- Simone Brouwer
- University of Münster, Pharmaceutical and Medicinal Chemistry, Dept. of Pharmacology, Münster, Germany
| | - Theresa Hoffmeister
- University of Münster, Pharmaceutical and Medicinal Chemistry, Dept. of Pharmacology, Münster, Germany
| | - Anne Gresch
- University of Münster, Pharmaceutical and Medicinal Chemistry, Dept. of Pharmacology, Münster, Germany
| | - Lisa Schönhoff
- University of Münster, Pharmaceutical and Medicinal Chemistry, Dept. of Pharmacology, Münster, Germany
| | - Martina Düfer
- University of Münster, Pharmaceutical and Medicinal Chemistry, Dept. of Pharmacology, Münster, Germany
| |
Collapse
|
11
|
Fang WJ, Wang CJ, He Y, Zhou YL, Peng XD, Liu SK. Resveratrol alleviates diabetic cardiomyopathy in rats by improving mitochondrial function through PGC-1α deacetylation. Acta Pharmacol Sin 2018; 39:59-73. [PMID: 28770830 DOI: 10.1038/aps.2017.50] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/28/2017] [Indexed: 12/13/2022]
Abstract
Recent evidence shows that resveratrol (RSV) may ameliorate high-glucose-induced cardiac oxidative stress, mitochondrial dysfunction and myocardial fibrosis in diabetes. However, the mechanisms by which RSV regulates mitochondrial function in diabetic cardiomyopathy have not been fully elucidated. Mitochondrial dysfunction contributes to cardiac dysfunction in diabetic patients, which is associated with dysregulation of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α). In this study we examined whether resveratrol alleviated cardiac dysfunction in diabetes by improving mitochondrial function via SIRT1-mediated PGC-1α deacetylation. T2DM was induced in rats by a high-fat diet combined with STZ injection. Diabetic rats were orally administered RSV (50 mg·kg-1·d-1) for 16 weeks. RSV administration significantly attenuated diabetes-induced cardiac dysfunction and hypertrophy evidenced by increasing ejection fraction (EF%), fraction shortening (FS%), ratio of early diastolic peak velocity (E velocity) and late diastolic peak velocity (A velocity) of the LV inflow (E/A ratio) and reducing expression levels of pro-hypertrophic markers ANP, BNP and β-MHC. Furthermore, manganese superoxide dismutase (SOD) activity, ATP content, mitochondrial DNA copy number, mitochondrial membrane potential and the expression of nuclear respiration factor (NRF) were all significantly increased in diabetic hearts by RSV administration, whereas the levels of malondialdehvde (MDA) and uncoupling protein 2 (UCP2) were significantly decreased. Moreover, RSV administration significantly activated SIRT1 expression and increased PGC-1α deacetylation. H9c2 cells cultured in a high glucose (HG, 30 mmol/L) condition were used for further analyzing the role of SIRT1/PGC-1α pathway in RSV regulation of mitochondrial function. RSV (20 μmol/L) caused similar beneficial effects in HG-treated H9c2 cells in vitro as in diabetic rats, but these protective effects were abolished by addition of a SIRT1 inhibitor sirtinol (25 μmol/L) or by SIRT1 siRNA transfection. In H9c2 cells, RSV-induced PGC-1α deacetylation was dependent on SIRT1, which was also abolished by a SIRT1 inhibitor and SIRT1 siRNA transfection. Our results demonstrate that resveratrol attenuates cardiac injury in diabetic rats through regulation of mitochondrial function, which is mediated partly through SIRT1 activation and increased PGC-1α deacetylation.
Collapse
|
12
|
Abbasi Oshaghi E, Goodarzi MT, Higgins V, Adeli K. Role of resveratrol in the management of insulin resistance and related conditions: Mechanism of action. Crit Rev Clin Lab Sci 2017; 54:267-293. [DOI: 10.1080/10408363.2017.1343274] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ebrahim Abbasi Oshaghi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taghi Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Victoria Higgins
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Khosrow Adeli
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Zhang Q, Feng Y, Kennedy D. Multidrug-resistant cancer cells and cancer stem cells hijack cellular systems to circumvent systemic therapies, can natural products reverse this? Cell Mol Life Sci 2017; 74:777-801. [PMID: 27622244 PMCID: PMC11107623 DOI: 10.1007/s00018-016-2362-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 12/15/2022]
Abstract
Chemotherapy is one of the most effective and broadly used approaches for cancer management and many modern regimes can eliminate the bulk of the cancer cells. However, recurrence and metastasis still remain a major obstacle leading to the failure of systemic cancer treatments. Therefore, to improve the long-term eradication of cancer, the cellular and molecular pathways that provide targets which play crucial roles in drug resistance should be identified and characterised. Multidrug resistance (MDR) and the existence of tumor-initiating cells, also referred to as cancer stem cells (CSCs), are two major contributors to the failure of chemotherapy. MDR describes cancer cells that become resistant to structurally and functionally unrelated anti-cancer agents. CSCs are a small population of cells within cancer cells with the capacity of self-renewal, tumor metastasis, and cell differentiation. CSCs are also believed to be associated with chemoresistance. Thus, MDR and CSCs are the greatest challenges for cancer chemotherapy. A significant effort has been made to identify agents that specifically target MDR cells and CSCs. Consequently, some agents derived from nature have been developed with a view that they may overcome MDR and/or target CSCs. In this review, natural products-targeting MDR cancer cells and CSCs are summarized and clustered by their targets in different signaling pathways.
Collapse
Affiliation(s)
- Qian Zhang
- School of Natural Sciences, Eskitis Institute for Drug Discovery, Griffith University, Nathan, 4111, Australia
| | - Yunjiang Feng
- School of Natural Sciences, Eskitis Institute for Drug Discovery, Griffith University, Nathan, 4111, Australia
| | - Derek Kennedy
- School of Natural Sciences, Eskitis Institute for Drug Discovery, Griffith University, Nathan, 4111, Australia.
| |
Collapse
|
14
|
Mansour A, Hosseini S, Larijani B, Mohajeri-Tehrani MR. Nutrients as novel therapeutic approaches for metabolic disturbances in polycystic ovary syndrome. EXCLI JOURNAL 2016; 15:551-564. [PMID: 28096785 PMCID: PMC5225686 DOI: 10.17179/excli2016-422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/02/2016] [Indexed: 12/14/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders among women. This disease is characterized by infertility, menstrual dysfunction, and hyperandrogenism. Also, PCOS is often associated with hyperlipidemia and impaired glucose tolerance, conditions that are associated with cardiovascular disorder, type 2 diabetes, cancer and hypertension. Evidence supports that some nutrients may affect the hormonal and metabolic disturbances of PCOS. Here in this study, we aimed to review the available literature that assessed the nutrients such as inostol, isoflavonids, resveratrol, vitamin D, and PUFA (polyunsaturated fatty acids), known to influence the hormonal and metabolic disturbances of PCOS, along with the strategies and future directions of nutrient supplementations in such patients.
Collapse
Affiliation(s)
- Asieh Mansour
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute Shahid Beheshti University of Medical Science, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Hosseini
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Mohajeri-Tehrani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Shin JY, Pandey RP, Jung HY, Chu LL, Park YI, Sohng JK. In vitro single-vessel enzymatic synthesis of novel Resvera-A glucosides. Carbohydr Res 2016; 424:8-14. [DOI: 10.1016/j.carres.2016.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 12/31/2015] [Accepted: 02/01/2016] [Indexed: 02/07/2023]
|
16
|
Sung MM, Hamza SM, Dyck JRB. Myocardial metabolism in diabetic cardiomyopathy: potential therapeutic targets. Antioxid Redox Signal 2015; 22:1606-30. [PMID: 25808033 DOI: 10.1089/ars.2015.6305] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Cardiovascular complications in diabetes are particularly serious and represent the primary cause of morbidity and mortality in diabetic patients. Despite early observations of cardiac dysfunction in diabetic humans, cardiomyopathy unique to diabetes has only recently been recognized. RECENT ADVANCES Research has focused on understanding the pathogenic mechanisms underlying the initiation and development of diabetic cardiomyopathy. Emerging data highlight the importance of altered mitochondrial function as a major contributor to cardiac dysfunction in diabetes. Mitochondrial dysfunction occurs by several mechanisms involving altered cardiac substrate metabolism, lipotoxicity, impaired cardiac insulin and glucose homeostasis, impaired cellular and mitochondrial calcium handling, oxidative stress, and mitochondrial uncoupling. CRITICAL ISSUES Currently, treatment is not specifically tailored for diabetic patients with cardiac dysfunction. Given the multifactorial development and progression of diabetic cardiomyopathy, traditional treatments such as anti-diabetic agents, as well as cellular and mitochondrial fatty acid uptake inhibitors aimed at shifting the balance of cardiac metabolism from utilizing fat to glucose may not adequately target all aspects of this condition. Thus, an alternative treatment such as resveratrol, which targets multiple facets of diabetes, may represent a safe and promising supplement to currently recommended clinical therapy and lifestyle changes. FUTURE DIRECTIONS Elucidation of the mechanisms underlying the initiation and progression of diabetic cardiomyopathy is essential for development of effective and targeted treatment strategies. Of particular interest is the investigation of alternative therapies such as resveratrol, which can function as both preventative and mitigating agents in the management of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Miranda M Sung
- Department of Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | - Shereen M Hamza
- Department of Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | - Jason R B Dyck
- Department of Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| |
Collapse
|
17
|
Pandey RP, Parajuli P, Shin JY, Lee J, Lee S, Hong YS, Park YI, Kim JS, Sohng JK. Enzymatic Biosynthesis of Novel Resveratrol Glucoside and Glycoside Derivatives. Appl Environ Microbiol 2014; 80:7235-43. [PMID: 25239890 PMCID: PMC4249177 DOI: 10.1128/aem.02076-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 08/27/2014] [Indexed: 11/20/2022] Open
Abstract
A UDP glucosyltransferase from Bacillus licheniformis was overexpressed, purified, and incubated with nucleotide diphosphate (NDP) d- and l-sugars to produce glucose, galactose, 2-deoxyglucose, viosamine, rhamnose, and fucose sugar-conjugated resveratrol glycosides. Significantly higher (90%) bioconversion of resveratrol was achieved with α-d-glucose as the sugar donor to produce four different glucosides of resveratrol: resveratrol 3-O-β-d-glucoside, resveratrol 4'-O-β-d-glucoside, resveratrol 3,5-O-β-d-diglucoside, and resveratrol 3,5,4'-O-β-d-triglucoside. The conversion rates and numbers of products formed were found to vary with the other NDP sugar donors. Resveratrol 3-O-β-d-2-deoxyglucoside and resveratrol 3,5-O-β-d-di-2-deoxyglucoside were found to be produced using TDP-2-deoxyglucose as a donor; however, the monoglycosides resveratrol 4'-O-β-d-galactoside, resveratrol 4'-O-β-d-viosaminoside, resveratrol 3-O-β-l-rhamnoside, and resveratrol 3-O-β-l-fucoside were produced from the respective sugar donors. Altogether, 10 diverse glycoside derivatives of the medically important resveratrol were generated, demonstrating the capacity of YjiC to produce structurally diverse resveratrol glycosides.
Collapse
Affiliation(s)
- Ramesh Prasad Pandey
- Institute of Biomolecule Reconstruction, Department of Pharmaceutical Engineering, Sun Moon University, Tangjeonmyun, Asan-si, Chungnam, South Korea
| | - Prakash Parajuli
- Institute of Biomolecule Reconstruction, Department of Pharmaceutical Engineering, Sun Moon University, Tangjeonmyun, Asan-si, Chungnam, South Korea
| | - Ju Yong Shin
- Institute of Biomolecule Reconstruction, Department of Pharmaceutical Engineering, Sun Moon University, Tangjeonmyun, Asan-si, Chungnam, South Korea
| | - Jisun Lee
- Department of Biotechnology, Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Seul Lee
- Department of Biotechnology, Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Young-Soo Hong
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang-eup, Chungbuk, South Korea
| | - Yong Il Park
- Department of Biotechnology, Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Joong Su Kim
- Bioindustry Process Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology, Jeonbuk, Jeong-Ub, South Korea
| | - Jae Kyung Sohng
- Institute of Biomolecule Reconstruction, Department of Pharmaceutical Engineering, Sun Moon University, Tangjeonmyun, Asan-si, Chungnam, South Korea
| |
Collapse
|
18
|
Kong W, Chen LL, Zheng J, Zhang HH, Hu X, Zeng TS, Hu D. Resveratrol supplementation restores high-fat diet-induced insulin secretion dysfunction by increasing mitochondrial function in islet. Exp Biol Med (Maywood) 2014; 240:220-9. [PMID: 25228148 DOI: 10.1177/1535370214548998] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Resveratrol (RSV), a natural compound, is known for its effects on energy homeostasis. Here we investigated the effects of RSV and possible mechanism in insulin secretion of high-fat diet rats. Rats were randomly divided into three groups as follows: NC group (animals were fed ad libitum with normal chow for 8 weeks), HF group (animals were fed ad libitum with high-fat diet for 8 weeks), and HFR group (animals were treated with high-fat diet and administered with RSV for 8 weeks). Insulin secretion ability of rats was assessed by hyperglycemic clamp. Mitochondrial biogenesis genes, mitochondrial respiratory chain activities, reactive oxidative species (ROS), and several mitochondrial antioxidant enzyme activities were evaluated in islet. We found that HF group rats clearly showed low insulin secretion and mitochondrial complex dysfunction. Expression of silent mating type information regulation 2 homolog- 1 (SIRT1) and related mitochondrial biogenesis were significantly decreased. However, RSV administration group (HFR) showed a marked potentiation of glucose-stimulated insulin secretion. This effect was associated with elevated SIRT1 protein expression and antioxidant enzyme activities, resulting in increased mitochondrial respiratory chain activities and decreased ROS level. This study suggests that RSV may increase islet mitochondrial complex activities and antioxidant function to restore insulin secretion dysfunction induced by high-fat diet.
Collapse
Affiliation(s)
- Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lu-lu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Juan Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hao-hao Zhang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiang Hu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tian-shu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Di Hu
- Department of Gastroenterology, Jingzhou Central Hospital, Jingzhou 434020, China
| |
Collapse
|
19
|
Oh YS, Jun HS. Role of bioactive food components in diabetes prevention: effects on Beta-cell function and preservation. Nutr Metab Insights 2014; 7:51-9. [PMID: 25092987 PMCID: PMC4116378 DOI: 10.4137/nmi.s13589] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 02/06/2023] Open
Abstract
Bioactive compounds found in fruits and vegetables can have anti-oxidant, anti-inflammatory, and anti-carcinogenic effects and can be protective against various diseases and metabolic disorders. These beneficial effects make them good candidates for the development of new functional foods with potential protective and preventive properties for type 1 and type 2 diabetes. This review summarizes the most relevant results concerning the effects of various bioactive compounds such as flavonoids, vitamins, and carotenoids on several aspects of beta-cell functionality. Studies using animal models with induced diabetes and diabetic patients support the hypothesis that bioactive compounds could ameliorate diabetic phenotypes. Published data suggest that there might be direct effects of bioactive compounds on enhancing insulin secretion and preventing beta-cell apoptosis, and some compounds might modulate beta-cell proliferation. Further research is needed to establish any clinical effects of these compounds.
Collapse
Affiliation(s)
- Yoon Sin Oh
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea. ; Gachon Medical Research Institute, Gil Hospital, Incheon, Korea
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea. ; Gachon Medical Research Institute, Gil Hospital, Incheon, Korea. ; College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Korea
| |
Collapse
|
20
|
Liu K, Zhou R, Wang B, Mi MT. Effect of resveratrol on glucose control and insulin sensitivity: a meta-analysis of 11 randomized controlled trials. Am J Clin Nutr 2014; 99:1510-9. [PMID: 24695890 DOI: 10.3945/ajcn.113.082024] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The results of human clinical trials investigating the effects of resveratrol on glucose control and insulin sensitivity are inconsistent. OBJECTIVE We aimed to quantitatively evaluate the effects of resveratrol on glucose control and insulin sensitivity. DESIGN We performed a strategic literature search of PubMed, Embase, MEDLINE, and the Cochrane Library (updated to March 2014) for randomized controlled trials that estimated the effects of resveratrol on glucose control and insulin sensitivity. Study quality was assessed by using the Jadad scale. Weighted mean differences were calculated for net changes in glycemic measures by using fixed-effects or random-effects models. We performed prespecified subgroup and sensitivity analyses to evaluate potential heterogeneity. Meta-regression analyses were conducted to investigate dose effects of resveratrol on fasting glucose and insulin concentrations in nondiabetic subjects. RESULTS Eleven studies comprising a total of 388 subjects were included in this meta-analysis. Resveratrol consumption significantly reduced fasting glucose, insulin, glycated hemoglobin, and insulin resistance (measured by using the homeostatic model assessment) levels in participants with diabetes. No significant effect of resveratrol on glycemic measures of nondiabetic participants was found in the meta-analysis. Subgroup and sensitivity analyses indicated that the pooled effects of resveratrol on fasting glucose and insulin concentrations in nondiabetic participants were not affected by body mass index, study design, resveratrol dose, study duration, or Jadad score. CONCLUSIONS Resveratrol significantly improves glucose control and insulin sensitivity in persons with diabetes but does not affect glycemic measures in nondiabetic persons. Additional high-quality studies are needed to further evaluate the potential benefits of resveratrol in humans.
Collapse
Affiliation(s)
- Kai Liu
- From the Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, PR China
| | - Rui Zhou
- From the Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, PR China
| | - Bin Wang
- From the Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, PR China
| | - Man-Tian Mi
- From the Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, PR China
| |
Collapse
|
21
|
Knop FK, Konings E, Timmers S, Schrauwen P, Holst JJ, Blaak EE. Thirty days of resveratrol supplementation does not affect postprandial incretin hormone responses, but suppresses postprandial glucagon in obese subjects. Diabet Med 2013; 30:1214-8. [PMID: 23663119 DOI: 10.1111/dme.12231] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/08/2013] [Indexed: 12/30/2022]
Abstract
AIMS Resveratrol, a natural polyphenolic compound produced by various plants (e.g. red grapes) and found in red wine, has glucose-lowering effects in humans and rodent models of obesity and/or diabetes. The mechanisms behind these effects have been suggested to include resveratrol-induced secretion of the gut incretin hormone glucagon-like peptide-1. We investigated postprandial incretin hormone and glucagon responses in obese human subjects before and after 30 days of resveratrol supplementation. METHODS Postprandial plasma responses of the incretin hormones glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide and glucagon were evaluated in 10 obese men [subjects characteristics (mean ± standard error of the mean): age 52 ± 2 years; BMI 32 ± 1 kg/m(2), fasting plasma glucose 5.5 ± 0.1 mmol/l] who had been given a dietary supplement of resveratrol (Resvida(®) 150 mg/day) or placebo for 30 days in a randomized, double-blind, crossover design with a 4-week washout period. At the end of each intervention period a standardized meal test (without co-administration of resveratrol) was performed. RESULTS Resveratrol supplementation had no impact on fasting plasma concentrations or postprandial plasma responses (area under curve values) of glucose-dependent insulinotropic polypeptide (11.2 ± 2.1 vs. 11.8 ± 2.2 pmol/l, P = 0.87; 17.0 ± 2.2 vs. 14.8 ± 1.6 min × nmol/l, P = 0.20) or glucagon-like peptide-1 (15.4 ± 1.0 vs. 15.2 ± 0.9 pmol/l, P = 0.84; 5.6 ± 0.4 vs. 5.7 ± 0.3 min × nmol/l, P = 0.73). Resveratrol supplementation significantly suppressed postprandial glucagon responses (4.4 ± 0.4 vs. 3.9 ± 0.4 min × nmol/l, P = 0.01) without affecting fasting glucagon levels (15.2 ± 2.2 vs. 14.5 ± 1.5 pmol/l, P = 0.56). CONCLUSIONS Our data suggest that 30 days of resveratrol supplementation does not affect fasting or postprandial incretin hormone plasma levels in obese humans, but suppresses postprandial glucagon responses.
Collapse
Affiliation(s)
- F K Knop
- Diabetes Research Division, Department of Internal Medicine, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
22
|
Bahadoran Z, Mirmiran P, Azizi F. Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. J Diabetes Metab Disord 2013; 12:43. [PMID: 23938049 PMCID: PMC7968452 DOI: 10.1186/2251-6581-12-43] [Citation(s) in RCA: 349] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 08/07/2013] [Indexed: 12/12/2022]
Abstract
In recent years, there is growing evidence that plant-foods polyphenols, due to their biological properties, may be unique nutraceuticals and supplementary treatments for various aspects of type 2 diabetes mellitus. In this article we have reviewed the potential efficacies of polyphenols, including phenolic acids, flavonoids, stilbenes, lignans and polymeric lignans, on metabolic disorders and complications induced by diabetes. Based on several in vitro, animal models and some human studies, dietary plant polyphenols and polyphenol-rich products modulate carbohydrate and lipid metabolism, attenuate hyperglycemia, dyslipidemia and insulin resistance, improve adipose tissue metabolism, and alleviate oxidative stress and stress-sensitive signaling pathways and inflammatory processes. Polyphenolic compounds can also prevent the development of long-term diabetes complications including cardiovascular disease, neuropathy, nephropathy and retinopathy. Further investigations as human clinical studies are needed to obtain the optimum dose and duration of supplementation with polyphenolic compounds in diabetic patients.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, No 46 Arghavan-e-gharbi St, Farahzadi Blv, Shahrak-e-Ghods, 19395-4741 Tehran, Iran.
| | | | | |
Collapse
|
23
|
Szkudelski T, Zywert A, Szkudelska K. Metabolic disturbances and defects in insulin secretion in rats with streptozotocin-nicotinamide-induced diabetes. Physiol Res 2013; 62:663-70. [PMID: 23869889 DOI: 10.33549/physiolres.932509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rats with diabetes induced by streptozotocin (STZ) and nicotinamide (NA) are often used in animal studies concerning various aspects of diabetes. In this experimental model, the severity of diabetes is different depending on doses of STZ and NA. Moreover, diabetic changes in rats with STZ-NA-induced diabetes are not fully characterized. In our present study, metabolic changes and insulin secretion were investigated in rats with diabetes induced by administration of 60 mg of STZ and 90 mg of NA per kg body weight. Four to six weeks after diabetes induction, insulin, glucagon and some metabolic parameters were determined to evaluate the severity of diabetes. Moreover, insulin secretory capacity of pancreatic islets isolated from control and diabetic rats was compared. It was demonstrated that administration of 60 mg of STZ and 90 mg of NA per kg body weight induced relatively mild diabetes, since insulin, glucagon and other analyzed parameters were only slightly affected in diabetic rats compared with control animals. In vitro studies revealed that insulin secretory response was preserved in pancreatic islets of diabetic rats, however, was lower than in islets of control animals. This effect was observed in the presence of different stimuli. Insulin secretion induced by 6.7 and 16.7 mmol/l glucose was moderately reduced in islets of diabetic rats compared with control islets. In the presence of leucine with glutamine, insulin secretion appeared to be also decreased in islets of rats with STZ-NA-induced diabetes. Insulinotropic action of 6.7 mmol/l glucose with forskolin was also deteriorated in diabetic islets. Moreover, it was demonstrated that at a non-stimulatory glucose, pharmacological depolarization of plasma membrane with a concomitant activation of protein kinase C evoked significant rise in insulin release in islets of control and diabetic rats. However, in diabetic islets, this effect was attenuated. These results indicate that impairment in insulin secretion in pancreatic islets of rats with mild diabetes induced by STZ and NA results from both metabolic and nonmetabolic disturbances in these islets.
Collapse
Affiliation(s)
- T Szkudelski
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznan, Poland.
| | | | | |
Collapse
|
24
|
Divergent effects of sulforaphane on basal and glucose-stimulated insulin secretion in β-cells: role of reactive oxygen species and induction of endogenous antioxidants. Pharm Res 2013; 30:2248-59. [PMID: 23468051 DOI: 10.1007/s11095-013-1013-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/15/2013] [Indexed: 02/07/2023]
Abstract
PURPOSE Oxidative stress is implicated in pancreatic β-cell dysfunction, yet clinical outcomes of antioxidant therapies on diabetes are inconclusive. Since reactive oxygen species (ROS) can function as signaling intermediates for glucose-stimulated insulin secretion (GSIS), we hypothesize that exogenously boosting cellular antioxidant capacity dampens signaling ROS and GSIS. METHODS To test the hypothesis, we formulated a mathematical model of redox homeostatic control circuit comprising known feedback and feedforward loops and validated model predictions with plant-derived antioxidant sulforaphane (SFN). RESULTS SFN acutely (30-min treatment) stimulated basal insulin secretion in INS-1(832/13) cells and cultured mouse islets, which could be attributed to SFN-elicited ROS as N-acetylcysteine or glutathione ethyl ester suppressed SFN-stimulated insulin secretion. The mathematical model predicted an adapted redox state characteristic of strong induction of endogenous antioxidants but marginally increased ROS under prolonged SFN exposure, a state that attenuates rather than facilitates glucose-stimulated ROS and GSIS. We validated the prediction by demonstrating that although 24-h treatment of INS-1(832/13) cells with low, non-cytotoxic concentrations of SFN (2-10 μM) protected the cells from cytotoxicity by oxidative insult, it markedly suppressed insulin secretion stimulated by 20 mM glucose. CONCLUSIONS Our study indicates that adaptive induction of endogenous antioxidants by exogenous antioxidants, albeit cytoprotective, inhibits GSIS in β-cells.
Collapse
|
25
|
WU CF, YANG JY, WANG F, WANG XX. Resveratrol: botanical origin, pharmacological activity and applications. Chin J Nat Med 2013. [DOI: 10.1016/s1875-5364(13)60001-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Belviranli M, Gökbel H, Okudan N, Büyükbaş S. Oxidative stress and anti-oxidant status in diabetic rat liver: effect of plant polyphenols. Arch Physiol Biochem 2012; 118:237-43. [PMID: 22803804 DOI: 10.3109/13813455.2012.702775] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Increased evidence in role of oxidative stress and grape seed extract (GSE) in diabetes and its complication led us to investigate the changes of oxidative stress and anti-oxidant defence in liver tissue of diabetic rats and possible effects of GSE. Diabetes was induced by a single intraperitoneal injection of streptozotocin. Seven days after STZ injection four groups were formed: Control, GSE-supplemented control, diabetic and GSE-supplemented diabetic and GSE was given for 6 weeks. Malondialdehyde levels and xanthine oxidase activities were not different among the groups. However, nitric oxide (NO) levels were higher in diabetic and GSE supplemented groups compared with non-diabetic and non-supplemented groups, respectively. Total anti-oxidant activity (TAA) was lower in diabetic groups compared with their non-diabetic controls and it was not affected by GSE. In conclusion, GSE supplementation has limited protective effect in liver tissue of diabetic rats via affecting NO levels and was not affecting TAA.
Collapse
Affiliation(s)
- Muaz Belviranli
- Department of Physiology, Meram Faculty of Medicine, Selcuk University, Konya, Turkey.
| | | | | | | |
Collapse
|
27
|
Resveratrol role in cardiovascular and metabolic health and potential mechanisms of action. Nutr Res 2012; 32:648-58. [DOI: 10.1016/j.nutres.2012.07.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 07/03/2012] [Accepted: 07/05/2012] [Indexed: 12/18/2022]
|
28
|
Activation of SIRT1 protects pancreatic β-cells against palmitate-induced dysfunction. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1815-25. [PMID: 22968147 DOI: 10.1016/j.bbadis.2012.08.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 08/08/2012] [Accepted: 08/13/2012] [Indexed: 01/23/2023]
Abstract
Sirtuin 1 (SIRT1), a nicotinamide adenosine dinucleotide-dependent histone deacetylase, is an important regulator of energy homeostasis in response to nutrient availability. In pancreatic β-cells, SIRT1 has been shown to up-regulate insulin secretion in response to glucose stimulation. However, the potential roles of SIRT1 in islet β-cells against lipotoxicity remain poorly understood. Here, we demonstrated that SIRT1 mRNA and protein expressions were markedly reduced in the islets isolated from rats infused with 20% Intralipid for 24h. Long-term exposure to 0.4mmol/L palmitate also decreased SIRT1 expression in cultured INS-1 cells and isolated rat islets, which was prevented by 10μmol/L resveratrol, a SIRT1 agonist. In addition, resveratrol improved glucose-stimulated insulin secretion decreased by palmitate, which was abrogated by EX527, a specific SIRT1 inhibitor. Furthermore, inhibition of SIRT1 activity by EX527 or a knockdown of SIRT1 suppressed insulin promoter activity, along with decreased insulin, v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA), and NK6 homeodomain 1 (NKX6.1) mRNA expressions. Activation of SIRT1 by resveratrol or overexpression of SIRT1 antagonized palmitate-inhibited insulin transcriptional activity. SIRT1 overexpression exerted an additive effect on pancreatic and duodenal homeobox 1 (PDX1)-stimulated insulin promoter activity and abolished forkhead box O1 protein (FOXO1)-decreased insulin transcriptional activity. Resveratrol reversed FOXO1 nuclear translocation induced by palmitate. Our findings indicate that SIRT1 protects against palmitate-induced β-cell dysfunction.
Collapse
|
29
|
Zamora-Ros R, Urpi-Sarda M, Lamuela-Raventós RM, Martínez-González MÁ, Salas-Salvadó J, Arós F, Fitó M, Lapetra J, Estruch R, Andres-Lacueva C. High urinary levels of resveratrol metabolites are associated with a reduction in the prevalence of cardiovascular risk factors in high-risk patients. Pharmacol Res 2012; 65:615-620. [PMID: 22465220 DOI: 10.1016/j.phrs.2012.03.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 10/28/2022]
Abstract
Moderate wine consumption has been shown to reduce cardiovascular (CV) risk, due to alcohol and polyphenolic compounds, such as resveratrol. We investigated the associations between total urinary resveratrol metabolites (TRMs) as biomarkers of wine and resveratrol consumption and CV risk factors in a large cross-sectional study including high CV risk individuals in Spain. We studied 1000 participants in the PREDIMED Study in whom TRMs were analyzed by LC-MS/MS with a previous solid phase extraction. Multiple linear regression of TRMs (biomarker of wine consumption) improved the mean (95% CI) of HDL [0.168 (0.027-0.309); P=0.02] and triglyceride [-1.012 (-1.797 to -0.227); P=0.012] plasma concentrations and heart rate [-0.259 (-0.412 to -0.107); P<0.001]. Models of TRMs adjusted for alcohol (biomarker of resveratrol intake) decreased fasting blood glucose [-0.533 (-1.034 to -0.033); P=0.037] and triglyceride [-1.014 (-1.998 to -0.029); P=0.044] concentrations, and heart rate [-0.277 (-0.467 to -0.087); P=0.004]. Both resveratrol and wine intake, evaluated as TRMs, were associated with beneficial changes in blood lipid profiles, fasting blood glucose (only resveratrol) and heart rate, suggesting that resveratrol intake via wine consumption might help to decrease CV risk factors.
Collapse
Affiliation(s)
- Raul Zamora-Ros
- Nutrition and Food Science Department, XaRTA INSA, Pharmacy School, University of Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Marchal J, Blanc S, Epelbaum J, Aujard F, Pifferi F. Effects of chronic calorie restriction or dietary resveratrol supplementation on insulin sensitivity markers in a primate, Microcebus murinus. PLoS One 2012; 7:e34289. [PMID: 22479589 PMCID: PMC3316613 DOI: 10.1371/journal.pone.0034289] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/27/2012] [Indexed: 11/18/2022] Open
Abstract
The prevalence of diabetes and hyperinsulinemia increases with age, inducing metabolic failure and limiting lifespan. Calorie restriction (CR) without malnutrition delays the aging process, but its long-term application to humans seems difficult. Resveratrol (RSV), a dietary polyphenol, appears to be a promising CR mimetic that can be easily administered in humans. In this work, we hypothesized that both CR and RSV impact insulin sensitivity in a non-human primate compared to standard-fed control (CTL) animals. Four- to five-year-old male grey mouse lemurs (Microcebus murinus) were assigned to three dietary groups: a CTL group, a CR group receiving 30% fewer calories than the CTL and a RSV group receiving the CTL diet supplemented with RSV (200 mg·day(-1)·kg(-1)). Insulin sensitivity and glycemia were assessed using an oral glucose tolerance test (OGTT) and the homeostasis model assessment of insulin resistance (HOMA-IR index) evaluation after 21 or 33 months of chronic treatment. Resting metabolic rate was also measured to assess the potential relationships between this energy expenditure parameter and insulin sensitivity markers. No differences were found after a 21-month period of treatment, except for lower glucose levels 30 min after glucose loading in CR animals. After 33 months, CR and RSV decreased glycemia after the oral glucose loading without decreasing fasting blood insulin. A general effect of treatment was observed on the HOMA-IR index, with an 81% reduction in CR animals and 53% in RSV animals after 33 months of treatment compared to CTL. Chronic CR and dietary supplementation with RSV affected insulin sensitivity by improving the glucose tolerance of animals without disturbing their baseline insulin secretion. These results suggest that both CR and RSV have beneficial effects on metabolic alterations, although these effects are different in amplitude between the two anti-aging treatments and potentially rely on different metabolic changes.
Collapse
Affiliation(s)
- Julia Marchal
- Mécanismes Adaptatifs et Evolution, UMR 7179 Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy, France
| | - Stéphane Blanc
- Institut Pluridisciplinaire Hubert Curien, Département d'Ecologie, Physiologie, Ethologie UMR 7178 CNRS Université Louis Pasteur, Strasbourg, France
| | - Jacques Epelbaum
- Centre de Psychiatrie et Neuroscience, UMR 894 Inserm, Faculté de Médecine, Université Paris Descartes, Paris, France
| | - Fabienne Aujard
- Mécanismes Adaptatifs et Evolution, UMR 7179 Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy, France
- * E-mail:
| | - Fabien Pifferi
- Mécanismes Adaptatifs et Evolution, UMR 7179 Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy, France
| |
Collapse
|
31
|
Szkudelska K, Nogowski L, Szkudelski T. Resveratrol and genistein as adenosine triphosphate-depleting agents in fat cells. Metabolism 2011; 60:720-9. [PMID: 20850159 DOI: 10.1016/j.metabol.2010.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 07/02/2010] [Accepted: 07/08/2010] [Indexed: 12/23/2022]
Abstract
Resveratrol and genistein are plant-derived compounds known to exert pleiotropic effects in many cell types, including adipocytes. However, the effects of these compounds on the energetic status of fat cells are unknown. The present study aimed to determine whether resveratrol and genistein influence adenosine triphosphate (ATP) levels in freshly isolated rat adipocytes. To determine the effects of resveratrol and genistein on adipocyte ATP content, cells were exposed to insulin and glucose or insulin and alanine without tested compounds or with 6.25 to 50 μmol/L resveratrol or genistein. Resveratrol substantially reduced glucose- and alanine-derived ATP in adipocytes. This was not due to the inhibition of glucose transport because the influence of the test compound on insulin-stimulated glucose uptake by adipocytes appeared to be stimulatory. Moreover, resveratrol reduced both alanine oxidation and mitochondrial membrane hyperpolarization. It was also demonstrated that preincubation of cells with resveratrol slightly diminished ATP levels despite the withdrawal of the tested compound from the buffer. The genistein effect was accompanied by attenuation of the mitochondrial membrane hyperpolarization. The compound failed to significantly affect insulin-stimulated glucose uptake by fat cells. Similarly to resveratrol, preincubation of adipocytes with genistein slightly reduced ATP in cells exposed to glucose and insulin. Results of the present study revealed the potent ability of resveratrol to reduce ATP in rat adipocytes, whereas genistein appeared to be less effective. It is suggested that both tested compounds diminish adipocyte ATP via attenuation of the metabolic activity of mitochondria. Because numerous cellular events are strongly ATP dependent, the ATP-depleting effects of resveratrol and genistein may have pleiotropic consequences for adipocyte functions.
Collapse
Affiliation(s)
- Katarzyna Szkudelska
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland
| | | | | |
Collapse
|
32
|
Abstract
Diabetes mellitus is a complex metabolic disease affecting about 5% of people all over the world. Data from the literature indicate that resveratrol is a compound exerting numerous beneficial effects in organisms. Rodent studies, for example, have demonstrated that resveratrol decreases blood glucose in animals with hyperglycemia. This effect seems to predominantly result from increased intracellular transport of glucose. Resveratrol was also demonstrated to induce effects that may contribute to the protection of β cells in diabetes. In experiments on pancreatic islets, the ability of resveratrol to reduce insulin secretion was demonstrated; this effect was confirmed in animals with hyperinsulinemia, in which resveratrol decreased blood insulin levels. Moreover, inhibition of cytokine action and attenuation of the oxidative damage of the pancreatic tissue by resveratrol were recently shown. Studies of animals with insulin resistance indicate that resveratrol may also improve insulin action. The mechanism through which resveratrol improves insulin action is complex and involves reduced adiposity, changes in gene expression, and changes in the activities of some enzymes. These data indicate that resveratrol may be useful in preventing and treating diabetes.
Collapse
Affiliation(s)
- Tomasz Szkudelski
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wolynska, Poland.
| | | |
Collapse
|
33
|
Vetterli L, Brun T, Giovannoni L, Bosco D, Maechler P. Resveratrol potentiates glucose-stimulated insulin secretion in INS-1E beta-cells and human islets through a SIRT1-dependent mechanism. J Biol Chem 2010; 286:6049-60. [PMID: 21163946 DOI: 10.1074/jbc.m110.176842] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Resveratrol, a polyphenol compound, is known for its effects on energy homeostasis. With properties of energy sensors mediating effects of calorie restriction, sirtuins are targets of resveratrol. The mammalian sirtuin homolog SIRT1 is a protein deacetylase playing a role in glucose metabolism and islet function. Here, we investigated the effects of resveratrol and possible link with SIRT1 in β-cells. Insulinoma INS-1E cells and human islets were cultured with resveratrol before analyzing their physiological responses. Treatment of INS-1E cells for 24 h with 25 μM resveratrol resulted in marked potentiation of glucose-stimulated insulin secretion. This effect was associated with elevated glycolytic flux, resulting in increased glucose oxidation, ATP generation, and mitochondrial oxygen consumption. Such changes correlated with up-regulation of key genes for β-cell function, i.e. Glut2, glucokinase, Pdx-1, Hnf-1α, and Tfam. In human islets, chronic resveratrol treatment similarly increased both the glucose secretory response and expression of the same set of genes, eventually restoring the glucose response in islets obtained from one type 2 diabetic donor. Overexpression of Sirt1 in INS-1E cells potentiated resveratrol effects on insulin secretion. Conversely, inhibition of SIRT1 achieved either by expression of an inactive mutant or by using the EX-527 inhibitor, both abolished resveratrol effects on glucose responses. Treatment of INS-1E cells with EX-527 also prevented resveratrol-induced up-regulation of Glut2, glucokinase, Pdx-1, and Tfam. Resveratrol markedly enhanced the glucose response of INS-1E cells and human islets, even after removal of the compound from the medium. These effects were mediated by and fully dependent on active SIRT1, defining a new role for SIRT1 in the regulation of insulin secretion.
Collapse
Affiliation(s)
- Laurène Vetterli
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center and Geneva University Hospitals, 1211 Geneva, Switzerland
| | | | | | | | | |
Collapse
|
34
|
Rocha KKHR, Souza GA, Seiva FRF, Ebaid GX, Novelli ELB. Weekend ethanol consumption and high-sucrose diet: resveratrol effects on energy expenditure, substrate oxidation, lipid profile, oxidative stress and hepatic energy metabolism. Alcohol Alcohol 2010; 46:10-6. [PMID: 21139018 DOI: 10.1093/alcalc/agq085] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIMS The present study analyzed the association between weekend ethanol and high-sucrose diet on oxygen consumption, lipid profile, oxidative stress and hepatic energy metabolism. Because resveratrol (RS, 3,5,4'-trans-trihydroxystilbene) has been implicated as a modulator of alcohol-independent cardiovascular protection attributed to red wine, we also determined whether RS could change the damage done by this lifestyle. METHODS Male Wistar 24 rats receiving standard chow were divided into four groups (n = 6/group): (C) water throughout the experimental period; (E) 30% ethanol 3 days/week, water 4 days/week; (ES) a mixture of 30% ethanol and 30% sucrose 3 days/week, drinking 30% sucrose 4 days/week; (ESR) 30% ethanol and 30% sucrose containing 6 mg/l RS 3 days/week, drinking 30% sucrose 4 days/week. RESULTS After 70 days the body weight was highest in ESR rats. E rats had higher energy expenditure (resting metabolic rate), oxygen consumption (VO(2)), fat oxidation, serum triacylglycerol (TG) and very low-density lipoprotein (VLDL) than C. ES rats normalized calorimetric parameters and enhanced carbohydrate oxidation. ESR ameliorated calorimetric parameters, reduced TG, VLDL and lipid hydroperoxide/total antioxidant substances, as well enhanced high-density lipoprotein (HDL) and HDL/TG ratio. Hepatic hydroxyacyl coenzyme-A dehydrogenase (OHADH)/citrate synthase ratio was lower in E and ES rats than in C. OHADH was highest in ESR rats. CONCLUSIONS The present study brought new insights on weekend alcohol consumption, demonstrating for the first time, that this pattern of ethanol exposure induced dyslipidemic profile, calorimetric and hepatic metabolic changes which resemble that of the alcoholism. No synergistic effects were found with weekend ethanol and high-sucrose intake. RS was advantageous in weekend drinking and high-sucrose intake condition ameliorating hepatic metabolism and improving risk factors for cardiovascular damage.
Collapse
|
35
|
Beaudeux JL, Nivet-Antoine V, Giral P. Resveratrol: a relevant pharmacological approach for the treatment of metabolic syndrome? Curr Opin Clin Nutr Metab Care 2010; 13:729-36. [PMID: 20823772 DOI: 10.1097/mco.0b013e32833ef291] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The metabolic syndrome is associated with increased risk for development of both cardiovascular disease and type 2 diabetes in humans. Because experimental data and clinical experience have shown that metabolic syndrome and caloric restriction have, at least partly, opposite pathophysiological pathways, the activation of sirtuins may constitute a pharmacological approach to treat metabolic syndrome. Resveratrol is a polyphenol produced by plants that has multiple beneficial activities similar to those associated with caloric restriction. RECENT FINDINGS Through its regulatory action of both AMP kinase and the sirtuin sirtuin-1, resveratrol is a natural sirtuin activator that certainly will be the head of a new pharmacological family of drugs targeted on sirtuin-1 activity exacerbation in order to treat/protect from obesity and diabetes, and thus metabolic syndrome. SUMMARY This review discusses the therapeutic use of resveratrol and sirtuin activators in the context of insulin resistance and obesity, the two main features of metabolic syndrome.
Collapse
Affiliation(s)
- Jean-Louis Beaudeux
- EA 4466 Stress cellulaire: physiopathologie, stratégies nutritionnelles et innovations thérapeutiques, Faculté de Pharmacie Paris Descartes, hôpital Charles Foix, APHP, Paris, France
| | | | | |
Collapse
|
36
|
Palsamy P, Sivakumar S, Subramanian S. Resveratrol attenuates hyperglycemia-mediated oxidative stress, proinflammatory cytokines and protects hepatocytes ultrastructure in streptozotocin-nicotinamide-induced experimental diabetic rats. Chem Biol Interact 2010; 186:200-10. [PMID: 20307516 DOI: 10.1016/j.cbi.2010.03.028] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 03/09/2010] [Accepted: 03/12/2010] [Indexed: 12/13/2022]
Abstract
The present study was hypothesized to investigate the hepatoprotective nature of resveratrol in averting hyperglycemia-mediated oxidative stress by measuring extent of oxidant stress and levels of proinflammatory cytokines and antioxidant competence in the hepatic tissues of streptozotocin-nicotinamide-induced diabetic rats. After the experimental period of 30 days, the pathophysiological markers such as serum bilirubin and hepatic aspartate transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase (ALP) were studied in addition to hepatic TNF-alpha, IL-1 beta, IL-6, NF-kappaB p65 and nitric oxide (NO) levels in control and experimental groups of rats. The levels of vitamin C, vitamin E and reduced glutathione (GSH) and activities of superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR) were determined in the liver tissues. Extent of oxidative stress was also assessed by hepatic lipid peroxides, hydroperoxides and protein carbonyls. A portion of liver was processed for histological and ultrastructural studies. Oral administration of resveratrol (5mg/kg b.w.) to diabetic rats showed a significant decline in hepatic proinflammatory cytokines and notable attenuation in hepatic lipid peroxides, hydroperoxides and protein carbonyls. The diminished activities of hepatic enzymic antioxidants as well as the decreased levels of hepatic non-enzymic antioxidants of diabetic rats were reverted to near normalcy by resveratrol administration. Moreover, the histological and ultrastructural observations evidenced that resveratrol effectively rescues the hepatocytes from hyperglycemia-mediated oxidative damage without affecting its cellular function and structural integrity. The findings of the present investigation demonstrated the hepatocyte protective nature of resveratrol by attenuating markers of hyperglycemia-mediated oxidative stress and antioxidant competence in hepatic tissues of diabetic rats.
Collapse
Affiliation(s)
- P Palsamy
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu, India.
| | | | | |
Collapse
|
37
|
Palsamy P, Subramanian S. Ameliorative potential of resveratrol on proinflammatory cytokines, hyperglycemia mediated oxidative stress, and pancreatic beta-cell dysfunction in streptozotocin-nicotinamide-induced diabetic rats. J Cell Physiol 2010; 224:423-32. [PMID: 20333650 DOI: 10.1002/jcp.22138] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chronic exposure of pancreatic beta-cells to supraphysiologic glucose causes adverse beta-cell dysfunction. Thus, the present study was aimed to investigate the hypothesis that oral administration of resveratrol attenuates hyperglycemia, proinflammatory cytokines and antioxidant competence and protects beta-cell ultrastructure in streptozotocin-nicotinamide-induced diabetic rats. Oral administration of resveratrol (5 mg/kg body weight) to diabetic rats for 30 days showed a significant decline in the levels of blood glucose, glycosylated hemoglobin (HbA1c), TNF-alpha, IL-1beta, IL-6, NF-kappaB p65 unit and nitric oxide (NO) with concomitant elevation in plasma insulin. Further, resveratrol treated diabetic rats elicited a notable attenuation in the levels of lipid peroxides, hydroperoxides and protein carbonyls in both plasma and pancreatic tissues. The diminished activities of pancreatic superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx) and glutathione-S-transferase (GST) as well as the decreased levels of plasma ceruloplasmin, vitamin C, vitamin E and reduced glutathione (GSH) in diabetic rats were reverted to near normalcy by resveratrol administration. Based on histological and ultrastructural observations, it is first-time reported that the oral administration of resveratrol may effectively rescue beta-cells from oxidative damage without affecting their function and structural integrity. The results of the present investigation demonstrated that resveratrol exhibits significant antidiabetic potential by attenuating hyperglycemia, enhancing insulin secretion and antioxidant competence in pancreatic beta-cells of diabetic rats.
Collapse
Affiliation(s)
- P Palsamy
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, Tamilnadu, India
| | | |
Collapse
|
38
|
Szkudelska K, Szkudelski T. Resveratrol, obesity and diabetes. Eur J Pharmacol 2010; 635:1-8. [DOI: 10.1016/j.ejphar.2010.02.054] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 02/17/2010] [Accepted: 02/24/2010] [Indexed: 02/07/2023]
|
39
|
Sulaiman M, Matta MJ, Sunderesan NR, Gupta MP, Periasamy M, Gupta M. Resveratrol, an activator of SIRT1, upregulates sarcoplasmic calcium ATPase and improves cardiac function in diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 2010; 298:H833-43. [PMID: 20008278 PMCID: PMC2838561 DOI: 10.1152/ajpheart.00418.2009] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 12/08/2009] [Indexed: 02/04/2023]
Abstract
Reduced sarcoplasmic calcium ATPase (SERCA2a) expression has been shown to play a significant role in the cardiac dysfunction in diabetic cardiomyopathy. The mechanism of SERCA2a repression is, however, not known. This study was designed to examine the effect of resveratrol (RSV), a potent activator of SIRT1, on cardiac function and SERCA2a expression in chronic type 1 diabetes. Adult male mice were injected with streptozotocin (STZ) and fed with either a regular diet or a diet enriched with RSV. STZ administration produced progressive decline in cardiac function, associated with markedly reduced SERCA2a and SIRT1 protein levels and increased collagen deposition; RSV treatment to these mice had a tremendous beneficial effect both in terms of improving SERCA2a expression and on cardiac function. In cultured cardiomyocytes, RSV restored SERCA2 promoter activity, which was otherwise highly repressed in high-glucose media. Protective effects of RSV were found to be dependent on its ability to activate Silent information regulator (SIRT) 1. In cardiomyocytes, overexpression of SIRT1 was found sufficient to activate SERCA2 promoter in a dose-dependent manner. In contrast, pretreatment of cardiomyocytes with SIRT1 antagonist, splitomycin, blocked these beneficial effects of RSV. In addition, SIRT1 knockout (+/-) mice were also found to be more sensitive to STZ-induced decline in SERCA2a mRNA. The data demonstrate that, in chronic diabetes, 1) the enzymatic activity of cardiac SIRT1 is reduced, which contributes to reduced expression of SERCA2a and 2) through activation of SIRT1, RSV enhances expression of SERCA2a and improves cardiac function.
Collapse
Affiliation(s)
- M. Sulaiman
- Cardiothoracic Surgery, University of Chicago, Chicago
| | - M. J. Matta
- Cardiothoracic Surgery, University of Chicago, Chicago
| | - N. R. Sunderesan
- The Heart Institute for Children, Hope Children's Hospital, Oak Lawn, Illinios; and
| | - M. P. Gupta
- The Heart Institute for Children, Hope Children's Hospital, Oak Lawn, Illinios; and
| | - M. Periasamy
- Department of Physiology, Ohio State University, Columbus, Ohio
| | - M. Gupta
- Departments of Physiology and Biophysics, University of Illinois, and
| |
Collapse
|
40
|
Szkudelska K, Nogowski L, Szkudelski T. The inhibitory effect of resveratrol on leptin secretion from rat adipocytes. Eur J Clin Invest 2009; 39:899-905. [PMID: 19558509 DOI: 10.1111/j.1365-2362.2009.02188.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Resveratrol was found to alleviate consequences of some metabolic disturbances which may be due to inappropriate dietary habits. It decreases mortality, increases insulin sensitivity and improves motor functions; these effects are accompanied by reduced plasma leptin and insulin. Leptin plays a significant role in the regulation of food intake and energy expenditure - elevated level in blood is one of the reasons of leptin-resistance and obesity. In this study, the direct effect of resveratrol on leptin secretion from isolated adipocytes was investigated. MATERIAL AND METHODS Isolated rat adipocytes were incubated with resveratrol (62.5, 125 or 250 microM) and its effects on leptin secretion were studied. Cells were incubated with resveratrol in the presence of glucose (5 and 20 mM) and insulin (10 nM); glucose and nicotinic acid (1 mM); glucose and insulin in the presence of an inhibitor of protein kinase A (H-89, 50 microM) or alanine (10 mM) and insulin. The glucose uptake, glycerol release to the incubation medium, lactate and ATP produced by the cells were also measured. RESULTS Resveratrol inhibited leptin secretion in all experimental designs in a dose-dependent manner. The effect was not accompanied by changes in glycerol release and glucose uptake. Adipocyte exposure to resveratrol enhanced the lactate formation. It was found that resveratrol dramatically reduced ATP in adipocytes. CONCLUSION The obtained results revealed the direct ability of resveratrol to reduce leptin secretion from isolated rat adipocytes. Resveratrol is therefore a compound affecting the endocrine function of adipocytes.
Collapse
Affiliation(s)
- K Szkudelska
- Poznan University of Life Sciences, 60-637 Poznan, Poland.
| | | | | |
Collapse
|
41
|
Rocha KKR, Souza GA, Ebaid GX, Seiva FRF, Cataneo AC, Novelli ELB. Resveratrol toxicity: effects on risk factors for atherosclerosis and hepatic oxidative stress in standard and high-fat diets. Food Chem Toxicol 2009; 47:1362-7. [PMID: 19298841 DOI: 10.1016/j.fct.2009.03.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 03/09/2009] [Accepted: 03/10/2009] [Indexed: 12/13/2022]
Abstract
The beneficial action of moderate wine consumption is increasingly being attributed to resveratrol (trans-3,4',5-trihydroxystilbene). To test the safety of resveratrol use as a dietary supplement, 24 male Wistar rats were initially divided into three groups: (C, n=6) was given standard chow and water; (R, n=6) received standard chow and 6 mg/l resveratrol in its drinking water (1mg/kg/day), and (HFD, n=12) received high-fat diet and water. In order to more appropriately study the effects of resveratrol on high-fat diet, after 30 days of treatments, HFD-rats were divided into two subgroups (n=6/group):(HFD) remained receiving high-fat diet and water; (HFD-R) given high-fat diet and 6 mg/l resveratrol in its drinking water (1mg/kg/day). The total experimental period was 45 days. The resveratrol dose took into account its average concentration in wine, the time variability of wine ingestion, and so of resveratrol consumption in humans. HFD-rats had hyperglycaemia, dyslipidemia, increased serum oxidized-LDL (ox-LDL) and hepatic oxidative stress. Comparing HFD-R and HFD-rats, resveratrol improved lipid profile and glucose level, enhanced superoxide dismutase, thus reducing ox-LDL and hepatic oxidative stress. Resveratrol, in standard-fed-rats reduced glutathione-antioxidant defense system and enhanced hepatic lipid hydroperoxide. In conclusion, based on the results of this single dose preliminary study with resveratrol in the drinking water of male Wistar rats for 30 days, it may be concluded that resveratrol may have beneficial effects in high-fat diets (e.g. ox-LDL, decreased serum and hepatic oxidativestress), but not in standard-fed diets (effects produced include enhanced hepatic oxidative stress). Further studies are indicated.
Collapse
Affiliation(s)
- K K R Rocha
- Department of Chemistry and Biochemistry, Institute of Biological Sciences, São Paulo State University, UNESP, 18618-000 Botucatu, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
42
|
Szkudelska K, Nogowski L, Szkudelski T. Resveratrol, a naturally occurring diphenolic compound, affects lipogenesis, lipolysis and the antilipolytic action of insulin in isolated rat adipocytes. J Steroid Biochem Mol Biol 2009; 113:17-24. [PMID: 19041941 DOI: 10.1016/j.jsbmb.2008.11.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 10/29/2008] [Accepted: 11/05/2008] [Indexed: 12/18/2022]
Abstract
Resveratrol is a naturally occurring diphenolic compound exerting numerous beneficial effects in the organism. The present study demonstrated its short-term, direct influence on lipogenesis, lipolysis and the antilipolytic action of insulin in freshly isolated rat adipocytes. In fat cells incubated for 90 min with 125 and 250 microM resveratrol (but not with 62.5 microM resveratrol), basal and insulin-induced lipogenesis from glucose was significantly reduced. The antilipogenic effect was accompanied by a significant diminution of CO(2) release and enhanced production of lactate. The inhibition of glucose conversion to lipids found in the presence of resveratrol was not attenuated by activator of protein kinase C. However, acetate conversion to lipids appeared to be insensitive to resveratrol. In adipocytes incubated for 90 min with epinephrine, 10 and 100 microM resveratrol significantly enhanced lipolysis, especially at lower concentrations of the hormone. However, the lipolytic response to dibutyryl-cAMP, a direct activator of protein kinase A, was unchanged. Further studies demonstrated that, in cells stimulated with epinephrine, 1, 10 and 100 microM resveratrol significantly enhanced glycerol release despite the presence of insulin or H-89, an inhibitor of protein kinase A. The influence of resveratrol on epinephrine-induced lipolysis and on the antilipolytic action of insulin was not abated by the blocking of estrogen receptor and was accompanied by a significant (with the exception of 1 microM resveratrol in experiment with insulin) increase in cAMP in adipocytes. It was also revealed that resveratrol did not change the proportion between glycerol and fatty acids released from adipocytes exposed to epinephrine. Results of the present study revealed that resveratrol reduced glucose conversion to lipids in adipocytes, probably due to disturbed mitochondrial metabolism of the sugar. Moreover, resveratrol increased epinephrine-induced lipolysis. This effect was found also in the presence of insulin and resulted from the synergistic action of resveratrol and epinephrine. The obtained results provided evidence that resveratrol affects lipogenesis and lipolysis in adipocytes contributing to reduced lipid accumulation in these cells.
Collapse
Affiliation(s)
- Katarzyna Szkudelska
- Department of Animal Physiology and Biochemistry, University of Life Sciences in Poznan, 60-637 Wolynska 35, Poznan, Poland.
| | | | | |
Collapse
|
43
|
Pinent M, Castell A, Baiges I, Montagut G, Arola L, Ardévol A. Bioactivity of Flavonoids on Insulin-Secreting Cells. Compr Rev Food Sci Food Saf 2008; 7:299-308. [DOI: 10.1111/j.1541-4337.2008.00048.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
44
|
Szkudelski T. The insulin-suppressive effect of resveratrol — An in vitro and in vivo phenomenon. Life Sci 2008; 82:430-5. [DOI: 10.1016/j.lfs.2007.12.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 11/29/2007] [Accepted: 12/01/2007] [Indexed: 10/22/2022]
|
45
|
Dias PF, Berti FV, Siqueira Jr JM, Maraschin M, Gagliardi AR, Ribeiro-do-Valle RM. Trans-Resveratrol Inhibits Early Blood Vessel Formation (Vasculogenesis) Without Impairment of Embryonic Growth. J Pharmacol Sci 2008; 107:118-27. [DOI: 10.1254/jphs.fp0071876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Bibliography. Current world literature. Parathyroids, bone and mineral metabolism. Curr Opin Endocrinol Diabetes Obes 2007; 14:494-501. [PMID: 17982358 DOI: 10.1097/med.0b013e3282f315ef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Szkudelski T. Resveratrol-induced inhibition of insulin secretion from rat pancreatic islets: evidence for pivotal role of metabolic disturbances. Am J Physiol Endocrinol Metab 2007; 293:E901-7. [PMID: 17578889 DOI: 10.1152/ajpendo.00564.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Resveratrol is a stilbene present in different plant species and exerting numerous beneficial effects, including prevention of diabetes and attenuation of some diabetic complications. Its inhibitory effect on insulin secretion was recently documented, but the exact mechanism underlying this action remains unknown. Experiments employing diazoxide and a high concentration of K(+) revealed that, in depolarized pancreatic islets incubated for 90 min with resveratrol (1, 10, and 100 microM), insulin secretion stimulated by glucose and leucine was impaired. The attenuation of the insulin secretory response to 6.7 mM glucose was not abrogated by blockade of intracellular estrogen receptors and was found to be accompanied by diminished islet glucose oxidation, enhanced lactate production, and reduced ATP levels. Glucose-induced hyperpolarization of the mitochondrial membrane was also reduced in the presence of resveratrol. Moreover, in depolarized islets incubated with 2.8 mM glucose, activation of protein kinase C or protein kinase A potentiated insulin release; however, under these conditions, resveratrol was ineffective. Further studies also revealed that, under conditions of blocked voltage-dependent calcium channels, the stilbene reduced insulin secretion induced by a combination of glucose with forskolin. These data demonstrate that resveratrol 1) inhibits the amplifying pathway of insulin secretion, 2) exerts an insulin-suppressive effect independently of its estrogenic/anti-estrogenic activity, 3) shifts islet glucose metabolism from mitochondrial oxidation to anaerobic,4) fails to abrogate insulin release promoted without metabolic events, and 5) does not suppress hormone secretion as a result of the direct inhibition of Ca(2+) influx through voltage-dependent calcium channels.
Collapse
Affiliation(s)
- Tomasz Szkudelski
- Dept. of Animal Physiology and Biochemistry, August Cieszkowski Univ. of Agriculture, 60-637 Wolynska 35, Poznan, Poland.
| |
Collapse
|
48
|
Hunt RH. Prostaglandins for peptic ulcer disease. Biomed Pharmacother 1987; 95:230-234. [PMID: 2884391 DOI: 10.1016/j.biopha.2017.08.070] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/27/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022] Open
|