1
|
Vassal M, Martins F, Monteiro B, Tambaro S, Martinez-Murillo R, Rebelo S. Emerging Pro-neurogenic Therapeutic Strategies for Neurodegenerative Diseases: A Review of Pre-clinical and Clinical Research. Mol Neurobiol 2025; 62:46-76. [PMID: 38816676 PMCID: PMC11711580 DOI: 10.1007/s12035-024-04246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
The neuroscience community has largely accepted the notion that functional neurons can be generated from neural stem cells in the adult brain, especially in two brain regions: the subventricular zone of the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus. However, impaired neurogenesis has been observed in some neurodegenerative diseases, particularly in Alzheimer's, Parkinson's, and Huntington's diseases, and also in Lewy Body dementia. Therefore, restoration of neurogenic function in neurodegenerative diseases emerges as a potential therapeutic strategy to counteract, or at least delay, disease progression. Considering this, the present study summarizes the different neuronal niches, provides a collection of the therapeutic potential of different pro-neurogenic strategies in pre-clinical and clinical research, providing details about their possible modes of action, to guide future research and clinical practice.
Collapse
Affiliation(s)
- Mariana Vassal
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Filipa Martins
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Bruno Monteiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Ricardo Martinez-Murillo
- Neurovascular Research Group, Department of Translational Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - Sandra Rebelo
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
2
|
Rivers C, Farber C, Heath M, Gonzales E, Barrett DW, Gonzalez-Lima F, Lane MA. Dietary omega-3 polyunsaturated fatty acids reduce cytochrome c oxidase in brain white matter and sensorimotor regions while increasing functional interactions between neural systems related to escape behavior in postpartum rats. Front Syst Neurosci 2024; 18:1423966. [PMID: 39544360 PMCID: PMC11560429 DOI: 10.3389/fnsys.2024.1423966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Introduction Previously, we showed that omega-3 polyunsaturated fatty acid n-3 (PUFA) supplementation improved the performance of postpartum rats in the shuttle box escape test (SBET). Methods The brains of these rats were used in the current study which examined brain cytochrome c oxidase (CCO) activity in white matter bundles and 39 regions spanning sensorimotor, limbic, and cognitive areas to determine the effects of n-3 PUFAs on neural metabolic capacity and network interactions. Results We found that n-3 PUFA supplementation decreased CCO activity in white matter bundles, deep and superficial areas within the inferior colliculus, the anterior and barrel field regions of the primary somatic sensorimotor cortex, the secondary somatic sensorimotor cortex, the lateral, anterior regions of the secondary visual cortex and the ventral posterior nucleus of the thalamus, and the medial nucleus of the amygdala. Structural equation modeling revealed that animals consuming diets without n-3 PUFAs exhibited fewer inter-regional interactions when compared to those fed diets with n-3 PUFAs. Without n-3 PUFAs, inter-regional interactions were observed between the posterior cingulate cortex and amygdala as well as among amygdala subregions. With n-3 PUFAs, more inter-regional interactions were observed, particularly between regions associated with fear memory processing and escape. Correlations between regional CCO activity and SBET behavior were observed in rats lacking dietary n-3 PUFAs but not in those supplemented with these nutrients. Discussion In conclusion, consumption of n-3 PUFAs results in reduced CCO activity in white matter bundles and sensorimotor regions, reflecting more efficient neurotransmission, and an increase in inter-regional interactions, facilitating escape from footshock.
Collapse
Affiliation(s)
- Carley Rivers
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX, United States
| | - Christopher Farber
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX, United States
| | - Melissa Heath
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX, United States
| | - Elisa Gonzales
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX, United States
| | - Douglas W. Barrett
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - F. Gonzalez-Lima
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Michelle A. Lane
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX, United States
| |
Collapse
|
3
|
Bremner JD. Isotretinoin and neuropsychiatric side effects: Continued vigilance is needed. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2021; 6:100230. [PMID: 37168254 PMCID: PMC10168661 DOI: 10.1016/j.jadr.2021.100230] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Isotretinoin (13-cis-retinoic acid, marketed under the names Accutane, Roaccutane, and others) is an effective treatment for acne that has been on the market for over 30 years, although reports of neuropsychiatric side effects continue to be reported. Isotretinoin is an isomer of the active form of Vitamin A, 13-trans-retinoic acid, which has known psychiatric side effects when given in excessive doses, and is part of the family of compounds called retinoids, which have multiple functions in the central nervous system. Methods The literature was reviewed in pubmed and psychinfo for research related to isotretinoin and neuropsychiatric side effects including depression, suicidal thoughts, suicide, mania, anxiety, impulsivity, emotional lability, violence, aggression, and psychosis. Results Multiple case series have shown that successful treatment of acne with isotretinoin results in improvements in measures of quality of life and self esteem However, studies show individual cases of clinically significant depression and other neuropsychiatric events that, although not common, are persistent in the literature. Since the original cases of depression were reported to the United States Food and Drug Administration, numerous cases have been reported to regulatory agencies in the United Kingdom, France, Ireland, Denmark, Australia, Canada, and other countries, making isotretinoin one of the top five medications in the world associated with depression and other neuropsychiatric side effects. Clinicians are advised to warn patients of the risks of neuropsychiatric side effects with isotretinoin which may arise from the medication itself, and not just as a side effect of acne or youth.
Collapse
Affiliation(s)
- J Douglas Bremner
- Department of Psychiatry & Behavioral Sciences, and Department of Radiology and Imaging Sciences, Emory University School of Medicine, VA Medical Center, Decatur, GA, United States
| |
Collapse
|
4
|
Mitochondrial signaling in inflammation-induced depressive behavior in female and male rats: The role of glucocorticoid receptor. Brain Res Bull 2019; 150:317-327. [PMID: 31251961 DOI: 10.1016/j.brainresbull.2019.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/15/2022]
Abstract
Mitochondrial dysfunction can result from the interplay between elevated inflammatory markers and alterations in hypothalamic-pituitary-adrenal (HPA) axis, and can contribute to pathogenesis of major depression. Therefore, in this study we investigated whether the effects of lipopolysaccharide (LPS) on glucocorticoid receptor (GR) could be associated with alterations in mitochondrial apoptotic signaling in the prefrontal cortex of male and female Wistar rats with depressive-like behavior. To that end, we measured LPS-induced alterations in the extrinsic and intrinsic apoptotic pathways in mitochondria and cytosol of PFC of female and male rats, as well as the levels of cleaved cytosolic PARP-1. We also measured the mitochondrial levels of GR and its phosphoisoforms pGR232 and pGR246, as well as the mRNA levels of two GR-regulated mitochondrial genes, COX-1 and COX-3. We discovered that although seven-day LPS treatment evoked depressive-like behavior and induced apoptosis in the PFC of both sexes, it affected apoptotic cascades in both sexes differently. In females the treatment initiated both intrinsic and extrinsic apoptotic cascade, while in males only intrinsic cascade was engaged. Alterations in intrinsic apoptotic pathway were more associated with GR alterations in males, where LPS treatment decreased levels of mitochondrial GR and increased pGR232/pGR246 ratio. Alterations in mitochondrial GR could be associated with changes in expression of genes involved in oxidative metabolism in the PFC of this sex, and could, in combination with elevated levels of BCL-2 and decreased levels of BAX detected in this cell fraction, mitigate the detrimental effect of LPS on mitochondria in male PFC.
Collapse
|
5
|
Adzic M, Mitic M, Radojcic M. Mitochondrial estrogen receptors as a vulnerability factor of chronic stress and mediator of fluoxetine treatment in female and male rat hippocampus. Brain Res 2017; 1671:77-84. [DOI: 10.1016/j.brainres.2017.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/12/2017] [Accepted: 07/11/2017] [Indexed: 01/22/2023]
|
6
|
O'Reilly KC, Perica MI, Fenton AA. Memory deficits with intact cognitive control in the methylazoxymethanol acetate (MAM) exposure model of neurodevelopmental insult. Neurobiol Learn Mem 2016; 134 Pt B:294-303. [PMID: 27485950 DOI: 10.1016/j.nlm.2016.07.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/26/2016] [Accepted: 07/30/2016] [Indexed: 01/30/2023]
Abstract
Cognitive impairments are amongst the most debilitating deficits of schizophrenia and the best predictor of functional outcome. Schizophrenia is hypothesized to have a neurodevelopmental origin, making animal models of neurodevelopmental insult important for testing predictions that early insults will impair cognitive function. Rats exposed to methylazoxymethanol acetate (MAM) at gestational day 17 display morphological, physiological and behavioral abnormalities relevant to schizophrenia. Here we investigate the cognitive abilities of adult MAM rats. We examined brain activity in MAM rats by histochemically assessing cytochrome oxidase enzyme activity, a metabolic marker of neuronal activity. To assess cognition, we used a hippocampus-dependent two-frame active place avoidance paradigm to examine learning and spatial memory, as well as cognitive control and flexibility using the same environment and evaluating the same set of behaviors. We confirmed that adult MAM rats have altered hippocampal morphology and brain function, and that they are hyperactive in an open field. The latter likely indicates MAM rats have a sensorimotor gating deficit that is common to many animal models used for schizophrenia research. On first inspection, cognitive control seems impaired in MAM rats, indicated by more errors during the two-frame active place avoidance task. Because MAM rats are hyperactive throughout place avoidance training, we considered the possibility that the hyperlocomotion may account for the apparent cognitive deficits. These deficits were reduced on the basis of measures of cognitive performance that account for motor activity differences. However, though other aspects of memory are intact, the ability of MAM rats to express trial-to-trial memory is delayed compared to control rats. These findings suggest that spatial learning and cognitive abilities are largely intact, that the most prominent cognitive deficit is specific to acquiring memory in the MAM neurodevelopmental model, and that hyperactivity can confound assessments of cognition in animal models of mental dysfunction.
Collapse
Affiliation(s)
- Kally C O'Reilly
- Center for Neural Science, New York University, New York, NY 10003, United States
| | - Maria I Perica
- Center for Neural Science, New York University, New York, NY 10003, United States
| | - André A Fenton
- Center for Neural Science, New York University, New York, NY 10003, United States; Department of Physiology, SUNY Downstate Medical Center, Brooklyn, NY, United States.
| |
Collapse
|
7
|
Hu P, Wang Y, Liu J, Meng FT, Qi XR, Chen L, van Dam AM, Joëls M, Lucassen PJ, Zhou JN. Chronic retinoic acid treatment suppresses adult hippocampal neurogenesis, in close correlation with depressive-like behavior. Hippocampus 2016; 26:911-923. [PMID: 26860546 DOI: 10.1002/hipo.22574] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2016] [Indexed: 12/18/2022]
Abstract
Clinical studies have highlighted an association between retinoid treatment and depressive symptoms. As we had shown before that chronic application of all-trans retinoic acid (RA) potently activated the hypothalamus-pituitary-adrenal (HPA) stress axis, we here questioned whether RA also induced changes in adult hippocampal neurogenesis, a form of structural plasticity sensitive to stress and implicated in aspects of depression and hippocampal function. RA was applied intracerebroventricularly (i.c.v.) to adult rats for 19 days after which animals were subjected to tests for depressive-like behavior (sucrose preference) and spatial learning and memory (water maze) performance. On day 27, adult hippocampal neurogenesis and astrogliosis was quantified using BrdU (newborn cell survival), PCNA (proliferation), doublecortin (DCX; neuronal differentiation), and GFAP (astrocytes) as markers. RA was found to increase retinoic acid receptor-α (RAR-α) protein expression in the hippocampus, suggesting an activation of RA-induced signaling mechanisms. RA further potently suppressed cell proliferation, newborn cell survival as well as neurogenesis, but not astrogliosis. These structural plasticity changes were significantly correlated with scores for anhedonia, a core symptom of depression, but not with water maze performance. Our results suggest that RA-induced impairments in hippocampal neurogenesis correlate with depression-like symptoms but not with spatial learning and memory in this design. Thus, manipulations aimed to enhance neurogenesis may help ameliorate emotional aspects of RA-associated mood disorders. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pu Hu
- Department of Neurobiology and Biophysics, CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Yu Wang
- Department of Neurobiology and Biophysics, CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Ji Liu
- Department of Neurobiology and Biophysics, CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Fan-Tao Meng
- Department of Neurobiology and Biophysics, CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Xin-Rui Qi
- Department of Neurobiology and Biophysics, CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Lin Chen
- Department of Neurobiology and Biophysics, CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Anne-Marie van Dam
- Department of Anatomy & Neurosciences, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Marian Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul J Lucassen
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jiang-Ning Zhou
- Department of Neurobiology and Biophysics, CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
8
|
Multistage Regression, a Novel Method for Making Better Predictions From Your Efficacy Data. Am J Ther 2014; 21:e175-80. [DOI: 10.1097/mjt.0b013e3182211acb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Vélez-Hernández ME, Padilla E, Gonzalez-Lima F, Jiménez-Rivera CA. Cocaine reduces cytochrome oxidase activity in the prefrontal cortex and modifies its functional connectivity with brainstem nuclei. Brain Res 2014; 1542:56-69. [PMID: 24505625 DOI: 10.1016/j.brainres.2013.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cocaine-induced psychomotor stimulation may be mediated by metabolic hypofrontality and modification of brain functional connectivity. Functional connectivity refers to the pattern of relationships among brain regions, and one way to evaluate this pattern is using interactivity correlations of the metabolic marker cytochrome oxidase among different regions. This is the first study of how repeated cocaine modifies: (1) mean cytochrome oxidase activity in neural areas using quantitative enzyme histochemistry, and (2) functional connectivity among brain regions using inter-correlations of cytochrome oxidase activity. Rats were injected with 15 mg/kg i.p. cocaine or saline for 5 days, which lead to cocaine-enhanced total locomotion. Mean cytochrome oxidase activity was significantly decreased in cocaine-treated animals in the superficial dorsal and lateral frontal cortical association areas Fr2 and Fr3 when compared to saline-treated animals. Functional connectivity showed that the cytochrome oxidase activity of the noradrenergic locus coeruleus and the infralimbic cortex were positively inter-correlated in cocaine but not in control rats. Positive cytochrome oxidase activity inter-correlations were also observed between the dopaminergic substantia nigra compacta and Fr2 and Fr3 areas and the lateral orbital cortex in cocaine-treated animals. In contrast, cytochrome oxidase activity in the interpeduncular nucleus was negatively correlated with that of Fr2, anterior insular cortex, and lateral orbital cortex in saline but not in cocaine groups. After repeated cocaine specific prefrontal areas became hypometabolic and their functional connectivity changed in networks involving noradrenergic and dopaminergic brainstem nuclei. We suggest that this pattern of hypofrontality and altered functional connectivity may contribute to cocaine-induced psychomotor stimulation.
Collapse
|
10
|
Arias N, Méndez M, Arias JL. Brain networks underlying navigation in the Cincinnati water maze with external and internal cues. Neurosci Lett 2014; 576:68-72. [PMID: 24915295 DOI: 10.1016/j.neulet.2014.05.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/29/2014] [Accepted: 05/31/2014] [Indexed: 12/22/2022]
Abstract
The present study investigated the behavioural performance and the contributions of different brain regions on a spatial task performed by Wistar rats in the Cincinnati water maze (CWM) in two conditions: one where both distal and proximal visual cues were available (CWM-light group, n=7) and another where visual cues were eliminated by testing in complete darkness (CWM-dark group, n=7). There were differences in the behavioural performance. Energetic brain metabolism revealed significant differences in the infralimbic, orbitofrontal cortex and anterodorsal striatum. At the same time different brain networks were found. The CWM-light group showed a relationship between the orbitofrontal cortex and medial septum, whereas the CWM-dark group revealed three different networks involving the prefrontal cortex, ventral striatum, hippocampus and amygdala nuclei. The study shows that brain activation differs in these two conditions.
Collapse
Affiliation(s)
- Natalia Arias
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad de Oviedo, Plaza Feijoo s/n, 33003 Oviedo, Spain; INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain.
| | - Marta Méndez
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad de Oviedo, Plaza Feijoo s/n, 33003 Oviedo, Spain; INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| | - Jorge L Arias
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad de Oviedo, Plaza Feijoo s/n, 33003 Oviedo, Spain; INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
11
|
Adzic M, Lukic I, Mitic M, Djordjevic J, Elaković I, Djordjevic A, Krstic-Demonacos M, Matić G, Radojcic M. Brain region- and sex-specific modulation of mitochondrial glucocorticoid receptor phosphorylation in fluoxetine treated stressed rats: effects on energy metabolism. Psychoneuroendocrinology 2013; 38:2914-24. [PMID: 23969420 DOI: 10.1016/j.psyneuen.2013.07.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/28/2013] [Accepted: 07/29/2013] [Indexed: 12/13/2022]
Abstract
Antidepressants affect glucocorticoid receptor (GR) functioning partly through modulation of its phosphorylation but their effects on mitochondrial GR have remained undefined. We investigated the ability of chronic fluoxetine treatment to affect chronic stress-induced changes of mitochondrial GR and its phosphoisoforms (pGRs) in the prefrontal cortex and hippocampus of female and male rats. Since mitochondrial GR regulates oxidative phosphorylation, expression of mitochondrial-encoded subunits of cytochrome (cyt) c oxidase and its activity were also investigated. Chronic stress caused accumulation of the GR in mitochondria of female prefrontal cortex, while the changes in the hippocampus were sex-specific at the levels of pGRs. Expression of mitochondrial COXs genes corresponded to chronic stress-modulated mitochondrial GR in both tissues of both genders and to cyt c oxidase activity in females. Moreover, the metabolic parameters in stressed animals were affected by fluoxetine therapy only in the hippocampus. Namely, fluoxetine effects on mitochondrial COXs and cyt c oxidase activity in the hippocampus seem to be conveyed through pGR232 in females, while in males this likely occurs through other mechanisms. In summary, sex-specific regulation of cyt c oxidase by the stress and antidepressant treatment and its differential convergence with mitochondrial GR signaling in the prefrontal cortex and hippocampus could contribute to clarification of sex-dependent vulnerability to stress-related disorders and sex-specific clinical impact of antidepressants.
Collapse
Affiliation(s)
- Miroslav Adzic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, Serbia.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
INTRODUCTION Over the last 8 years, emerging studies bridging the gap between nutrition and mental health have resolutely established that learning and memory abilities as well as mood can be influenced by diet. However, the mechanisms by which diet modulates mental health are still not well understood. Sources of data In this article, a review of the literature was conducted using PubMed to identify studies that provide functional implications of adult hippocampal neurogenesis (AHN) and its modulation by diet. AREAS OF AGREEMENT One of the brain structures associated with learning and memory as well as mood is the hippocampus. Importantly, the hippocampus is one of the two structures in the adult brain where the formation of newborn neurons, or neurogenesis, persists. AREAS OF CONTROVERSY The exact roles of these newborn neurons in learning, memory formation and mood regulation remain elusive. GROWING POINTS Nevertheless, there has been accumulating evidence linking cognition and mood to neurogenesis occurring in the adult hippocampus. Therefore, modulation of AHN by diet emerges as a possible mechanism by which nutrition impacts on mental health. AREAS TIMELY FOR DEVELOPING RESEARCH This area of investigation is new and needs attention because a better understanding of the neurological mechanisms by which nutrition affect mental health may lead to novel dietary approaches for disease prevention, healthier ageing and discovery of new therapeutic targets for mental illnesses.
Collapse
|
13
|
Padilla E, Shumake J, Barrett DW, Sheridan EC, Gonzalez-Lima F. Mesolimbic effects of the antidepressant fluoxetine in Holtzman rats, a genetic strain with increased vulnerability to stress. Brain Res 2011; 1387:71-84. [PMID: 21376019 DOI: 10.1016/j.brainres.2011.02.080] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 02/24/2011] [Accepted: 02/24/2011] [Indexed: 11/26/2022]
Abstract
This is the first metabolic mapping study of the effects of fluoxetine after learned helplessness training. Antidepressants are the most commonly prescribed medications, but the regions underlying treatment effects in affectively disordered brains are poorly understood. We hypothesized the antidepressant action of fluoxetine would produce adaptations in mesolimbic regions after 2 weeks of treatment. We used Holtzman rats, a genetic strain showing susceptibility to novelty-evoked hyperactivity and stress-evoked helplessness, to map regional brain metabolic effects caused by fluoxetine treatment. Animals underwent learned helplessness, and subsequently immobility time was scored in the forced swim test (FST). On the next day, animals began receiving 2 weeks of fluoxetine (5mg/kg/day) or vehicle and were retested in the FST at the end of drug treatment. Antidepressant behavioral effects of fluoxetine were analyzed using a ratio of immobility during pre- and post-treatment FST sessions. Brains were analyzed for regional metabolic activity using quantitative cytochrome oxidase histochemistry as in our previous study using congenitally helpless rats. Fluoxetine exerted a protective effect against FST-induced immobility behavior in Holtzman rats. Fluoxetine also caused a significant reduction in the mean regional metabolism of the nucleus accumbens shell and the ventral hippocampus as compared to vehicle-treated subjects. Additional networks affected by fluoxetine treatment included the prefrontal-cingulate cortex and brainstem nuclei linked to depression (e.g., habenula, dorsal raphe and interpeduncular nucleus). We concluded that corticolimbic regions such as the prefrontal-cingulate cortex, nucleus accumbens, ventral hippocampus and key brainstem nuclei represent important contributors to the neural network mediating fluoxetine antidepressant action.
Collapse
Affiliation(s)
- Eimeira Padilla
- Department of Psychology, University of Texas at Austin, 1 University Station A8000, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
14
|
Chronic administration of 13-cis-retinoic acid does not alter the number of serotoninergic neurons in the mouse raphe nuclei. Neuroscience 2011; 172:66-73. [PMID: 20977931 DOI: 10.1016/j.neuroscience.2010.10.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/18/2010] [Accepted: 10/19/2010] [Indexed: 12/24/2022]
Abstract
The synthetic retinoid 13-cis-retinoic acid (13-cis-RA), prescribed for the treatment of severe nodular acne, has been linked to an increased incidence of depression. Chronic treatment studies in rodents have shown that 13-cis-RA induces an increase in depression-related behaviours and a functional uncoupling of the hippocampus and dorsal raphe nucleus (DRN). Changes in the number of serotoninergic neurons in the DRN have been reported in depressed human patients. Given that retinoids have apoptotic effects, we hypothesized that a decrease in the number of serotoninergic neurons in the DRN or median raphe nucleus (MRN) would lead to decreased serotoninergic tone and in turn to the behavioural changes seen with 13-cis-RA administration. Here, we used immunolabelling and unbiased stereological methods to estimate the number of serotonin (5-hydroxytryptamine, 5-HT) neurons in the MRN and DRN of vehicle control and 13-cis-RA-treated adult mice. In the MRN, the number of 5-HT immunolabelled cells was 1815±194 in control, compared with 1954±111 in 13-cis-RA treated tissues. The number of 5-HT immunolabelled cells was much higher in the DRN, with 7148±377 cells in the control, compared with 7578±424 in the 13-cis-RA treated group. Further analysis of the DRN revealed that there were no changes in the number of 5-HT neurons within distinct subregions of the DRN. Similarly, changes in the density of serotoninergic neurons or in the volume of the MRN or DRN were not observed in 13-cis-RA treated animals. These data show that apoptotic actions of 13-cis-RA do not occur in vivo at drug concentrations that induce changes in depression-related behaviour and functional uncoupling of the DRN and hippocampus. The potential pro-depressant behavioural and molecular effects associated with chronic administration of 13-cis-RA may result from changes in serotoninergic activity rather than changes in the number of serotoninergic neurons.
Collapse
|
15
|
Sundström A, Alfredsson L, Sjölin-Forsberg G, Gerdén B, Bergman U, Jokinen J. Association of suicide attempts with acne and treatment with isotretinoin: retrospective Swedish cohort study. BMJ 2010; 341:c5812. [PMID: 21071484 PMCID: PMC2978759 DOI: 10.1136/bmj.c5812] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To assess the risk of attempted suicide before, during, and after treatment with isotretinoin for severe acne. DESIGN Retrospective cohort study linking a named patient register of isotretinoin users (1980-9) to hospital discharge and cause of death registers (1980-2001). SETTING Sweden, 1980-2001. Population 5756 patients aged 15 to 49 years prescribed isotretinoin for severe acne observed for 17 197 person years before, 2905 person years during, and 87 120 person years after treatment. MAIN OUTCOME MEASURES Standardised incidence ratio (observed number divided by expected number of suicide attempts standardised by sex, age, and calendar year), calculated up to three years before, during, and up to 15 years after end of treatment. RESULTS 128 patients were admitted to hospital for attempted suicide. During the year before treatment, the standardised incidence ratio for attempted suicide was raised: 1.57 (95% confidence interval 0.86 to 2.63) for all (including repeat) attempts and 1.36 (0.65 to 2.50) counting only first attempts. The standardised incidence ratio during and up to six months after treatment was 1.78 (1.04 to 2.85) for all attempts and 1.93 (1.08 to 3.18) for first attempts. Three years after treatment stopped, the observed number of attempts was close to the expected number and remained so during the 15 years of follow-up: standardised incidence ratio 1.04 (0.74 to 1.43) for all attempts and 0.97 (0.64 to 1.40) for first attempts. Twelve (38%) of 32 patients who made their first suicide attempt before treatment made a new attempt or committed suicide thereafter. In contrast, 10 (71%) of the 14 who made their first suicide attempt within six months after treatment stopped made a new attempt or committed suicide during follow-up (two sample test of proportions, P=0.034). The number needed to harm was 2300 new six month treatments per year for one additional first suicide attempt to occur and 5000 per year for one additional repeat attempt. CONCLUSIONS An increased risk of attempted suicide was apparent up to six months after the end of treatment with isotretinoin, which motivates a close monitoring of patients for suicidal behaviour for up to a year after treatment has ended. However, the risk of attempted suicide was already rising before treatment, so an additional risk due to the isotretinoin treatment cannot be established. As patients with a history of suicide attempts before treatment made new attempts to a lesser extent than did patients who started such behaviour in connection with treatment, patients with severe acne should not automatically have isotretinoin treatment withheld because of a history of attempted suicide.
Collapse
Affiliation(s)
- Anders Sundström
- Centre for Pharmacoepidemiology, Karolinska Institute, Karolinska University Hospital T2, 171 76 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
16
|
Ferguson SA, Berry KJ. Chronic oral treatment with isotretinoin alters measures of activity but not anxiety in male and female rats. Neurotoxicol Teratol 2010; 32:573-8. [DOI: 10.1016/j.ntt.2010.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 03/30/2010] [Accepted: 03/30/2010] [Indexed: 11/26/2022]
|
17
|
Griffin JN, Pinali D, Olds K, Lu N, Appleby L, Doan L, Lane MA. 13-Cis-retinoic acid decreases hypothalamic cell number in vitro. Neurosci Res 2010; 68:185-90. [PMID: 20708044 DOI: 10.1016/j.neures.2010.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 07/15/2010] [Accepted: 08/02/2010] [Indexed: 11/27/2022]
Abstract
13-Cis-retinoic acid (13-cis-RA) causes depression-related behavior in mice. Hypothalamic dysregulation has been implicated in clinical depression. In fact, apoptosis of hypothalamic neurons may lead to depression after myocardial infarction. Our objective was to determine if 13-cis-RA affects cultured hypothalamic cell number. Treatment of GT1-7 hypothalamic cells with 10μM 13-cis-RA for 48h decreased cell growth to 45.6±13% of control. To determine if this decrease in cell number was due to 13-cis-RA acting as an oxidant, cells were treated with 13-cis-RA and ascorbic acid or butylated hydroxyanisole (BHA) for 24 or 48h. Neither antioxidant alleviated the inhibitory affects of 13-cis-RA. In addition, 13-cis-RA treatment did not increase superoxide anion production, indicating 13-cis-RA was not acting as an oxidant. To determine if 13-cis-RA was acting via retinoic acid receptors (RARs) to decrease cell number, GT1-7 cells were treated with 13-cis-RA and the RAR pan-antagonist, AGN 193109. Treatment with the RAR-antagonist blocked the ability of 13-cis-RA to decrease cell number, indicating this phenomenon was a RAR-independent mechanism. We hypothesize that the ability of 13-cis-RA to decrease hypothalamic cell number may contribute to the increased depression-related behaviors observed in mice.
Collapse
Affiliation(s)
- Jennifer N Griffin
- Department of Family and Consumer Sciences, Division of Nutrition and Foods, Texas State University, San Marcos, TX 78666, United States
| | | | | | | | | | | | | |
Collapse
|
18
|
Stangl D, Thuret S. Impact of diet on adult hippocampal neurogenesis. GENES AND NUTRITION 2009; 4:271-82. [PMID: 19685256 DOI: 10.1007/s12263-009-0134-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 07/20/2009] [Indexed: 01/09/2023]
Abstract
Research over the last 5 years has firmly established that learning and memory abilities, as well as mood, can be influenced by diet, although the mechanisms by which diet modulates mental health are not well understood. One of the brain structures associated with learning and memory, as well as mood, is the hippocampus. Interestingly, the hippocampus is one of the two structures in the adult brain where the formation of newborn neurons, or neurogenesis, persists. The level of neurogenesis in the adult hippocampus has been linked directly to cognition and mood. Therefore, modulation of adult hippocampal neurogenesis (AHN) by diet emerges as a possible mechanism by which nutrition impacts on mental health. In this study, we give an overview of the mechanisms and functional implications of AHN and summarize recent findings regarding the modulation of AHN by diet.
Collapse
Affiliation(s)
- Doris Stangl
- Centre for the Cellular Basis of Behaviour and MRC Centre for Neurodegeneration Research, The James Black Centre, Institute of Psychiatry, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | | |
Collapse
|
19
|
Veening JG, Böcker KBE, Verdouw PM, Olivier B, De Jongh R, Groenink L. Activation of the septohippocampal system differentiates anxiety from fear in startle paradigms. Neuroscience 2009; 163:1046-60. [PMID: 19580851 DOI: 10.1016/j.neuroscience.2009.06.064] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 06/26/2009] [Accepted: 07/29/2009] [Indexed: 12/18/2022]
Abstract
It has been suggested that different brain areas are involved in the modulation and expression of fear and anxiety. In the present study we investigated these potential differences by using the fear-potentiated-startle (FPS) and light-enhanced-startle (LES) paradigms to differentiate between fear and anxiety, respectively. Male Wistar rats were tested in the FPS and LES paradigm and perfused 1 h after the test session. Fos immunoreactivity (IR) was quantified in 21 brain areas and compared between FPS, LES and four control conditions. Both FPS and LES procedures significantly enhanced the acoustic startle response. A principal component analysis of Fos-IR-data showed that 70% of the changes in Fos-IR could be explained by three independent components: an arousal-component, identifying brain areas known to be activated under conditions of vigilance, arousal and stress, a LES- and an FPS-component. The LES component comprised the septohippocampal system and functionally interrelated areas including nucleus accumbens, anterior cingulate cortex, lateral habenula and supramammillary areas, but not the dorsolateral part of the bed nucleus of the stria terminalis. The central amygdaloid nucleus and the dorsolateral part of the bed nucleus of the stria terminalis loaded exclusively on the FPS component. Analysis of the separate brain areas revealed significantly higher Fos-IR in LES relative to FPS in the anterior cingulate cortex, nucleus accumbens shell, lateral septum, lateral habenula and area postrema. We conclude that the neural circuitry activated during FPS and LES shows clear differences. In anxiety as induced by LES, activation of the septohippocampal system and related areas seems to play a major role. In fear as induced by FPS, the central amygdaloid nucleus and the dorsolateral part of the bed nucleus of the stria terminalis loaded on the same component, but Fos-IR observed in these brain regions did not differentiate between anxiety and fear. Furthermore, principal-component analysis appears a useful tool in detecting and describing correlated changes in patterns of neuronal activity.
Collapse
Affiliation(s)
- J G Veening
- Department of Anatomy, 109 UMC St Radboud, University of Nijmegen, Geert Grooteplein N 21, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|