1
|
Loomis S, Samoylenko E, Virley D, McCreary AC. Nabiximols (NBX) suppresses tremor in a rat Harmaline model of essential tremor. Exp Neurol 2024; 382:114988. [PMID: 39368533 DOI: 10.1016/j.expneurol.2024.114988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Essential tremor (ET) is one of the most prevalent movement disorders; despite this, there remains an unmet need for novel therapies. The treatment of rats with harmaline modulates the rhythmicity of inferior olivary neurons, resulting in generalized tremor with a frequency of 9-12 Hz in rats, comparable to that of human ET (4-12 Hz). PURPOSE Interestingly, cannabinoids reduce tremor, therefore we have assessed the cannabinoid nabiximols (NBX; marketed as Sativex) a complex botanical drug mixture, in the harmaline-rat model of ET. METHOD We tested the effects of acute (single dose) and subchronic (10 days) treatment of NBX (at 5.2, 10.4 and 20.8 mg kg-1 p.o.) administered prior to harmaline and acute NBX (20.8 mg kg-1) administered post-harmaline in male SD rats. Propranolol (20 mg kg-1 i.p.) was used as a positive control. Observed Scoring (OS) was carried out prior to placement in a tremor-monitoring apparatus for the calculation of Tremor Index (TI) and Motion Power Percentage (MPP). RESULTS Acute and subchronic NBX significantly attenuated harmaline-induced tremor at 10.4 and 20.8 mg kg-1, respectively, for each parameter (OS, TI, and MPP) when administered pre-harmaline as did propranolol (20 mg kg-1). NBX did not attenuate harmaline-induced tremor when administered post-harmaline. CONCLUSIONS These data suggest efficacy of acute and subchronic NBX to reduce tremors, based on OS, TI and MPP readouts if administered prior to harmaline. These data are the first to indicate the preclinical effects of an oral botanical cannabinoid formulation, NBX, in an animal model of ET.
Collapse
Affiliation(s)
- Sally Loomis
- Jazz Pharmaceuticals Ltd., Sovereign House, Cambridge CB24 9BZ, UK.
| | - Elena Samoylenko
- Jazz Pharmaceuticals Ltd., Sovereign House, Cambridge CB24 9BZ, UK
| | - David Virley
- Jazz Pharmaceuticals Ltd., Sovereign House, Cambridge CB24 9BZ, UK
| | | |
Collapse
|
2
|
Zhan X, Do LV, Zou L, Zhan RS, Jones M, Nawaz S, Manaye K. Harmaline toxicity on dorsal striatal neurons and its role in tremor. Neurotoxicology 2023; 99:152-161. [PMID: 37838252 DOI: 10.1016/j.neuro.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 08/28/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023]
Abstract
Harmaline is one of the β-carboline derivative compounds that is widely distributed in the food chain and human tissues. Harmine, a dehydrogenated form of harmaline, appeared to have a higher concentration in the brain, and appeared to be elevated in essential tremor (ET) and Parkinson's disease. Exogenous harmaline exposure in high concentration has myriad consequences, including inducing tremor, and causing neurodegeneration of Purkinje cells in the cerebellum. Harmaline-induced tremor is an established animal model for human ET, but its underlying mechanism is still controversial. One hypothesis posits that the inferior olive-cerebellum pathway is involved, and CaV3.1 T-type Ca2+ channel is a critical target of action. However, accumulating evidence indicates that tremor can be generated without disturbing T-type channels. This implies that additional neural circuits or molecular targets are involved. Using in vitro slice Ca2+-imaging and patch clamping, we demonstrated that harmaline reduced intracellular Ca2+ and suppressed depolarization-induced spiking activity of medium spiny striatal neurons (MSN), and this effect of harmaline can be partially attenuated by sulpiride (5 µM). In addition, the frequencies of spontaneous excitatory post-synaptic currents (sEPSCs) on MSNs were also significantly attenuated. Furthermore, the induced tremor in C57BL/6 J mice by harmaline injections (i.p. 12.5-18 mg/kg) was also shown to be attenuated by sulpiride (20 mg/kg). This series of experiments suggests that the dorsal striatum is a site of harmaline toxic action and might contribute to tremor generation. The findings also provide evidence that D2 signaling might be a part of the mechanism underlying essential tremor.
Collapse
Affiliation(s)
- Xiping Zhan
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Ly V Do
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Li Zou
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Ryan Shu Zhan
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Michael Jones
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Saba Nawaz
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Kebreten Manaye
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
3
|
Handforth A, Singh RP, Treven M, Ernst M. Search for Novel Therapies for Essential Tremor Based on Positive Modulation of α6-Containing GABA A Receptors. Tremor Other Hyperkinet Mov (N Y) 2023; 13:39. [PMID: 37900009 PMCID: PMC10607569 DOI: 10.5334/tohm.796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023] Open
Abstract
Background Prior work using GABAA receptor subunit knockouts and the harmaline model has indicated that low-dose alcohol, gaboxadol, and ganaxolone suppress tremor via α6βδ GABAA receptors. This suggests that drugs specifically enhancing the action of α6βδ or α6βγ2 GABAA receptors, both predominantly expressed on cerebellar granule cells, would be effective against tremor. We thus examined three drugs described by in vitro studies as selective α6βδ (ketamine) or α6βγ2 (Compound 6, flumazenil) receptor modulators. Methods In the first step of evaluation, the maximal dose was sought at which 6/6 mice pass straight wire testing, a sensitive test for psychomotor impairment. Only non-impairing doses were used to evaluate for anti-tremor efficacy in the harmaline model, which was assessed in wildtype and α6 subunit knockout littermates. Results Ketamine, in maximally tolerated doses of 2.0 and 3.5 mg/kg had minimal effect on harmaline tremor in both genotypes. Compound 6, at well-tolerated doses of 1-10 mg/kg, effectively suppressed tremor in both genotypes. Flumazenil suppressed tremor in wildtype mice at doses (0.015-0.05 mg/kg) far lower than those causing straight wire impairment, and did not suppress tremor in α6 knockout mice. Discussion Modulators of α6βδ and α6βγ2 GABAA receptors warrant attention for novel therapies as they are anticipated to be effective and well-tolerated. Ketamine likely failed to attain α6βδ-active levels. Compound 6 is an attractive candidate, but further study is needed to clarify its mechanism of action. The flumazenil results provide proof of principle that targeting α6βγ2 receptors represents a worthy strategy for developing essential tremor therapies. Highlights We tested for harmaline tremor suppression drugs previously described as in vitro α6βδ or α6βγ2 GABAA receptor-selective modulators. Well-tolerated flumazenil doses suppressed tremor in α6-wildtype but not α6-knockout mice. Compound 6 and ketamine failed to display this profile, likely from off-target effects. Selective α6 modulators hold promise as tremor therapy.
Collapse
Affiliation(s)
- Adrian Handforth
- Neurology Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | - Ram P. Singh
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | - Marco Treven
- Department of Neurology, Medical Neuroscience Cluster, Medical University of Vienna, Vienna, Austria
| | - Margot Ernst
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Kuo SH. GABA A Receptor Subtype Specificity in Essential Tremor. Neurotherapeutics 2023; 20:372-374. [PMID: 36765025 PMCID: PMC10121954 DOI: 10.1007/s13311-023-01341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2022] [Indexed: 02/12/2023] Open
Affiliation(s)
- Sheng-Han Kuo
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
5
|
Huang YH, Lee MT, Hsueh HY, Knutson DE, Cook J, Mihovilovic MD, Sieghart W, Chiou LC. Cerebellar α6GABA A Receptors as a Therapeutic Target for Essential Tremor: Proof-of-Concept Study with Ethanol and Pyrazoloquinolinones. Neurotherapeutics 2023; 20:399-418. [PMID: 36696034 PMCID: PMC10121996 DOI: 10.1007/s13311-023-01342-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2022] [Indexed: 01/26/2023] Open
Abstract
Ethanol has been shown to suppress essential tremor (ET) in patients at low-to-moderate doses, but its mechanism(s) of action remain unknown. One of the ET hypotheses attributes the ET tremorgenesis to the over-activated firing of inferior olivary neurons, causing synchronic rhythmic firings of cerebellar Purkinje cells. Purkinje cells, however, also receive excitatory inputs from granule cells where the α6 subunit-containing GABAA receptors (α6GABAARs) are abundantly expressed. Since ethanol is a positive allosteric modulator (PAM) of α6GABAARs, such action may mediate its anti-tremor effect. Employing the harmaline-induced ET model in male ICR mice, we evaluated the possible anti-tremor effects of ethanol and α6GABAAR-selective pyrazoloquinolinone PAMs. The burrowing activity, an indicator of well-being in rodents, was measured concurrently. Ethanol significantly and dose-dependently attenuated action tremor at non-sedative doses (0.4-2.4 g/kg, i.p.). Propranolol and α6GABAAR-selective pyrazoloquinolinones also significantly suppressed tremor activity. Neither ethanol nor propranolol, but only pyrazoloquinolinones, restored burrowing activity in harmaline-treated mice. Importantly, intra-cerebellar micro-injection of furosemide (an α6GABAAR antagonist) had a trend of blocking the effect of pyrazoloquinolinone Compound 6 or ethanol on harmaline-induced tremor. In addition, the anti-tremor effects of Compound 6 and ethanol were synergistic. These results suggest that low doses of ethanol and α6GABAAR-selective PAMs can attenuate action tremor, at least partially by modulating cerebellar α6GABAARs. Thus, α6GABAARs are potential therapeutic targets for ET, and α6GABAAR-selective PAMs may be a potential mono- or add-on therapy.
Collapse
Affiliation(s)
- Ya-Hsien Huang
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd., Section 1, Taipei, 10051, Taiwan
| | - Ming Tatt Lee
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd., Section 1, Taipei, 10051, Taiwan
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia
| | - Han-Yun Hsueh
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd., Section 1, Taipei, 10051, Taiwan
| | - Daniel E Knutson
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - James Cook
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | | | - Werner Sieghart
- Center for Brain Research, Department of Molecular Neurosciences, Medical University Vienna, Vienna, 1090, Austria
| | - Lih-Chu Chiou
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd., Section 1, Taipei, 10051, Taiwan.
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
6
|
Gironell A, Pascual‐Sedano B, Marín‐Lahoz J, Pérez J, Pagonabarraga J. Non-Persistence of Tremorolytic Effect of Perampanel in Essential Tremor: Real-World Experience with 50 Patients. Mov Disord Clin Pract 2023; 10:74-78. [PMID: 36704076 PMCID: PMC9847312 DOI: 10.1002/mdc3.13576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/26/2022] [Accepted: 08/28/2022] [Indexed: 01/29/2023] Open
Abstract
Background We describe our experience of using perampanel to treat essential tremor (ET) over 12 months. Methods We enrolled 50 ET patients in an open-label trial. Perampanel was titrated to 4 mg/day as adjuvant therapy. The main outcome measures were baseline, +1, +3, +6, and + 12 month scores of the Tremor Clinical Rating Scale (TCRS) and the Glass scale (GS). Results Twenty patients withdrew because of adverse effects. At +1 month, 27 of 30 patients improved: 68% reduction in both TCRS 1 + 2 (P < 0.001) and TCRS 3 (P < 0.001); TCRS 4 + 1.8 and GS 1.1 point reduction. By +12 months non-persistence of therapeutic effect occurred in 70% of patients: the mean reduction in TCRS 1 + 2 was 33% (P = 0.03), TCRS 3 (0.04), TCRS 4 + 0.8, GS 0.2 points reduction. Conclusions We report important peramapanel acute tremorolytic effects, but poor tolerance to adverse effects and a non-sustained therapeutic effect in most patients.
Collapse
Affiliation(s)
- Alexandre Gironell
- Movement Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant PauAutonomous University of BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación en Red‐Enfermedades Neurodegenerativas (CIBERNED)Spain
| | - Berta Pascual‐Sedano
- Movement Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant PauAutonomous University of BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación en Red‐Enfermedades Neurodegenerativas (CIBERNED)Spain
| | - Juan Marín‐Lahoz
- Movement Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant PauAutonomous University of BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación en Red‐Enfermedades Neurodegenerativas (CIBERNED)Spain
| | - Jesús Pérez
- Movement Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant PauAutonomous University of BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación en Red‐Enfermedades Neurodegenerativas (CIBERNED)Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant PauAutonomous University of BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación en Red‐Enfermedades Neurodegenerativas (CIBERNED)Spain
| |
Collapse
|
7
|
Zhou J, Van der Heijden ME, Salazar Leon LE, Lin T, Miterko LN, Kizek DJ, Perez RM, Pavešković M, Brown AM, Sillitoe RV. Propranolol Modulates Cerebellar Circuit Activity and Reduces Tremor. Cells 2022; 11:cells11233889. [PMID: 36497147 PMCID: PMC9740691 DOI: 10.3390/cells11233889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/10/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Tremor is the most common movement disorder. Several drugs reduce tremor severity, but no cures are available. Propranolol, a β-adrenergic receptor blocker, is the leading treatment for tremor. However, the in vivo circuit mechanisms by which propranolol decreases tremor remain unclear. Here, we test whether propranolol modulates activity in the cerebellum, a key node in the tremor network. We investigated the effects of propranolol in healthy control mice and Car8wdl/wdl mice, which exhibit pathophysiological tremor and ataxia due to cerebellar dysfunction. Propranolol reduced physiological tremor in control mice and reduced pathophysiological tremor in Car8wdl/wdl mice to control levels. Open field and footprinting assays showed that propranolol did not correct ataxia in Car8wdl/wdl mice. In vivo recordings in awake mice revealed that propranolol modulates the spiking activity of control and Car8wdl/wdl Purkinje cells. Recordings in cerebellar nuclei neurons, the targets of Purkinje cells, also revealed altered activity in propranolol-treated control and Car8wdl/wdl mice. Next, we tested whether propranolol reduces tremor through β1 and β2 adrenergic receptors. Propranolol did not change tremor amplitude or cerebellar nuclei activity in β1 and β2 null mice or Car8wdl/wdl mice lacking β1 and β2 receptor function. These data show that propranolol can modulate cerebellar circuit activity through β-adrenergic receptors and may contribute to tremor therapeutics.
Collapse
Affiliation(s)
- Joy Zhou
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meike E. Van der Heijden
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Luis E. Salazar Leon
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tao Lin
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Lauren N. Miterko
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dominic J. Kizek
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Ross M. Perez
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matea Pavešković
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amanda M. Brown
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Roy V. Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-832-824-8913
| |
Collapse
|
8
|
Kuo SH, Louis ED. The future of pharmacotherapies for essential tremor: Enhancing GABA neurotransmission or reducing neuronal hyperexcitability? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:311-315. [PMID: 36172063 PMCID: PMC9512121 DOI: 10.1016/s0074-7742(22)00061-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, United States
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
9
|
Shabani M, Naderi R. Phytohormone abscisic acid elicits positive effects on harmaline-induced cognitive and motor disturbances in a rat model of essential tremor. Brain Behav 2022; 12:e2564. [PMID: 35591769 PMCID: PMC9120731 DOI: 10.1002/brb3.2564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 01/13/2022] [Accepted: 01/28/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Essential tremor (ET) as a neurological disorder is accompanied by cognitive and motor disturbances. Despite the high incidence of ET, the drug treatment of ET remains unsatisfactory. Recently, abscisic acid (ABA) has been reported to have positive neurophysiological effects in mammals. Here, the effects of ABA on harmaline-induced motor and cognitive impairments were investigated in rats. METHODS Male Wistar rats weighing 120-140 g were divided into control, harmaline (30 mg/kg, ip), ABA vehicle (DMSO+normal saline), and ABA (10 μg/rat, icv, 30 min before harmaline injection) groups. Exploratory, balance and motor performance, anxiety, and cognitive function were assessed using footprint, open field, wire grip, rotarod, and shuttle box tests. RESULTS The results indicated that ABA (10 μg/rat) can improve harmaline-induced tremor in rats. The administration of ABA significantly increased time spent on wire grip and rotarod. In addition, ABA had a promising effect against the cognitive impairments induced by harmaline. CONCLUSION Taken together, ABA has positive effects on locomotor and cognitive impairments induced by tremor. However, further studies are required to determine the exact mechanisms of ABA on the ET.
Collapse
Affiliation(s)
- Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Reyhaneh Naderi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
Lang EJ, Handforth A. Is the inferior olive central to essential tremor? Yes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:133-165. [PMID: 35750361 PMCID: PMC11956747 DOI: 10.1016/bs.irn.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We consider the question whether the inferior olive (IO) is required for essential tremor (ET). Much evidence shows that the olivocerebellar system is the main system capable of generating the widespread synchronous oscillatory Purkinje cell (PC) complex spike (CS) activity across the cerebellar cortex that would be capable of generating the type of bursting cerebellar output from the deep cerebellar nuclei (DCN) that could underlie tremor. Normally, synchronous CS activity primarily reflects the effective electrical coupling of IO neurons by gap junctions, and traditionally, ET research has focused on the hypothesis of increased coupling of IO neurons as the cause of hypersynchronous CS activity underlying tremor. However, recent pathology studies of brains from humans with ET and evidence from mutant mice, particularly the hotfoot17 mouse, that largely replicate the pathology of ET, suggest that the abnormal innervation of multiple Purkinje cells (PCs) by climbing fibers (Cfs) is related to tremor. In addition, ET brains show partial PC loss and axon terminal sprouting by surviving PCs. This may provide another mechanism for tremor. It is proposed that in ET, these three mechanisms may promote tremor. They all involve hypersynchronous DCN activity and an intact IO, but the level at which excessive synchronization occurs may be at the IO level (from abnormal afferent activity to this nucleus), the PC level (via aberrant Cfs), or the DCN level (via terminal PC collateral innervation).
Collapse
Affiliation(s)
- Eric J Lang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY, United States.
| | - Adrian Handforth
- Neurology Service (W127), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
11
|
Ondo W. Enhancing GABA inhibition is the next generation of medications for essential tremor. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:317-334. [PMID: 35750368 DOI: 10.1016/bs.irn.2022.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
γ-Aminobutyric acid (GABA) is the most prevalent inhibitory CNS neurotransmitter. Activating GABA-A receptors hyperpolarizes cells via Cl- influx, which inhibits action potentials. Although the exact pathophysiologies of tremor are incompletely understood, proposed neuroanatomy extensively implicates GABA pathways. Pathological studies and imaging studies also show GABA abnormalities in patients with ET. Most importantly, medications that activate GABA-A receptors, such as primidone, often improve tremor. Ongoing clinical trials and physiology research should further refine potential future GABAergic targets and treatments, which are currently the most promising targets for pharmacological intervention.
Collapse
Affiliation(s)
- William Ondo
- Houston Methodist Hospital, Weill Cornel Medical School, Houston, TX, United States.
| |
Collapse
|
12
|
Scott L, Puryear CB, Belfort GM, Raines S, Hughes ZA, Matthews LG, Ravina B, Wittmann M. Translational Pharmacology of PRAX-944, a Novel T-Type Calcium Channel Blocker in Development for the Treatment of Essential Tremor. Mov Disord 2022; 37:1193-1201. [PMID: 35257414 PMCID: PMC9310641 DOI: 10.1002/mds.28969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/16/2021] [Accepted: 01/13/2022] [Indexed: 12/15/2022] Open
Abstract
Background Essential tremor is the most common movement disorder with clear unmet need. Mounting evidence indicates tremor is caused by increased neuronal burst firing and oscillations in cerebello‐thalamo‐cortical circuitry and may be dependent on T‐type calcium channel activity. T‐type calcium channels regulate sigma band electroencephalogram (EEG) power during non‐rapid eye movement sleep, representing a potential biomarker of channel activity. PRAX‐944 is a novel T‐type calcium channel blocker in development for essential tremor. Objectives Using a rat tremor model and sigma‐band EEG power, we assessed pharmacodynamically‐active doses of PRAX‐944 and their translation into clinically tolerated doses in healthy participants, informing dose selection for future efficacy trials. Methods Harmaline‐induced tremor and spontaneous locomotor activity were used to assess PRAX‐944 efficacy and tolerability, respectively, in rats. Sigma‐power was used as a translational biomarker of T‐type calcium channel blockade in rats and, subsequently, in a phase 1 trial assessing pharmacologic activity and tolerability in healthy participants. Results In rats, PRAX‐944 dose‐dependently reduced tremor by 50% and 72% at 1 and 3 mg/kg doses, respectively, without locomotor side effects. These doses also reduced sigma‐power by ~30% to 50% in rats. In healthy participants, sigma‐power was similarly reduced by 34% to 50% at 10 to 100 mg, with no further reduction at 120 mg. All doses were well tolerated. Conclusions In rats, PRAX‐944 reduced sigma‐power at concentrations that reduced tremor without locomotor side effects. In healthy participants, comparable reductions in sigma‐power indicate that robust T‐type calcium channel blockade was achieved at well‐tolerated doses that may hold promise for reducing tremor in patients with essential tremor. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Liam Scott
- Praxis Precision Medicines, Boston, Massachusetts, USA
| | | | | | - Shane Raines
- Praxis Precision Medicines, Boston, Massachusetts, USA
| | - Zoë A Hughes
- Praxis Precision Medicines, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
13
|
Pan MK, Kuo SH. Essential tremor: Clinical perspectives and pathophysiology. J Neurol Sci 2022; 435:120198. [PMID: 35299120 PMCID: PMC10363990 DOI: 10.1016/j.jns.2022.120198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/01/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
Essential tremor (ET) is one of the most common neurological disorders and can be highly disabling. In recent years, studies on the clinical perspectives and pathophysiology have advanced our understanding of ET. Specifically, clinical heterogeneity of ET, with co-existence of tremor and other neurological features such as dystonia, ataxia, and cognitive dysfunction, has been identified. The cerebellum has been found to be the key brain region for tremor generation, and structural alterations of the cerebellum have been extensively studied in ET. Finally, four main ET pathophysiologies have been proposed: 1) environmental exposures to β-carboline alkaloids and the consequent olivocerebellar hyper-excitation, 2) cerebellar GABA deficiency, 3) climbing fiber synaptic pathology with related cerebellar oscillatory activity, 4) extra-cerebellar oscillatory activity. While these four theories are not mutually exclusive, they can represent distinctive ET subtypes, indicating multiple types of abnormal brain circuitry can lead to action tremor. This article is part of the Special Issue "Tremor" edited by Daniel D. Truong, Mark Hallett, and Aasef Shaikh.
Collapse
|
14
|
Sieghart W, Chiou LC, Ernst M, Fabjan J, M Savić M, Lee MT. α6-Containing GABA A Receptors: Functional Roles and Therapeutic Potentials. Pharmacol Rev 2022; 74:238-270. [PMID: 35017178 DOI: 10.1124/pharmrev.121.000293] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
GABAA receptors containing the α6 subunit are highly expressed in cerebellar granule cells and less abundantly in many other neuronal and peripheral tissues. Here, we for the first time summarize their importance for the functions of the cerebellum and the nervous system. The cerebellum is not only involved in motor control but also in cognitive, emotional, and social behaviors. α6βγ2 GABAA receptors located at cerebellar Golgi cell/granule cell synapses enhance the precision of inputs required for cerebellar timing of motor activity and are thus involved in cognitive processing and adequate responses to our environment. Extrasynaptic α6βδ GABAA receptors regulate the amount of information entering the cerebellum by their tonic inhibition of granule cells, and their optimal functioning enhances input filtering or contrast. The complex roles of the cerebellum in multiple brain functions can be compromised by genetic or neurodevelopmental causes that lead to a hypofunction of cerebellar α6-containing GABAA receptors. Animal models mimicking neuropsychiatric phenotypes suggest that compounds selectively activating or positively modulating cerebellar α6-containing GABAA receptors can alleviate essential tremor and motor disturbances in Angelman and Down syndrome as well as impaired prepulse inhibition in neuropsychiatric disorders and reduce migraine and trigeminal-related pain via α6-containing GABAA receptors in trigeminal ganglia. Genetic studies in humans suggest an association of the human GABAA receptor α6 subunit gene with stress-associated disorders. Animal studies support this conclusion. Neuroimaging and post-mortem studies in humans further support an involvement of α6-containing GABAA receptors in various neuropsychiatric disorders, pointing to a broad therapeutic potential of drugs modulating α6-containing GABAA receptors. SIGNIFICANCE STATEMENT: α6-Containing GABAA receptors are abundantly expressed in cerebellar granule cells, but their pathophysiological roles are widely unknown, and they are thus out of the mainstream of GABAA receptor research. Anatomical and electrophysiological evidence indicates that these receptors have a crucial function in neuronal circuits of the cerebellum and the nervous system, and experimental, genetic, post-mortem, and pharmacological studies indicate that selective modulation of these receptors offers therapeutic prospects for a variety of neuropsychiatric disorders and for stress and its consequences.
Collapse
Affiliation(s)
- Werner Sieghart
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Lih-Chu Chiou
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Margot Ernst
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Jure Fabjan
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Miroslav M Savić
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Ming Tatt Lee
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| |
Collapse
|
15
|
Gironell A. Is essential tremor a disorder of primary GABA dysfunction? Yes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:259-284. [PMID: 35750365 PMCID: PMC9446196 DOI: 10.1016/bs.irn.2022.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dysfunction in gamma-aminobutyric acid (GABA) neurotransmission has emerged as a prime suspect for the underlying neurochemical dysfunction in essential tremor (ET). This dysfunction has been termed the GABA hypothesis. We review findings to date supporting the 4 steps in this hypothesis in studies of cerebrospinal fluid, pathology, genetics, animal models, imaging, computational models, and human drugs, while not overlooking the evidence of negative studies and controversies. It remains to be elucidated whether reduced GABAergic tone is a primary contributing factor to ET pathophysiology, a consequence of altered Purkinje cell function, or even a result of Purkinje cell death. More studies are clearly needed to confirm both the neurodegenerative nature of ET and the reduction in GABA activity in the cerebellum. Also necessary is to test further therapies to enhance GABA transmission specifically focused on the cerebellar area.
Collapse
Affiliation(s)
- Alexandre Gironell
- Movement Disorders Unit, Department of Neurology, Sant Pau Hospital, Autonomous University of Barcelona, Catalonia, Spain.
| |
Collapse
|
16
|
Kosmowska B, Wardas J. The Pathophysiology and Treatment of Essential Tremor: The Role of Adenosine and Dopamine Receptors in Animal Models. Biomolecules 2021; 11:1813. [PMID: 34944457 PMCID: PMC8698799 DOI: 10.3390/biom11121813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Essential tremor (ET) is one of the most common neurological disorders that often affects people in the prime of their lives, leading to a significant reduction in their quality of life, gradually making them unable to independently perform the simplest activities. Here we show that current ET pharmacotherapy often does not sufficiently alleviate disease symptoms and is completely ineffective in more than 30% of patients. At present, deep brain stimulation of the motor thalamus is the most effective ET treatment. However, like any brain surgery, it can cause many undesirable side effects; thus, it is only performed in patients with an advanced disease who are not responsive to drugs. Therefore, it seems extremely important to look for new strategies for treating ET. The purpose of this review is to summarize the current knowledge on the pathomechanism of ET based on studies in animal models of the disease, as well as to present and discuss the results of research available to date on various substances affecting dopamine (mainly D3) or adenosine A1 receptors, which, due to their ability to modulate harmaline-induced tremor, may provide the basis for the development of new potential therapies for ET in the future.
Collapse
Affiliation(s)
| | - Jadwiga Wardas
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Kraków, Poland;
| |
Collapse
|
17
|
Akman Ö, Utkan T, Arıcıoğlu F, Güllü K, Ateş N, Karson A. Agmatine has beneficial effect on harmaline-induced essential tremor in rat. Neurosci Lett 2021; 753:135881. [PMID: 33838255 DOI: 10.1016/j.neulet.2021.135881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/28/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
Essential tremor (ET) is one of the most prevalent movement disorders and the most common cause of abnormal tremors. However, it cannot be treated efficiently with the currently available pharmacotherapy options. The pathophysiology of harmaline-induced tremor, most commonly used model of ET, involves various neurotransmitter systems including glutamate as well as ion channels. Agmatine, an endogenous neuromodulator, interacts with various glutamate receptor subtypes and ion channels, which have been associated with its' beneficial effects on several neurological disorders. The current study aims to assess the effect of agmatine on the harmaline model of ET. Two separate groups of male rats were injected either with saline or agmatine (40 mg/kg) 30 min prior to single intraperitoneal injection of harmaline (20 mg/kg). The percent duration, intensity and frequency of tremor and locomotor activity were evaluated by a custom-built tremor and locomotion analysis system. Pretreatment with agmatine reduced the percent tremor duration and intensity of tremor induced by harmaline, without affecting the tremor frequency. However, it did not affect the decreased spontaneous locomotor activity due to harmaline. This pattern of ameliorating effects of agmatine on harmaline-induced tremor provide the first evidence for being considered as a treatment option for ET.
Collapse
Affiliation(s)
- Özlem Akman
- Department of Physiology, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkey.
| | - Tijen Utkan
- Kocaeli University, Faculty of Medicine, Department of Pharmacology, Kocaeli, Turkey.
| | - Feyza Arıcıoğlu
- Marmara University, Faculty of Pharmacy, Department of Pharmacology and Psychopharmacology Research Unit, Istanbul, Turkey.
| | - Kemal Güllü
- Department of Electrical and Electronics Engineering, İzmir Bakircay University, İzmir, Turkey.
| | - Nurbay Ateş
- Kocaeli University, Faculty of Medicine, Department of Physiology, Kocaeli, Turkey.
| | - Ayşe Karson
- Kocaeli University, Faculty of Medicine, Department of Physiology, Kocaeli, Turkey.
| |
Collapse
|
18
|
Durmaz Çelik N, Ger Akarsu F, Ozkan S, Özdemir AÖ, Aykac Ö, Memmedova F. Herbal teas can be harmful: a case of Peganum harmala induced coma in a patient with Parkinson's disease. Neurocase 2021; 27:117-119. [PMID: 33730972 DOI: 10.1080/13554794.2021.1876092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Nazlı Durmaz Çelik
- Department of Neurology, Eskisehir Osmangazi University School of Medicine, Eskisehir, Turkey,
| | - Fatma Ger Akarsu
- Department of Neurology, Eskisehir Osmangazi University School of Medicine, Eskisehir, Turkey,
| | - Serhat Ozkan
- Department of Neurology, Eskisehir Osmangazi University School of Medicine, Eskisehir, Turkey,
| | - Atilla Özcan Özdemir
- Department of Neurology, Eskisehir Osmangazi University School of Medicine, Eskisehir, Turkey,
| | - Özlem Aykac
- Department of Neurology, Eskisehir Osmangazi University School of Medicine, Eskisehir, Turkey,
| | - Fergane Memmedova
- Department of Neurology, Eskisehir Osmangazi University School of Medicine, Eskisehir, Turkey,
| |
Collapse
|
19
|
Objective detection of microtremors in netrin-G2 knockout mice. J Neurosci Methods 2021; 351:109074. [PMID: 33450333 DOI: 10.1016/j.jneumeth.2021.109074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Essential tremor is the most prevalent movement disorder and is thought to be caused by abnormalities in the cerebellar system; however, its underlying neural mechanism is poorly understood. In this study, we found that mice lacking netrin-G2, a cell adhesion molecule which is expressed in neural circuits related to the cerebellar system, exhibited a microtremor resembling an essential tremor. However, it was difficult to quantify microtremors in netrin-G2 KO mice. NEW METHOD We developed a new tremor detector which can quantify the intensity and frequency of a tremor. RESULTS Using this system, we were able to characterize both the microtremors in netrin-G2 KO mice and low-dose harmaline-induced tremors which, to date, had been difficult to detect. Alcohol and anti-tremor drugs, which are effective in decreasing the symptoms of essential tremor in patients, were examined in netrin-G2 KO mice. We found that some drugs lowered the tremor frequency, but had little effect on tremor intensity. Forced swim as a stress stimulus in netrin-G2 KO mice dramatically enhanced tremor symptoms. COMPARISON WITH EXISTING METHODS The detection performance even for tremors induced by low-dose harmaline was similar to that in previous studies or more sensitive than the others. CONCLUSIONS Microtremors in netrin-G2 KO mice are reliably and quantitatively detected by our new tremor detection system. We found different effects of medicines and factors between human essential tremors and microtremors in netrin-G2 KO mice, suggesting that the causations, mechanisms, and symptoms of tremors vary and are heterogeneous, and the objective analyses are required.
Collapse
|
20
|
Wang Y, Wang H, Zhang L, Zhang Y, Deng G, Li S, Cao N, Guan H, Cheng X, Wang C. Potential mechanisms of tremor tolerance induced in rats by the repeated administration of total alkaloid extracts from the seeds of Peganum harmala Linn. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113183. [PMID: 32730891 DOI: 10.1016/j.jep.2020.113183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/14/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The seeds of Peganum harmala Linn have been widely used for the treatment of nervous, cardiovascular, gastrointestinal, respiratory, and endocrine diseases and many other human ailments. However, tremor toxicity occurs after overdose and is tolerated following multiple dosing. Thus far, little is known about the underlying mechanisms of tremors and tremor tolerance. AIM OF THE STUDY To investigate the potential mechanisms of tremors and tremor tolerance induced in rats by the repeated administration of total alkaloid extracts from the seeds of P. harmala (TAEP). MATERIALS AND METHODS A tremor model was induced in male Wistar rats by administering TAEP at a dose of 150 mg/kg/day. To evaluate tremor action, behavioral assessment was conducted by using a custom-built tremor acquisition and analysis system. To investigate the relationships between tremors and neurotransmitter levels in the brain, various neurotransmitters were simultaneously quantified by an ultra-performance liquid chromatography combined with electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) system, and the association between these two parameters was analyzed using Pearson correlation coefficients. To further elucidate the potential mechanisms of the alterations of neurotransmitter levels in cortical tissues, the protein expression levels of several important enzymes and transporters that are closely related to neurotransmitter levels were investigated. In addition, neuropathological analysis was conducted to assess the effect of TAEP on neurons in the brain. To further clarify the potential mechanisms of TAEP-induced neurodegeneration in the brain, c-fos was subjected to immunohistochemical analysis, and oxidative stress markers were examined. RESULTS Tremors initially occurred in rats after the oral administration of TAEP at a dose of 150 mg/kg/day. However, they were tolerated following repeated dosing. The levels of 5-hydroxytryptamine (5-HT) and glycine (Gly) in cortical tissues were most likely associated with the tremor response. Tremor tolerance also likely resulted from the degeneration of cerebellar Purkinje cells. Furthermore, the alteration of 5-HT levels was mainly attributed to the downregulated expression of monoamine oxidase A (MAO-A). The degeneration of Purkinje neurons might have resulted from the overexpression of c-fos and increased oxidative stress in the cerebellum after the multiple dosing of TAEP. CONCLUSION The tremor response induced by TAEP at high doses is closely related to the concentrations of 5-HT and Gly in cortical tissues. Tremor tolerance may also be attributed to the degeneration of cerebellar Purkinje cells after the repeated dosing of TAEP. Further studies should be conducted to elucidate the interaction of the alkaloids on the neurotransmitter receptors, the expression of related neurotransmitter receptors, the specific signaling pathway involved in regulating MAO-A, and the mechanism of the loss and functional recovery of cerebellar Purkinje neurons.
Collapse
Affiliation(s)
- Youxu Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Hanxue Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China; Shanghai TCM-integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Shanghai, 200082, China
| | - Liuhong Zhang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Yunpeng Zhang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Gang Deng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Shuping Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Ning Cao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Huida Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
21
|
Handforth A, Lang EJ. Increased Purkinje Cell Complex Spike and Deep Cerebellar Nucleus Synchrony as a Potential Basis for Syndromic Essential Tremor. A Review and Synthesis of the Literature. THE CEREBELLUM 2020; 20:266-281. [PMID: 33048308 DOI: 10.1007/s12311-020-01197-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
We review advances in understanding Purkinje cell (PC) complex spike (CS) physiology that suggest increased CS synchrony underlies syndromic essential tremor (ET). We searched PubMed for papers describing factors that affect CS synchrony or cerebellar circuits potentially related to tremor. Inferior olivary (IO) neurons are electrically coupled, with the degree of coupling controlled by excitatory and GABAergic inputs. Clusters of coupled IO neurons synchronize CSs within parasagittal bands via climbing fibers (Cfs). When motor cortex is stimulated in rats at varying frequencies, whisker movement occurs at ~10 Hz, correlated with synchronous CSs, indicating that the IO/CS oscillatory rhythm gates movement frequency. Intra-IO injection of the GABAA receptor antagonist picrotoxin increases CS synchrony, increases whisker movement amplitude, and induces tremor. Harmaline and 5-HT2a receptor activation also increase IO coupling and CS synchrony and induce tremor. The hotfoot17 mouse displays features found in ET brains, including cerebellar GluRδ2 deficiency and abnormal PC Cf innervation, with IO- and PC-dependent cerebellar oscillations and tremor likely due to enhanced CS synchrony. Heightened coupling within the IO oscillator leads, through its dynamic control of CS synchrony, to increased movement amplitude and, when sufficiently intense, action tremor. Increased CS synchrony secondary to aberrant Cf innervation of multiple PCs likely also underlies hotfoot17 tremor. Deep cerebellar nucleus (DCN) hypersynchrony may occur secondary to increased CS synchrony but might also occur from PC axonal terminal sprouting during partial PC loss. Through these combined mechanisms, increased CS/DCN synchrony may plausibly underlie syndromic ET.
Collapse
Affiliation(s)
- Adrian Handforth
- Neurology Service, Veterans Affairs Greater Los Angeles Healthcare System, 11301 Wilshire Blvd., Los Angeles, CA, 90073, USA.
| | - Eric J Lang
- Department of Neuroscience and Physiology, New York University, School of Medicine, New York, NY, USA
| |
Collapse
|
22
|
Nietz A, Krook-Magnuson C, Gutierrez H, Klein J, Sauve C, Hoff I, Christenson Wick Z, Krook-Magnuson E. Selective loss of the GABA Aα1 subunit from Purkinje cells is sufficient to induce a tremor phenotype. J Neurophysiol 2020; 124:1183-1197. [PMID: 32902350 DOI: 10.1152/jn.00100.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Previously, an essential tremor-like phenotype has been noted in animals with a global knockout of the GABAAα1 subunit. Given the hypothesized role of the cerebellum in tremor, including essential tremor, we used transgenic mice to selectively knock out the GABAAα1 subunit from cerebellar Purkinje cells. We examined the resulting phenotype regarding impacts on inhibitory postsynaptic currents, survival rates, gross motor abilities, and expression of tremor. Purkinje cell specific knockout of the GABAAα1 subunit abolished all GABAA-mediated inhibition in Purkinje cells, while leaving GABAA-mediated inhibition to cerebellar molecular layer interneurons intact. Selective loss of GABAAα1 from Purkinje cells did not produce deficits on the accelerating rotarod, nor did it result in decreased survival rates. However, a tremor phenotype was apparent, regardless of sex or background strain. This tremor mimicked the tremor seen in animals with a global knockout of the GABAAα1 subunit, and, like essential tremor in patients, was responsive to ethanol. These findings indicate that reduced inhibition to Purkinje cells is sufficient to induce a tremor phenotype, highlighting the importance of the cerebellum, inhibition, and Purkinje cells in tremor.NEW & NOTEWORTHY Animals with a global knockout of the GABAAα1 subunit show a tremor phenotype reminiscent of essential tremor. Here we show that selective knockout of GABAAα1 from Purkinje cells is sufficient to produce a tremor phenotype, although this tremor is less severe than seen in animals with a global knockout. These findings illustrate that the cerebellum can play a key role in the genesis of the observed tremor phenotype.
Collapse
Affiliation(s)
- Angela Nietz
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota
| | | | - Haruna Gutierrez
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota
| | - Julia Klein
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota
| | - Clarke Sauve
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota
| | - Isaac Hoff
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota
| | | | | |
Collapse
|
23
|
Wu J, Tang H, Chen S, Cao L. Mechanisms and Pharmacotherapy for Ethanol-Responsive Movement Disorders. Front Neurol 2020; 11:892. [PMID: 32982923 PMCID: PMC7477383 DOI: 10.3389/fneur.2020.00892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Ethanol-responsive movement disorders are a group of movement disorders of which clinical manifestation could receive significant improvement after ethanol intake, including essential tremor, myoclonus-dystonia, and some other hyperkinesia. Emerging evidence supports that the sensitivity of these conditions to ethanol might be attributed to similar anatomical targets and pathophysiologic mechanisms. Cerebellum and cerebellum-related networks play a critical role in these diseases. Suppression of inhibitory neurotransmission and hyper-excitability of these regions are the key points for pathogenesis. GABA pathways, the main inhibitory system involved in these regions, were firstly linked to the pathogenesis of these diseases, and GABAA receptors and GABAB receptors play critical roles in ethanol responsiveness. Moreover, impairment of low-voltage-activated calcium channels, which were considered as a contributor to oscillation activity of the nervous system, also participates in the sensitivity of ethanol in relevant disease. Glutamate transporters and receptors that are closely associated with GABA pathways are the action sites for ethanol as well. Accordingly, alternative medicines aiming at these shared mechanisms appeared subsequently to mimic ethanol-like effects with less liability, and some of them have achieved positive effects on different diseases with well-tolerance. However, more clinical trials with a large sample and long-term follow-ups are needed for pragmatic use of these medicines, and further investigations on mechanisms will continue to deepen the understanding of these diseases and also accelerate the discovery of ideal treatment.
Collapse
Affiliation(s)
| | | | | | - Li Cao
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Kosmowska B, Ossowska K, Wardas J. Pramipexole Reduces zif-268 mRNA Expression in Brain Structures involved in the Generation of Harmaline-Induced Tremor. Neurochem Res 2020; 45:1518-1525. [PMID: 32172399 PMCID: PMC7297825 DOI: 10.1007/s11064-020-03010-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/11/2020] [Accepted: 03/04/2020] [Indexed: 11/25/2022]
Abstract
Essential tremor is one of the most common neurological disorders, however, it is not sufficiently controlled with currently available pharmacotherapy. Our recent study has shown that pramipexole, a drug efficient in inhibiting parkinsonian tremor, reduced the harmaline-induced tremor in rats, generally accepted to be a model of essential tremor. The aim of the present study was to investigate brain targets for the tremorolytic effect of pramipexole by determination of the early activity-dependent gene zif-268 mRNA expression. Tremor in rats was induced by harmaline administered at a dose of 15 mg/kg ip. Pramipexole was administered at a low dose of 0.1 mg/kg sc. Tremor was measured by Force Plate Actimeters where four force transducers located below the corners of the plate tracked the animal's position on a Cartesian plane. The zif-268 mRNA expression was analyzed by in situ hybridization in brain slices. Harmaline induced tremor and increased zif-268 mRNA levels in the inferior olive, cerebellar cortex, ventroanterior/ventrolateral thalamic nuclei and motor cortex. Pramipexole reversed both the harmaline-induced tremor and the increase in zif-268 mRNA expression in the inferior olive, cerebellar cortex and motor cortex. Moreover, the tremor intensity correlated positively with zif-268 mRNA expression in the above structures. The present results seem to suggest that the tremorolytic effect of pramipexole is related to the modulation of the harmaline-increased neuronal activity in the tremor network which includes the inferior olive, cerebellar cortex and motor cortex. Potential mechanisms underlying the above pramipexole action are discussed.
Collapse
Affiliation(s)
- Barbara Kosmowska
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland
| | - Krystyna Ossowska
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland
| | - Jadwiga Wardas
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland.
| |
Collapse
|
25
|
Nishitani A, Nagayoshi H, Takenaka S, Asano M, Shimizu S, Ohno Y, Kuramoto T. Involvement of NMDA receptors in tremor expression in Aspa/Hcn1 double-knockout rats. Exp Anim 2020; 69:388-394. [PMID: 32507787 PMCID: PMC7677080 DOI: 10.1538/expanim.20-0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We recently demonstrated that aspartoacylase (Aspa) and
hyperpolarization-activated cyclic nucleotide-gated potassium channel 1
(Hcn1) genes were causative of essential tremor (ET) in rats. This
finding was obtained using
Aspaem34Kyo/Hcn1A354V
double-mutant rats, but they were bred on a heterogeneous genetic background of two
strains, F344 and WTC. Here, we developed an
Aspaem34Kyo/Hcn1em1Kyo
double-knockout rat strain with a homogenous F344 genetic background and studied the
ability of glutamate receptor antagonists to suppress ET. The
F344-Aspa/Hcn1 double-knockout rats exhibited
spontaneous, intense body tremor equivalent to that in the double-mutant rats.
N-acetyl-aspartate (NAA), a substrate of ASPA, showed accumulation in
all brain regions and in the spinal cord. However,
N-acetyl-aspartyl-glutamate (NAAG), which is derived from NAA and
interacts with glutamatergic receptors, was decreased in the medulla oblongata of the
double-knockout rats. The tremor was suppressed by
3-[(R)-2-carboxypiperazin-4-yl]-prop-2-enyl-1-phosphonic acid, an
N-methyl-D-aspartate (NMDA) receptor antagonist, in
F344-Aspa/Hcn1 double-knockout rats. The non-NMDA
glutamate receptor antagonist NBQX weakly inhibited the tremor, while the metabotropic
glutamate receptor antagonist LY341495 showed no effect. In addition, both NR2B
subunit-specific (Ro 25-6981) and NR2C/NR2D subunit-specific (cis-piperidine dicarboxylic
acid) NMDA receptor antagonists suppressed the tremor. These data indicated that the
pathogenesis of tremor in Aspa/Hcn1 double-knockout rats
involved ionotropic glutamate receptors, particularly NMDA receptors.
Collapse
Affiliation(s)
- Ai Nishitani
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Haruna Nagayoshi
- Osaka Institute of Public Health, 1-3-69 Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Shigeo Takenaka
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, 3-7-30 Habikino, Osaka 583-8555, Japan
| | - Masahide Asano
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Saki Shimizu
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yukihiro Ohno
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Takashi Kuramoto
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan
| |
Collapse
|
26
|
Handforth A, Tse W, Elble RJ. A Pilot Double-Blind Randomized Trial of Perampanel for Essential Tremor. Mov Disord Clin Pract 2020; 7:399-404. [PMID: 32373656 DOI: 10.1002/mdc3.12927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/25/2020] [Accepted: 02/10/2020] [Indexed: 11/10/2022] Open
Abstract
Background Perampanel is a noncompetitive antagonist of alpha-amino-3-hydroxy-5-methylisoxazole propionic acid glutamate receptors suggested to modulate tremor. Objectives To assess the efficacy and tolerability of perampanel for essential tremor. Methods This was a double-blind, placebo-controlled, randomized, cross-over trial involving 26 patients titrated to 8 mg/day or a lower maximally tolerated dose as monotherapy or adjunct to antitremor medication. Tremor was assessed at the beginning and end of each 14-week treatment arm. The primary endpoint was change in the videotaped performance subscale of The Essential Tremor Rating Assessment Scale, scored by a blinded rater. Secondary endpoints included change in The Essential Tremor Rating Assessment Scale Activity of Daily Living and Quality of Life in Essential Tremor and Subject Global Impression of Change subscales. Results Data are available for 15 and 11 participants who completed placebo and perampanel arms, respectively. Perampanel was superior to placebo on the primary endpoint (P = 0.028), Activity of Daily Living (P = 0.009), and Subject Global Impression of Change (P = 0.016), but not Quality of Life (p = 0.48). Video scores were rated >50% improved in 3/11 on perampanel and 0/15 on placebo. Adverse events were more likely on perampanel (especially at >4 mg/day) than on placebo, leading to withdrawal (36% vs. 10%) and dose reduction (41% vs. 15%). Adverse events more common with perampanel included imbalance/falls (50% vs. 10%), dizziness (36% vs. 10%), and irritability (27% vs. 5%). Conclusions These findings suggest that perampanel exerts efficacy for some persons with essential tremor, but this population appears prone to adverse events.
Collapse
Affiliation(s)
- Adrian Handforth
- Neurology Service, Veterans Affairs Greater Los Angeles Healthcare System Los Angeles California USA
| | - Winona Tse
- Department of Neurology, Movement Disorders Division Icahn School of Medicine at Mount Sinai New York New York USA
| | - Rodger J Elble
- Department of Neurology Southern Illinois University School of Medicine Springfield Illinois USA
| |
Collapse
|
27
|
Kosmowska B, Ossowska K, Konieczny J, Lenda T, Berghauzen-Maciejewska K, Wardas J. Inhibition of Excessive Glutamatergic Transmission in the Ventral Thalamic Nuclei by a Selective Adenosine A1 Receptor Agonist, 5′-Chloro-5′-Deoxy-(±)-ENBA Underlies its Tremorolytic Effect in the Harmaline-Induced Model of Essential Tremor. Neuroscience 2020; 429:106-118. [DOI: 10.1016/j.neuroscience.2019.12.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/16/2019] [Accepted: 12/28/2019] [Indexed: 12/20/2022]
|
28
|
Amrutkar DV, Dyhring T, Jacobsen TA, Larsen JS, Sandager-Nielsen K. Anti-Tremor Action of Subtype Selective Positive Allosteric Modulators of GABAA Receptors in a Rat Model of Essential Tremors. THE CEREBELLUM 2020; 19:265-274. [DOI: 10.1007/s12311-020-01106-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
29
|
Essential tremor pathology: neurodegeneration and reorganization of neuronal connections. Nat Rev Neurol 2020; 16:69-83. [PMID: 31959938 DOI: 10.1038/s41582-019-0302-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2019] [Indexed: 01/26/2023]
Abstract
Essential tremor (ET) is the most common tremor disorder globally and is characterized by kinetic tremor of the upper limbs, although other clinical features can also occur. Postmortem studies are a particularly important avenue for advancing our understanding of the pathogenesis of ET; however, until recently, the number of such studies has been limited. Several recent postmortem studies have made important contributions to our understanding of the pathological changes that take place in ET. These studies identified abnormalities in the cerebellum, which primarily affected Purkinje cells (PCs), basket cells and climbing fibres, in individuals with ET. We suggest that some of these pathological changes (for example, focal PC axonal swellings, swellings in and regression of the PC dendritic arbor and PC death) are likely to be primary and degenerative. By contrast, other changes, such as an increase in PC recurrent axonal collateral formation and hypertrophy of GABAergic basket cell axonal processes, could be compensatory responses to restore cerebellar GABAergic tone and cerebellar cortical inhibitory efficacy. Such compensatory responses are likely to be insufficient, enabling the disease to progress. Here, we review the results of recent postmortem studies of ET and attempt to place these findings into an anatomical-physiological disease model.
Collapse
|
30
|
Kuo SH, Louis ED, Faust PL, Handforth A, Chang SY, Avlar B, Lang EJ, Pan MK, Miterko LN, Brown AM, Sillitoe RV, Anderson CJ, Pulst SM, Gallagher MJ, Lyman KA, Chetkovich DM, Clark LN, Tio M, Tan EK, Elble RJ. Current Opinions and Consensus for Studying Tremor in Animal Models. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1036-1063. [PMID: 31124049 PMCID: PMC6872927 DOI: 10.1007/s12311-019-01037-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tremor is the most common movement disorder; however, we are just beginning to understand the brain circuitry that generates tremor. Various neuroimaging, neuropathological, and physiological studies in human tremor disorders have been performed to further our knowledge of tremor. But, the causal relationship between these observations and tremor is usually difficult to establish and detailed mechanisms are not sufficiently studied. To overcome these obstacles, animal models can provide an important means to look into human tremor disorders. In this manuscript, we will discuss the use of different species of animals (mice, rats, fruit flies, pigs, and monkeys) to model human tremor disorders. Several ways to manipulate the brain circuitry and physiology in these animal models (pharmacology, genetics, and lesioning) will also be discussed. Finally, we will discuss how these animal models can help us to gain knowledge of the pathophysiology of human tremor disorders, which could serve as a platform towards developing novel therapies for tremor.
Collapse
Affiliation(s)
- Sheng-Han Kuo
- Department of Neurology, Columbia University, 650 West 168th Street, Room 305, New York, NY, 10032, USA.
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, 800 Howard Avenue, Ste Lower Level, New Haven, CT, 06519, USA.
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA.
- Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA.
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Adrian Handforth
- Neurology Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Su-Youne Chang
- Department of Neurologic Surgery and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Billur Avlar
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Eric J Lang
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Ming-Kai Pan
- Department of Medical Research and Neurology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lauren N Miterko
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Amanda M Brown
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Collin J Anderson
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | | | - Kyle A Lyman
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Lorraine N Clark
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Murni Tio
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Rodger J Elble
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
31
|
Lee J, Jo HJ, Kim I, Lee J, Min HK, In MH, Knight EJ, Chang SY. Mapping BOLD Activation by Pharmacologically Evoked Tremor in Swine. Front Neurosci 2019; 13:985. [PMID: 31619955 PMCID: PMC6759958 DOI: 10.3389/fnins.2019.00985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/02/2019] [Indexed: 11/26/2022] Open
Abstract
Harmaline-induced tremor is one of the most commonly utilized disease models for essential tremor (ET). However, the underlying neural networks involved in harmaline-induced tremor and the degree to which these are a representative model of the pathophysiologic mechanism of ET are incompletely understood. In this study, we evaluated the functional brain network effects induced by systemic injection of harmaline using pharmacological functional magnetic resonance imaging (ph-fMRI) in the swine model. With harmaline administration, we observed significant activation changes in cerebellum, thalamus, and inferior olivary nucleus (ION). In addition, inter-regional correlations in activity between cerebellum and deep cerebellar nuclei and between cerebellum and thalamus were significantly enhanced. These harmaline-induced effects gradually decreased with repeated administration of drug, replicating the previously demonstrated ‘tolerance’ effect. This study demonstrates that harmaline-induced tremor is associated with activity changes in brain regions previously implicated in humans with ET. Thus, harmaline-induction of tremor in the swine may be a useful model to explore the neurological effects of novel therapeutic agents and/or neuromodulation techniques for ET.
Collapse
Affiliation(s)
- Jeyeon Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Hang Joon Jo
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Department of Radiology, Mayo Clinic, Rochester, MN, United States.,Department of Neurology, Mayo Clinic, Rochester, MN, United States.,Department of Physiology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Inyong Kim
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Jihyun Lee
- Laboratory of Brain and Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang, South Korea
| | - Hoon-Ki Min
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Myung-Ho In
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Emily J Knight
- Department of Developmental Behavioral Pediatrics, University of Rochester, Rochester, NY, United States
| | - Su-Youne Chang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
32
|
Dahmardeh N, Shabani M, Basiri M, Kalantaripour TP, Asadi-Shekaari M. Functional Antagonism of Sphingosine-1-Phosphate Receptor 1 Prevents Harmaline-Induced Ultrastructural Alterations and Caspase-3 Mediated Apoptosis. Malays J Med Sci 2019; 26:28-38. [PMID: 31496891 PMCID: PMC6719891 DOI: 10.21315/mjms2019.26.4.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Background There is a meaningful necessity for a targeted therapy of essential tremor (ET), as medications have not been developed specifically for ET. For nearly a century, many drugs have been applied in the treatment of tremor but the drug treatment of ET remains still unknown. Some potential therapeutic factors such fingolimod (FTY720) can be effectively used to treat ET in animals. In the present research, the effect of FTY720, the immunomodulatory sphingosine 1-phosphate (S1P) analog, on degeneration of cerebellar and olivary neurons induced by harmaline in male rats was investigated. Methods The animals were allotted into control dimethyl sulfoxide (DMSO), saline + harmaline [30 mg/kg, intraperitoneally, (i.p.)], harmaline + FTY720 (1 mg/kg, i.p, 1 h and 24 h before harmaline injection) groups (n = 10). The cerebellum and inferior olive nucleus (ION) were studied for neuronal degeneration using immunohistochemistry (IHC) and ultrastructural study by transmission electron microscopy (TEM) techniques. Results Harmaline caused neuronal cell loss, caspase-3 mediated apoptosis, astrocytosis and ultrastructural changes in cerebellar Purkinje cells and inferior olive neurons. FTY720 exhibited neuroprotective effects on cerebellar Purkinje cells and inferior olivary neurons. Conclusion These results suggest that FTY720 has potential efficacy for prevention of ET neurodegeneration and astrocytosis induced by harmaline in male rats.
Collapse
Affiliation(s)
- Narjes Dahmardeh
- Department of Anatomical Sciences, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Basiri
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Taj Pari Kalantaripour
- Department of Physiology, School of Medicine, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Majid Asadi-Shekaari
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
33
|
Combs MD, Hamlin A, Quinn JC. A single exposure to the tremorgenic mycotoxin lolitrem B inhibits voluntary motor activity and spatial orientation but not spatial learning or memory in mice. Toxicon 2019; 168:58-66. [PMID: 31254599 DOI: 10.1016/j.toxicon.2019.06.228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 10/26/2022]
Abstract
The indole diterpenoid toxin lolitrem B is a tremorgenic agent found in the common grass species, perennial ryegrass (Lolium perenne). The toxin is produced by a symbiotic fungus Epichloë festucae (var. lolii) and ingestion of infested grass with sufficient toxin levels causes a movement disorder in grazing herbivores known as 'ryegrass staggers'. Beside ataxia, lolitrem B intoxicated animals frequently show indicators of cognitive dysfunction or exhibition of erratic and unpredictable behaviours during handling. Evidence from field cases in livestock and controlled feeding studies in horses have indicated that intoxication with lolitrem B may affect higher cortical or subcortical functioning. In order to define the role of lolitrem B in voluntary motor control, spatial learning and memory under controlled conditions, mice were exposed to a known dose of purified lolitrem B toxin and tremor, coordination, voluntary motor activity and spatial learning and memory assessed. Motor activity, coordination and spatial memory were compared to tremor intensity using a novel quantitative piezo-electronic tremor analysis. Peak tremor was observed as frequencies between 15 and 25Hz compared to normal movement at approximately 1.4-10Hz. A single exposure to a known tremorgenic dose of lolitrem B (2 mg/kg IP) induced measureable tremor for up to 72 h in some animals. Initially, intoxication with lolitrem B significantly decreased voluntary movement. By 25 h post exposure a return to normal voluntary movement was observed in this group, despite continuing evidence of tremor. This effect was not observed in animals exposed to the short-acting tremorgenic toxin paxilline. Lolitrem B intoxicated mice demonstrated a random search pattern and delayed latency to escape a 3 h post intoxication, however by 27 h post exposure latency to escape matched controls and mice had returned to normal searching behavior indicating normal spatial learning and memory. Together these data indicate that the tremor exhibited by lolitrem B intoxicated mice does not directly impair spatial learning and memory but that exposure does reduce voluntary motor activity in intoxicated animals. Management of acutely affected livestock suffering toxicosis should be considered in the context of their ability to spatially orientate with severe toxicity.
Collapse
Affiliation(s)
- M D Combs
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, 2560, Australia; Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, New South Wales, 2560, Australia
| | - A Hamlin
- School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia
| | - J C Quinn
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, 2560, Australia; Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, New South Wales, 2560, Australia.
| |
Collapse
|
34
|
Alenajaf A, Mohebi E, Moghimi A, Fereidoni M, Mohammad-Zadeh M. The effect of harmaline on seizures induced by amygdala kindling in rats. Neurol Res 2019; 41:528-535. [PMID: 30890034 DOI: 10.1080/01616412.2019.1580460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Harmaline and other beta-carbolines act as an inverse agonist for GABA-A receptors and cause central nervous system stimulation and anxiety; thus, it may act hypothetically as a potential seizure augmenter. To examine the hypothesis, the effect of harmaline during the seizures induced by amygdala kindling is investigated here. METHODS Seven groups of male rats were kindled by daily electrical stimulation of the amygdala. After being kindled, Groups I-III, respectively, received 5, 15 and 50 mg/kg harmaline through intraperitoneal injection. The rats in Groups IV and V received vehicle daily (1 ml/kg) and harmaline (5 mg/kg) daily through intraperitoneal injection. Groups VI and VII received artificial cerebrospinal fluid and harmaline (50 mM) through intraventricular injection, respectively. RESULTS In addition to significant increase of some seizure parameters in the fully kindled groups, harmaline significantly increased cumulative afterdischarge duration (P < 0.05) and decreased stage 1 latency (P < 0.01) in the acquisition groups (Groups V and VII). In Group VII, seizure duration showed a significant increase (P < 0.01) while stage 1 latency and stage 4 latency decreased significantly (P < 0.01). DISCUSSION According to the results, it is suggested that harmaline may increase neuronal activity and the production of high-frequency action potentials by stimulating NMDA receptors and inhibiting GABA receptors. Overall, drugs and plants containing harmaline may be harmful to epileptic-susceptible people during some traditionally and costume treatments, so these should be avoided.
Collapse
Affiliation(s)
- Azam Alenajaf
- a Department of Biology , Faculty of Science, Ferdowsi University of Mashhad , Mashhad , Iran
| | - Ehsan Mohebi
- b Student Research Committee , Sabzevar University of Medical Sciences , Sabzevar , Iran
| | - Ali Moghimi
- a Department of Biology , Faculty of Science, Ferdowsi University of Mashhad , Mashhad , Iran
| | - Masoud Fereidoni
- a Department of Biology , Faculty of Science, Ferdowsi University of Mashhad , Mashhad , Iran
| | - Mohammad Mohammad-Zadeh
- c Cellular and Molecular Research Center , Sabzevar University of Medical Sciences , Sabzevar , Iran.,d Dept. of Physiology , School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
35
|
Pan MK, Ni CL, Wu YC, Li YS, Kuo SH. Animal Models of Tremor: Relevance to Human Tremor Disorders. Tremor Other Hyperkinet Mov (N Y) 2018; 8:587. [PMID: 30402338 PMCID: PMC6214818 DOI: 10.7916/d89s37mv] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022] Open
Abstract
Background Tremor is the most common movement disorder; however, the pathophysiology of tremor remains elusive. While several neuropathological alterations in tremor disorders have been observed in post-mortem studies of human brains, a full understanding of the relationship between brain circuitry alterations and tremor requires testing in animal models. Additionally, tremor animal models are critical for our understanding of tremor pathophysiology, and/or to serve as a platform for therapy development. Methods A PubMed search was conducted in May 2018 to identify published papers for review. Results The methodology used in most studies on animal models of tremor lacks standardized measurement of tremor frequency and amplitude; instead, these studies are based on the visual inspection of phenotypes, which may fail to delineate tremor from other movement disorders such as ataxia. Of the animal models with extensive tremor characterization, harmaline-induced rodent tremor models provide an important framework showing that rhythmic and synchronous neuronal activities within the olivocerebellar circuit can drive action tremor. In addition, dopamine-depleted monkey and mouse models may develop rest tremor, highlighting the role of dopamine in rest tremor generation. Finally, other animal models of tremor have involvement of the cerebellar circuitry, leading to altered Purkinje cell physiology. Discussion Both the cerebellum and the basal ganglia are likely to play a role in tremor generation. While the cerebellar circuitry can generate rhythmic movements, the nigrostriatal system is likely to modulate the tremor circuit. Tremor disorders are heterogeneous in nature. Therefore, each animal model may represent a subset of tremor disorders, which collectively can advance our understanding of tremor.
Collapse
Affiliation(s)
- Ming-Kai Pan
- Department of Medical Research, National Taiwan University, Taipei, TW
| | - Chun-Lun Ni
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yeuh-Chi Wu
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yong-Shi Li
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
36
|
Lobao-Soares B, Eduardo-da-Silva P, Amarilha H, Pinheiro-da-Silva J, Silva PF, Luchiari AC. It's Tea Time: Interference of Ayahuasca Brew on Discriminative Learning in Zebrafish. Front Behav Neurosci 2018; 12:190. [PMID: 30210319 PMCID: PMC6119691 DOI: 10.3389/fnbeh.2018.00190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/06/2018] [Indexed: 12/01/2022] Open
Abstract
Ayahuasca is a psychoactive brew traditionally used in shamanistic and vegetalistic rituals and has recently received lot of attention due to potential cognitive benefits. Ayahuasca effects are caused by the synergistic interaction of β-carbolines (harmine, harmaline and tetrahydroarmine) contained in Banisteriopsis caapi stalks combined with the N,N-dimethyltryptamine (DMT) from Psychotria viridis leaves, a potent agonist to serotonin (5-HT) receptors. The present study approaches the effects of chronic and acute exposure to two Ayahuasca concentrations (0.1 and 0.5 ml/L) on the cognitive ability to discriminate objects in a one-trial learning task in zebrafish. Based on the combination of concentrations and exposure regimens, we divided adult zebrafish in five treatment groups: acute 0.1 and 0.5 ml/L, chronic 0.1 and 0.5 ml/L, and control 0.0 (n = 20 for each group). Then we tested them in a memory task of object discrimination. Acute Ayahuasca exposed groups performed similarly to the control group, however chronically treated fish (13 days) presented both impaired discriminative performance and locomotor alterations. Overall, these results indicate that Ayahuasca is a potent psychoactive drug that, in chronic exposure, negatively affects mnemonic parameters in zebrafish. In single exposure it does not affects cognitive performance, but the higher concentration (0.5) affected locomotion. Moreover, we reinforce the importance of the zebrafish for behavioral pharmacological studies of drug screening, in special to psychedelic drug research.
Collapse
Affiliation(s)
- Bruno Lobao-Soares
- Departamento de Biofísica e Farmacologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Paulianny Eduardo-da-Silva
- Departamento de Biofísica e Farmacologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Hugo Amarilha
- Departamento de Biofísica e Farmacologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | - Priscila F. Silva
- Departamento de Fisiologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Ana Carolina Luchiari
- Departamento de Fisiologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
37
|
Kunisawa N, Shimizu S, Kato M, Iha HA, Iwai C, Hashimura M, Ogawa M, Kawaji S, Kawakita K, Abe K, Ohno Y. Pharmacological characterization of nicotine-induced tremor: Responses to anti-tremor and anti-epileptic agents. J Pharmacol Sci 2018; 137:162-169. [PMID: 29945769 DOI: 10.1016/j.jphs.2018.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022] Open
Abstract
We previously showed that nicotine evoked kinetic tremor by activating the inferior olive, which is implicated in the pathogenesis of essential tremor, via α7 nicotinic acetylcholine receptors. Here, we evaluated the effects of various anti-tremor and anti-epileptic agents on nicotine-induced tremor in mice to clarify the pharmacological characteristics of nicotine tremor. Drugs effective for essential tremor, propranolol, diazepam and phenobarbital, all significantly inhibited kinetic tremor induced by an intraperitoneal (i.p.) injection of nicotine (1 mg/kg). In contrast, none of the medications for Parkinson's disease, l-DOPA, bromocriptine or trihexyphenidyl, affected the nicotine tremor. Among the anti-epileptic agents examined, valproate, carbamazepine and ethosuximide, significantly inhibited nicotine-induced tremor. In addition, a selective T-type Ca2+ channel blocker, TTA-A2, also suppressed the nicotine tremor. However, neither gabapentin, topiramate, zonisamide nor levetiracetam significantly affected nicotine-induced tremor. The present results show that nicotine-induced tremor resembles essential tremor not only on the neural basis, but also in terms of the pharmacological responses to anti-tremor agents, implying that nicotine-induced tremor can serve as a model for essential tremor. In addition, it is suggested that anti-epileptic agents, which have stimulant actions on the GABAergic system or blocking actions on voltage-gated Na+ channels and T-type Ca2+ channels, can alleviate essential tremor.
Collapse
Affiliation(s)
- Naofumi Kunisawa
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Saki Shimizu
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Masaki Kato
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Higor A Iha
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Chihiro Iwai
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Mai Hashimura
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Mizuki Ogawa
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Shohei Kawaji
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kazuma Kawakita
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Keisuke Abe
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yukihiro Ohno
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
38
|
Savoldi R, Polari D, Pinheiro-da-Silva J, Silva PF, Lobao-Soares B, Yonamine M, Freire FAM, Luchiari AC. Behavioral Changes Over Time Following Ayahuasca Exposure in Zebrafish. Front Behav Neurosci 2017; 11:139. [PMID: 28804451 PMCID: PMC5532431 DOI: 10.3389/fnbeh.2017.00139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/14/2017] [Indexed: 11/30/2022] Open
Abstract
The combined infusion of Banisteriopsis caapi stem and Psychotria viridis leaves, known as ayahuasca, has been used for centuries by indigenous tribes. The infusion is rich in N, N-dimethyltryptamine (DMT) and monoamine oxidase inhibitors, with properties similar to those of serotonin. Despite substantial progress in the development of new drugs to treat anxiety and depression, current treatments have several limitations. Alternative drugs, such as ayahuasca, may shed light on these disorders. Here, we present time-course behavioral changes induced by ayahuasca in zebrafish, as first step toward establishing an ideal concentration for pre-clinical evaluations. We exposed adult zebrafish to five concentrations of the ayahuasca infusion: 0 (control), 0.1, 0.5, 1, and 3 ml/L (n = 14 each group), and behavior was recorded for 60 min. We evaluated swimming speed, distance traveled, freezing and bottom dwelling every min for 60 min. Swimming speed and distance traveled decreased with an increase in ayahuasca concentration while freezing increased with 1 and 3 ml/L. Bottom dwelling increased with 1 and 3 ml/L, but declined with 0.1 ml/L. Our data suggest that small amounts of ayahuasca do not affect locomotion and reduce anxiety-like behavior in zebrafish, while increased doses of the drug lead to crescent anxiogenic effects. We conclude that the temporal analysis of zebrafish behavior is a sensitive method for the study of ayahuasca-induced functional changes in the vertebrate brain.
Collapse
Affiliation(s)
- Robson Savoldi
- Luchiari Lab, Physiology, Federal University of Rio Grande do NorteNatal, Brazil
| | - Daniel Polari
- Luchiari Lab, Physiology, Federal University of Rio Grande do NorteNatal, Brazil
| | | | - Priscila F Silva
- Luchiari Lab, Physiology, Federal University of Rio Grande do NorteNatal, Brazil
| | - Bruno Lobao-Soares
- Biophysics and Pharmacology, Federal University of Rio Grande do NorteNatal, Brazil
| | - Mauricio Yonamine
- Clinical and Toxicological Analysis, University of São PauloSão Paulo, Brazil
| | - Fulvio A M Freire
- Aquatic Fauna Lab, Botany and Zoology, Federal University of Rio Grande do NorteNatal, Brazil
| | - Ana C Luchiari
- Luchiari Lab, Physiology, Federal University of Rio Grande do NorteNatal, Brazil
| |
Collapse
|
39
|
Hamad M, Holland R, Kamal N, Luceri R, Mammis A. Potential for Intrathecal Baclofen in Treatment of Essential Tremor. World Neurosurg 2017; 105:170-175. [PMID: 28559069 DOI: 10.1016/j.wneu.2017.05.112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Essential tremor (ET) is the most common movement disorder of adults, affecting an estimated 7 million Americans. Symptoms of ET range from slightly noticeable to debilitating, with 1 cohort study finding 15% of patients were forced into early retirement. Additionally, depression has also been correlated with the severity of disability of ET. Treatment options include propranolol and primidone. Current treatment options are not very effective, with more than half (56.3%) of patients discontinuing medications because of no changes in symptoms. METHODS Unfortunately, there is a relative void and controversy in the literature explaining ET pathophysiology; however, the gamma-aminobutyric acid (GABA) hypothesis is the strongest. We conducted a PubMed search on 30 September 2015 with no time constraints using the search terms "essential tremor" and "baclofen," which resulted in a total of 5 articles. RESULTS Neurohistopathologic studies have demonstrated decreased GABA-A and GABA-B receptors in the cerebellar cortex of ET patients. GABA, the major inhibitory neurotransmitter in the central nervous system, is proposed to have an inhibitory effect on pacemaker output activity of the cerebello-thalamo-cortical pathway, with lower receptors resulting in decreased inhibition of baseline tremors. Tariq et al showed delayed onset and intensity of tremor with oral administration of R-baclofen in a mouse model of ET. CONCLUSION With a better side-effect profile and success in a physiologically related condition, we propose more clinical trials and research be carried out on intrathecal baclofen as a potential treatment option, especially drug refractory ET, so as to increase the quality of life of this patient population.
Collapse
Affiliation(s)
- Mousa Hamad
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA.
| | - Ryan Holland
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Naveed Kamal
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Robert Luceri
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Antonios Mammis
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
40
|
Kosmowska B, Ossowska K, Głowacka U, Wardas J. Tremorolytic effect of 5'-chloro-5'-deoxy-(±)-ENBA, a potent and selective adenosine A1 receptor agonist, evaluated in the harmaline-induced model in rats. CNS Neurosci Ther 2017; 23:438-446. [PMID: 28371468 DOI: 10.1111/cns.12692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/24/2017] [Accepted: 03/01/2017] [Indexed: 01/19/2023] Open
Abstract
AIM The aim of this study was to examine the role of adenosine A1 receptors in the harmaline-induced tremor in rats using 5'-chloro-5'-deoxy-(±)-ENBA (5'Cl5'd-(±)-ENBA), a brain-penetrant, potent, and selective adenosine A1 receptor agonist. METHODS Harmaline was injected at a dose of 15 mg/kg ip and tremor was measured automatically in force-plate actimeters by an increased averaged power in the frequency band of 9-15 Hz (AP2) and by tremor index (a difference in power between AP2 and averaged power in the frequency band of 0-8 Hz). The zif-268 mRNA expression was additionally analyzed by in situ hybridization in several brain structures. RESULTS 5'Cl5'd-(±)-ENBA (0.05-0.5 mg/kg ip) dose dependently reduced the harmaline-induced tremor and this effect was reversed by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a selective antagonist of adenosine A1 receptors (1 mg/kg ip). Harmaline increased the zif-268 mRNA expression in the inferior olive, cerebellar cortex, ventroanterior/ventrolateral thalamic nuclei, and motor cortex. 5'Cl5'd-(±)-ENBA reversed these increases in all the above structures. DPCPX reduced the effect of 5'Cl5'd-(±)-ENBA on zif-268 mRNA in the motor cortex. CONCLUSION This study suggests that adenosine A1 receptors may be a potential target for the treatment of essential tremor.
Collapse
Affiliation(s)
- Barbara Kosmowska
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Krystyna Ossowska
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Urszula Głowacka
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Jadwiga Wardas
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
41
|
Marin-Lahoz J, Gironell A. Linking Essential Tremor to the Cerebellum: Neurochemical Evidence. THE CEREBELLUM 2017; 15:243-52. [PMID: 26498765 DOI: 10.1007/s12311-015-0735-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The pathophysiology and the exact anatomy of essential tremor (ET) is not well known. One of the pillars that support the cerebellum as the main anatomical locus in ET is neurochemistry. This review examines the link between neurochemical abnormalities found in ET and cerebellum. The review is based on published data about neurochemical abnormalities described in ET both in human and in animal studies. We try to link those findings with cerebellum. γ-aminobutyric acid (GABA) is the main neurotransmitter involved in the pathophysiology of ET. There are several studies about GABA that clearly points to a main role of the cerebellum. There are few data about other neurochemical abnormalities in ET. These include studies with noradrenaline, glutamate, adenosine, proteins, and T-type calcium channels. One single study reveals high levels of noradrenaline in the cerebellar cortex. Another study about serotonin neurotransmitter results negative for cerebellum involvement. Finally, studies on T-type calcium channels yield positive results linking the rhythmicity of ET and cerebellum. Neurochemistry supports the cerebellum as the main anatomical locus in ET. The main neurotransmitter involved is GABA, and the GABA hypothesis remains the most robust pathophysiological theory of ET to date. However, this hypothesis does not rule out other mechanisms and may be seen as the main scaffold to support findings in other systems. We clearly need to perform more studies about neurochemistry in ET to better understand the relations among the diverse systems implied in ET. This is mandatory to develop more effective pharmacological therapies.
Collapse
Affiliation(s)
- Juan Marin-Lahoz
- Movement Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Av.Sant Antoni Maria Claret, 167, 08025, Barcelona, Catalonia, Spain
| | - Alexandre Gironell
- Movement Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Av.Sant Antoni Maria Claret, 167, 08025, Barcelona, Catalonia, Spain.
| |
Collapse
|
42
|
Development of a mechanism-based pharmacokinetic/pharmacodynamic model to characterize the thermoregulatory effects of serotonergic drugs in mice. Acta Pharm Sin B 2016; 6:492-503. [PMID: 27709018 PMCID: PMC5045556 DOI: 10.1016/j.apsb.2016.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 01/01/2023] Open
Abstract
We have shown recently that concurrent harmaline, a monoamine oxidase-A inhibitor (MAOI), potentiates serotonin (5-HT) receptor agonist 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT)-induced hyperthermia. The objective of this study was to develop an integrated pharmacokinetic/pharmacodynamic (PK/PD) model to characterize and predict the thermoregulatory effects of such serotonergic drugs in mice. Physiological thermoregulation was described by a mechanism-based indirect-response model with adaptive feedback control. Harmaline-induced hypothermia and 5-MeO-DMT–elicited hyperthermia were attributable to the loss of heat through the activation of 5-HT1A receptor and thermogenesis via the stimulation of 5-HT2A receptor, respectively. Thus serotonergic 5-MeO-DMT–induced hyperthermia was readily distinguished from handling/injection stress-provoked hyperthermic effects. This PK/PD model was able to simultaneously describe all experimental data including the impact of drug-metabolizing enzyme status on 5-MeO-DMT and harmaline PK properties, and drug- and stress-induced simple hypo/hyperthermic and complex biphasic effects. Furthermore, the modeling results revealed a 4-fold decrease of apparent SC50 value (1.88–0.496 µmol/L) for 5-MeO-DMT when harmaline was co-administered, providing a quantitative assessment for the impact of concurrent MAOI harmaline on 5-MeO-DMT–induced hyperthermia. In addition, the hyperpyrexia caused by toxic dose combinations of harmaline and 5-MeO-DMT were linked to the increased systemic exposure to harmaline rather than 5-MeO-DMT, although the body temperature profiles were mispredicted by the model. The results indicate that current PK/PD model may be used as a new conceptual framework to define the impact of serotonergic agents and stress factors on thermoregulation.
Collapse
|
43
|
Ondo W. Essential Tremor: What We Can Learn from Current Pharmacotherapy. Tremor Other Hyperkinet Mov (N Y) 2016; 6:356. [PMID: 26989572 PMCID: PMC4790207 DOI: 10.7916/d8k35tc3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/17/2015] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND The pathophysiology of essential tremor, especially at the cellular level, is poorly understood. Although no drug has been specifically designed to treat essential tremor, several medications improve tremor, and others worsen it. Studying the mechanism of actions of these medications can help our understanding of tremor pathophysiology and contribute to future rational drug design. METHODS We reviewed literature, concentrating on mechanisms of action, of various medications that mitigate tremor. RESULTS Many medications have multiple mechanisms of actions, making simple correlations difficult. Medications that increase the duration of opening of gamma-aminobutyric acid (GABA)-A receptors are most consistently associated with tremor improvement. Interestingly, drugs that increase GABA availability have not been associated with improved tremor. Other mechanisms possibly associated with tremor improvement include antagonism of alpha-2 delta subunits associated with calcium channels, inhibition of carbonic anhydrase, and inhibition of the synaptic vesicle protein 2A. Drugs that block voltage-gaited sodium channels do not affect tremor. The ideal beta-adrenergic blocker requires B2 affinity (non-cardiac selective), has no sympathomimetic properties, does not require membrane stabilization properties, and may benefit from good central nervous system penetration. DISCUSSION To date, serendipitous observations have provided most of our understanding of tremor cellular physiology. Based on similarities to currently effective drugs or rational approximations and inferences, several currently available agents should be considered for tremor trials.
Collapse
Affiliation(s)
- William Ondo
- Methodist Neurological Institute, Houston, TX, USA
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Handforth A. Linking Essential Tremor to the Cerebellum—Animal Model Evidence. THE CEREBELLUM 2015; 15:285-98. [DOI: 10.1007/s12311-015-0750-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Jiang XL, Shen HW, Yu AM. Potentiation of 5-methoxy-N,N-dimethyltryptamine-induced hyperthermia by harmaline and the involvement of activation of 5-HT1A and 5-HT2A receptors. Neuropharmacology 2015; 89:342-51. [PMID: 25446678 DOI: 10.1016/j.neuropharm.2014.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/08/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
Abstract
5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and harmaline are serotonin (5-HT) analogs often abused together, which alters thermoregulation that may indicate the severity of serotonin toxicity. Our recent studies have revealed that co-administration of monoamine oxidase inhibitor harmaline leads to greater and prolonged exposure to 5-HT agonist 5-MeO-DMT that might be influenced by cytochrome P450 2D6 (CYP2D6) status. This study was to define the effects of harmaline and 5-MeO-DMT on thermoregulation in wild-type and CYP2D6-humanized (Tg-CYP2D6) mice, as well as the involvement of 5-HT receptors. Animal core body temperatures were monitored noninvasively in the home cages after implantation of telemetry transmitters and administration of drugs. Harmaline (5 and 15 mg/kg, i.p.) alone was shown to induce hypothermia that was significantly affected by CYP2D6 status. In contrast, higher doses of 5-MeO-DMT (10 and 20 mg/kg) alone caused hyperthermia. Co-administration of harmaline (2, 5 or 15 mg/kg) remarkably potentiated the hyperthermia elicited by 5-MeO-DMT (2 or 10 mg/kg), which might be influenced by CYP2D6 status at certain dose combination. Interestingly, harmaline-induced hypothermia was only attenuated by 5-HT1A receptor antagonist WAY-100635, whereas 5-MeO-DMT- and harmaline-5-MeO-DMT-induced hyperthermia could be suppressed by either WAY-100635 or 5-HT2A receptor antagonists (MDL-100907 and ketanserin). Moreover, stress-induced hyperthermia under home cage conditions was not affected by WAY-100635 but surprisingly attenuated by MDL-100907 and ketanserin. Our results indicate that co-administration of monoamine oxidase inhibitor largely potentiates 5-MeO-DMT-induced hyperthermia that involves the activation of both 5-HT1A and 5-HT2A receptors. These findings shall provide insights into development of anxiolytic drugs and new strategies to relieve the lethal hyperthermia in serotonin toxicity.
Collapse
Affiliation(s)
- Xi-Ling Jiang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214-8033, USA
| | | | | |
Collapse
|
46
|
Ossowska K, Głowacka U, Kosmowska B, Wardas J. Apomorphine enhances harmaline-induced tremor in rats. Pharmacol Rep 2015; 67:435-41. [DOI: 10.1016/j.pharep.2014.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/08/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
|
47
|
Vaziri Z, Abbassian H, Sheibani V, Haghani M, Nazeri M, Aghaei I, Shabani M. The therapeutic potential of Berberine chloride hydrate against harmaline-induced motor impairments in a rat model of tremor. Neurosci Lett 2015; 590:84-90. [PMID: 25643620 DOI: 10.1016/j.neulet.2015.01.078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/24/2015] [Accepted: 01/29/2015] [Indexed: 11/16/2022]
Abstract
Essential tremor (ET) is a progressive neurological disorder with motor and non-motor symptoms. It has conclusively been shown that modulation of glutamate receptors could ameliorate ET. Recent studies have suggested that Berberine (BBR) has an inhibitory effect on glutamate receptors. Therefore, BBR may have therapeutic effects on ET. In this study, male Wistar rats (n=10 in each group) weighing 40-60 g were divided into control, harmaline (30 mg/kg, i.p.) and berberine (10, 20 or 50mg/kg, i.p, 15 min before harmaline injection) groups. Open field, rotarod, wire grip and foot print tests were used to evaluate motor performance. The results indicated that the administration of BBR (10 and 20mg/kg) attenuated harmaline-induced tremor in rats, but the beneficial effects of BBR could not be identified at dose 50mg/kg. In addition, BBR ameliorated gait disturbance in doses of 10 and 20mg/kg. The high dose of BBR not only failed to recover step width but also showed an adverse effect on left and right step length. The results indicate that BBR only in dose of 20mg/kg recovers mobility duration. The current study found a dose-dependent manner for the therapeutic effects of BBR in ET. Our study provides the initial evidence for the effects of BBR on motor function. Since BBR exerts its effects mainly through regulation of neurotransmitter release or blocke of NMDA receptors, thus, it is predicted that BBR ameliorate harmaline effect through blockade of NMDA receptors or glutamate release. This is an important issue for future research to evaluate the possible mechanisms involved.
Collapse
Affiliation(s)
- Zohreh Vaziri
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Hassan Abbassian
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Haghani
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Nazeri
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Aghaei
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
48
|
Park YG, Choi JH, Lee C, Kim S, Kim Y, Chang KY, Paek SH, Kim D. Heterogeneity of tremor mechanisms assessed by tremor-related cortical potential in mice. Mol Brain 2015; 8:3. [PMID: 25588467 PMCID: PMC4304607 DOI: 10.1186/s13041-015-0093-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 01/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Identifying a neural circuit mechanism that is differentially involved in tremor would aid in the diagnosis and cure of such cases. Here, we demonstrate that tremor-related cortical potential (TRCP) is differentially expressed in two different mouse models of tremor. RESULTS Hybrid tremor analysis of harmaline-induced and genetic tremor in mice revealed that two authentic tremor frequencies for each type of tremor were conserved and showed an opposite dependence on CaV3.1 T-type Ca(2+) channels. Electroencephalogram recordings revealed that α1(-/-);α1G(-/-) mice double-null for the GABA receptor α1 subunit (Gabra1) and CaV3.1 T-type Ca(2+) channels (Cacna1g), in which the tremor caused by the absence of Gabra1 is potentiated by the absence of Cacna1g, showed a coherent TRCP that exhibited an onset that preceded the initiation of behavioral tremor by 3 ms. However, harmaline-induced tremor, which is known to be abolished by α1G(-/-), showed no TRCP. CONCLUSIONS Our results demonstrate that the α1(-/-);α1G(-/-) double-knockout tremor model is useful for studying cortical mechanisms of tremor.
Collapse
Affiliation(s)
- Young-Gyun Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 335 Gwahak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea.
| | - Jee Hyun Choi
- Center for Neural Science, Division of Life Science, Korea Institute of Science and Technology, Seoul, 136-79, Republic of Korea.
| | - Chungki Lee
- Center for Neural Science, Division of Life Science, Korea Institute of Science and Technology, Seoul, 136-79, Republic of Korea.
| | - Sehyun Kim
- Department of Physics, KAIST, Daejeon, 305-701, Republic of Korea.
| | - Youngsoo Kim
- Department of Medical Science and Engineering, KAIST, Daejeon, 305-701, Republic of Korea.
| | - Ki-Young Chang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 335 Gwahak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea.
| | - Sun Ha Paek
- Department of Neurosurgery, Hypoxia/Ischemia Disease Institute, Seoul National University College of Medicine, Seoul, 110-744, Republic of Korea.
| | - Daesoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 335 Gwahak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea.
| |
Collapse
|
49
|
No association of the SLC1A2 rs3794087 allele with risk for essential tremor in the Spanish population. Pharmacogenet Genomics 2014; 23:587-90. [PMID: 23949322 DOI: 10.1097/fpc.0b013e328364db9d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND/AIMS A recent genome-wide association study and other replication studies have suggested that the rs3794087 single nucleotide polymorphism in the solute carrier family 1 - glial affinity glutamate transporter-member 2 (SLC1A2) gene is associated with an increased risk for essential tremor (ET), and a replication study in an Asian cohort has shown a decreased risk for ET associated with the rs3794087T allele. We tried to replicate this association in a White Spanish population. MATERIALS AND METHODS We analyzed the distribution of allelic and genotypic frequencies of rs3794087 in 202 patients with familial ET and 308 healthy controls using a TaqMan-based quantitative PCR assay. RESULTS Genotypic and allelic frequencies of rs3794087 did not differ significantly between patients with ET and controls and were unrelated with the age at onset of tremor or sex. CONCLUSION Our study suggests that SLC1A2 rs3794087 is not associated with the risk for developing familial ET in the Spanish population, thus subtracting relevance to SLC1A2 rs3794087 as a risk biomarker for ET.
Collapse
|
50
|
Ossowska K, Wardas J, Berghauzen-Maciejewska K, Głowacka U, Kuter K, Pilc A, Zorn SH, Doller D. Lu AF21934, a positive allosteric modulator of mGlu4 receptors, reduces the harmaline-induced hyperactivity but not tremor in rats. Neuropharmacology 2014; 83:28-35. [PMID: 24726309 DOI: 10.1016/j.neuropharm.2014.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 02/18/2014] [Accepted: 03/31/2014] [Indexed: 12/19/2022]
Abstract
Harmaline induces tremor in animals resembling essential tremor which has been suggested to result from activation of the glutamatergic olivo-cerebellar projection. The aim of the present study was to examine the effects of systemic administration of Lu AF21934, a brain-penetrating positive allosteric modulator of the metabotropic glutamate receptor 4 (mGlu4), on the harmaline-induced tremor and other forms of motor activity in rats using fully automated Force Plate Actimeters. The influence of harmaline on the mGlu4 mRNA expression in the cerebellum and inferior olive was analysed by in situ hybridization. Harmaline at a dose of 15 mg/kg (ip) triggered tremor which was manifested by an increase in the power within 9-15 Hz band and in the tremor index (a difference in power between bands 9-15 Hz and 0-8 Hz). Harmaline induced a biphasic effect on mobility, initially inhibiting the exploratory locomotor activity of rats (0-30 min after administration), followed by an increase in their basic activity. Lu AF21934 (0.5-5 mg/kg sc) did not influence tremor but at doses of 0.5 and 2.5 mg/kg reversed harmaline-induced hyperactivity. MGlu4 mRNA expression was high in the cerebellar cortex and low in the inferior olive. Repeated harmaline (15 mg/kg ip once a day for 5 days] decreased mGlu4 mRNA in the cerebellum and inferior olive. The present study indicates that the mGlu4 stimulation counteracts hyperactivity induced by harmaline which suggests the involvement of cerebellar glutamatergic transmission in this process. In contrast, neuronal mechanisms involved in tremor seem to be insensitive to the stimulation of mGlu4.
Collapse
Affiliation(s)
- Krystyna Ossowska
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland.
| | - Jadwiga Wardas
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Klemencja Berghauzen-Maciejewska
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Urszula Głowacka
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Katarzyna Kuter
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Andrzej Pilc
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, 12, Smętna St., 31-343 Kraków, Poland
| | - Stevin H Zorn
- Discovery Chemistry & DMPK, Lundbeck Research USA, 215 College Road, Paramus, NJ 07652, USA
| | - Dario Doller
- Discovery Chemistry & DMPK, Lundbeck Research USA, 215 College Road, Paramus, NJ 07652, USA
| |
Collapse
|