1
|
Luong NC, Kawamura H, Ikeda H, Roppongi RT, Shibata A, Hu J, Jiang JG, Yu DS, Held KD. ATR signaling controls the bystander responses of human chondrosarcoma cells by promoting RAD51-dependent DNA repair. Int J Radiat Biol 2024; 100:724-735. [PMID: 38442236 PMCID: PMC11060906 DOI: 10.1080/09553002.2024.2324479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/09/2024] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
PURPOSE Radiation-induced bystander effect (RIBE) frequently is seen as DNA damage in unirradiated bystander cells, but the repair processes initiated in response to that DNA damage are not well understood. RIBE-mediated formation of micronuclei (MN), a biomarker of persistent DNA damage, was previously observed in bystander normal fibroblast (AG01522) cells, but not in bystander human chondrosarcoma (HTB94) cells. The molecular mechanisms causing this disparity are not clear. Herein, we investigate the role of DNA repair in the bystander responses of the two cell lines. METHODS Cells were irradiated with X-rays and immediately co-cultured with un-irradiated cells using a trans-well insert system in which they share the same medium. The activation of DNA damage response (DDR) proteins was detected by immunofluorescence staining or Western blotting. MN formation was examined by the cytokinesis-block MN assay, which is a robust method to detect persistent DNA damage. RESULTS Immunofluorescent foci of γH2AX and 53BP1, biomarkers of DNA damage and repair, revealed a greater capacity for DNA repair in HTB94 cells than in AG01522 cells in both irradiated and bystander populations. Autophosphorylation of ATR at the threonine 1989 site was expressed at a greater level in HTB94 cells compared to AG01522 cells at the baseline and in response to hydroxyurea treatment or exposure to 1 Gy of X-rays. An inhibitor of ATR, but not of ATM, promoted MN formation in bystander HTB94 cells. In contrast, no effect of either inhibitor was observed in bystander AG01522 cells, indicating that ATR signaling might be a pivotal pathway to preventing the MN formation in bystander HTB94 cells. Supporting this idea, we found an ATR-dependent increase in the fractions of bystander HTB94 cells with pRPA2 S33 and RAD51 foci. A blocker of RAD51 facilitated MN formation in bystander HTB94 cells. CONCLUSION Our results indicate that HTB94 cells were likely more efficient in DNA repair than AG01522 cells, specifically via ATR signaling, which inhibited the bystander signal-induced MN formation. This study highlights the significance of DNA repair efficiency in bystander cell responses.
Collapse
Affiliation(s)
- Nho Cong Luong
- Gunma University Initiative for Advanced Research, Gunma University, Gunma, Japan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Hidemasa Kawamura
- Gunma University Heavy Ion Medical Center, Gunma University, Gunma, Japan
| | - Hiroko Ikeda
- Gunma University Initiative for Advanced Research, Gunma University, Gunma, Japan
- Department of Life Sciences, Faculty of Science and Engineering, Kindai University, Osaka, Japan
| | - Reiko T Roppongi
- Gunma University Initiative for Advanced Research, Gunma University, Gunma, Japan
| | - Atsushi Shibata
- Gunma University Initiative for Advanced Research, Gunma University, Gunma, Japan
- Division of Molecular Oncological Pharmacy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Jiaxuan Hu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Jinmeng G Jiang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - David S Yu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Kathryn D Held
- Gunma University Initiative for Advanced Research, Gunma University, Gunma, Japan
- Department of Radiation Oncology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Binelli L, Dini V, Amatori S, Scotognella T, Giordano A, De Berardis B, Bertelà F, Battocchio C, Iucci G, Fratoddi I, Cartoni A, Venditti I. Gold Nanorods as Radiopharmaceutical Carriers: Preparation and Preliminary Radiobiological In Vitro Tests. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1898. [PMID: 37446414 DOI: 10.3390/nano13131898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
Low-energy electrons (Auger electrons) can be produced via the interaction of photons with gold atoms in gold nanorods (AuNRs). These electrons are similar to those emitted during the decay of technetium-99m (99mTc), a radioactive nuclide widely used for diagnostics in nuclear medicine. Auger and internal conversion (IC) electron emitters appropriately targeted to the DNA of tumors cells may, therefore, represent a new radiotherapeutic approach. 99mTc radiopharmaceuticals, which are used for diagnosis, could indeed be used in theragnostic fields when loaded on AuNRs and delivered to a tumor site. This work aims to provide a proof of concept (i) to evaluate AuNRs as carriers of 99mTc-based radiopharmaceuticals, and (ii) to evaluate the efficacy of Auger electrons emitted by photon-irradiated AuNRs in inducing radio-induced damage in T98G cells, thus mimicking the effect of Auger electrons emitted during the decay of 99mTc used in clinical settings. Data are presented on AuNRs' chemical characterization (with an aspect ratio of 3.2 and Surface Plasmon Resonance bands at 520 and 680 nm) and the loading of pharmaceuticals (after 99mTc decay) on their surface. Spectroscopic characterizations, such as UV-Vis and synchrotron radiation-induced X-ray photoelectron (SR-XPS) spectroscopies, were performed to investigate the drug-AuNR interaction. Finally, preliminary radiobiological data on cell killing with AuNRs are presented.
Collapse
Affiliation(s)
- Ludovica Binelli
- Sciences Department, Roma Tre University, 00146 Rome, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma3, Department of Sciences, Roma Tre University, 00146 Rome, Italy
| | - Valentina Dini
- National Center for Innovative Technologies in Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma1, Department of Physics, University La Sapienza, 00185 Rome, Italy
| | - Simone Amatori
- Sciences Department, Roma Tre University, 00146 Rome, Italy
| | - Teresa Scotognella
- Nuclear Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Alessandro Giordano
- Nuclear Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Barbara De Berardis
- National Center for Innovative Technologies in Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | | | - Giovanna Iucci
- Sciences Department, Roma Tre University, 00146 Rome, Italy
| | - Ilaria Fratoddi
- Chemistry Department, Sapienza University, 00185 Rome, Italy
| | | | - Iole Venditti
- Sciences Department, Roma Tre University, 00146 Rome, Italy
| |
Collapse
|
3
|
Cordycepin Enhances Radiosensitivity in Oral Squamous Carcinoma Cells by Inducing Autophagy and Apoptosis Through Cell Cycle Arrest. Int J Mol Sci 2019; 20:ijms20215366. [PMID: 31661901 PMCID: PMC6862293 DOI: 10.3390/ijms20215366] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 01/16/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide and accounts for over 90% of malignant neoplasms of the oral cavity, with a 5-year survival rate of less than 50%. The long-term survival rate of OSCC patients has not markedly improved in recent decades due to its heterogeneous etiology and treatment outcomes. We investigated the anticancer effect of the combination of irradiation (IR) and cordycepin in the treatment of human OSCC cells in vitro. The type of cell death, especially autophagy and apoptosis, and the underlying mechanisms were examined. We found synergistic effects of cordycepin and IR on the viability of human oral cancer cells. The combination of cordycepin and IR treatment induced apoptosis, cell cycle arrest, and autophagic cell death. Furthermore, cordycepin induced S-phase arrest and prolonged G2/M arrest in the cells that received the combination treatment compared with those that received irradiation alone. Combined treatment induced the upregulation of ATG5 and p21 in an autophagy cascade-dependent manner, arrested the cell cycle in the G2/M phase, and repressed cell proliferation. Thus, we conclude that the combination of cordycepin and IR treatment could be a potential therapeutic strategy for OSCC.
Collapse
|
4
|
Ku A, Facca VJ, Cai Z, Reilly RM. Auger electrons for cancer therapy - a review. EJNMMI Radiopharm Chem 2019; 4:27. [PMID: 31659527 PMCID: PMC6800417 DOI: 10.1186/s41181-019-0075-2] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/28/2019] [Indexed: 12/23/2022] Open
Abstract
Background Auger electrons (AEs) are very low energy electrons that are emitted by radionuclides that decay by electron capture (e.g. 111In, 67Ga, 99mTc, 195mPt, 125I and 123I). This energy is deposited over nanometre-micrometre distances, resulting in high linear energy transfer (LET) that is potent for causing lethal damage in cancer cells. Thus, AE-emitting radiotherapeutic agents have great potential for treatment of cancer. In this review, we describe the radiobiological properties of AEs, their radiation dosimetry, radiolabelling methods, and preclinical and clinical studies that have been performed to investigate AEs for cancer treatment. Results AEs are most lethal to cancer cells when emitted near the cell nucleus and especially when incorporated into DNA (e.g. 125I-IUdR). AEs cause DNA damage both directly and indirectly via water radiolysis. AEs can also kill targeted cancer cells by damaging the cell membrane, and kill non-targeted cells through a cross-dose or bystander effect. The radiation dosimetry of AEs considers both organ doses and cellular doses. The Medical Internal Radiation Dose (MIRD) schema may be applied. Radiolabelling methods for complexing AE-emitters to biomolecules (antibodies and peptides) and nanoparticles include radioiodination (125I and 123I) or radiometal chelation (111In, 67Ga, 99mTc). Cancer cells exposed in vitro to AE-emitting radiotherapeutic agents exhibit decreased clonogenic survival correlated at least in part with unrepaired DNA double-strand breaks (DSBs) detected by immunofluorescence for γH2AX, and chromosomal aberrations. Preclinical studies of AE-emitting radiotherapeutic agents have shown strong tumour growth inhibition in vivo in tumour xenograft mouse models. Minimal normal tissue toxicity was found due to the restricted toxicity of AEs mostly on tumour cells targeted by the radiotherapeutic agents. Clinical studies of AEs for cancer treatment have been limited but some encouraging results were obtained in early studies using 111In-DTPA-octreotide and 125I-IUdR, in which tumour remissions were achieved in several patients at administered amounts that caused low normal tissue toxicity, as well as promising improvements in the survival of glioblastoma patients with 125I-mAb 425, with minimal normal tissue toxicity. Conclusions Proof-of-principle for AE radiotherapy of cancer has been shown preclinically, and clinically in a limited number of studies. The recent introduction of many biologically-targeted therapies for cancer creates new opportunities to design novel AE-emitting agents for cancer treatment. Pierre Auger did not conceive of the application of AEs for targeted cancer treatment, but this is a tremendously exciting future that we and many other scientists in this field envision.
Collapse
Affiliation(s)
- Anthony Ku
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Valerie J Facca
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada. .,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada. .,Joint Department of Medical Imaging and Toronto General Research Institute, University Health Network, Toronto, ON, Canada. .,Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
5
|
Burdak-Rothkamm S, Rothkamm K. Radiation-induced bystander and systemic effects serve as a unifying model system for genotoxic stress responses. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 778:13-22. [DOI: 10.1016/j.mrrev.2018.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 12/19/2022]
|
6
|
Sood S, Patel FD, Srinivasan R, Dhaliwal LK. Chemoradiation therapy induces in vivo changes in gene promoter methylation & gene transcript expression in patients with invasive cervical cancer. Indian J Med Res 2018; 147:151-157. [PMID: 29806603 PMCID: PMC5991122 DOI: 10.4103/ijmr.ijmr_1939_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background & objectives: Invasive cervical cancer patients are primarily treated with chemoradiation therapy. The overall and disease-free survival in these patients is variable and depends on the tumoral response apart from the tumour stage. This study was undertaken to assess whether in vivo changes in gene promoter methylation and transcript expression in invasive cervical cancer were induced by chemoradiation. Hence, paired pre- and post-treatment biopsy samples were evaluated for in vivo changes in promoter methylation and transcript expression of 10 genes (ESR1, BRCA1, RASSF1A, MYOD1, MLH1, hTERT, MGMT, DAPK1, BAX and BCL2L1) in response to chemoradiation therapy. Methods: In patients with locally advanced invasive cervical cancer, paired pre- and post-treatment biopsies after 10 Gy chemoradiation were obtained. DNA/RNA was extracted and gene promoter methylation status was evaluated by custom-synthesized methylation PCR arrays, and the corresponding gene transcript expression was determined by absolute quantification method using quantitative reverse transcription PCR. Results: Changes in the gene promoter methylation as well as gene expression following chemoradiation therapy were observed. BAX promoter methylation showed a significant increase (P< 0.01) following treatment. There was a significant increase in the gene transcript expression of BRCA1 (P< 0.01), DAPK1 and ESR1 (P< 0.05), whereas MYOD1 and MLH1 gene transcript expression was significantly decreased (P< 0.05) following treatment. Interpretation & conclusions: The findings of our study show that chemoradiation therapy can induce epigenetic alterations as well as affect gene expression in tissues of invasive cervical cancer which may have implications in determining radiation response.
Collapse
Affiliation(s)
- Swati Sood
- Department of Cytology & Gynecological Pathology, Molecular Pathology Laboratory, Chandigarh, India
| | - Firuza D Patel
- Department of Radiation Therapy & Oncology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Radhika Srinivasan
- Department of Cytology & Gynecological Pathology, Molecular Pathology Laboratory, Chandigarh, India
| | - Lakhbir K Dhaliwal
- Department of Obstetrics & Gynaecology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
7
|
Bahtiyar N, Onaran İ, Aydemir B, Baykara O, Toplan S, Agaoglu FY, Akyolcu MC. Monitoring of platelet function parameters and microRNA expression levels in patients with prostate cancer treated with volumetric modulated arc radiotherapy. Oncol Lett 2018; 16:4745-4753. [PMID: 30250541 DOI: 10.3892/ol.2018.9167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/16/2017] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy (RT) may result in platelet activation and thrombosis development. To the best of our knowledge, the potential effect of volumetric-modulated arc therapy (VMAT), a novel radiotherapy technique, on platelet function and microRNA (miRNA/miR) expression has not been previously investigated. The present study aimed to determine the effect of VMAT on the alterations in platelet function parameters and miRNA expression levels. A total of 25 patients with prostate cancer and 25 healthy subjects were included in the present study. Blood samples were collected from the patient group on the day prior to RT (pre-RT), the day RT was completed (post-RT day 0), and 40 days following the end of therapy (post-RT day 40). Platelet count, mean platelet volume (MPV) value, platelet aggregation, plasma P-selectin, thrombospondin-1, platelet factor 4, plasma miR-223 and miR-126 expression levels were measured. A significant decrease in platelet count in the post-RT day 0 group was measured in comparison with the pre-RT and the post-RT day 40 groups. Pre-RT MPV values were higher than those of the post-RT day 0 and the post-RT day 40 groups. No significant differences were observed in the levels of platelet activation markers or miR-223 and miR-126 expression levels between the RT groups. Although RT may result in a reduction in platelet and MPV counts, the results of the present study indicate that platelet activation markers are not affected by VMAT. Therefore, it is possible that no platelet activation occurs during VMAT, owing to the conformal dose distributions, improved target volume coverage and the sparing of normal tissues from undesired radiation.
Collapse
Affiliation(s)
- Nurten Bahtiyar
- Department of Biophysics, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul 34098, Turkey
| | - İlhan Onaran
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul 34098, Turkey
| | - Birsen Aydemir
- Department of Biophysics, Faculty of Medicine, Sakarya University, Sakarya 54050, Turkey
| | - Onur Baykara
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul 34098, Turkey
| | - Selmin Toplan
- Department of Biophysics, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul 34098, Turkey
| | - Fulya Yaman Agaoglu
- Department of Radiation Oncology, Institute of Oncology, Istanbul University, Istanbul 34098, Turkey
| | - Mehmet Can Akyolcu
- Department of Biophysics, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul 34098, Turkey
| |
Collapse
|
8
|
Wang R, Zhou T, Liu W, Zuo L. Molecular mechanism of bystander effects and related abscopal/cohort effects in cancer therapy. Oncotarget 2018; 9:18637-18647. [PMID: 29719632 PMCID: PMC5915099 DOI: 10.18632/oncotarget.24746] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/25/2018] [Indexed: 12/17/2022] Open
Abstract
Cancer cells subjected to ionizing radiation may release signals which can influence nearby non-irradiated cells, termed bystander effects. The transmission of bystander effects among cancer cells involves the activation of inflammatory cytokines, death ligands, and reactive oxygen/nitrogen species. In addition to bystander effects, two other forms of non-target effects (NTEs) have been identified in radiotherapy, as one is called cohort effects and the other is called abscopal effects. Cohort effects represent the phenomenon where irradiated cells can produce signals that reduce the survival of neighboring cells within an irradiated volume. The effects suggest the importance of cellular communication under irradiation with non-uniform dose distribution. In contrast, abscopal effects describe the NTEs that typically occur in non-irradiated cells distant from an irradiated target. These effects can be mediated primarily by immune cells such as T cells. Clinical trials have shown that application of radiation along with immunotherapy may enhance abscopal effects and improve therapeutic efficacy on non-target lesions outside an irradiated field. According to NTEs, cell viability is reduced not only by direct irradiation effects, but also due to signals emitted from nearby irradiated cells. A clinical consideration of NTEs could have a revolutionary impact on current radiotherapy via the establishment of more efficient and less toxic radiobiological models for treatment planning compared to conventional models. Thus, we will review the most updated findings about these effects and outline their mechanisms and potential applications in cancer treatment with a special focus on the brain, lung, and breast cancers.
Collapse
Affiliation(s)
- Rong Wang
- Department of Radiation, Fifth People's Hospital of Qinghai Province, Xi Ning, Qing Hai 810007, China.,Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Tingyang Zhou
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA.,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, USA
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona 85054, USA
| | - Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA.,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
9
|
Matsuya Y, Sasaki K, Yoshii Y, Okuyama G, Date H. Integrated Modelling of Cell Responses after Irradiation for DNA-Targeted Effects and Non-Targeted Effects. Sci Rep 2018; 8:4849. [PMID: 29555939 PMCID: PMC5859303 DOI: 10.1038/s41598-018-23202-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/07/2018] [Indexed: 01/10/2023] Open
Abstract
Intercellular communication after ionizing radiation exposure, so-called non-targeted effects (NTEs), reduces cell survival. Here we describe an integrated cell-killing model considering NTEs and DNA damage along radiation particle tracks, known as DNA-targeted effects (TEs) based on repair kinetics of DNA damage. The proposed model was applied to a series of experimental data, i.e., signal concentration, DNA damage kinetics, cell survival curve and medium transfer bystander effects (MTBEs). To reproduce the experimental data, the model considers the following assumptions: (i) the linear-quadratic (LQ) function as absorbed dose to express the hit probability to emit cell-killing signals, (ii) the potentially repair of DNA lesions induced by NTEs, and (iii) lower efficiency of repair for the damage in NTEs than that in TEs. By comparing the model results with experimental data, we found that signal-induced DNA damage and lower repair efficiency in non-hit cells are responsible for NTE-related repair kinetics of DNA damage, cell survival curve with low-dose hyper-radiosensitivity (HRS) and MTBEs. From the standpoint of modelling, the integrated cell-killing model with the LQ relation and a different repair function for NTEs provide a reasonable signal-emission probability and a new estimation of low-dose HRS linked to DNA repair efficiency.
Collapse
Affiliation(s)
- Yusuke Matsuya
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Kohei Sasaki
- Faculty of Health Sciences, Hokkaido University of Science, Maeda 7-15, Teine-ku, Sapporo, 006-8585, Japan
| | - Yuji Yoshii
- Biological Research, Education and Instrumentation Center, Sapporo Medical University, Minami-1, Nichi-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Go Okuyama
- Faculty of Health Sciences, Hokkaido University of Science, Maeda 7-15, Teine-ku, Sapporo, 006-8585, Japan
| | - Hiroyuki Date
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
10
|
Giladi M, Munster M, Schneiderman RS, Voloshin T, Porat Y, Blat R, Zielinska-Chomej K, Hååg P, Bomzon Z, Kirson ED, Weinberg U, Viktorsson K, Lewensohn R, Palti Y. Tumor treating fields (TTFields) delay DNA damage repair following radiation treatment of glioma cells. Radiat Oncol 2017; 12:206. [PMID: 29284495 PMCID: PMC5747183 DOI: 10.1186/s13014-017-0941-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 12/12/2017] [Indexed: 11/30/2022] Open
Abstract
Background Tumor Treating Fields (TTFields) are an anti-neoplastic treatment modality delivered via application of alternating electric fields using insulated transducer arrays placed directly on the skin in the region surrounding the tumor. A Phase 3 clinical trial has demonstrated the effectiveness of continuous TTFields application in patients with glioblastoma during maintenance treatment with Temozolomide. The goal of this study was to evaluate the efficacy of combining TTFields with radiation treatment (RT) in glioma cells. We also examined the effect of TTFields transducer arrays on RT distribution in a phantom model and the impact on rat skin toxicity. Methods The efficacy of TTFields application after induction of DNA damage by RT or bleomycin was tested in U-118 MG and LN-18 glioma cells. The alkaline comet assay was used to measure repair of DNA lesions. Repair of DNA double strand breaks (DSBs) were assessed by analyzing γH2AX or Rad51 foci. DNA damage and repair signaled by the activation pattern of phospho-ATM (pS1981) and phospho-DNA-PKcs (pS2056) was evaluated by immunoblotting. The absorption of the RT energy by transducer arrays was measured by applying RT through arrays placed on a solid-state phantom. Skin toxicities were tested in rats irradiated daily through the arrays with 2Gy (total dose of 20Gy). Results TTFields synergistically enhanced the efficacy of RT in glioma cells. Application of TTFields to irradiated cells impaired repair of irradiation- or chemically-induced DNA damage, possibly by blocking homologous recombination repair. Transducer arrays presence caused a minor reduction in RT intensity at 20 mm and 60 mm below the arrays, but led to a significant increase in RT dosage at the phantom surface jeopardizing the “skin sparing effect”. Nevertheless, transducer arrays placed on the rat skin during RT did not lead to additional skin reactions. Conclusions Administration of TTFields after RT increases glioma cells treatment efficacy possibly by inhibition of DNA damage repair. These preclinical results support the application of TTFields therapy immediately after RT as a viable regimen to enhance RT outcome. Phantom measurements and animal models imply that it may be possible to leave the transducer arrays in place during RT without increasing skin toxicities. Electronic supplementary material The online version of this article (10.1186/s13014-017-0941-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Petra Hååg
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | | | | | | | - Kristina Viktorsson
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Rolf Lewensohn
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | | |
Collapse
|
11
|
Curcumin enhances the radiosensitivity of renal cancer cells by suppressing NF-κB signaling pathway. Biomed Pharmacother 2017; 94:974-981. [DOI: 10.1016/j.biopha.2017.07.148] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/18/2017] [Accepted: 07/30/2017] [Indexed: 01/06/2023] Open
|
12
|
Hershman JM, France B, Hon K, Damoiseaux R. Direct quantification of gamma H2AX by cell-based high throughput screening for evaluation of genotoxicity of pesticides in a human thyroid cell lines. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:522-528. [PMID: 28640454 PMCID: PMC6550478 DOI: 10.1002/em.22103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 06/01/2023]
Abstract
Genotoxicity is thought to be the cause of many cancers. Genotoxicity due to environmental toxins may be partly responsible for the dramatic increase in the incidence of papillary thyroid cancer over the past two decades. Here, we present a fully automatable assay platform that directly quantifies the phosphorylation of nuclear histone gamma H2AX (γH2AX), a specific cellular marker for DNA double strand breaks (DSBs) via immunohistochemistry and laser scanning cytometry. It multiplexes γH2AX with total cell number measured as propidium iodide and calculates the percentage of cells with DSBs. Validation of this assay using NTHY-ori-3-1 human thyroid cells and etoposide showed that it was an excellent choice for high throughput applications. We used the assay to test the genotoxic effects of the EPA Toxcast Phase 1 pesticide library of 309 compounds. Compounds were evaluated in dose response and the DSB was quantified. We found that 19 pesticides induce DSB in vitro, highlighting a need to further assess these pesticides for their long-term oncogenic effects on the thyroid gland. Environ. Mol. Mutagen. 58:522-528, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jerome M. Hershman
- West Los Angeles VA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Bryan France
- University of California Los Angeles, California NanoSystems Institute, Los Angeles, California
| | - Kevin Hon
- West Los Angeles VA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Robert Damoiseaux
- Department of Medicinal and Molecular Pharmacology, California Nano Systems Institute, Los Angeles, California
| |
Collapse
|
13
|
Li Y, Li L, Wu Z, Wang L, Wu Y, Li D, Ma U, Shao J, Yu H, Wang D. Silencing of ATM expression by siRNA technique contributes to glioma stem cell radiosensitivity in vitro and in vivo. Oncol Rep 2017; 38:325-335. [PMID: 28560406 DOI: 10.3892/or.2017.5665] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022] Open
Abstract
Evidence has shown that both high expression of the ataxia-telangiectasia mutated (ATM) gene and glioma stem cells (GSCs) are responsible for radioresistance in glioma. Thus, we hypothesized that brain tumor radiosensitivity may be enhanced via silencing of the ATM gene in GSCs. In the present study we successfully induced GSCs from two cell lines and used CD133 and nestin to identify GSCs. A lentivirus was used to deliver siRNA-ATMPuro (A group) to GSCs prior to radiation, while siRNA-HKPuro (N group) and GSCs (C group) were used as negative and blank controls, respectively. RT-qPCR and western blotting were performed to verify the efficiency of the siRNA-ATM technique. The expression of the ATM gene and ATM protein were significantly downregulated post-transfection. Cell Counting Kit-8 (CCK-8) and colony formation assays revealed that the A group demonstrated weak cell proliferation and lower survival fractions post-irradiation compared to the C/N groups. Flow cytometry was used to examine the percentage of cell apoptosis and G2 phase arrest, which were both higher in the A group than in the C/N groups. We found that the comet tail percentage evaluated by comet assay was higher in the A group than in the C/N groups. After radiation treatment, three radiosensitive genes [p53, proliferating cell nuclear antigen (PCNA), survivin] exhibited a decreasing tendency as determined by RT-qPCR. Mice underwent subcutaneous implantation, followed by radiation, and the resulting necrosis and hemorrhage were more obvious in the A group than in the N groups. In conclusion, silencing of ATM via the siRNA technique improved radiosensitivity of GSCs both in vitro and in vivo.
Collapse
Affiliation(s)
- Yan Li
- Department of Oncology, Chongqing Cancer Institute, Chongqing 400030, P.R. China
| | - Luchun Li
- Department of Oncology, Chongqing Cancer Institute, Chongqing 400030, P.R. China
| | - Zhijuan Wu
- Department of Oncology, Chongqing Cancer Institute, Chongqing 400030, P.R. China
| | - Lulu Wang
- Department of Oncology, Chongqing Cancer Institute, Chongqing 400030, P.R. China
| | - Yongzhong Wu
- Department of Radiotherapy, Chongqing Cancer Institute, Chongqing 400030, P.R. China
| | - Dairong Li
- Department of Oncology, Chongqing Cancer Institute, Chongqing 400030, P.R. China
| | - Uiwen Ma
- Department of Oncology, Chongqing Cancer Institute, Chongqing 400030, P.R. China
| | - Jianghe Shao
- Department of Oncology, Chongqing Cancer Institute, Chongqing 400030, P.R. China
| | - Huiqing Yu
- Department of Oncology, Chongqing Cancer Institute, Chongqing 400030, P.R. China
| | - Donglin Wang
- Department of Oncology, Chongqing Cancer Institute, Chongqing 400030, P.R. China
| |
Collapse
|
14
|
Liu S, Wang X, Lu J, Han L, Zhang Y, Liu Z, Ding S, Liu Z, Bi D, Niu Z. Ubenimex enhances the radiosensitivity of renal cell carcinoma cells by inducing autophagic cell death. Oncol Lett 2016; 12:3403-3410. [PMID: 27900012 PMCID: PMC5103958 DOI: 10.3892/ol.2016.5036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/03/2016] [Indexed: 12/19/2022] Open
Abstract
Renal cell carcinoma (RCC) is resistant to standard radiotherapy. Ubenimex, an aminopeptidase N inhibitor, is widely used as an adjunct therapy after surgery to enhance the function of immunocompetent cells and confer antitumor effects. Our previous study demonstrated that ubenimex induces autophagic cell death in RCC cells. Recently, the molecular mechanism of autophagy induction has been associated with radiosensitivity in RCC cells. In the present study, the ability of ubenimex to enhance RCC cell sensitivity to radiation via the induction of autophagic cell death was determined, and the mechanism of action of this effect was investigated. The 786-O and OS-RC-2 human RCC cell lines were treated with 0.5 mg/ml ubenimex and different doses of irradiation (IR). The cell viability was measured using a colony-formation assay and flow cytometry. Acridine orange (AO)-ethidium bromide (EB) staining was assessed by fluorescence microscopy as an indicator of autophagic cell death. Protein expression was assessed by western blotting. Autophagosomes were evaluated using transmission electron microscopy. RCC cells were used to evaluate the sensitivity to radiation using clonogenic survival and lactate dehydrogenase assays. Furthermore, these parameters were also tested at physiological oxygen levels. The AO-EB staining and flow cytometry of the OS-RC-2 cells indicated that the combined treatment significantly enhanced autophagic cell death compared with ubenimex or IR alone. Therefore, treatment with ubenimex did not significantly alter cell cycle progression but increased cell death when combined with radiation. An Akt agonist could significantly weaken this effect, indicating that ubenimex may act as an Akt inhibitor. Furthermore, the western blot analysis indicated that the combined treatment inhibited the Akt signaling pathway compared with ubenimex treatment or IR alone. Ubenimex may enhance RCC cell sensitivity to radiation by inducing cell autophagy. This induction changes the role of autophagy from protective to lethal in vitro, and this switch is associated with the inhibition of the Akt signaling pathway.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xiaoqing Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jiaju Lu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Liping Han
- Department of Neurology, Shandong Police Hospital, Jinan, Shandong 250021, P.R. China
| | - Yongfei Zhang
- Department of Dermatology, Shandong University, Jinan, Shandong 250000, P.R. China
| | - Zheng Liu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Sentai Ding
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhao Liu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Dongbin Bi
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhihong Niu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
15
|
Fernandez-Palomo C, Schültke E, Bräuer-Krisch E, Laissue JA, Blattmann H, Seymour C, Mothersill C. Investigation of Abscopal and Bystander Effects in Immunocompromised Mice After Exposure to Pencilbeam and Microbeam Synchrotron Radiation. HEALTH PHYSICS 2016; 111:149-159. [PMID: 27356059 DOI: 10.1097/hp.0000000000000525] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Out-of-field effects are of considerable interest in radiotherapy. The mechanisms are poorly understood but are thought to involve signaling processes, which induce responses in non-targeted cells and tissues. The immune response is thought to play a role. The goal of this research was to study the induction of abscopal effects in the bladders of NU-Foxn1 mice after irradiating their brains using Pencil Beam (PB) or microbeam (MRT) irradiation at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Athymic nude mice injected with F98 glioma cells into their right cerebral hemisphere 7 d earlier were treated with either MRT or PB. After recovery times of 2, 12, and 48 h, the urinary bladders were extracted and cultured as tissue explants for 24 h. The growth medium containing the potential signaling factors was harvested, filtered, and transferred to HaCaT reporter cells to assess their clonogenic survival and calcium signaling potential. The results show that in the tumor-free mice, both treatment modalities produce strong bystander/abscopal signals using the clonogenic reporter assay; however, the calcium data do not support a calcium channel mediated mechanism. The presence of a tumor reduces or reverses the effect. PB produced significantly stronger effects in the bladders of tumor-bearing animals. The authors conclude that immunocompromised mice produce signals, which can alter the response of unirradiated reporter cells; however, a novel mechanism appears to be involved.
Collapse
Affiliation(s)
- Cristian Fernandez-Palomo
- *Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada; †Department of Radiotherapy, Rostock University Medical Center, Südring 75, 18059 Rostock, Germany; ‡European Synchrotron Radiation Facility, BP 220 6, rue Jules Horowitz, 38043 Grenoble, France, §University of Bern, Hochschulstrasse 4, CH-3012 Bern, Switzerland; ** Niederwiesstrasse 13C, Untersiggenthal, Switzerland
| | | | | | | | | | | | | |
Collapse
|
16
|
Zhao Y, Ma X, Wang J, Chen S, Yuan H, Xu A, Hang H, Wu L. The Roles of p21(Waf1/CIP1) and Hus1 in Generation and Transmission of Damage Signals Stimulated by Low-Dose Alpha-Particle Irradiation. Radiat Res 2015; 184:578-85. [PMID: 26600172 DOI: 10.1667/rr4165.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Previously reported studies have demonstrated the involvement of p21(Waf1/CIP1) in radiation-induced bystander effects (RIBE). Mouse embryonic fibroblasts (MEFs) lacking Hus1 fail to proliferate in vitro, but inactivation of p21 allows for the continued growth of Hus1-deficient cells, indicating the close connection between p21 and Hus1 cells. In this study, wild-type MEFs, Hus1(+/+)p21(-/-) MEFs and p21(-/-)Hus1(-/-) MEFs were used in a series of radiation-induced bystander effect experiments, the roles of p21 and Hus1 in the induction and transmission of radiation-induced damage signals were investigated. Our results showed that after 5 cGy α particle irradiation, wild-type MEFs induced significant increases in γ-H2AX foci and micronuclei formation in bystander cells, whereas the bystander effects were not detectable in p21(-/-)Hus1(+/+) MEFs and were restored again in p21(-/-)Hus1(-/-) MEFs. Media transfer experiments showed that p21(-/-)Hus1(+/+) MEFs were deficient in the production bystander signals, but could respond to bystander signals. We further investigated the mitogen-activated protein kinases (MAPKs) that might be involved in the bystander effects. It was found that although knocking out p21 did not affect the expression of connexin43 and its phosphorylation, it did result in inactivation of some MAPK signal pathway kinases, including JNK1/2, ERK1/2 and p38, as well as a decrease in reactive oxygen species (ROS) levels in irradiated cells. However, the activation of MAPK kinases and the ROS levels in irradiated cells were restored in the cell line by knocking out Hus1. These results suggest that p21(Waf1/CIP1) and Hus1 play crucial roles in the generation and transmission of bystander damage signals after low-dose α-particle irradiation.
Collapse
Affiliation(s)
- Ye Zhao
- a Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Xiaoyan Ma
- b National Laboratory of Biomacromolecules and Center for Computational and Systems Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Jun Wang
- a Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China;,c Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, P.R. China; and
| | - Shaopeng Chen
- a Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China;,c Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, P.R. China; and
| | - Hang Yuan
- a Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China;,c Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, P.R. China; and
| | - An Xu
- a Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China;,c Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, P.R. China; and
| | - Haiying Hang
- b National Laboratory of Biomacromolecules and Center for Computational and Systems Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Lijun Wu
- a Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China;,c Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, P.R. China; and.,d School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| |
Collapse
|
17
|
Nambiar DK, Rajamani P, Deep G, Jain AK, Agarwal R, Singh RP. Silibinin Preferentially Radiosensitizes Prostate Cancer by Inhibiting DNA Repair Signaling. Mol Cancer Ther 2015; 14:2722-34. [PMID: 26516160 DOI: 10.1158/1535-7163.mct-15-0348] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/23/2015] [Indexed: 12/21/2022]
Abstract
Radiotherapy, a frequent mode of cancer treatment, is often restricted by dose-related toxicity and development of therapeutic resistance. To develop a novel and selective radiosensitizer, we studied the radiosensitizing effects and associated mechanisms of silibinin in prostate cancer. The radiosensitizing effect of silibinin with ionizing radiation (IR) was assessed on radioresistant prostate cancer cell lines by clonogenic, cell cycle, cell death, and DNA repair assays. Tumor xenograft growth, immunohistochemical (IHC) analysis of tumor tissues, and toxicity-related parameters were measured in vivo. Silibinin (25 μmol/L) enhanced IR (2.5-10 Gy)-caused inhibition (up to 96%, P < 0.001) of colony formation selectively in prostate cancer cells, and prolonged and enhanced IR-caused G2-M arrest, apoptosis, and ROS production. Mechanistically, silibinin inhibited IR-induced DNA repair (ATM and Chk1/2) and EGFR signaling and attenuated the levels of antiapoptotic proteins. Specifically, silibinin suppressed IR-induced nuclear translocation of EGFR and DNA-PK, an important mediator of DSB repair, leading to an increased number of γ-H2AX (ser139) foci suggesting lesser DNA repair. In vivo, silibinin strongly radiosensitized DU145 tumor xenograft inhibition (84%, P < 0.01) with higher apoptotic response (10-fold, P < 0.01) and reduced repair of DNA damage, and rescued the mice from IR-induced toxicity and hematopoietic injury. Overall, silibinin enhanced the radiotherapeutic response via suppressing IR-induced prosurvival signaling and DSB repair by inhibiting nuclear translocation of EGFR and DNA-PK. Because silibinin is already in phase II clinical trial for prostate cancer patients, the present finding has translational relevance for radioresistant prostate cancer.
Collapse
Affiliation(s)
- Dhanya K Nambiar
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India. School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Gagan Deep
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado
| | - Anil K Jain
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado
| | - Rana P Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India. School of Life Sciences, Central University of Gujarat, Gandhinagar, India.
| |
Collapse
|
18
|
Muralidharan S, Sasi SP, Zuriaga MA, Hirschi KK, Porada CD, Coleman MA, Walsh KX, Yan X, Goukassian DA. Ionizing Particle Radiation as a Modulator of Endogenous Bone Marrow Cell Reprogramming: Implications for Hematological Cancers. Front Oncol 2015; 5:231. [PMID: 26528440 PMCID: PMC4604322 DOI: 10.3389/fonc.2015.00231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/01/2015] [Indexed: 12/15/2022] Open
Abstract
Exposure of individuals to ionizing radiation (IR), as in the case of astronauts exploring space or radiotherapy cancer patients, increases their risk of developing secondary cancers and other health-related problems. Bone marrow (BM), the site in the body where hematopoietic stem cell (HSC) self-renewal and differentiation to mature blood cells occurs, is extremely sensitive to low-dose IR, including irradiation by high-charge and high-energy particles. Low-dose IR induces DNA damage and persistent oxidative stress in the BM hematopoietic cells. Inefficient DNA repair processes in HSC and early hematopoietic progenitors can lead to an accumulation of mutations whereas long-lasting oxidative stress can impair hematopoiesis itself, thereby causing long-term damage to hematopoietic cells in the BM niche. We report here that low-dose 1H- and 56Fe-IR significantly decreased the hematopoietic early and late multipotent progenitor (E- and L-MPP, respectively) cell numbers in mouse BM over a period of up to 10 months after exposure. Both 1H- and 56Fe-IR increased the expression of pluripotent stem cell markers Sox2, Nanog, and Oct4 in L-MPPs and 10 months post-IR exposure. We postulate that low doses of 1H- and 56Fe-IR may induce endogenous cellular reprogramming of BM hematopoietic progenitor cells to assume a more primitive pluripotent phenotype and that IR-induced oxidative DNA damage may lead to mutations in these BM progenitors. This could then be propagated to successive cell lineages. Persistent impairment of BM progenitor cell populations can disrupt hematopoietic homeostasis and lead to hematologic disorders, and these findings warrant further mechanistic studies into the effects of low-dose IR on the functional capacity of BM-derived hematopoietic cells including their self-renewal and pluripotency.
Collapse
Affiliation(s)
- Sujatha Muralidharan
- Whitaker Cardiovascular Institute, Boston University School of Medicine , Boston, MA , USA
| | - Sharath P Sasi
- Cardiovascular Research Center, GeneSys Research Institute , Boston, MA , USA
| | - Maria A Zuriaga
- Whitaker Cardiovascular Institute, Boston University School of Medicine , Boston, MA , USA
| | - Karen K Hirschi
- Yale Cardiovascular Research Center, Yale School of Medicine , New Haven, CT , USA
| | - Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine , Winston-Salem, NC , USA
| | - Matthew A Coleman
- Radiation Oncology, School of Medicine, University of California Davis , Sacramento, CA , USA ; Lawrence Livermore National Laboratory , Livermore, CA , USA
| | - Kenneth X Walsh
- Whitaker Cardiovascular Institute, Boston University School of Medicine , Boston, MA , USA
| | - Xinhua Yan
- Cardiovascular Research Center, GeneSys Research Institute , Boston, MA , USA ; Tufts University School of Medicine , Boston, MA , USA
| | - David A Goukassian
- Whitaker Cardiovascular Institute, Boston University School of Medicine , Boston, MA , USA ; Cardiovascular Research Center, GeneSys Research Institute , Boston, MA , USA ; Tufts University School of Medicine , Boston, MA , USA
| |
Collapse
|
19
|
Han FF, Li L, Shang BY, Shao RG, Zhen YS. Hsp90 inhibitor geldanamycin enhances the antitumor efficacy of enediyne lidamycin in association with reduced DNA damage repair. Asian Pac J Cancer Prev 2015; 15:7043-8. [PMID: 25227788 DOI: 10.7314/apjcp.2014.15.17.7043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Inhibition of heat shock protein 90 (Hsp90) leads to inappropriate processing of proteins involved in DNA damage repair pathways after DNA damage and may enhance tumor cell radio- and chemo-therapy sensitivity. To investigate the potentiation of antitumor efficacy of lidamycin (LDM), an enediyne agent by the Hsp90 inhibitor geldanamycin (GDM), and possible mechanisms, we have determined effects on ovarian cancer SKOV- 3, hepatoma Bel-7402 and HepG2 cells by MTT assay, apoptosis assay, and cell cycle analysis. DNA damage was investigated with H2AX C-terminal phosphorylation (γH2AX) assays. We found that GDM synergistically sensitized SKOV-3 and Bel-7402 cells to the enediyne LDM, and this was accompanied by increased apoptosis. GDM pretreatment resulted in a greater LDM-induced DNA damage and reduced DNA repair as compared with LDM alone. However, in HepG2 cells GDM did not show significant sensitizing effects both in MTT assay and in DNA damage repair. Abrogation of LDM-induced G2/M arrest by GDM was found in SKOV-3 but not in HepG2 cells. Furthermore, the expression of ATM, related to DNA damage repair responses, was also decreased by GDM in SKOV-3 and Bel-7402 cells but not in HepG2 cells. These results demonstrate that Hsp90 inhibitors may potentiate the antitumor efficacy of LDM, possibly by reducing the repair of LDM-induced DNA damage.
Collapse
Affiliation(s)
- Fei-Fei Han
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China E-mail :
| | | | | | | | | |
Collapse
|
20
|
Burdak-Rothkamm S, Rothkamm K, McClelland K, Al Rashid ST, Prise KM. BRCA1, FANCD2 and Chk1 are potential molecular targets for the modulation of a radiation-induced DNA damage response in bystander cells. Cancer Lett 2014; 356:454-61. [PMID: 25304378 DOI: 10.1016/j.canlet.2014.09.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/04/2014] [Accepted: 09/22/2014] [Indexed: 12/20/2022]
Abstract
Radiotherapy is an important treatment option for many human cancers. Current research is investigating the use of molecular targeted drugs in order to improve responses to radiotherapy in various cancers. The cellular response to irradiation is driven by both direct DNA damage in the targeted cell and intercellular signalling leading to a broad range of bystander effects. This study aims to elucidate radiation-induced DNA damage response signalling in bystander cells and to identify potential molecular targets to modulate the radiation induced bystander response in a therapeutic setting. Stalled replication forks in T98G bystander cells were visualised via bromodeoxyuridine (BrdU) nuclear foci detection at sites of single stranded DNA. γH2AX co-localised with these BrdU foci. BRCA1 and FANCD2 foci formed in T98G bystander cells. Using ATR mutant F02-98 hTERT and ATM deficient GM05849 fibroblasts it could be shown that ATR but not ATM was required for the recruitment of FANCD2 to sites of replication associated DNA damage in bystander cells whereas BRCA1 bystander foci were ATM-dependent. Phospho-Chk1 foci formation was observed in T98G bystander cells. Clonogenic survival assays showed moderate radiosensitisation of directly irradiated cells by the Chk1 inhibitor UCN-01 but increased radioresistance of bystander cells. This study identifies BRCA1, FANCD2 and Chk1 as potential targets for the modulation of radiation response in bystander cells. It adds to our understanding of the key molecular events propagating out-of-field effects of radiation and provides a rationale for the development of novel molecular targeted drugs for radiotherapy optimisation.
Collapse
Affiliation(s)
- Susanne Burdak-Rothkamm
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Kai Rothkamm
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton/Didcot OX11 0RQ, UK
| | - Keeva McClelland
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Shahnaz T Al Rashid
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Kevin M Prise
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
21
|
Burdak-Rothkamm S, Smith A, Lobachevsky P, Martin R, Prise KM. Radioprotection of targeted and bystander cells by methylproamine. Strahlenther Onkol 2014; 191:248-55. [PMID: 25245467 PMCID: PMC4338360 DOI: 10.1007/s00066-014-0751-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/02/2014] [Indexed: 11/25/2022]
Abstract
Introduction Radioprotective agents are of interest for application in radiotherapy for cancer and in public health medicine in the context of accidental radiation exposure. Methylproamine is the lead compound of a class of radioprotectors which act as DNA binding anti-oxidants, enabling the repair of transient radiation-induced oxidative DNA lesions. This study tested methylproamine for the radioprotection of both directly targeted and bystander cells. Methods T98G glioma cells were treated with 15 μM methylproamine and exposed to 137Cs γ-ray/X-ray irradiation and He2+ microbeam irradiation. Radioprotection of directly targeted cells and bystander cells was measured by clonogenic survival or γH2AX assay. Results Radioprotection of directly targeted T98G cells by methylproamine was observed for 137Cs γ-rays and X-rays but not for He2+ charged particle irradiation. The effect of methylproamine on the bystander cell population was tested for both X-ray irradiation and He2+ ion microbeam irradiation. The X-ray bystander experiments were carried out by medium transfer from irradiated to non-irradiated cultures and three experimental designs were tested. Radioprotection was only observed when recipient cells were pretreated with the drug prior to exposure to the conditioned medium. In microbeam bystander experiments targeted and nontargeted cells were co-cultured with continuous methylproamine treatment during irradiation and postradiation incubation; radioprotection of bystander cells was observed. Discussion and conclusion Methylproamine protected targeted cells from DNA damage caused by γ-ray or X-ray radiation but not He2+ ion radiation. Protection of bystander cells was independent of the type of radiation which the donor population received.
Collapse
|
22
|
Marín A, Martín M, Liñán O, Alvarenga F, López M, Fernández L, Büchser D, Cerezo L. Bystander effects and radiotherapy. Rep Pract Oncol Radiother 2014; 20:12-21. [PMID: 25535579 DOI: 10.1016/j.rpor.2014.08.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/16/2014] [Accepted: 08/06/2014] [Indexed: 12/18/2022] Open
Abstract
Radiation-induced bystander effects are defined as biological effects expressed after irradiation by cells whose nuclei have not been directly irradiated. These effects include DNA damage, chromosomal instability, mutation, and apoptosis. There is considerable evidence that ionizing radiation affects cells located near the site of irradiation, which respond individually and collectively as part of a large interconnected web. These bystander signals can alter the dynamic equilibrium between proliferation, apoptosis, quiescence or differentiation. The aim of this review is to examine the most important biological effects of this phenomenon with regard to areas of major interest in radiotherapy. Such aspects include radiation-induced bystander effects during the cell cycle under hypoxic conditions when administering fractionated modalities or combined radio-chemotherapy. Other relevant aspects include individual variation and genetics in toxicity of bystander factors and normal tissue collateral damage. In advanced radiotherapy techniques, such as intensity-modulated radiation therapy (IMRT), the high degree of dose conformity to the target volume reduces the dose and, therefore, the risk of complications, to normal tissues. However, significant doses can accumulate out-of-field due to photon scattering and this may impact cellular response in these regions. Protons may offer a solution to reduce out-of-field doses. The bystander effect has numerous associated phenomena, including adaptive response, genomic instability, and abscopal effects. Also, the bystander effect can influence radiation protection and oxidative stress. It is essential that we understand the mechanisms underlying the bystander effect in order to more accurately assess radiation risk and to evaluate protocols for cancer radiotherapy.
Collapse
Affiliation(s)
- Alicia Marín
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| | - Margarita Martín
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| | - Olga Liñán
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| | - Felipe Alvarenga
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| | - Mario López
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| | - Laura Fernández
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| | - David Büchser
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| | - Laura Cerezo
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| |
Collapse
|
23
|
Gurung PMS, Veerakumarasivam A, Williamson M, Counsell N, Douglas J, Tan WS, Feber A, Crabb SJ, Short SC, Freeman A, Powles T, Hoskin PJ, West CM, Kelly JD. Loss of expression of the tumour suppressor gene AIMP3 predicts survival following radiotherapy in muscle-invasive bladder cancer. Int J Cancer 2014; 136:709-20. [PMID: 24917520 DOI: 10.1002/ijc.29022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 05/05/2014] [Accepted: 05/08/2014] [Indexed: 11/10/2022]
Abstract
The aim of this study was to test the utility of AIMP3, an upstream regulator of DNA damage response following genotoxic stress, as a clinical biomarker in muscle-invasive bladder cancer (MIBC). AIMP3 was identified from a meta-analysis of a global gene-expression dataset. AIMP3 protein expression was determined by immunohistochemistry on a customised bladder cancer tissue-microarray (TMA). The mechanism of gene silencing was probed using methylation-specific PCR. The association between AIMP3 expression, Tp53 transactivity and genomic stability was analysed. In vitro AIMP3 translocation to the nucleus in response to ionising radiation was demonstrated using immunofluorescence. Radiosensitisation effects of siRNA-mediated AIMP3-knockdown were measured using colony forming assays. TMAs derived from patients enrolled in BCON, a Phase III multicentre radiotherapy trial in bladder cancer (ISRCTN45938399) were used to evaluate the association between AIMP3 expression and survival. The prognostic value of AIMP3 expression was determined in a TMA derived from patients treated by radical cystectomy. Loss of AIMP3 expression was frequent in MIBC and associated with impaired Tp53 transactivity and genomic instability. AIMP3-knockdown was associated with an increase in radioresistance. Loss of AIMP3 expression was associated with survival in MIBC patients following radiotherapy (HR = 0.53; 95% CI: 0.36 to 0.78, p = 0.002) but was not prognostic in the cystectomy set. In conclusion, AIMP3 expression is lost in a subset of bladder cancers and is significantly predictive of survival following radiotherapy in MIBC patients.
Collapse
Affiliation(s)
- Pratik M S Gurung
- Division of Surgery and Interventional Science, University College London (UCL), London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Soleymanifard S, Toossi MTB, Samani RK, Mohebbi S. Investigation of the bystander effect in MRC5 cells after acute and fractionated irradiation in vitro. J Med Phys 2014; 39:93-7. [PMID: 24872606 PMCID: PMC4035621 DOI: 10.4103/0971-6203.131282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 11/26/2013] [Accepted: 12/27/2013] [Indexed: 11/26/2022] Open
Abstract
Radiation-induced bystander effect (RIBE) has been defined as radiation responses observed in nonirradiated cells. It has been the focus of investigators worldwide due to the deleterious effects it induces in nonirradiated cells. The present study was performed to investigate whether acute or fractionated irradiation will evoke a differential bystander response in MRC5 cells. A normal human cell line (MRC5), and a human lung tumor cell line (QU-DB) were exposed to 0, 1, 2, and 4Gy of single acute or fractionated irradiation of equal fractions with a gap of 6 h. The MRC5 cells were supplemented with the media of irradiated cells and their micronucleus frequency was determined. The micronucleus frequency after single and fractionated irradiation did not vary significantly in the MRC5 cells conditioned with autologous or QU-DB cell-irradiated media, except for 4Gy where the frequency of micronucleated cells was lower in those MRC5 cells cultured in the media of QU-DB-exposed with a single dose of 4Gy. Our study demonstrates that the radiation-induced bystander effect was almost similar after single acute and fractionated exposure in MRC5 cells.
Collapse
Affiliation(s)
- Shokouhozaman Soleymanifard
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran ; Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Taghi Bahreyni Toossi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran ; Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roghayeh Kamran Samani
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shokoufeh Mohebbi
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Pereira S, Malard V, Ravanat JL, Davin AH, Armengaud J, Foray N, Adam-Guillermin C. Low doses of gamma-irradiation induce an early bystander effect in zebrafish cells which is sufficient to radioprotect cells. PLoS One 2014; 9:e92974. [PMID: 24667817 PMCID: PMC3965492 DOI: 10.1371/journal.pone.0092974] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/27/2014] [Indexed: 11/18/2022] Open
Abstract
The term “bystander effect” is used to describe an effect in which cells that have not been exposed to radiation are affected by irradiated cells though various intracellular signaling mechanisms. In this study we analyzed the kinetics and mechanisms of bystander effect and radioadaptation in embryonic zebrafish cells (ZF4) exposed to chronic low dose of gamma rays. ZF4 cells were irradiated for 4 hours with total doses of gamma irradiation ranging from 0.01–0.1 Gy. In two experimental conditions, the transfer of irradiated cells or culture medium from irradiated cells results in the occurrence of DNA double strand breaks in non-irradiated cells (assessed by the number of γ-H2AX foci) that are repaired at 24 hours post-irradiation whatever the dose. At low total irradiation doses the bystander effect observed does not affect DNA repair mechanisms in targeted and bystander cells. An increase in global methylation of ZF4 cells was observed in irradiated cells and bystander cells compared to control cells. We observed that pre-irradiated cells which are then irradiated for a second time with the same doses contained significantly less γ-H2AX foci than in 24 h gamma-irradiated control cells. We also showed that bystander cells that have been in contact with the pre-irradiated cells and then irradiated alone present less γ-H2AX foci compared to the control cells. This radioadaptation effect is significantly more pronounced at the highest doses. To determine the factors involved in the early events of the bystander effect, we performed an extensive comparative proteomic study of the ZF4 secretomes upon irradiation. In the experimental conditions assayed here, we showed that the early events of bystander effect are probably not due to the secretion of specific proteins neither the oxidation of these secreted proteins. These results suggest that early bystander effect may be due probably to a combination of multiple factors.
Collapse
Affiliation(s)
- Sandrine Pereira
- Institut de Radioprotection et de Sûreté Nucléaire, PRP-Environnement/SERIS, Laboratoire d’Ecotoxicologie des Radionucléides, Cadarache, St Paul Lez Durance, France
- CRCL - UMR INSERM 1052 - CNRS 5286, Equipe de Radiobiologie, Cheney A- 1éme étage, Lyon, France
- * E-mail:
| | - Véronique Malard
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, France
| | - Jean-Luc Ravanat
- Laboratoire des Lésions des Acides Nucléiques, INAC/Scib UMR E3 CEA-UJF, CEA Grenoble, Grenoble, France
| | - Anne-Hélène Davin
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, France
| | - Nicolas Foray
- CRCL - UMR INSERM 1052 - CNRS 5286, Equipe de Radiobiologie, Cheney A- 1éme étage, Lyon, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire, PRP-Environnement/SERIS, Laboratoire d’Ecotoxicologie des Radionucléides, Cadarache, St Paul Lez Durance, France
| |
Collapse
|
26
|
Abstract
BACKGROUND The benefits of radiotherapy for cancer have been well documented for many years, but many patients treated with radiation develop adverse effects. This study analyzed the current research into the biological basis of radiotherapy-induced normal tissue damage. METHODS Using the PubMed and EMBASE databases, articles on adverse effects of radiotherapy on normal tissue published from January of 2005 through May of 2012 were identified. Their abstracts were reviewed for information relevant to radiotherapy-induced DNA damage and DNA repair. Articles in the reference lists that seemed relevant were reviewed with no limitations on publication date. RESULTS Of 1751 publications, 1729 were eliminated because they did not address fundamental biology or were duplicates. The 22 included articles revealed that many adverse effects are driven by chronic oxidative stress affecting the nuclear function of DNA repair mechanisms. Among normal cells undergoing replication, cells in S phase are most radioresistant because of overexpression of DNA repair enzymes, while cells in M phase are especially radiosensitive. Cancer cells exhibit increased radiosensitivity, leading to accumulation of irreparable DNA lesions and cell death. Irradiated cells have an indirect effect on the cell cycle and survival of cocultured nonirradiated cells. Method of irradiation and linear energy transfer to cancer cells versus bystander cells are shown to have an effect on cell survival. CONCLUSIONS Radiotherapy-induced increases in reactive oxygen species in irradiated cells may signal healthy cells by increasing metabolic stress and creating DNA lesions. The side effects of radiotherapy and bystander cell signaling may have a larger impact than previously acknowledged.
Collapse
|
27
|
Havaki S, Kotsinas A, Chronopoulos E, Kletsas D, Georgakilas A, Gorgoulis VG. The role of oxidative DNA damage in radiation induced bystander effect. Cancer Lett 2014; 356:43-51. [PMID: 24530228 DOI: 10.1016/j.canlet.2014.01.023] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/08/2013] [Accepted: 01/24/2014] [Indexed: 02/06/2023]
Abstract
Ionizing radiation (IR) has been described as a double-edged sword, since it is used for diagnostic and therapeutic medical applications, and at the same time it is a well known human mutagen and carcinogen, causing wide-ranging chromosomal aberrations. It is nowadays accepted that the detrimental effects of IR are not restricted only in the irradiated cells, but also to non-irradiated bystander or even distant cells manifesting various biological effects. This review presents the role of oxidative stress in the induction of bystander effects referring to the types of the implicated oxidative DNA lesions, the contributing intercellular and intracellular stress mediators, the way they are transmitted from irradiated to bystander cells and finally, the complex role of the bystander effect in the therapeutic efficacy of radiation treatment of cancer.
Collapse
Affiliation(s)
- Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | - Athanassios Kotsinas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | | | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Center for Scientific Research Demokritos, Athens, Greece
| | - Alexandros Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece; Biomedical Research Foundation, Academy of Athens, Athens, Greece; Faculty Institute for Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, M13 9WL, UK.
| |
Collapse
|
28
|
Saloua KS, Sonia G, Pierre C, Léon S, Darel HJ. The relative contributions of DNA strand breaks, base damage and clustered lesions to the loss of DNA functionality induced by ionizing radiation. Radiat Res 2014; 181:99-110. [PMID: 24397439 DOI: 10.1667/rr13450.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The majority of studies on lethal radiobiological damage have focused on double-strand breaks (DSBs), a type of clustered DNA damage and the evaluation of their toxicity, while other types of clustered DNA damage have received much less attention. The main purpose of this study is to evaluate the contribution of different lesions induced by ionizing radiation to the loss of plasmid DNA functionality. We employed a simple model system comprising E. coli transformed with an irradiated plasmid [pGEM-3Zf (-)] to determine the effect of DSBs and other lesions including base damage and clustered lesions on the functionality ("viability") of the plasmid. The yields of γ-radiation-induced single-strand breaks (SSBs) and DSBs were measured by gel electrophoresis. We found that the transformation efficiency decreases with radiation dose, but this decrease cannot be explained by the formation of DSBs. For example, at doses of 500 and 700 Gy, the relative transformation efficiency falls from 100% to 53% and 26%, respectively, while only 5.7% and 9.1% of the plasmids contain a DSB. In addition, it is also unlikely that randomly distributed base lesions could explain the loss of functionality of the plasmid, since cells can repair them efficiently. However, clustered lesions other than DSBs, which are difficult to repair and result in the loss of information on both DNA strands, have the potential to induce the loss of plasmid functionality. We therefore measured the yields of γ-radiation-induced base lesions and cluster damage, which are respectively converted into SSBs and DSBs by the base excision repair enzymes endonuclease III (Nth) and formamidopyrimidine-DNA glycosylase (Fpg). Our data demonstrate that the yield of cluster damage (i.e., lesions that yield DSBs following digestion) is 31 times higher than that of frank DSBs. This finding suggests that frank DSBs make a relatively minor contribution to the loss of DNA functionality induced by ionizing radiation, while other toxic lesions formed at a much higher frequencies than DSBs must be responsible for the loss of plasmid functionality. These lesions may be clustered lesions/locally multiply damaged sites (LMDS), including base damage, SSBs and/or intrastrand and interstrand crosslinks, leading to the loss of vital information in the DNA. Using a mathematical model, we estimate that at least three toxic lesions are required for the inactivation of plasmid functionality, in part because even these complex lesions can be repaired.
Collapse
Affiliation(s)
- Kouass Sahbani Saloua
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4
| | | | | | | | | |
Collapse
|
29
|
Mothersill C, Fernandez-Palomo C, Fazzari J, Smith R, Schültke E, Bräuer-Krisch E, Laissue J, Schroll C, Seymour C. Transmission of signals from rats receiving high doses of microbeam radiation to cage mates: an inter-mammal bystander effect. Dose Response 2014; 12:72-92. [PMID: 24659934 PMCID: PMC3960955 DOI: 10.2203/dose-response.13-011.mothersill] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Inter-animal signaling from irradiated to non-irradiated organisms has been demonstrated for whole body irradiated mice and also for fish. The aim of the current study was to look at radiotherapy style limited exposure to part of the body using doses relevant in preclinical therapy. High dose homogenous field irradiation and the use of irradiation in the microbeam radiation therapy mode at the European Synchrotron Radiation Facility (ESRF) at Grenoble was tested by giving high doses to the right brain hemisphere of the rat. The right and left cerebral hemispheres and the urinary bladder were later removed to determine whether abscopal effects could be produced in the animals and also whether effects occurred in cage mates housed with them. The results show strong bystander signal production in the contra-lateral brain hemisphere and weaker effects in the distant bladder of the irradiated rats. Signal strength was similar or greater in each tissue in the cage mates housed for 48hrs with the irradiated rats. Our results support the hypothesis that proximity to an irradiated animal induces signalling changes in an unirradiated partner. If similar signaling occurs between humans, the results could have implications for caregivers and hospital staff treating radiotherapy patients.
Collapse
Affiliation(s)
- Carmel Mothersill
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, Canada
| | - Cristian Fernandez-Palomo
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, Canada
| | - Jennifer Fazzari
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, Canada
| | - Richard Smith
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, Canada
| | - Elisabeth Schültke
- Stereotactic Neurosurgery and Laboratory for Molecular Neurosurgery, Freiburg University Medical Centre, Freiburg, Germany
| | | | - Jean Laissue
- Institute of Pathology, University of Bern, Switzerland
| | - Christian Schroll
- Stereotactic Neurosurgery and Laboratory for Molecular Neurosurgery, Freiburg University Medical Centre, Freiburg, Germany
| | - Colin Seymour
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
30
|
Wang H, Li J, Qu A, Liu J, Zhao Y, Wang J. The different biological effects of single, fractionated and continuous low dose rate irradiation on CL187 colorectal cancer cells. Radiat Oncol 2013; 8:196. [PMID: 23937791 PMCID: PMC3751200 DOI: 10.1186/1748-717x-8-196] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 08/07/2013] [Indexed: 12/02/2022] Open
Abstract
PURPOSE To determine the biological effectiveness of single, fractionated and continuous low dose rate irradiation on the human colorectal cancer cell line CL187 in vitro and explore the cellular mechanisms. MATERIALS AND METHODS The CL187 cells were exposed to radiation of 6 MV X-ray at a high dose rate of 4Gy/min and 125I seed at a low dose rate of 2.77 cGy/h. Three groups were employed: single dose radiation group (SDR), fractionated dose radiation group (FDR) by 2Gy/f and continuous low dose rate radiation group (CLDR). Four radiation doses 2, 4, 6 and 8Gy were chosen and cells without irradiation as the control. The responses of CL187 cells to distinct modes of radiation were evaluated by the colony-forming assay, cell cycle progression as well as apoptosis analysis. In addition, we detected the expression patterns of DNA-PKcs, Ku70 and Ku80 by Western blotting. RESULTS The relative biological effect for 125I seeds compared with 6 MV X-ray was 1.42. 48 hrs after 4Gy irradiation, the difference between proportions of cells at G2/M phase of SDR and CLDR groups were statistically significant (p = 0.026), so as the FDR and CLDR groups (p = 0.005). 48 hrs after 4Gy irradiation, the early apoptotic rate of CLDR group was remarkably higher than SDR and FDR groups (CLDR vs. SDR, p = 0.001; CLDR vs. FDR, p = 0.02), whereas the late apoptotic rate of CLDR group increased significantly compared with SDR and FDR group (CLDR vs. SDR, p = 0.004; CLDR vs. FDR, p = 0.007). Moreover, DNA-PKcs and Ku70 expression levels in CLDR-treated cells decreased compared with SDR and FDR groups. CONCLUSIONS Compared with the X-ray high dose rate irradiation, 125I seeds CLDR showed more effective induction of cell apoptosis and G2/M cell cycle arrest. Furthermore, 125I seeds CLDR could impair the DNA repair capability by down-regulating DNA-PKcs and Ku70 expression.
Collapse
Affiliation(s)
- Hao Wang
- Department of Radiation Oncology, Peking University Third Hospital, North Road No. 49, Haidian District, 100191, Beijing, China
| | - Jinna Li
- Department of Radiation Oncology, Peking University Third Hospital, North Road No. 49, Haidian District, 100191, Beijing, China
| | - Ang Qu
- Department of Radiation Oncology, Peking University Third Hospital, North Road No. 49, Haidian District, 100191, Beijing, China
| | - Jingjia Liu
- Department of Radiation Oncology, Peking University Third Hospital, North Road No. 49, Haidian District, 100191, Beijing, China
| | - Yong Zhao
- Transplantation Biology Research Division, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, North Road No. 49, Haidian District, 100191, Beijing, China
| |
Collapse
|
31
|
Abstract
The transforming growth factor-β (TGF-β) system signals via protein kinase receptors and SMAD mediators to regulate a large number of biological processes. Alterations of the TGF-β signalling pathway are implicated in human cancer. Prior to tumour initiation and early during progression, TGF-β acts as a tumour suppressor; however, at later stages, it is often a tumour promoter. Knowledge about the mechanisms involved in TGF-β signal transduction has allowed a better understanding of cancer progression, invasion, metastasis and epithelial-to-mesenchymal transition. Furthermore, several molecular targets with great potential in therapeutic interventions have been identified. This review discusses the TGF-β signalling pathway, its involvement in cancer and current therapeutic approaches.
Collapse
|
32
|
Novotná E, Tichý A, Pejchal J, Lukášová E, Salovská B, Vávrová J. DNA-dependent protein kinase and its inhibition in support of radiotherapy. Int J Radiat Biol 2013; 89:416-23. [PMID: 23362996 DOI: 10.3109/09553002.2013.767993] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Radiotherapy has been used as a treatment of almost 50% of all malignant tumors. The aim of this review is to provide a comprehensive overview of the recent knowledge in the field of molecular mechanisms of radiation-induced double-stranded breaks (DSB) repair. This paper gives particular emphasis to a key DNA repair enzyme, DNA-dependent protein kinase (DNA-PK), which plays a pivotal role in non-homologous end-joining. Furthermore, we discuss possibilities of DNA-PK inhibition and other molecular approaches employed in order to facilitate radiotherapy. CONCLUSIONS We have reviewed the recent studies using novel potent and selective small-molecular DNA-PK inhibitors and we conclude that targeted inhibition of DNA repair proteins like DNA-PK in cancer cells, in combination with ionizing radiation, improves the efficacy of cancer therapy while minimizing side-effects of ionizing radiation. Moreover, the recent discovery of short interfering RNA (siRNA) and signal interfering DNA (siDNA)-based therapeutics, or small peptides and RNA, shows a new opportunity of selective and safe application of biological treatment. All of these approaches are believed to contribute to more personalized anti-cancer therapy.
Collapse
Affiliation(s)
- Eva Novotná
- Department of Radiation Biology, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic
| | | | | | | | | | | |
Collapse
|
33
|
Jain MV, Paczulla AM, Klonisch T, Dimgba FN, Rao SB, Roberg K, Schweizer F, Lengerke C, Davoodpour P, Palicharla VR, Maddika S, Łos M. Interconnections between apoptotic, autophagic and necrotic pathways: implications for cancer therapy development. J Cell Mol Med 2013; 17:12-29. [PMID: 23301705 PMCID: PMC3823134 DOI: 10.1111/jcmm.12001] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/24/2012] [Indexed: 02/06/2023] Open
Abstract
The rapid accumulation of knowledge on apoptosis regulation in the 1990s was followed by the development of several experimental anticancer- and anti-ischaemia (stroke or myocardial infarction) drugs. Activation of apoptotic pathways or the removal of cellular apoptotic inhibitors has been suggested to aid cancer therapy and the inhibition of apoptosis was thought to limit ischaemia-induced damage. However, initial clinical studies on apoptosis-modulating drugs led to unexpected results in different clinical conditions and this may have been due to co-effects on non-apoptotic interconnected cell death mechanisms and the ‘yin-yang’ role of autophagy in survival versus cell death. In this review, we extend the analysis of cell death beyond apoptosis. Upon introduction of molecular pathways governing autophagy and necrosis (also called necroptosis or programmed necrosis), we focus on the interconnected character of cell death signals and on the shared cell death processes involving mitochondria (e.g. mitophagy and mitoptosis) and molecular signals playing prominent roles in multiple pathways (e.g. Bcl2-family members and p53). We also briefly highlight stress-induced cell senescence that plays a role not only in organismal ageing but also offers the development of novel anticancer strategies. Finally, we briefly illustrate the interconnected character of cell death forms in clinical settings while discussing irradiation-induced mitotic catastrophe. The signalling pathways are discussed in their relation to cancer biology and treatment approaches.
Collapse
Affiliation(s)
- Mayur V Jain
- Department of Clinical & Experimental Medicine, Division of Cell Biology, Integrative Regenerative Medicine Center (IGEN), Linköping University, Linköping, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Soleymanifard S, Bahreyni MTT. Comparing the level of bystander effect in a couple of tumor and normal cell lines. J Med Phys 2012; 37:102-6. [PMID: 22557800 PMCID: PMC3339141 DOI: 10.4103/0971-6203.94745] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 12/07/2011] [Accepted: 12/08/2011] [Indexed: 12/03/2022] Open
Abstract
Radiation-induced bystander effect refers to radiation responses which occur in non-irradiated cells. The purpose of this study was to compare the level of bystander effect in a couple of tumor and normal cell lines (QU-DB and MRC5). To induce bystander effect, cells were irradiated with 0.5, 2, and 4 Gy of 60Co gamma rays and their media were transferred to non-irradiated (bystander) cells of the same type. Cells containing micronuclei were counted in bystander subgroups, non-irradiated, and 0.5 Gy irradiated cells. Frequencies of cells containing micronuclei in QU-DB bystander subgroups were higher than in bystander subgroups of MRC5 cells (P < 0.001). The number of micronucleated cells counted in non-irradiated and 0.5 Gy irradiated QU-DB cells was also higher than the corresponding values for MRC5 cells (P < 0.001). Another difference between the two cell lines was that in QU-DB bystander cells, a dose-dependent increase in the number of micronucleated cells was observed as the dose increased, but at all doses the number of micronucleated cells in MRC5 bystander cells was constant. It is concluded that QU-DB cells are more susceptible than MRC5 cells to be affected by bystander effect, and in the two cell lines there is a positive correlation between DNA damages induced directly and those induced due to bystander effect.
Collapse
|
35
|
Monascuspiloin enhances the radiation sensitivity of human prostate cancer cells by stimulating endoplasmic reticulum stress and inducing autophagy. PLoS One 2012; 7:e40462. [PMID: 22802963 PMCID: PMC3389026 DOI: 10.1371/journal.pone.0040462] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/18/2012] [Indexed: 12/30/2022] Open
Abstract
Prostate cancer is a very common cancer among males. Traditional treatments for prostate cancer have limited efficacy; therefore, new therapeutic strategies and/or new adjuvant drugs must be explored. Red yeast rice (RYR) is a traditional food spice made in Asia by fermenting white rice with Monascus purpureus Went yeast. Accumulating evidence indicates that RYR has antitumor activity. In this study, PC-3 cells (human prostate cancer cells) were used to investigate the anti-cancer effects of ionizing radiation (IR) combined with monascuspiloin (MP, a yellow pigment isolated from Monascus pilosus M93-fermented rice) and to determine the underlying mechanisms of these effects in vitro and in vivo. We found that IR combined with MP showed increased therapeutic efficacy when compared with either treatment alone in PC-3 cells. In addition, the combined treatment enhanced DNA damage and endoplasmic reticulum (ER) stress. The combined treatment induced primarily autophagy in PC-3 cells, and the cell death that was induced by the combined treatment was chiefly the result of inhibition of the Akt/mTOR signaling pathways. In an in vivo study, the combination treatment showed greater anti-tumor growth effects. These novel findings suggest that the combined treatment could be a potential therapeutic strategy for prostate cancer.
Collapse
|
36
|
Suppression of FOXM1 sensitizes human cancer cells to cell death induced by DNA-damage. PLoS One 2012; 7:e31761. [PMID: 22393369 PMCID: PMC3290538 DOI: 10.1371/journal.pone.0031761] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 01/18/2012] [Indexed: 12/14/2022] Open
Abstract
Irradiation and DNA-damaging chemotherapeutic agents are commonly used in anticancer treatments. Following DNA damage FOXM1 protein levels are often elevated. In this study, we sought to investigate the potential role of FOXM1 in programmed cell death induced by DNA-damage. Human cancer cells after FOXM1 suppression were subjected to doxorubicin or γ-irradiation treatment. Our findings indicate that FOXM1 downregulation by stable or transient knockdown using RNAi or by treatment with proteasome inhibitors that target FOXM1 strongly sensitized human cancer cells of different origin to DNA-damage-induced apoptosis. We showed that FOXM1 suppresses the activation of pro-apoptotic JNK and positively regulates anti-apoptotic Bcl-2, suggesting that JNK activation and Bcl-2 down-regulation could mediate sensitivity to DNA-damaging agent-induced apoptosis after targeting FOXM1. Since FOXM1 is widely expressed in human cancers, our data further support the fact that it is a valid target for combinatorial anticancer therapy.
Collapse
|
37
|
Gasparian AV, Burkhart CA, Purmal AA, Brodsky L, Pal M, Saranadasa M, Bosykh DA, Commane M, Guryanova OA, Pal S, Safina A, Sviridov S, Koman IE, Veith J, Komar AA, Gudkov AV, Gurova KV. Curaxins: anticancer compounds that simultaneously suppress NF-κB and activate p53 by targeting FACT. Sci Transl Med 2012; 3:95ra74. [PMID: 21832239 DOI: 10.1126/scitranslmed.3002530] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Effective eradication of cancer requires treatment directed against multiple targets. The p53 and nuclear factor κB (NF-κB) pathways are dysregulated in nearly all tumors, making them attractive targets for therapeutic activation and inhibition, respectively. We have isolated and structurally optimized small molecules, curaxins, that simultaneously activate p53 and inhibit NF-κB without causing detectable genotoxicity. Curaxins demonstrated anticancer activity against all tested human tumor xenografts grown in mice. We report here that the effects of curaxins on p53 and NF-κB, as well as their toxicity to cancer cells, result from "chromatin trapping" of the FACT (facilitates chromatin transcription) complex. This FACT inaccessibility leads to phosphorylation of the p53 Ser(392) by casein kinase 2 and inhibition of NF-κB-dependent transcription, which requires FACT activity at the elongation stage. These results identify FACT as a prospective anticancer target enabling simultaneous modulation of several pathways frequently dysregulated in cancer without induction of DNA damage. Curaxins have the potential to be developed into effective and safe anticancer drugs.
Collapse
|
38
|
Basic principles of molecular effects of irradiation. Wien Med Wochenschr 2012; 162:47-54. [DOI: 10.1007/s10354-012-0052-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2011] [Indexed: 10/28/2022]
|
39
|
Mothersill C, Bristow RG, Harding SM, Smith RW, Mersov A, Seymour CB. A role for p53 in the response of bystander cells to receipt of medium borne signals from irradiated cells. Int J Radiat Biol 2011; 87:1120-5. [DOI: 10.3109/09553002.2011.610866] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
[Double strand break repair, one mechanism can hide another: alternative non-homologous end joining]. Cancer Radiother 2011; 16:1-10. [PMID: 21737335 DOI: 10.1016/j.canrad.2011.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 05/23/2011] [Accepted: 05/25/2011] [Indexed: 11/20/2022]
Abstract
DNA double strand breaks are major cytotoxic lesions encountered by the cells. They can be induced by ionizing radiation or endogenous stress and can lead to genetic instability. Two mechanisms compete for the repair of DNA double strand breaks: homologous recombination and non-homologous end joining (NHEJ). Homologous recombination requires DNA sequences homology and is initiated by single strand resection. Recently, advances have been made concerning the major steps and proteins involved in resection. NHEJ, in contrast, does not require sequence homology. The existence of a DNA double strand break repair mechanism, independent of KU and ligase IV, the key proteins of the canonical non homologous end joining pathway, has been revealed lately and named alternative non homologous end joining. The hallmarks of this highly mutagenic pathway are deletions at repair junctions and frequent use of distal microhomologies. This mechanism is also initiated by a single strand resection of the break. The aim of this review is firstly to present recent data on single strand resection, and secondly the alternative NHEJ pathway, including a discussion on the fidelity of NHEJ. Based on current knowledge, canonical NHEJ does not appear as an intrinsically mutagenic mechanism, but in contrast, as a conservative one. The structure of broken DNA ends actually dictates the quality repair of the alternative NHEJ and seems the actual responsible for the mutagenesis attributed beforehand to the canonical NHEJ. The existence of this novel DNA double strand breaks repair mechanism needs to be taken into account in the development of radiosensitizing strategies in order to optimise the efficiency of radiotherapy.
Collapse
|
41
|
Chiu HW, Lin W, Ho SY, Wang YJ. Synergistic effects of arsenic trioxide and radiation in osteosarcoma cells through the induction of both autophagy and apoptosis. Radiat Res 2011; 175:547-60. [PMID: 21388295 DOI: 10.1667/rr2380.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Osteosarcoma is the most common primary malignant bone tumor, occurring mainly in children and adolescents, and survival largely depends on their response to chemotherapy. However, the risk of relapse and adverse outcomes is still high. We investigated the synergistic anti-cancer effects of ionizing radiation combined with arsenic trioxide (ATO) and the mechanisms underlying apoptosis or autophagy induced by combined radiation and ATO treatment in human osteosarcoma cells. We found that exposure to radiation increased the population of HOS cells in the G(2)/M phase within 12 h in a time-dependent manner. Radiation combined with ATO induced a significantly prolonged G(2)/M arrest, consequently enhancing cell death. Furthermore, combined treatment resulted in enhanced ROS generation compared to treatment with ATO or radiation alone. The enhanced cytotoxic effect of combined treatment occurred from the increased induction of autophagy and apoptosis through inhibition of the PI3K/Akt signaling pathway in HOS cells. The combined treatment of HOS cells pretreated with Z-VAD, 3-MA or PEG-catalase resulted in a significant reduction of cytotoxicity. In addition, G(2)/M arrest and ROS generation could be involved in the underlying mechanisms. The data suggest that a combination of radiation and ATO could be a new potential therapeutic strategy for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Hui-Wen Chiu
- Department of Environmental and Occupational Health, National Cheng Kung University, Medical College, Tainan, Taiwan
| | | | | | | |
Collapse
|
42
|
Hershman JM, Okunyan A, Rivina Y, Cannon S, Hogen V. Prevention of DNA double-strand breaks induced by radioiodide-(131)I in FRTL-5 thyroid cells. Endocrinology 2011; 152:1130-5. [PMID: 21190956 PMCID: PMC3040059 DOI: 10.1210/en.2010-1163] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Radioiodine-131 released from nuclear reactor accidents has dramatically increased the incidence of papillary thyroid cancer in exposed individuals. The deposition of ionizing radiation in cells results in double-strand DNA breaks (DSB) at fragile sites, and this early event can generate oncogenic rearrangements that eventually cause cancer. The aims of this study were to develop a method to show DNA DSBs induced by (131)I in thyroid cells; to test monovalent anions that are transported by the sodium/iodide symporter to determine whether they prevent (131)I-induced DSB; and to test other radioprotective agents for their effect on irradiated thyroid cells. Rat FRTL-5 thyroid cells were incubated with (131)I. DSBs were measured by nuclear immunofluorescence using antibodies to p53-binding protein 1 or γH2AX. Incubation with 1-10 μCi (131)I per milliliter for 90 min resulted in a dose-related increase of DSBs; the number of DSBs increased from a baseline of 4-15% before radiation to 65-90% after radiation. GH3 or CHO cells that do not transport iodide did not develop DSBs when incubated with (131)I. Incubation with 20-100 μm iodide or thiocyanate markedly attenuated DSBs. Perchlorate was about 6 times more potent than iodide or thiocyanate(.) The effects of the anions were much greater when each was added 30-120 min before the (131)I. Two natural organic compounds recently shown to provide radiation protection partially prevented DSBs caused by (131)I and had an additive effect with perchlorate. In conclusion, we developed a thyroid cell model to quantify the mitogenic effect of (131)I. (131)I causes DNA DSBs in FRTL-5 cells and had no effect on cells that do not transport iodide. Perchlorate, iodide, and thiocyanate protect against DSBs induced by (131)I.
Collapse
Affiliation(s)
- Jerome M Hershman
- Endocrinology and Diabetes Division, West Los Angeles Veterans Affairs Medical Center, Los Angeles, California 90073, USA.
| | | | | | | | | |
Collapse
|
43
|
Kumar A, Oskouian B, Fyrst H, Zhang M, Paris F, Saba JD. S1P lyase regulates DNA damage responses through a novel sphingolipid feedback mechanism. Cell Death Dis 2011; 2:e119. [PMID: 21368890 PMCID: PMC3101703 DOI: 10.1038/cddis.2011.3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The injurious consequences of ionizing radiation (IR) to normal human cells and the acquired radioresistance of cancer cells represent limitations to cancer radiotherapy. IR induces DNA damage response pathways that orchestrate cell cycle arrest, DNA repair or apoptosis such that irradiated cells are either repaired or eliminated. Concomitantly and independent of DNA damage, IR activates acid sphingomyelinase (ASMase), which generates ceramide, thereby promoting radiation-induced apoptosis. However, ceramide can also be metabolized to sphingosine-1-phosphate (S1P), which acts paradoxically as a radioprotectant. Thus, sphingolipid metabolism represents a radiosensitivity pivot point, a notion supported by genetic evidence in IR-resistant cancer cells. S1P lyase (SPL) catalyzes the irreversible degradation of S1P in the final step of sphingolipid metabolism. We show that SPL modulates the kinetics of DNA repair, speed of recovery from G2 cell cycle arrest and the extent of apoptosis after IR. SPL acts through a novel feedback mechanism that amplifies stress-induced ceramide accumulation, and downregulation/inhibition of either SPL or ASMase prevents premature cell cycle progression and mitotic death. Further, oral administration of an SPL inhibitor to mice prolonged their survival after exposure to a lethal dose of total body IR. Our findings reveal SPL to be a regulator of ASMase, the G2 checkpoint and DNA repair and a novel target for radioprotection.
Collapse
Affiliation(s)
- A Kumar
- Center for Cancer Research, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609-1673, USA
| | | | | | | | | | | |
Collapse
|
44
|
Tabassum A, Bristow RG, Venkateswaran V. Ingestion of selenium and other antioxidants during prostate cancer radiotherapy: A good thing? Cancer Treat Rev 2010; 36:230-4. [PMID: 20079573 DOI: 10.1016/j.ctrv.2009.12.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 12/07/2009] [Accepted: 12/09/2009] [Indexed: 01/25/2023]
Affiliation(s)
- A Tabassum
- Molecular and Cellular Biology, Sunnybrook Health Science Centre, 2075 Bayview Avenue, Toronto, Ontario, Canada M4N 3M5.
| | | | | |
Collapse
|
45
|
Los M. New, exciting developments in experimental therapies in the early 21st century. Eur J Pharmacol 2009; 625:1-5. [DOI: 10.1016/j.ejphar.2009.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 10/08/2009] [Accepted: 10/08/2009] [Indexed: 12/15/2022]
|