1
|
Du Y, Cao Y, Song W, Wang X, Yu Q, Peng X, Zhao R. Role of the P2X7 receptor in breast cancer progression. Purinergic Signal 2024:10.1007/s11302-024-10039-6. [PMID: 39039304 DOI: 10.1007/s11302-024-10039-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
Breast cancer is a common malignant tumor, whose incidence is increasing year by year, and it has become the malignant tumor with the highest incidence rate in women. Purine ligand-gated ion channel 7 receptor (P2X7R) is a cation channel receptor with Adenosine triphosphate ( ATP) as a ligand, which is widely distributed in cells and tissues, and is closely related to tumorigenesis and progression. P2X7R plays an important role in cancer by interacting with ATP. Studies have shown that P2X7R is up-regulated in breast cancer and can promote tumor invasion and metastasis by activating the protein kinase B (AKT) signaling pathway, promoting epithelial-mesenchymal transition (EMT), controlling the generation of extracellular vesicle (EV), and regulating the expression of the inflammatory protein cyclooxygenase 2 (COX-2). Furthermore, P2X7R was proven to play an essential role in the proliferation and apoptosis of breast cancer cells. Recently, inhibitors targeting P2X7R have been found to inhibit the progression of breast cancer. Natural P2X7R antagonists, such as rhodopsin, and the isoquinoline alkaloid berberine, have also been shown to be effective in inhibiting breast cancer progression. In this article, we review the research progress of P2X7R and breast cancer intending to provide new targets and directions for breast cancer treatment.
Collapse
Affiliation(s)
- Yanan Du
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China
| | - Yahui Cao
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China
| | - Wei Song
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China
| | - Xin Wang
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China
| | - Qingqing Yu
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China
| | - Xiaoxiang Peng
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China.
| | - Ronglan Zhao
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China.
| |
Collapse
|
2
|
Ferreira NCDS, Viviani LG, Lima LM, do Amaral AT, Romano JVP, Fortunato AL, Soares RF, Alberto AVP, Coelho Neto JA, Alves LA. A Hybrid Approach Combining Shape-Based and Docking Methods to Identify Novel Potential P2X7 Antagonists from Natural Product Databases. Pharmaceuticals (Basel) 2024; 17:592. [PMID: 38794162 PMCID: PMC11123696 DOI: 10.3390/ph17050592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 05/26/2024] Open
Abstract
P2X7 is an ATP-activated purinergic receptor implicated in pro-inflammatory responses. It is associated with the development of several diseases, including inflammatory and neurodegenerative conditions. Although several P2X7 receptor antagonists have recently been reported in the literature, none of them is approved for clinical use. However, the structure of the known antagonists can serve as a scaffold for discovering effective compounds in clinical therapy. This study aimed to propose an improved virtual screening methodology for the identification of novel potential P2X7 receptor antagonists from natural products through the combination of shape-based and docking approaches. First, a shape-based screening was performed based on the structure of JNJ-47965567, a P2X7 antagonist, using two natural product compound databases, MEGx (~5.8 × 103 compounds) and NATx (~32 × 103 compounds). Then, the compounds selected by the proposed shape-based model, with Shape-Tanimoto score values ranging between 0.624 and 0.799, were filtered for drug-like properties. Finally, the compounds that met the drug-like filter criteria were docked into the P2X7 allosteric binding site, using the docking programs GOLD and DockThor. The docking poses with the best score values were submitted to careful visual inspection of the P2X7 allosteric binding site. Based on our established visual inspection criteria, four compounds from the MEGx database and four from the NATx database were finally selected as potential P2X7 receptor antagonists. The selected compounds are structurally different from known P2X7 antagonists, have drug-like properties, and are predicted to interact with key P2X7 allosteric binding pocket residues, including F88, F92, F95, F103, M105, F108, Y295, Y298, and I310. Therefore, the combination of shape-based screening and docking approaches proposed in our study has proven useful in selecting potential novel P2X7 antagonist candidates from natural-product-derived compounds databases. This approach could also be useful for selecting potential inhibitors/antagonists of other receptors and/or biological targets.
Collapse
Affiliation(s)
- Natiele Carla da Silva Ferreira
- Laboratory of Cellular Communication, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (N.C.d.S.F.); (L.M.L.); (J.V.P.R.); (A.L.F.); (A.V.P.A.)
| | - Lucas Gasparello Viviani
- Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil; (L.G.V.); (A.T.d.A.)
| | - Lauro Miranda Lima
- Laboratory of Cellular Communication, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (N.C.d.S.F.); (L.M.L.); (J.V.P.R.); (A.L.F.); (A.V.P.A.)
| | | | - João Victor Paiva Romano
- Laboratory of Cellular Communication, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (N.C.d.S.F.); (L.M.L.); (J.V.P.R.); (A.L.F.); (A.V.P.A.)
- Laboratory of Immunobiotechnology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Anderson Lage Fortunato
- Laboratory of Cellular Communication, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (N.C.d.S.F.); (L.M.L.); (J.V.P.R.); (A.L.F.); (A.V.P.A.)
| | - Rafael Ferreira Soares
- Laboratory of Applied Genomics and Bioinnovations, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil;
| | - Anael Viana Pinto Alberto
- Laboratory of Cellular Communication, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (N.C.d.S.F.); (L.M.L.); (J.V.P.R.); (A.L.F.); (A.V.P.A.)
| | - Jose Aguiar Coelho Neto
- National Institute of Industrial Property, Rio de Janeiro 20090-910, Brazil;
- Tijuca Campus, Veiga de Almeida University, Rio de Janeiro 20271-020, Brazil
| | - Luiz Anastacio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (N.C.d.S.F.); (L.M.L.); (J.V.P.R.); (A.L.F.); (A.V.P.A.)
| |
Collapse
|
3
|
Ai Y, Wang H, Liu L, Qi Y, Tang S, Tang J, Chen N. Purine and purinergic receptors in health and disease. MedComm (Beijing) 2023; 4:e359. [PMID: 37692109 PMCID: PMC10484181 DOI: 10.1002/mco2.359] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Purines and purinergic receptors are widely distributed throughout the human body. Purine molecules within cells play crucial roles in regulating energy metabolism and other cellular processes, while extracellular purines transmit signals through specific purinergic receptors. The ubiquitous purinergic signaling maintains normal neural excitability, digestion and absorption, respiratory movement, and other complex physiological activities, and participates in cell proliferation, differentiation, migration, and death. Pathological dysregulation of purinergic signaling can result in the development of various diseases, including neurodegeneration, inflammatory reactions, and malignant tumors. The dysregulation or dysfunction of purines and purinergic receptors has been demonstrated to be closely associated with tumor progression. Compared with other subtypes of purinergic receptors, the P2X7 receptor (P2X7R) exhibits distinct characteristics (i.e., a low affinity for ATP, dual functionality upon activation, the mediation of ion channels, and nonselective pores formation) and is considered a promising target for antitumor therapy, particularly in patients with poor response to immunotherapy This review summarizes the physiological and pathological significance of purinergic signaling and purinergic receptors, analyzes their complex relationship with tumors, and proposes potential antitumor immunotherapy strategies from tumor P2X7R inhibition, tumor P2X7R overactivation, and host P2X7R activation. This review provides a reference for clinical immunotherapy and mechanism investigation.
Collapse
Affiliation(s)
- Yanling Ai
- Department of OncologyHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Hengyi Wang
- Department of Infectious DiseasesHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Lu Liu
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Yulin Qi
- Department of OphthalmologyThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
- Postdoctoral Research Station of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Shiyun Tang
- Hospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan ProvinceHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Nianzhi Chen
- State Key Laboratory of Ultrasound in Medicine and EngineeringCollege of Biomedical EngineeringChongqing Medical UniversityChongqingChina
| |
Collapse
|
4
|
Purinergic P2X7R as a potential target for pancreatic cancer. Clin Transl Oncol 2023:10.1007/s12094-023-03123-7. [PMID: 36856920 DOI: 10.1007/s12094-023-03123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/11/2023] [Indexed: 03/02/2023]
Abstract
Pancreatic cancer is one of the deadliest types of cancer, with a death rate nearly equal to the incidence. The P2X7 receptor (P2X7R) is a kind of extracellular adenosine triphosphate (ATP)-gated ion channel with special permeability, which exists in most tissues of human body and mediates inflammation-related signaling pathways and immune signal transduction after activation. P2X7R is also present on the surface of several tumor cells and is involved in tumor growth and progression. P2X7R expression in pancreatic cancer has also been identified in recent studies. Activation of P2X7R in pancreatic cancer can support the proliferation of pancreatic stellate cells, participate in protein interactions, and mediate ERK1/2, IL-6/STAT3, hCAP-18/LL-37, PI3K/AKT signaling pathways to promote pancreatic cancer progression. Inhibitors targeting P2X7R can inhibit the development of pancreatic cancer and are expected to be used in clinical therapy. Therefore, P2X7R is promising as a potential therapeutic target for pancreatic cancer. This article reviews the progress of research on P2X7R in pancreatic cancer.
Collapse
|
5
|
Al Mamun A, Suchi SA, Aziz MA, Zaeem M, Munir F, Wu Y, Xiao J. Pyroptosis in acute pancreatitis and its therapeutic regulation. Apoptosis 2022; 27:465-481. [PMID: 35687256 DOI: 10.1007/s10495-022-01729-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 12/20/2022]
Abstract
Pyroptosis defines a new type of GSDMs-mediated programmed cell death, distinguishes from the classical concepts of apoptosis and necrosis-mediated cell death and is prescribed by cell swelling and membrane denaturation, leading to the extensive secretion of cellular components and low-grade inflammatory response. However, NLRP3 inflammasome activation can trigger its downstream inflammatory cytokines, leading to the activation of pyroptosis-regulated cell death. Current studies reveal that activation of caspase-4/5/11-driven non-canonical inflammasome signaling pathways facilitates the pathogenesis and progression of acute pancreatitis (AP). In addition, a large number of studies have reported that NLRP3 inflammasome-dependent pyroptosis is a crucial player in driving the course of the pathogenesis of AP. Excessive uncontrolled GSDMD-mediated pyroptosis has been implicated in AP. Therefore, the pyroptosis-related molecule GSDMD may be an independent prognostic biomarker for AP. The present review paper summarizes the molecular mechanisms of pyroptotic signaling pathways and their pathophysiological impacts on the progress of AP. Moreover, we briefly present some experimental compounds targeting pyroptosis-regulated cell death for exploring novel therapeutic directions for the treatment and management of AP. Our review investigations strongly suggest that targeting pyroptosis could be an ideal therapeutic approach in AP.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Suzia Aktar Suchi
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, 501759, South Korea
| | - Md Abdul Aziz
- Department of Pharmacy, Faculty of Pharmacy and Health Sciences, State University of Bangladesh, Dhaka, 1205, Bangladesh.,Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Muhammad Zaeem
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, 325000, China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Zhejiang Province, Wenzhou, 325035, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China. .,Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| |
Collapse
|
6
|
Sougiannis AT, VanderVeen B, Chatzistamou I, Kubinak JL, Nagarkatti M, Fan D, Murphy EA. Emodin reduces tumor burden by diminishing M2-like macrophages in colorectal cancer. Am J Physiol Gastrointest Liver Physiol 2022; 322:G383-G395. [PMID: 35018819 PMCID: PMC8897011 DOI: 10.1152/ajpgi.00303.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Emodin, a natural anthraquinone, has been shown to have antitumorigenic properties and may be an effective therapy for colorectal cancer (CRC). However, its clinical development has been hampered by a poor understanding of its mechanism of action. The purpose of this study was to 1) evaluate the efficacy of emodin in mouse models of intestinal/colorectal cancer and 2) to examine the impact of emodin on macrophage behavior in the context of CRC. We used a genetic model of intestinal cancer (ApcMin/+) and a chemically induced model of CRC [azoxymethane/dextran sodium sulfate (AOM/DSS)]. Emodin was administered orally (40 or 80 mg/kg in AOM/DSS and 80 mg/kg in ApcMin/+) three times a week to observe its preventative effects. Emodin reduced polyp count and size in both rodent models (P < 0.05). We further analyzed the colon microenvironment of AOM/DSS mice and found that mice treated with emodin exhibited lower protumorigenic M2-like macrophages and a reduced ratio of M2/M1 macrophages within the colon (P < 0.05). Despite this, we did not detect any significant changes in M2-associated cytokines (IL10, IL4, and Tgfb1) nor M1-associated cytokines (IL6, TNFα, IL1β, and IFNγ) within excised polyps. However, there was a significant increase in NOS2 expression (M1 marker) in mice treated with 80 mg/kg emodin (P < 0.05). To confirm emodin's effects on macrophages, we exposed bone marrow-derived macrophages (BMDMs) to C26 colon cancer cell conditioned media. Supporting our in vivo data, emodin reduced M2-like macrophages. Overall, these data support the development of emodin as a natural compound for prevention of CRC given its ability to target protumor macrophages.NEW & NOTEWORTHY Our study confirms that emodin is an effective primary therapy against the onset of genetic and chemically induced sporadic colorectal cancer. We established that emodin reduces the M2-like protumorigenic macrophages in the tumor microenvironment. Furthermore, we provide evidence that emodin may be acting to antagonize the P2X7 receptor within the bone tissue and consequently decrease the activation of proinflammatory cells, which may have implications for recruitment of cells to the tumor microenvironment.
Collapse
Affiliation(s)
- Alexander T. Sougiannis
- 1Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina,4College of Medicine, Medical University of South Carolina, Columbia, South Carolina
| | - Brandon VanderVeen
- 1Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina,3AcePre, LLC, Columbia, South Carolina
| | - Ioulia Chatzistamou
- 1Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Jason L. Kubinak
- 1Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Mitzi Nagarkatti
- 1Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Daping Fan
- 2Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina,3AcePre, LLC, Columbia, South Carolina
| | - E. Angela Murphy
- 1Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina,3AcePre, LLC, Columbia, South Carolina
| |
Collapse
|
7
|
Semwal RB, Semwal DK, Combrinck S, Viljoen A. Emodin - A natural anthraquinone derivative with diverse pharmacological activities. PHYTOCHEMISTRY 2021; 190:112854. [PMID: 34311280 DOI: 10.1016/j.phytochem.2021.112854] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) is a natural anthraquinone derivative that is present in numerous globally renowned herbal medicines. It is recognised as a protein tyrosine kinase inhibitor and as an anticancer drug, active against various tumour cells, including lung, breast, liver, and ovarian cancer cells. Recently, its role in combination chemotherapy with various allopathic medicines, to minimize their toxicity and to enhance their efficacy, has been studied. The use of emodin in these therapies is gaining popularity, due to fewer associated side effects compared with standard anticancer drugs. Emodin has a broad therapeutic window, and in addition to its antineoplastic activity, it displays anti-ulcer, anti-inflammatory, hepatoprotective, neuroprotective, antimicrobial, muscle relaxant, immunosuppressive and antifibrotic activities, in both in vitro and in vivo models. Although reviews on the anticancer activity of emodin have been published, none coherently unite all the pharmacological properties of emodin, particularly the anti-oxidant, antimicrobial, antidiabetic, immunosuppressive and hepatoprotective activities of the compound. Hence, in this review, all of the available data regarding the pharmacological properties of emodin are explored, with particular emphasis on the modes of action of the molecule. In addition, the manuscript details the occurrence, biosynthesis and chemical synthesis of the compound, as well as its toxic effects on biotic systems.
Collapse
Affiliation(s)
- Ruchi Badoni Semwal
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; Department of Chemistry, Pt. Lalit Mohan Sharma Govt. Post Graduate College, Rishikesh, 249201, India
| | - Deepak Kumar Semwal
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; Department of Phytochemistry, Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Harrawala, Dehradun, 248001, India
| | - Sandra Combrinck
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Alvaro Viljoen
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; SAMRC Herbal Drugs Research Unit, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| |
Collapse
|
8
|
Ai X, Dong X, Guo Y, Yang P, Hou Y, Bai J, Zhang S, Wang X. Targeting P2 receptors in purinergic signaling: a new strategy of active ingredients in traditional Chinese herbals for diseases treatment. Purinergic Signal 2021; 17:229-240. [PMID: 33751327 PMCID: PMC8155138 DOI: 10.1007/s11302-021-09774-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine triphosphate (ATP) and its metabolites adenosine diphosphate, adenosine monophosphate, and adenosine in purinergic signaling pathway play important roles in many diseases. Activation of P2 receptors (P2R) channels and subsequent membrane depolarization can induce accumulation of extracellular ATP, and furtherly cause kinds of diseases, such as pain- and immune-related diseases, cardiac dysfunction, and tumorigenesis. Active ingredients of traditional Chinese herbals which exhibit superior pharmacological activities on diversified P2R channels have been considered as an alternative strategy of disease treatment. Experimental evidence of potential ingredients in Chinese herbs targeting P2R and their pharmacological activities were outlined in the study.
Collapse
Affiliation(s)
- Xiaopeng Ai
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China
| | - Xing Dong
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Guo
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Yang
- Chengdu Fifth People's Hospital, Chengdu, China
| | - Ya Hou
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinrong Bai
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sanyin Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
9
|
Drill M, Jones NC, Hunn M, O'Brien TJ, Monif M. Antagonism of the ATP-gated P2X7 receptor: a potential therapeutic strategy for cancer. Purinergic Signal 2021; 17:215-227. [PMID: 33728582 PMCID: PMC8155177 DOI: 10.1007/s11302-021-09776-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
The P2X receptor 7 (P2X7R) is a plasma membrane receptor sensing extracellular ATP associated with a wide variety of cellular functions. It is most commonly expressed on immune cells and is highly upregulated in a number of human cancers where it can play a trophic role in tumorigenesis. Activation of this receptor leads to the formation of a non-selective cation channel, which has been associated with several cellular functions mediated by the PI3K/Akt pathway and protein kinases. Due to its broad range of functions, the receptor represents a potential therapeutic target for a number of cancers. This review describes the range of mechanisms associated with P2X7R activation in cancer settings and highlights the potential of targeted inhibition of P2X7R as a therapy. It also describes in detail a number of key P2X7R antagonists currently in pre-clinical and clinical development, including oxidised ATP, Brilliant Blue G (BBG), KN-62, KN-04, A740003, A438079, GSK1482160, CE-224535, JNJ-54175446, JNJ-55308942, and AZ10606120. Lastly, it summarises the in vivo studies and clinical trials associated with the use and development of these P2X7R antagonists in different disease contexts.
Collapse
Affiliation(s)
- Matthew Drill
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Physiology, Melbourne University, Parkville, VIC, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Nigel C Jones
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Martin Hunn
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurosurgery, Alfred Hospital, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Mastura Monif
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- Department of Physiology, Melbourne University, Parkville, VIC, Australia.
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia.
- Department of Neurology, Melbourne Health, Parkville, VIC, Australia.
| |
Collapse
|
10
|
Sougiannis AT, Enos RT, VanderVeen BN, Velazquez KT, Kelly B, McDonald S, Cotham W, Chatzistamou I, Nagarkatti M, Fan D, Murphy EA. Safety of natural anthraquinone emodin: an assessment in mice. BMC Pharmacol Toxicol 2021; 22:9. [PMID: 33509280 PMCID: PMC7845031 DOI: 10.1186/s40360-021-00474-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 01/17/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Emodin, a natural anthraquinone, has shown potential as an effective therapeutic agent in the treatment of many diseases including cancer. However, its clinical development is hindered by uncertainties surrounding its potential toxicity. The primary purpose of this study was to uncover any potential toxic properties of emodin in mice at doses that have been shown to have efficacy in our cancer studies. In addition, we sought to assess the time course of emodin clearance when administered both intraperitoneally (I.P.) and orally (P.O.) in order to begin to establish effective dosing intervals. METHODS We performed a subchronic (12 week) toxicity study using 3 different doses of emodin (~ 20 mg/kg, 40 mg/kg, and 80 mg/kg) infused into the AIN-76A diet of male and female C57BL/6 mice (n = 5/group/sex). Body weight and composition were assessed following the 12-week feeding regime. Tissues were harvested and assessed for gross pathological changes and blood was collected for a complete blood count and evaluation of alanine transaminase (ALT), aspartate transaminase (AST) and creatinine. For the pharmacokinetic study, emodin was delivered intraperitoneally I.P. or P.O. at 20 mg/kg or 40 mg/kg doses to male and female mice (n = 4/group/sex/time-point) and circulating levels of emodin were determined at 1, 4 and 12 h following administration via liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis. RESULTS We found that 12 weeks of low (20 mg/kg), medium (40 mg/kg), or high (80 mg/kg) emodin feeding did not cause pathophysiological perturbations in major organs. We also found that glucuronidated emodin peaks at 1 h for both I.P. and P.O. administered emodin and is eliminated by 12 h. Interestingly, female mice appear to metabolize emodin at a faster rate than male mice as evidenced by greater levels of glucuronidated emodin at the 1 h time-point (40 mg/kg for both I.P. and P.O. and 20 mg/kg I.P.) and the 4-h time-point (20 mg/kg I.P.). CONCLUSIONS In summary, our studies establish that 1) emodin is safe for use in both male and female mice when given at 20, 40, and 80 mg/kg doses for 12 weeks and 2) sex differences should be considered when establishing dosing intervals for emodin treatment.
Collapse
Affiliation(s)
- Alexander T Sougiannis
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Reilly T Enos
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Brandon N VanderVeen
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Kandy T Velazquez
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Brittany Kelly
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Sierra McDonald
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - William Cotham
- Department of Chemistry and Biochemistry, College of Arts and Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
- AcePre, LLC, Columbia, SC, 29209, USA
| | - E Angela Murphy
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd., Columbia, SC, 29209, USA.
- AcePre, LLC, Columbia, SC, 29209, USA.
| |
Collapse
|
11
|
Zhu X, Li Q, Song W, Peng X, Zhao R. P2X7 receptor: a critical regulator and potential target for breast cancer. J Mol Med (Berl) 2021; 99:349-358. [PMID: 33486566 DOI: 10.1007/s00109-021-02041-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer is currently the most common cancer and the leading cause of cancer death among women worldwide. Advanced breast cancer is prone to metastasis, and there is currently no drug to cure metastatic breast cancer. The purinergic ligand-gated ion channel 7 receptor is an ATP-gated nonselective cation channel receptor and is involved in signal transduction, growth regulation, cytokine secretion, and tumor cell development. Recent studies have shown that upregulation of the P2X7 receptor in breast cancer can mediate AKT signaling pathways, Ca2 þ-activated SK3 potassium channels, and EMT and regulate the secretion of small extracellular vesicles to promote breast cancer invasion and migration, which are affected by factors such as hypoxia and ATP. In addition, studies have shown that microRNAs can bind to the 3' untranslated region of the P2X7 receptor, which affects the occurrence and development of breast cancer by upregulating and downregulating P2X7 receptor expression. Studies have shown that new P2X7 receptor inhibitors, such as emodin and Uncaria tomentosa, can inhibit P2X7 receptor-mediated breast cancer invasion and are expected to be used clinically. This article reviews the research progress on the relationship between the P2X7 receptor and breast cancer to provide new ideas and a basis for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaodi Zhu
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Qianqian Li
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Wei Song
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Xiaoxiang Peng
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China.
| | - Ronglan Zhao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
12
|
Pacheco PAF, Diogo RT, Magalhães BQ, Faria RX. Plant natural products as source of new P2 receptors ligands. Fitoterapia 2020; 146:104709. [DOI: 10.1016/j.fitote.2020.104709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/23/2022]
|
13
|
Zhuang T, Gu X, Zhou N, Ding L, Yang L, Zhou M. Hepatoprotection and hepatotoxicity of Chinese herb Rhubarb (Dahuang): How to properly control the "General (Jiang Jun)" in Chinese medical herb. Biomed Pharmacother 2020; 127:110224. [PMID: 32559851 DOI: 10.1016/j.biopha.2020.110224] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
Chinese herb Rhubarb (Dahuang), one of the most widely used traditional Chinese medicine in clinical application for over a thousand years and known as the "General (Jiang Jun)" in Chinese medical herb, currently used clinically for long-term treatment of gastrointestinal diseases and chronic liver diseases. Through previous researches, it has been identified that Rhubarb possessed a good hepatoprotective effect, which primarily protected liver from oxidation, fibrosis and cirrhosis, liver failure, hepatocellular carcinoma and various types of hepatitis. Meanwhile, it has been recently reported that long-term administration of Rhubarb preparation may undertake the risk of liver damage, which has aroused worldwide doubts about the safety of Rhubarb. Therefore, how to correctly understand the "two-way" effect of Rhubarb on liver protection and liver toxicity provides a basis for scientific evaluation of Rhubarb's efficacy on liver and side effects, as well as guiding clinical rational drug use. In this review, the mechanisms of Rhubarb how to play a role in hepatoprotection and why it causes hepatotoxic potential will be elaborated in detail and critically. In addition, some positive clinical guidances are also advised on how to reduce its hepatotoxicity in medical treatment.
Collapse
Affiliation(s)
- Tongxi Zhuang
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinyi Gu
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Nian Zhou
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Ding
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Mingmei Zhou
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
14
|
Di Virgilio F, Jiang LH, Roger S, Falzoni S, Sarti AC, Vultaggio-Poma V, Chiozzi P, Adinolfi E. Structure, function and techniques of investigation of the P2X7 receptor (P2X7R) in mammalian cells. Methods Enzymol 2019; 629:115-150. [PMID: 31727237 DOI: 10.1016/bs.mie.2019.07.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The P2X7 receptor [P2X7R or P2RX7 in National Center for Biotechnology Information (NCBI) gene nomenclature] is a member of the P2X receptor (P2XR) subfamily of P2 receptors (P2Rs). The P2X7R is an extracellular ATP-gated ion channel with peculiar permeability properties expressed by most cell types, mainly in the immune system, where it has a leading role in cytokine release, oxygen radical generation, T lymphocyte differentiation and proliferation. A role in cancer cell growth and tumor progression has also been demonstrated. These features make the P2X7R an appealing target for drug development in inflammation and cancer. The functional P2X7R, recently (partially) crystallized and 3-D solved, is formed by the assembly of three identical subunits (homotrimer). The P2X7R is preferentially permeable to small cations (Ca2+, Na+, K+), and in most (but not all) cell types also to large positively charged molecules of molecular mass up to 900Da. Permeability to negatively charged species of comparable molecular mass (e.g., Lucifer yellow) is debated. Several highly selective P2X7R pharmacological blockers have been developed over the years, thus providing powerful tools for P2X7R studies. Biophysical properties and coupling to several different physiological responses make the P2X7R amenable to investigation by electrophysiology and cell biology techniques, which allow its identification and characterization in many different cell types and tissues. A careful description of the physiological features of the P2X7R is a prerequisite for an effective therapeutic development. Here we describe the most common techniques to asses P2X7R functions, including patch-clamp, intracellular calcium measurements, and membrane permeabilization to large fluorescent dyes in a selection of different cell types. In addition, we also describe common toxicity assays used to verify the effects of P2X7R stimulation on cell viability.
Collapse
Affiliation(s)
- Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.
| | - Lin-Hua Jiang
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Sébastien Roger
- EA4245 Transplantation, Immunology and Inflammation, University of Tours, Tours, France
| | - Simonetta Falzoni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alba Clara Sarti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Valentina Vultaggio-Poma
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Paola Chiozzi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elena Adinolfi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
15
|
Soares-Bezerra RJ, da Silva Ferreira NC, de Almeida Alves TM, Zani CL, Rosa LH, Faria RX, da Silva Frutuoso V, Alves LA. A new insight into purinergic pharmacology: Three fungal species as natural P2X7R antagonists. Phytother Res 2019; 33:2319-2328. [PMID: 31264271 PMCID: PMC6771832 DOI: 10.1002/ptr.6412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 03/28/2019] [Accepted: 05/18/2019] [Indexed: 12/03/2022]
Affiliation(s)
- Rômulo José Soares-Bezerra
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Tânia Maria de Almeida Alves
- Laboratory of Chemistry of Bioactive Natural Products, René Rachou Research Center, Oswaldo Cruz Foundation, Belo Horizonte, Brazil
| | - Carlos Leomar Zani
- Laboratory of Chemistry of Bioactive Natural Products, René Rachou Research Center, Oswaldo Cruz Foundation, Belo Horizonte, Brazil
| | - Luiz Henrique Rosa
- Laboratory of Polar Microbiology and Tropical Connections, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Robson Xavier Faria
- Laboratory of Toxoplasmosis and other Protozoosis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Válber da Silva Frutuoso
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Luiz Anastacio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Ferreira NCDS, Soares-Bezerra RJ, da Silveira RFC, da Silva CM, de Oliveira CS, Calheiros AS, Alves TM, Zani CL, Alves LA. New Insights in Purinergic Therapy: Novel Antagonists for Uridine 5'-Triphosphate-Activated P2Y Receptors from Brazilian Flora. J Med Food 2018; 22:211-224. [PMID: 30526214 DOI: 10.1089/jmf.2018.0087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
P2Y2 and P2Y4 receptors are physiologically activated by uridine 5'-triphosphate (UTP) and are widely expressed in many cell types in humans. P2Y2 plays an important role in inflammation and proliferation of tumor cells, which could be attenuated with the use of antagonists. However, little is known about the physiological functions related to P2Y4, due to the lack of selective ligands for these receptors. This can be solved through the search for novel compounds with antagonistic activity. The aim of this study was to discover new potential antagonist candidates for P2Y2 and P2Y4 receptors from natural products. We applied a calcium measurement methodology to identify new antagonist candidates for these receptors. First, we established optimal conditions for the calcium assay using J774.G8, a murine macrophage cell line, which expresses functional P2Y2 and P2Y4 receptors and then, we performed the screening of plant extracts at a cutoff concentration of 50 μg/mL. ATP and ionomycin, known intracellular calcium inductors, were used to stimulate cells. The calculated EC50 were 11 μM and 103 nM, respectively. These cells also responded to the UTP stimulation with an EC50 of 1.021 μM. Screening assays were performed and a total of 100 extracts from Brazilian plants were tested. Joannesia princeps Vell. (stem) and Peixotoa A. Juss (flower and leaf) extracts stood out due to their ability to inhibit UTP-induced responses without causing cytotoxicity, and presented an IC50 of 32.32, 14.99, and 12.98 μg/mL, respectively. Collectively, our results point to the discovery of potential antagonist candidates from Brazilian flora for UTP-activated receptors.
Collapse
Affiliation(s)
| | - Rômulo José Soares-Bezerra
- 1 Laboratory of Cellular Communication, Oswaldo Cruz Institute , Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Clayton Menezes da Silva
- 1 Laboratory of Cellular Communication, Oswaldo Cruz Institute , Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Carla Santos de Oliveira
- 1 Laboratory of Cellular Communication, Oswaldo Cruz Institute , Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Andrea Surrage Calheiros
- 2 Laboratory of Immunopharmacology, Oswaldo Cruz Institute , Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Tânia Maria Alves
- 3 Laboratory of Chemistry of Natural Products, René Rachou Research Center , Oswaldo Cruz Foundation, Belo Horizonte, Brazil
| | - Carlos Leomar Zani
- 3 Laboratory of Chemistry of Natural Products, René Rachou Research Center , Oswaldo Cruz Foundation, Belo Horizonte, Brazil
| | - Luiz Anastacio Alves
- 1 Laboratory of Cellular Communication, Oswaldo Cruz Institute , Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Zhang Q, Tao X, Xia S, Qu J, Song H, Liu J, Li H, Shang D. Emodin attenuated severe acute pancreatitis via the P2X ligand‑gated ion channel 7/NOD‑like receptor protein 3 signaling pathway. Oncol Rep 2018; 41:270-278. [PMID: 30542707 PMCID: PMC6278370 DOI: 10.3892/or.2018.6844] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022] Open
Abstract
Acute pancreatitis (AP) is an aseptic inflammation characterized with an annual incidence rate, and ~20% patients progressing to severe AP (SAP) with a high mortality rate. Although Qingyi decoction has been frequently used for SAP treatment over the past 3 decades in clinic, the actual mechanism of its protective effects remains unknown. As the major active ingredient of Qingyi decoction, emodin was selected in the present study to investigate the effect of emodin against severe acute pancreatitis (SAP) in rats through NOD-like receptor protein 3 (NLRP3) inflammasomes. The rats were randomly divided into a sham operation group, an SAP model group induced by a standard retrograde infusion of 5.0% sodium taurocholate into the biliopancreatic duct, and low-dose (30 mg/kg) and high-dose (60 mg/kg) emodin-treated groups. At 12 h after the event, the plasma amylase, lipase, interleukin (IL)-1β, IL-18 and myeloperoxidase (MPO) activities were examined. Furthermore, the pathological scores of pancreases were evaluated by hematoxylin and eosin staining. The expression levels of P2X ligand-gated ion channel 7 (P2X7), NLRP3, apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain and caspase-1 were also analyzed by western blot analysis. The data demonstrated that, compared with the SAP group, emodin could significantly relieve the pancreatic histopathology and acinar cellular structure injury, and notably downregulate the plasma amylase and lipase levels, as well as the MPO activities in pancreatic tissues, in a dose-dependent manner. Furthermore, emodin inhibited the P2X7/NLRP3 signaling pathway followed by the decrease of pro-inflammatory factors, and the latter is beneficial for the recovery of SAP. Collectively, the data indicated that emodin may be an efficient candidate natural product for SAP treatment.
Collapse
Affiliation(s)
- Qingkai Zhang
- Department of Integrative Medicine Surgery, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xufeng Tao
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Shilin Xia
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jialin Qu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Huiyi Song
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jianjun Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Hailong Li
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | - Dong Shang
- Department of Integrative Medicine Surgery, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
18
|
He Y, Taylor N, Fourgeaud L, Bhattacharya A. The role of microglial P2X7: modulation of cell death and cytokine release. J Neuroinflammation 2017; 14:135. [PMID: 28716092 PMCID: PMC5513370 DOI: 10.1186/s12974-017-0904-8] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/15/2017] [Indexed: 12/22/2022] Open
Abstract
Background ATP-gated P2X7 is a non-selective cation channel, which participates in a wide range of cellular functions as well as pathophysiological processes including neuropathic pain, immune response, and neuroinflammation. Despite its abundant expression in microglia, the role of P2X7 in neuroinflammation still remains unclear. Methods Primary microglia were isolated from cortices of P0-2 C57BL/6 wild-type or P2X7 knockout (P2X7−/−) mouse pups. Lipopolysaccharide, lipopolysaccharide plus IFNγ, or IL4 plus IL13 were used to polarize microglia to pro-inflammatory or anti-inflammatory states. P2rx7 expression level in resting or activated mouse and human microglia was measured by RNA-sequencing and quantitative real-time PCR. Microglial cell death was measured by cell counting kit-8 and immunocytochemistry, and microglial secretion in wild-type or P2X7−/− microglia was examined by Luminex multiplex assay or ELISA using P2X7 agonist BzATP or P2X7 antagonist A-804598. P2X7 signaling was analyzed by Western blot. Results First, we confirmed that P2rx7 is constitutively expressed in mouse and human primary microglia. Moreover, P2rx7 mRNA level was downregulated in mouse microglia under both pro- and anti-inflammatory conditions. Second, P2X7 agonist BzATP caused cell death of mouse microglia, while this effect was suppressed either by P2X7 knockout or by A-804598 under both basal and pro-inflammatory conditions, which suggests the mediating role of P2X7 in BzATP-induced microglial cell death. Third, BzATP-induced release of IL1 family cytokines including IL1α, IL1β, and IL18 was blocked in P2X7−/− microglia or by A-804598 in pro-inflammatory microglia, while the release of other cytokines/chemokines was independent of P2X7 activation. These findings support the specific role of P2X7 in IL1 family cytokine release. Finally, P2X7 activation was discovered to be linked to AKT and ERK pathways, which may be the underlying mechanism of P2X7 functions in microglia. Conclusions These results reveal that P2X7 mediates BzATP-induced microglial cell death and specific release of IL1 family cytokines, indicating the important role of P2X7 in neuroinflammation and implying the potential of targeting P2X7 for the treatment of neuroinflammatory disorders. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0904-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yingbo He
- Janssen Research & Development, LLC., Neuroscience Drug Discovery, 3210 Merryfield Row, San Diego, CA, 92121, USA.
| | - Natalie Taylor
- Janssen Research & Development, LLC., Neuroscience Drug Discovery, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Lawrence Fourgeaud
- Janssen Research & Development, LLC., Neuroscience Drug Discovery, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Anindya Bhattacharya
- Janssen Research & Development, LLC., Neuroscience Drug Discovery, 3210 Merryfield Row, San Diego, CA, 92121, USA
| |
Collapse
|
19
|
Caseley EA, Muench SP, Fishwick CW, Jiang LH. Structure-based identification and characterisation of structurally novel human P2X7 receptor antagonists. Biochem Pharmacol 2016; 116:130-9. [PMID: 27481062 PMCID: PMC5012888 DOI: 10.1016/j.bcp.2016.07.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/28/2016] [Indexed: 12/13/2022]
Abstract
The P2X7 receptor (P2X7R) plays an important role in diverse conditions associated with tissue damage and inflammation, meaning that the human P2X7R (hP2X7R) is an attractive therapeutic target. The crystal structures of the zebrafish P2X4R in the closed and ATP-bound open states provide an unprecedented opportunity for structure-guided identification of new ligands. The present study performed virtual screening of ∼100,000 structurally diverse compounds against the ATP-binding pocket in the hP2X7R. This identified three compounds (C23, C40 and C60) out of 73 top-ranked compounds by testing against hP2X7R-mediated Ca(2+) responses. These compounds were further characterised using Ca(2+) imaging, patch-clamp current recording, YO-PRO-1 uptake and propidium iodide cell death assays. All three compounds inhibited BzATP-induced Ca(2+) responses concentration-dependently with IC50s of 5.1±0.3μM, 4.8±0.8μM and 3.2±0.2μM, respectively. C23 and C40 inhibited BzATP-induced currents in a reversible and concentration-dependent manner, with IC50s of 0.35±0.3μM and 1.2±0.1μM, respectively, but surprisingly C60 did not affect BzATP-induced currents up to 100μM. They suppressed BzATP-induced YO-PRO-1 uptake with IC50s of 1.8±0.9μM, 1.0±0.1μM and 0.8±0.2μM, respectively. Furthermore, these three compounds strongly protected against ATP-induced cell death. Among them, C40 and C60 exhibited strong specificity towards the hP2X7R over the hP2X4R and rP2X3R. In conclusion, our study reports the identification of three novel hP2X7R antagonists with micromolar potency for the first time using a structure-based approach, including the first P2X7R antagonist with preferential inhibition of large pore formation.
Collapse
MESH Headings
- Adenosine Triphosphate/analogs & derivatives
- Adenosine Triphosphate/chemistry
- Adenosine Triphosphate/metabolism
- Adenosine Triphosphate/pharmacology
- Amides/chemistry
- Amides/metabolism
- Amides/pharmacology
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/chemistry
- Anti-Inflammatory Agents, Non-Steroidal/metabolism
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Binding Sites
- Calcium Signaling/drug effects
- HEK293 Cells
- Hepatocytes/cytology
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Humans
- Image Processing, Computer-Assisted
- Indoles/chemistry
- Indoles/metabolism
- Indoles/pharmacology
- Ligands
- Microscopy, Fluorescence
- Models, Molecular
- Patch-Clamp Techniques
- Purinergic P2X Receptor Antagonists/chemistry
- Purinergic P2X Receptor Antagonists/metabolism
- Purinergic P2X Receptor Antagonists/pharmacology
- Rats
- Receptors, Purinergic P2X3/chemistry
- Receptors, Purinergic P2X3/genetics
- Receptors, Purinergic P2X3/metabolism
- Receptors, Purinergic P2X4/chemistry
- Receptors, Purinergic P2X4/genetics
- Receptors, Purinergic P2X4/metabolism
- Receptors, Purinergic P2X7/chemistry
- Receptors, Purinergic P2X7/genetics
- Receptors, Purinergic P2X7/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Single-Cell Analysis
- Small Molecule Libraries
- Structure-Activity Relationship
- Thiophenes/chemistry
- Thiophenes/metabolism
- Thiophenes/pharmacology
Collapse
Affiliation(s)
- Emily A Caseley
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | | | - Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK.
| |
Collapse
|
20
|
Peng H, Hao Y, Mousawi F, Roger S, Li J, Sim JA, Ponnambalam S, Yang X, Jiang LH. Purinergic and Store-Operated Ca(2+) Signaling Mechanisms in Mesenchymal Stem Cells and Their Roles in ATP-Induced Stimulation of Cell Migration. Stem Cells 2016; 34:2102-14. [PMID: 27038239 DOI: 10.1002/stem.2370] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 02/10/2016] [Accepted: 03/14/2016] [Indexed: 12/19/2022]
Abstract
ATP is an extrinsic signal that can induce an increase in the cytosolic Ca(2+) level ([Ca(2+) ]c ) in mesenchymal stem cells (MSCs). However, the cognate intrinsic mechanisms underlying ATP-induced Ca(2+) signaling in MSCs is still contentious, and their importance in MSC migration remains unknown. In this study, we investigated the molecular mechanisms underlying ATP-induced Ca(2+) signaling and their roles in the regulation of cell migration in human dental pulp MSCs (hDP-MSCs). RT-PCR analysis of mRNA transcripts and interrogation of agonist-induced increases in the [Ca(2+) ]c support that P2X7, P2Y1 , and P2Y11 receptors participate in ATP-induced Ca(2+) signaling. In addition, following P2Y receptor activation, Ca(2+) release-activated Ca(2+) Orai1/Stim1 channel as a downstream mechanism also plays a significant role in ATP-induced Ca(2+) signaling. ATP concentration-dependently stimulates hDP-MSC migration. Pharmacological and genetic interventions of the expression or function of the P2X7, P2Y1 and P2Y11 receptors, and Orai1/Stim1 channel support critical involvement of these Ca(2+) signaling mechanisms in ATP-induced stimulation of hDP-MSC migration. Taken together, this study provide evidence to show that purinergic P2X7, P2Y1 , and P2Y11 receptors and store-operated Orai1/Stim1 channel represent important molecular mechanisms responsible for ATP-induced Ca(2+) signaling in hDP-MSCs and activation of these mechanisms stimulates hDP-MSC migration. Such information is useful in building a mechanistic understanding of MSC homing in tissue homeostasis and developing more efficient MSC-based therapeutic applications. Stem Cells 2016;34:2102-2114.
Collapse
Affiliation(s)
- Hongsen Peng
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Oral Biology, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Yunjie Hao
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Fatema Mousawi
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | | | - Jing Li
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Joan A Sim
- Faculty of Life Science, University of Manchester, Manchester, United Kingdom
| | - Sreenivasan Ponnambalam
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Xuebin Yang
- Department of Oral Biology, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, People's Republic of China
| |
Collapse
|
21
|
Rhein antagonizes P2X7 receptor in rat peritoneal macrophages. Sci Rep 2015; 5:14012. [PMID: 26354875 PMCID: PMC4564849 DOI: 10.1038/srep14012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 07/27/2015] [Indexed: 01/13/2023] Open
Abstract
P2X7 receptor plays important roles in inflammation and immunity, and thereby it serves as a potential therapeutic target for inflammatory diseases. Rhein, an anthraquinone derivative, exhibits significant anti-inflammatory and immunosuppressive activities in therapy. However, the underlying mechanisms are largely unclear. Here, we aimed to investigate the effects of rhein on P2X7 receptor-mediated responses in vitro. In HEK293 cells expressing rat P2X7 receptor, we first found that rhein concentration-dependently blocked ATP-induced cytosolic calcium concentration ([Ca(2+)]c) elevation and pore formation of the plasma membrane, two hallmarks of the P2X7 receptor activation. These two inhibitory effects of rhein were also observed in rat peritoneal macrophages. Furthermore, rhein counteracted macrophage phagocytosis attenuation and suppressed reactive oxygen species (ROS) production triggered by ATP/BzATP. Meanwhile, rhein reduced ATP/BzATP-induced IL-1β release in lipopolysaccharide-activated macrophages. Prolonged application of ATP caused macrophage apoptosis, while the presence of rhein suppressed this cell cytotoxicity. Such ATP/BzATP-induced cellular reactions were also inhibited by a well-known rat P2X7 receptor antagonist, brilliant blue G, in a similar way to rhein. Together, our results demonstrate that rhein inhibit ATP/BzATP-induced [Ca(2+)]c increase, pore formation, ROS production, phagocytosis attenuation, IL-1β release and cell apoptosis by antagonizing the P2X7 receptor in rat peritoneal macrophages.
Collapse
|
22
|
Abstract
Emodin (1,3,8-trihydroxy-6-methylanthraquinone) has been widely used as a traditional medicine and was shown to possess a multitude of health-promoting properties in pre-clinical studies, but its bioavailability was low due to the extensive glucuronidation in liver and intestine, hindering the development of emodin as a feasible chemopreventive agent. In this study, piperine, as a bioenhancer, was used to enhance the bioavailability of emodin by inhibiting its glucuronidation. The pharmacokinetic profiles of emodin after oral administration of emodin (20mg/kg) alone and in combination with piperine (20mg/kg) to rats were investigated via a validated LC/MS/MS method. As the in vivo pharmacokinetic studies had indicated, the AUC and Cmax of emodin were increased significantly after piperine treatment, and the glucuronidation of emodin was markedly inhibited. Our study demonstrated that piperine significantly improved the in vivo bioavailability of emodin and the influence of piperine on the pharmacokinetics of emodin may be attributed to the inhibition of glucuronidation of emodin. Further research is needed to investigate the detailed mechanism of improved bioavailability of emodin via its combination with piperine.
Collapse
|
23
|
Roger S, Jelassi B, Couillin I, Pelegrin P, Besson P, Jiang LH. Understanding the roles of the P2X7 receptor in solid tumour progression and therapeutic perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2584-602. [PMID: 25450340 DOI: 10.1016/j.bbamem.2014.10.029] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/13/2014] [Accepted: 10/20/2014] [Indexed: 01/05/2023]
Abstract
P2X7 is an intriguing ionotropic receptor for which the activation by extracellular ATP induces rapid inward cationic currents and intracellular signalling pathways associated with numerous physiological processes such as the induction of the inflammatory cascade, the survival and proliferation of cells. In contrast, long-term stimulation of P2X7 is generally associated with membrane permeabilisation and cell death. Recently, P2X7 has attracted great attention in the cancer field, and particularly in the neoplastic transformation and the progression of solid tumours. A growing number of studies were published; however they often appeared contradictory in their results and conclusions. As such, the involvement of P2X7 in the oncogenic process remains unclear so far. The present review aims to discuss the current knowledge and hypotheses on the involvement of the P2X7 receptor in the development and progression of solid tumours, and highlight the different aspects that require further clarification in order to decipher whether P2X7 could be considered as a cancer biomarker or as a target for pharmacological intervention. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Sébastien Roger
- Inserm UMR1069 Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France; Département de Physiologie Animale, UFR Sciences et Techniques, Université François-Rabelais de Tours, Avenue Monge, 37200 Tours, France.
| | - Bilel Jelassi
- Inserm UMR1069 Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Isabelle Couillin
- UMR CNRS 7355 Experimental and Molecular Immunology and Neurogenetics, Université d'Orléans, 3B rue de la Ferollerie, F-45071 Orléans, France
| | - Pablo Pelegrin
- Inflammation and Experimental Surgery Research Unit, CIBERehd, Clinical University Hospital "Virgen de la Arrixaca", Murcia's BioHealth Research Institute IMIB-Arrixaca, Carretera Cartagena-Madrid s/n, 30120 Murcia, Spain
| | - Pierre Besson
- Inserm UMR1069 Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
24
|
Adinolfi E. New intriguing roles of ATP and its receptors in promoting tumor metastasis : presented by Maria P. Abbracchio. Purinergic Signal 2014; 9:487-90. [PMID: 24258487 DOI: 10.1007/s11302-013-9401-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Elena Adinolfi
- Department of Morphology, Surgery and Experimental Medicine, Section of Experimental Pathology, Oncology and Biology, University of Ferrara, Via Borsari 46, 44121, Ferrara, Italy,
| |
Collapse
|
25
|
Bartlett R, Stokes L, Sluyter R. The P2X7 receptor channel: recent developments and the use of P2X7 antagonists in models of disease. Pharmacol Rev 2014; 66:638-75. [PMID: 24928329 DOI: 10.1124/pr.113.008003] [Citation(s) in RCA: 328] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The P2X7 receptor is a trimeric ATP-gated cation channel found predominantly, but not exclusively, on immune cells. P2X7 activation results in a number of downstream events, including the release of proinflammatory mediators and cell death and proliferation. As such, P2X7 plays important roles in various inflammatory, immune, neurologic and musculoskeletal disorders. This review focuses on the use of P2X7 antagonists in rodent models of neurologic disease and injury, inflammation, and musculoskeletal and other disorders. The cloning and characterization of human, rat, mouse, guinea pig, dog, and Rhesus macaque P2X7, as well as recent observations regarding the gating and permeability of P2X7, are discussed. Furthermore, this review discusses polymorphic and splice variants of P2X7, as well as the generation and use of P2X7 knockout mice. Recent evidence for emerging signaling pathways downstream of P2X7 activation and the growing list of negative and positive modulators of P2X7 activation and expression are also described. In addition, the use of P2X7 antagonists in numerous rodent models of disease is extensively summarized. Finally, the use of P2X7 antagonists in clinical trials in humans and future directions exploring P2X7 as a therapeutic target are described.
Collapse
Affiliation(s)
- Rachael Bartlett
- School of Biological Sciences, University of Wollongong, New South Wales, Australia and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (R.B., R.S.); and Health Innovations Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia (L.S.)
| | - Leanne Stokes
- School of Biological Sciences, University of Wollongong, New South Wales, Australia and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (R.B., R.S.); and Health Innovations Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia (L.S.)
| | - Ronald Sluyter
- School of Biological Sciences, University of Wollongong, New South Wales, Australia and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (R.B., R.S.); and Health Innovations Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia (L.S.)
| |
Collapse
|
26
|
Zhu S, Wang Y, Wang X, Li J, Hu F. Emodin inhibits ATP-induced IL-1β secretion, ROS production and phagocytosis attenuation in rat peritoneal macrophages via antagonizing P2X₇ receptor. PHARMACEUTICAL BIOLOGY 2014; 52:51-57. [PMID: 24028150 DOI: 10.3109/13880209.2013.810648] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Previous in vitro studies have demonstrated that emodin (1,3,8-trihydroxy-6-methyl-anthraquinone), an anthraquinone derivative from the rhizome of Rheum palmatum L., can inhibit the activation of P2X₇ receptors (P2X₇R) as a potential antagonist. However, the effects of emodin on P2X₇R-related inflammatory processes remain unclear. OBJECTIVE This study aimed to investigate the effects of emodin on different inflammation responses of macrophages induced by ATP, the natural ligand of P2X₇R. MATERIALS AND METHODS Rat peritoneal macrophages were treated with millimolar ATP and emodin (0.1, 0.3, 1, 3, 10 µM) or brilliant blue G (BBG, 0.1, 1, 10 µM). Cytosolic Ca²⁺ concentration ([Ca²⁺]c) was detected by fluorescent Ca²⁺ imaging. Interleukin-1β (IL-1β) release was measured by rat IL-1β ELISA kits. Reactive oxygen species (ROS) generation was examined by dihydroethidium (DHE) fluorescent staining. Phagocytic activity was tested by neutral red uptake assay. RESULTS We found that the [Ca²⁺](c) increase evoked by ATP (5 mM) was inhibited by emodin, in a dose-dependent manner with IC₅₀ of 0.5 μM. Furthermore, emodin reduced the IL-1β release induced by ATP (2 mM) in lipopolysaccharide (LPS)-activated macrophages, with an IC₅₀ of 1.6 μM. Emodin also strongly suppressed the ROS production and phagocytosis attenuation triggered by ATP (1 mM), with IC₅₀ values of 1 μM and 0.7 μM, respectively. Besides, BBG, a specific antagonist of P2X₇R, exhibited similar suppressive effects on these inflammation responses. CONCLUSION These results showed the inhibitory effects of emodin on ATP-induced [Ca²⁺](c) increase, IL-1β release, ROS production and phagocytosis attenuation in rat peritoneal macrophages, by inhibiting the activation of P2X₇R.
Collapse
Affiliation(s)
- Shuyan Zhu
- Department of Biophysics, School of Physics and
| | | | | | | | | |
Collapse
|
27
|
Physiological roles and potential therapeutic applications of the P2X7 receptor in inflammation and pain. Molecules 2013; 18:10953-72. [PMID: 24013409 PMCID: PMC6270334 DOI: 10.3390/molecules180910953] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 12/21/2022] Open
Abstract
The P2X7 receptor (P2X7R) is a nonselective cation channel that is activated by extracellular ATP and triggers the secretion of several proinflammatory substances, such as IL-1β, IL-18, TNF-α, and nitric oxide. Recently, several preclinical studies have demonstrated that this receptor participates in inflammation and pain mechanisms. Taken together, these results indicate that P2X7R is a promising pharmacological target, and compounds that modulate the function of this receptor show potential as new anti-inflammatory medicines. In this review, we discuss aspects of P2X7R pharmacology and the participation of this protein in inflammation and pain and provide an overview of some promising compounds that have been tested as antagonists of P2X7R, with clinical applicability.
Collapse
|
28
|
Jiang LH, Baldwin JM, Roger S, Baldwin SA. Insights into the Molecular Mechanisms Underlying Mammalian P2X7 Receptor Functions and Contributions in Diseases, Revealed by Structural Modeling and Single Nucleotide Polymorphisms. Front Pharmacol 2013; 4:55. [PMID: 23675347 PMCID: PMC3646254 DOI: 10.3389/fphar.2013.00055] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/11/2013] [Indexed: 12/13/2022] Open
Abstract
The mammalian P2X7 receptors (P2X7Rs), a member of the ionotropic P2X receptor family with distinctive functional properties, play an important part in mediating extracellular ATP signaling in health and disease. A clear delineation of the molecular mechanisms underlying the key receptor properties, such as ATP-binding, ion permeation, and large pore formation of the mammalian P2X7Rs, is still lacking, but such knowledge is crucial for a better understanding of their physiological functions and contributions in diseases and for development of therapeutics. The recent breakthroughs in determining the atomic structures of the zebrafish P2X4.1R in the closed and ATP-bound open states have provided the long-awaited structural information. The human P2RX7 gene is abundant with non-synonymous single nucleotide polymorphisms (NS-SNPs), which generate a repertoire of human P2X7Rs with point mutations. Characterizations of the NS-SNPs identified in patients of various disease conditions and the resulting mutations have informed previously unknown molecular mechanisms determining the mammalian P2X7R functions and diseases. In this review, we will discuss the new insights into such mechanisms provided by structural modeling and recent functional and genetic linkage studies of NS-SNPs.
Collapse
Affiliation(s)
- Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds Leeds, UK
| | | | | | | |
Collapse
|
29
|
Zhao LM, Zhang LM, Ma FY, Wang XS, Jin HS. Catalyst-free Mannich reaction of hydroxyanthraquinone: facile access to emodin Mannich bases and anthraoxazines. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.03.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Natural Products as a Source for New Anti-Inflammatory and Analgesic Compounds through the Inhibition of Purinergic P2X Receptors. Pharmaceuticals (Basel) 2013; 6:650-8. [PMID: 24276172 PMCID: PMC3817725 DOI: 10.3390/ph6050650] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/18/2013] [Accepted: 04/22/2013] [Indexed: 12/31/2022] Open
Abstract
Natural products have reemerged in traditional medicine as a potential source of new molecules or phytomedicines to help with health disorders. It has been established that members of the P2X subfamily, ATP-gated ion channels, are crucial to the inflammatory process and pain signalization. As such, several preclinical studies have demonstrated that P2X2R, P2X3R, P2X4R and P2X7R are promising pharmacological targets to control inflammatory and pain disorders. Several studies have indicated that natural products could be a good source of the new specific molecules needed for the treatment of diseases linked to inflammation and pain disorders through the regulation of these receptors. Herein, we discuss and give an overview of the applicability of natural products as a source to obtain P2X receptors (P2XR) selective antagonists for use in clinical treatment, which require further investigation.
Collapse
|
31
|
Zou J, Ainscough JF, Yang W, Sedo A, Yu SP, Mei ZZ, Sivaprasadarao A, Beech DJ, Jiang LH. A differential role of macrophage TRPM2 channels in Ca²⁺ signaling and cell death in early responses to H₂O₂. Am J Physiol Cell Physiol 2013; 305:C61-9. [PMID: 23596170 DOI: 10.1152/ajpcell.00390.2012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Reactive oxygen species such as H₂O₂ elevates the cytosolic Ca²⁺ concentration ([Ca²⁺]c) and causes cell death via poly(ADPR) polymerase (PARP) activation, which also represents the primary mechanism by which H₂O₂ activate the transient receptor potential melastatin-related 2 (TRPM2) channel as a Ca²⁺-permeable channel present in the plasma membrane or an intracellular Ca²⁺-release channel. The present study aimed to define the contribution and mechanisms of the TRPM2 channels in macrophage cells in mediating Ca²⁺ signaling and cell death during initial response to H₂O₂, using mouse peritoneal macrophage, RAW264.7, and differentiated THP-1 cells. H₂O₂ evoked robust increases in the [Ca²⁺]c, and such Ca²⁺ responses were significantly greater at body temperature than room temperature. H₂O₂-induced Ca²⁺ responses were strongly inhibited by pretreatment with PJ-34, a PARP inhibitor, and largely prevented by removal of extracellular Ca²⁺. Furthermore, H₂O₂-induced increases in the [Ca²⁺]c were completely abolished in macrophage cells isolated from trpm2-/- mice. H₂O₂ reduced macrophage cell viability in a duration- and concentration-dependent manner. H₂O₂-induced cell death was significantly attenuated by pretreatment with PJ-34 and TRPM2 channel deficiency but remained significant and persistent. Taken together, these results show that the TRPM2 channel in macrophage cells functions as a cell surface Ca²⁺-permeable channel that mediates Ca²⁺ influx and constitutes the principal Ca²⁺ signaling mechanism but has a limited, albeit significant, role in cell death during early exposure to H₂O₂.
Collapse
Affiliation(s)
- Jie Zou
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Jelassi B, Anchelin M, Chamouton J, Cayuela ML, Clarysse L, Li J, Goré J, Jiang LH, Roger S. Anthraquinone emodin inhibits human cancer cell invasiveness by antagonizing P2X7 receptors. Carcinogenesis 2013; 34:1487-96. [PMID: 23524196 DOI: 10.1093/carcin/bgt099] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The adenosine 5'-triphosphate (ATP)-gated Ca(2+)-permeable channel P2X7 receptor (P2X7R) is strongly upregulated in many tumors and cancer cells, and has an important role in cancer cell invasion associated with metastases. Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is an anthraquinone derivative originally isolated from Rheum officinale Baill known for decades to possess anticancer properties. In this study, we examined the effects of emodin on P2X7R-dependent Ca(2+) signaling, extracellular matrix degradation, and in vitro and in vivo cancer cell invasiveness using highly aggressive human cancer cells. Inclusion of emodin at doses ≤10 µM in cell culture had no or very mild effect on the cell viability. ATP elicited increases in intracellular Ca(2+) concentration were reduced by 35 and 60% by 1 and 10 µM emodin, respectively. Emodin specifically inhibited P2X7R-mediated currents with an IC50 of 3 µM and did not inhibit the currents mediated by the other human P2X receptors heterologously expressed in human embryonic kidney (HEK293T) cells. ATP-induced increase in gelatinolytic activity, in cancer cell invasiveness in vitro and in cell morphology changes were prevented by 1 µM emodin. Furthermore, such ATP-evoked effects and inhibition by emodin were almost completely ablated in cancer cells transfected with P2X7R-specific small interfering RNA (siRNA) but not with scrambled siRNA. Finally, the in vivo invasiveness of the P2X7R-positive MDA-MB-435s breast cancer cells, assessed using a zebrafish model of micrometastases, was suppressed by 40 and 50% by 1 and 10 µM emodin. Taken together, these results provide consistent evidence to indicate that emodin inhibits human cancer cell invasiveness by specifically antagonizing the P2X7R.
Collapse
Affiliation(s)
- Bilel Jelassi
- Inserm U1069 Nutrition, Growth and Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Action of natural products on p2 receptors: a reinvented era for drug discovery. Molecules 2012; 17:13009-25. [PMID: 23117439 PMCID: PMC6268057 DOI: 10.3390/molecules171113009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/12/2012] [Accepted: 10/24/2012] [Indexed: 12/15/2022] Open
Abstract
Natural products contribute significantly to available drug therapies and have been a rich source for scientific investigation. In general, due to their low cost and traditional use in some cultures, they are an object of growing interest as alternatives to synthetic drugs. With several diseases such as cancer, and inflammatory and neuropathic diseases having been linked to the participation of purinergic (P2) receptors, there has been a flurry of investigations on ligands within natural products. Thirty-four different sources of these compounds have been found so far, that have shown either agonistic or antagonistic effects on P2 receptors. Of those, nine different plant sources demonstrated effects on P2X2, P2X3, P2X7, and possibly P2Y12 receptor subtypes. Microorganisms, which represent the largest group, with 26 different sources, showed effects on both receptor subtypes, ranging from P2X1 to P2X4 and P2X7, and P2Y1, P2Y2, P2Y4, and P2Y6. In addition, there were seventeen animal sources that affected P2X7 and P2Y1 and P2Y12 receptors. Natural products have provided some fascinating new mechanisms and sources to better understand the P2 receptor antagonism. Moreover, current investigations should clarify further pharmacological mechanisms in order to consider these products as potential new medicines.
Collapse
|