1
|
Situmorang PC, Ilyas S, Nugraha SE, Syahputra RA, Nik Abd Rahman NMA. Prospects of compounds of herbal plants as anticancer agents: a comprehensive review from molecular pathways. Front Pharmacol 2024; 15:1387866. [PMID: 39104398 PMCID: PMC11298448 DOI: 10.3389/fphar.2024.1387866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/17/2024] [Indexed: 08/07/2024] Open
Abstract
Cancer refers to the proliferation and multiplication of aberrant cells inside the human body, characterized by their capacity to proliferate and infiltrate various anatomical regions. Numerous biochemical pathways and signaling molecules have an impact on the cancer auto biogenesis process. The regulation of crucial cellular processes necessary for cell survival and proliferation, which are triggered by phytochemicals, is significantly influenced by signaling pathways. These pathways or components are regulated by phytochemicals. Medicinal plants are a significant reservoir of diverse anticancer medications employed in chemotherapy. The anticancer effects of phytochemicals are mediated by several methods, including induction of apoptosis, cessation of the cell cycle, inhibition of kinases, and prevention of carcinogenic substances. This paper analyzes the phytochemistry of seven prominent plant constituents, namely, alkaloids, tannins, flavonoids, phenols, steroids, terpenoids, and saponins, focusing on the involvement of the MAPK/ERK pathway, TNF signaling, death receptors, p53, p38, and actin dynamics. Hence, this review has examined a range of phytochemicals, encompassing their structural characteristics and potential anticancer mechanisms. It has underscored the significance of plant-derived bioactive compounds in the prevention of cancer, utilizing diverse molecular pathways. In addition, this endeavor also seeks to incentivize scientists to carry out clinical trials on anticancer medications derived from plants.
Collapse
Affiliation(s)
- Putri Cahaya Situmorang
- Study Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Syafruddin Ilyas
- Study Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Sony Eka Nugraha
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Nik Mohd Afizan Nik Abd Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
2
|
Govindasamy B, Muthu M, Gopal J, Chun S. A review on the impact of TRAIL on cancer signaling and targeting via phytochemicals for possible cancer therapy. Int J Biol Macromol 2023; 253:127162. [PMID: 37788732 DOI: 10.1016/j.ijbiomac.2023.127162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Anticancer therapies have been the continual pursuit of this age. Cancer has been ravaging all across the globe breathing not just threats but demonstrating them. Remedies for cancer have been frantically sought after. Few have worked out, yet till date, the available cancer therapies have not delivered a holistic solution. In a world where the search for therapies is levitating towards natural remedies, solutions based on phytochemicals are highly prospective attractions. A lot has been achieved with inputs from plant resources, providing numerous natural remedies. In the current review, we intensely survey the progress achieved in the treatment of cancer through phytochemicals-based programmed cell death of cancer cells. More specifically, we have further reviewed and discussed the role of phytochemicals in activating apoptosis via Tumor Necrosis Factor-Alpha-Related Apoptosis-Inducing Ligand (TRAIL), which is a cell protein that can attach to certain molecules in cancer cells, killing cancer cells. The objective of this review is to enlist the various phytochemicals that are available for specifically contributing towards triggering the TRAIL cell protein-mediated cancer therapy and to point out the research gaps that require future research motivation. This is the first review of this kind in this research direction.
Collapse
Affiliation(s)
- Balasubramani Govindasamy
- Department of Product Development, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Sechul Chun
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
3
|
Methotrexate loaded in alginate beads for controlled drug release against breast cancer. Gene 2023; 851:146941. [DOI: 10.1016/j.gene.2022.146941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/02/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
|
4
|
Woradulayapinij W, Pothiluk A, Nualsanit T, Yimsoo T, Yingmema W, Rojanapanthu P, Hong Y, Baek SJ, Treesuppharat W. Acute oral toxicity of damnacanthal and its anticancer activity against colorectal tumorigenesis. Toxicol Rep 2022; 9:1968-1976. [PMID: 36518435 PMCID: PMC9742955 DOI: 10.1016/j.toxrep.2022.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022] Open
Abstract
Damnacanthal is an anthraquinone, extracted, and purified from the root of Morinda citrifolia in Thailand. This study aimed to measure acute oral toxicity and to investigate the anticancer activity of damnacanthal in colorectal tumorigenesis. We found that the growth of human colorectal cancer cells was inhibited by damnacanthal in a dose- and a time-dependent manner. The growth inhibitory effect of damnacanthal was better than that of 5-FU used as a positive control in colorectal cancer cells, along with the downregulation of cell cycle protein cyclin D1. Similarly, an oral treatment of damnacanthal effectively inhibited the growth of colorectal tumor xenografts in nude mice, which was approximately 2-3-fold higher as compared to 5-FU by tumor size as well as expression of bioluminescence. Furthermore, the study of acute oral toxicity in mice exhibited a relatively low toxicity of damnacanthal with a LD50 cut-off value of 2500 mg/kg according to OECD Guideline 423. These results reveal the potential therapeutic activity of a natural damnacanthal compound as an anti-colorectal cancer drug.
Collapse
Key Words
- 5-FU, 5-Fluorouracil
- ALT, Alanine aminotransferase
- AST, Aspartate aminotransferase
- Acute oral toxicity
- Anticancer activity
- BSA, Bovine serum albumin
- BUN, Blood urea nitrogen
- Colorectal tumorigenesis
- D20, Damnacanthal at 20 mg/kg
- D40, Damnacanthal at 40 mg/kg
- DMSO, Dimethyl sulfoxide
- DPBS, Dulbecco’s phosphate buffered saline
- Damnacanthal
- F20, 5-Fluorouracil at 20 mg/kg
- FBS, Fetal bovine serum
- FTIR, Fourier transform infrared spectroscopy
- IC50, Half-maximal inhibitory concentration
- LD50, Median lethal dose
- MS, Mass spectrometry
- MTT, 3-(4,5-Dimethythiazol-2-yl)− 2,5-diphenyltetrazolium bromide
- NC, Negative control
- NMR, Nuclear magnetic resonance spectroscopy
- PMSF, Phenylmethanesulfonyl fluoride
- TBST, Tris-buffered saline containing 0.05 % Tween 20
- TLC, Thin layer chromatography
- VLC, Vacuum liquid chromatographic method
Collapse
Affiliation(s)
- Warunya Woradulayapinij
- Thammasat University Research Unit in Mechanisms of Drug Action and Molecular Imaging, Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University, Pathum Thani 12120, Thailand
| | - Apipu Pothiluk
- Thammasat University Research Unit in Mechanisms of Drug Action and Molecular Imaging, Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University, Pathum Thani 12120, Thailand
| | - Thararat Nualsanit
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Thunyatorn Yimsoo
- Laboratory Animal Center, Office of Advanced Science and Technology, Thammasat University, Pathum Thani 12120, Thailand
| | - Werayut Yingmema
- Laboratory Animal Center, Office of Advanced Science and Technology, Thammasat University, Pathum Thani 12120, Thailand
| | - Pleumchitt Rojanapanthu
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University, Pathum Thani 12120, Thailand
| | - Yukyung Hong
- Laboratory of Signal Transduction, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Seung Joon Baek
- Laboratory of Signal Transduction, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Worapapar Treesuppharat
- Thammasat University Research Unit in Mechanisms of Drug Action and Molecular Imaging, Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University, Pathum Thani 12120, Thailand
| |
Collapse
|
5
|
Cho HD, Gu IA, Won YS, Moon KD, Park KH, Seo KI. Auriculasin sensitizes primary prostate cancer cells to TRAIL-mediated apoptosis through up-regulation of the DR5-dependent pathway. Food Chem Toxicol 2019; 126:223-232. [PMID: 30817944 DOI: 10.1016/j.fct.2019.02.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/07/2019] [Accepted: 02/19/2019] [Indexed: 01/09/2023]
Abstract
Primary prostate cancer cells frequently develop resistance toward chemotherapy as well as most chemotherapeutics have been reported to induce undesirable cytotoxicity in normal cells. In this study, we performed sensitizing activity analysis of auriculasin (AC) to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in RC-58T/h/SA#4 primary prostate cancer cells without significant cytotoxicity in RWPE-1 prostate epithelial cells. Combined treatment with AC and TRAIL at optimal concentrations resulted in tumor-specific apoptotic cell death in RC-58T/h/SA#4 cells, characterized by DNA fragmentation, accumulation of apoptotic cell population, and nuclear condensation. Compared to single treatment with AC or TRAIL, co-treatment with AC and TRAIL significantly increased expression of Bax, cleaved PARP, AIF, endo G, and cytochrome c but decreased expression of phosphorylation of AKT and mammalian target of rapamycin (mTOR), phosphoinositide 3-kinase (PI3K), Bcl-2 and caspases-9, -8, -3, and -10. The sensitizing effect of AC to TRAIL was well correlated with inhibition of death receptor 5 (DR5) CHOP, and p53 expression. Moreover, pre-treatment with a chimeric blocking antibody for DR5 effectively reduced AC-TRAIL-induced cell death and apoptosis-related protein expression. These results suggest that non-toxic concentrations of AC sensitize TRAIL-resistant primary prostate cancer cells to TRAIL-mediated apoptosis via up-regulation of DR5 and downstream signaling pathways.
Collapse
Affiliation(s)
- Hyun-Dong Cho
- Department of Food Science and Technology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - In-Ah Gu
- Department of Food Science, University of Arkansas, AR, 72704, USA
| | - Yeong-Seon Won
- Institute of Agriculture Life Science, Dong-A University, Busan, 49315, Republic of Korea
| | - Kwang-Deog Moon
- Department of Food Science and Technology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ki-Hun Park
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Kwon-Il Seo
- Department of Biotechnology, Dong-A University, Busan, 49315, Republic of Korea.
| |
Collapse
|
6
|
Long S, Yuan C, Wang Y, Zhang J, Li G. Network Pharmacology Analysis of Damnacanthus indicus C.F.Gaertn in Gene-Phenotype. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:1368371. [PMID: 30906409 PMCID: PMC6398045 DOI: 10.1155/2019/1368371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/21/2019] [Accepted: 02/03/2019] [Indexed: 12/11/2022]
Abstract
Damnacanthus indicus C.F.Gaertn is known as Huci in traditional Chinese medicine. It contains a component having anthraquinone-like structure which is a part of the many used anticancer drugs. This study was to collect the evidence of disease-modulatory activities of Huci by analyzing the published literature on the chemicals and drugs. A list of its compounds and direct protein targets is predicted by using Bioinformatics Analysis Tool for Molecular Mechanism of TCM. A protein-protein interaction network using links between its directed targets and the other known targets was constructed. The DPT-associated genes in net were scrutinized by WebGestalt. Exploring the cancer genomics data related to Huci through cBio Portal. Survival analysis for the overlap genes is done by using UALCAN. We got 16 compounds and it predicts 62 direct protein targets and 100 DPTs and they were identified for these compounds. DPT-associated genes were analyzed by WebGestalt. Through the enrichment analysis, we got top 10 identified KEGG pathways. Refined analysis of KEGG pathways showed that one of these ten pathways is linked to Rap1 signaling pathway and another one is related to breast cancer. The survival analysis for the overlap genes shows the significant negative effect of these genes on the breast cancer patients. Through the research results of Damnacanthus indicus C.F.Gaertn, it is shown that medicine network pharmacology may be regarded as a new paradigm for guiding the future studies of the traditional Chinese medicine in different fields.
Collapse
Affiliation(s)
- Shengrong Long
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, NanJing Bei Road, Heping District, Shenyang, 110001, LiaoNing Province, China
| | - Caihong Yuan
- Department of Chinese Medicine, The First Affiliated Hospital of China Medical University, NanJing Bei Road, Heping District, Shenyang, 110001, LiaoNing Province, China
| | - Yue Wang
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, NanJing Bei Road, Heping District, Shenyang, 110001, LiaoNing Province, China
| | - Jie Zhang
- Department of Chinese Medicine, The First Affiliated Hospital of China Medical University, NanJing Bei Road, Heping District, Shenyang, 110001, LiaoNing Province, China
| | - Guangyu Li
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, NanJing Bei Road, Heping District, Shenyang, 110001, LiaoNing Province, China
| |
Collapse
|
7
|
Qian Q, Cao X, Wang B, Qu Y, Qian Q, Sun Z, Feng F. TNF-α-TNFR signal pathway inhibits autophagy and promotes apoptosis of alveolar macrophages in coal worker's pneumoconiosis. J Cell Physiol 2018; 234:5953-5963. [PMID: 30467847 DOI: 10.1002/jcp.27061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/26/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Exposure to coal dust causes the development of coal worker's pneumoconiosis (CWP), which is associated with accumulating macrophages in the lower respiratory tract. This study was performed to investigate the effect of tumor necrosis factor-α (TNF-α)-tumor necrosis factor receptor (TNFR) signal pathway on autophagy and apoptosis of alveolar macrophages (AMs) in CWP. METHODS AMs from controls exposed to coal dust and CWP patients were collected, in which expressions of TNF-α and TNFR1 were determined. Autophagy was observed by transmission electron microscopy, and apoptosis by light microscope and using terminal deoxynucleotidyl transferase dUTP nick-end labeling staining. AMs in CWP patients were treated with TNF-α or anti-TNF-α antibody. Besides, expressions of autophagy marker proteins, apoptosis-related factors, FAS, caspase-8, and receptor-interacting serine-threonine-protein kinase 3 (RIPK3) were determined by western Blot. Activities of caspase-3 and caspase-8 were determined by a fluorescence kit. Flow cytometry was applied to measure the expression of TNFR1 on the surface of the AM. RESULTS TNF-α expression and TNFR1 expression on the surface of AM, as well as autophagy and apoptotic index were significantly increased in AMs of CWP patients. In response to the treatment of TNF-α, TNF-α expression and TNFR1 expression on the surface of AM as well as LC3I expression were increased, autophagy was decreased, and LC3, LC3II, Beclin1 and B-cell lymphoma 2 expressions decreased, whereas FAS expression and activity and expression of caspase-3 and caspase-8 increased, and apoptotic index increased. Moreover, the situations were reversed with the treatment of anti-TNF-α antibody. CONCLUSION TNF-α-TNFR signal pathway was involved in the occurrence and development of CWP by activating FAS-caspase-8 and thus inhibiting autophagy while promoting apoptosis of AM.
Collapse
Affiliation(s)
- Qingzeng Qian
- College of Public Health, North China University of Science and Technology, Tangshan, China.,Hebei Coal Mine Sanitation and Safety Laboratory, Tangshan, China
| | - Xiangke Cao
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Bin Wang
- Department of Pediatrics, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Yi Qu
- Hebei Medical Information Research Institute, Shijiazhuang, China
| | - Qingqiang Qian
- Department of Internal Medicine-Neurology, Tangshan Worker's Hospital Affiliated to North China University of Science and Technology, Tangshan, China
| | - Zhiqian Sun
- Occupational Health Technical Service Center, Beidaihe Occupational Disease Prevention and Treatment Hospital of The State Administration of Work Safety, Qinghuangdao, China
| | - Fumin Feng
- College of Public Health, North China University of Science and Technology, Tangshan, China.,Hebei Coal Mine Sanitation and Safety Laboratory, Tangshan, China
| |
Collapse
|
8
|
Chaichanasak N, Rojanapanthu P, Yoon Y, Gritsanapan W, Chirachanchai S, Sathirakul K, Nualsanit T, Seong JK, Baek SJ. Chitosan-based nanoparticles with damnacanthal suppress CRM1 expression. Oncol Lett 2018; 16:7029-7034. [PMID: 30546436 PMCID: PMC6256335 DOI: 10.3892/ol.2018.9507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
Cancer is one of the leading causes of mortality worldwide. Phytochemicals may be promising anticancer agents given their various chemical structures and diverse biological activities. Damnacanthal (DAM) is a major bioactive component of Noni, which has been investigated previously as a cancer-preventive or chemotherapeutic agent. DAM has also been reported to exhibit anti-proliferative activity in several cancer types. In the present study, it was identified that DAM downregulates chromosome maintenance protein 1 (CRM1) expression in human cancer cells. The application of chitosan-based nanoparticles (NPs) with DAM also induced CRM1 downregulation, which suggests that chitosan-based NPs may be effective vehicles for delivery of phytochemicals such as DAM. It was also identified that DAM increased the levels of the tumor suppressor non-steroidal anti-inflammatory drugs-activated gene 1 in the nucleus, thereby leading to enhanced anticancer effects. The results of the present study indicate that DAM and its nanoformulation may be a candidate anticancer drug.
Collapse
Affiliation(s)
- Nadda Chaichanasak
- Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea.,Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Pleumchitt Rojanapanthu
- Drug Discovery and Development Center, Thammasat University, Rangsit, Pathumthani 12121, Thailand
| | - Yongdae Yoon
- Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | | | - Suwabun Chirachanchai
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
| | - Korbtham Sathirakul
- Drug Discovery and Development Center, Thammasat University, Rangsit, Pathumthani 12121, Thailand
| | - Thararat Nualsanit
- Chulabhorn International College of Medicine, Thammasat University, Rangsit, Pathumthani 12121, Thailand
| | - Je Kyung Seong
- Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Joon Baek
- Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
9
|
Fu L, Liu S, Wang H, Ma Y, Li L, He X, Mou X, Tong X, Hu Z, Ru G. Low expression of NEK2 is associated with hepatocellular carcinoma progression and poor prognosis. Cancer Biomark 2018; 20:101-106. [PMID: 28759960 DOI: 10.3233/cbm-170586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND NIMA-related kinase 2 (NEK2), a serine/threonine kinase, is located in the centrosome and is a member of cell cycle regulation related protein kinase (CCRK) family. Aberrant expression of NEK2 is linked with carcinogenesis and progression of various tumors. OBJECTIVE To investigate the expression level of NEK2 and its relationship with clinicopathological factors in hepatocellular carcinoma (HCC). METHODS Immunohistochemistry was used to measure the expression of NEK2 in 310 patients' specimen tissues and 197 adjacent normal liver tissues of HCC cases, and the subsequent prognostic value for each sample was estimated. RESULTS NEK2 expression levels in HCC were lower than in adjacent tissues (49.7% vs. 72.6%, P< 0.001). First, patients with relatively low NEK2 expression had increased cancer progression and poorer prognosis than those with high expression. Second, NEK2 expression was significantly reduced in patients with large tumors (P= 0.025), with stage III Edmondson-Steiner Grading (P= 0.015). Third, patients' tumor size positively correlated with high AFP concentration (P= 0.017). Fourth, using the Kaplan-Meier survival curve, we found a lower survival rate in patients with decreased expression of NEK2 than those with high NEK2 expression in HCC (P= 0.029, Log-rank test). CONCLUSIONS Low NEK2 expression might be a useful predictor in HCC as a poor prognostic factor, and could serve as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Luoqin Fu
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China
| | - Suxia Liu
- School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China.,Department of Clinical Laboratory, Lishui Central Hospital, Lishui 323000, Zhejiang, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China
| | - Huiju Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China
| | - Yingyu Ma
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China
| | - Li Li
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China
| | - Xianglei He
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China
| | - Xiangmin Tong
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China.,School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China.,Department of Clinical Laboratory, Lishui Central Hospital, Lishui 323000, Zhejiang, China
| | - Zhiming Hu
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China.,Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China
| | - Guoqing Ru
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China
| |
Collapse
|
10
|
Shaghayegh G, Alabsi AM, Ali-Saeed R, Ali AM, Vincent-Chong VK, Ismail NH, Choon YF, Zain RB. Effects of Damnacanthal and Nordamnacanthal on Proliferation, Apoptosis, and Migration of Oral Squamous Cell Carcinoma Cells. Asian Pac J Cancer Prev 2017; 18:3333-3341. [PMID: 29286228 PMCID: PMC5980892 DOI: 10.22034/apjcp.2017.18.12.3333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cancer is one of the most common causes of death in the developed world, with one-third of people diagnosed with cancer during their lifetime. Oral cancer commonly occurs involving the buccal mucosa (cheeks), tongue, floor of the mouth and lip. It is one of the most devastating and disfiguring of malignancies. Morinda citrifolia L., commonly known as ‘noni’, belongs to the Rubiaceae family. It is native to the Pacific islands, Hawaii, Caribbean, Asia and Australia. The plant displays broad curative effects in pharmacological studies. Damnacanthal (DAM) and Nordamnacanthal (NDAM), anthraquinone compounds isolated from the roots of Morinda citrifolia L., has been used for the treatment of several chronic diseases including cancer. The objectives of this study were to evaluate cytotoxicity, morphological changes, cell death mode (apoptosis/necrosis), and cell migration induced by DAM and NDAM on the most common type of oral cancer, oral squamous cell carcinoma (OSCC)cells. Anti-proliferative effects of these compounds against OSCC cell lines were determined by MTT assay. The mode of cell death was analysed by phase contrast and fluorescent microscopy as well as flow cytometry. In addition, cell migration was assessed. The results showed that DAM and NDAM exerted cytotoxicity against OSCC cells with IC50 values of 1.9 to >30 μg/ml after 72 h treatment. Maximum growth inhibition among the tested cell lines for both compounds was observed in H400 cells, and thus it was selected for further study. The study demonstrated inhibition of H400 OSCC cell proliferation, marked apoptotic morphological changes, induction of early apoptosis, and inhibition of cell migration by DAM and NDAM. Therefore, this information suggests that these compounds from noni have potential for used as anti tumor agents for oral cancer therapy.
Collapse
Affiliation(s)
- Gohar Shaghayegh
- Department of Oral and craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Chou HY, Chueh FS, Ma YS, Wu RSC, Liao CL, Chu YL, Fan MJ, Huang WW, Chung JG. Bufalin induced apoptosis in SCC‑4 human tongue cancer cells by decreasing Bcl‑2 and increasing Bax expression via the mitochondria‑dependent pathway. Mol Med Rep 2017; 16:7959-7966. [PMID: 28983595 PMCID: PMC5779878 DOI: 10.3892/mmr.2017.7651] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 07/17/2017] [Indexed: 11/09/2022] Open
Abstract
The aim of the present study was to investigate the cytotoxic effects of bufalin on SCC-4 human tongue cancer cells. Cell morphological changes and viability were examined using phase contrast microscopy and flow cytometry, respectively. The results indicated that bufalin induced morphological changes and reduced total viable cells. Apoptotic cell death was analyzed by DAPI staining and DNA gel electrophoresis; the results revealed that bufalin induced cell apoptosis. Levels of reactive oxygen species (ROS), Ca2+, nitric oxide (NO) and mitochondrial membrane potential (ΔΨm) were measured by flow cytometry, and bufalin was observed to increase Ca2+ and NO production, decrease the ΔΨm and reduce ROS production in SCC-4 cells. In addition, western blotting was performed to detect apoptosis-associated protein expression. The results demonstrated that bufalin reduced the expression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) and increased the expression of the pro-apoptotic protein, Bcl-2-associated X protein. However, bufalin treatment also increased the expression of other apoptosis-associated proteins such as apoptosis-inducing factor and endonuclease G in SCC-4 cells. Based on these findings, bufalin may induce apoptotic cell death via mitochondria-dependent pathways in human tongue cancer SCC-4 cells.
Collapse
Affiliation(s)
- Han-Yu Chou
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 41354, Taiwan, R.O.C
| | - Yi-Shih Ma
- School of Chinese Medicine for Post‑Baccalaureate, I‑Shou University, Kaohsiung 84001, Taiwan, R.O.C
| | - Rick Sai-Chuen Wu
- Department of Anesthesiology, China Medical University Hospital, Taichung 40402, Taiwan, R.O.C
| | - Ching-Lung Liao
- College of Chinese Medicine, School of Post‑Baccalaureate Chinese Medicine, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Yung-Lin Chu
- Department of Food Science, International College, National Pingtung University of Science and Technology, Pingtung 912, Taiwan, R.O.C
| | - Ming-Jen Fan
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan, R.O.C
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan, R.O.C
| |
Collapse
|
12
|
Sukamporn P, Baek SJ, Gritsanapan W, Chirachanchai S, Nualsanit T, Rojanapanthu P. Self-assembled nanomicelles of damnacanthal-loaded amphiphilic modified chitosan: Preparation, characterization and cytotoxicity study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1068-1077. [DOI: 10.1016/j.msec.2017.03.263] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/23/2017] [Accepted: 03/26/2017] [Indexed: 01/22/2023]
|
13
|
Farooqi AA, Gadaleta CD, Ranieri G, Fayyaz S, Marech I. Restoring TRAIL Induced Apoptosis Using Naturopathy. Hercules Joins Hand with Nature to Triumph Over Lernaean Hydra. Curr Genomics 2016; 18:27-38. [PMID: 28503088 PMCID: PMC5321767 DOI: 10.2174/1389202917666160803150023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/28/2015] [Accepted: 11/13/2015] [Indexed: 01/01/2023] Open
Abstract
Cancer is a multifaceted disease. Our deepened knowledge about genetic and biological mechanisms of cancer cells presents an opportunity to explore the inter-individual differences in the body’s ability to metabolize and respond to different nutrients. It is becoming progressively more understandable that the deregulation of several signaling pathways and the alterations in apoptotic response are some of the major determinants that underpin carcinogenesis. Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL)-mediated signaling has gained a remarkable appreciation because of its ability to selectively induce apoptosis in cancer cells leaving normal cells intact. However, technological advances have started to shed light on underlying mechanisms of resistance against TRAIL-induced apoptosis in cancer cells. The impairment of TRAIL-mediated apoptosis includes various factors ranging from the loss or down regulation of TRAIL receptors or pro-apoptotic proteins to the up regulation of anti-apoptotic proteins. Intriguingly to mention that there is an ever-increasing number of natural herbal extracts (phytometabolites), which have been explored to date for their potential action in restoring apoptosis TRAIL-mediated in cancer cells. In this review, we will highlight the progress in understanding the mechanisms opted by phenolic compounds in overcoming TRAIL resistance.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- 1Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan; 2Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Cosmo Damiano Gadaleta
- 1Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan; 2Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Girolamo Ranieri
- 1Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan; 2Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Sundas Fayyaz
- 1Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan; 2Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Ilaria Marech
- 1Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan; 2Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre Istituto Tumori "Giovanni Paolo II", Bari, Italy
| |
Collapse
|
14
|
Comparative analysis of regulatory roles of P38 signaling pathway in 8 types liver cell during liver regeneration. Gene 2016; 594:66-73. [DOI: 10.1016/j.gene.2016.08.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/05/2016] [Accepted: 08/31/2016] [Indexed: 12/17/2022]
|
15
|
Shaghayegh G, Alabsi AM, Ali-Saeed R, Ali AM, Vincent-Chong VK, Zain RB. Cell cycle arrest and mechanism of apoptosis induction in H400 oral cancer cells in response to Damnacanthal and Nordamnacanthal isolated from Morinda citrifolia. Cytotechnology 2016; 68:1999-2013. [PMID: 27488882 PMCID: PMC5023568 DOI: 10.1007/s10616-016-0014-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 07/25/2016] [Indexed: 01/24/2023] Open
Abstract
Oral cancer is the eleventh most prevalent cancer worldwide. The most prevalent oral cancer is oral squamous cell carcinoma (OSCC). Damnacanthal (DAM) and nordamnacanthal (NDAM), the anthraquinone compounds, are isolated from the root of Morinda citrifolia L. (Noni), which has been used for the treatment of several chronic diseases including cancer. The objectives of this study were to evaluate the cytotoxicity, cell death mode, cell cycle, and the molecular mechanism of apoptosis induced by DAM and NDAM on OSCC. The cytotoxic effects of these compounds against OSCC cell lines were determined by MTT assay. The cell death mode was analysed by DNA laddering and FITC-annexin V/PI flow cytometric assays. In addition, the mechanism of apoptosis induced by DAM and NDAM was detected using mitochondrial membrane potential, Cytochrome c, and caspases assays. Finally, the effect of DAM and NDAM on cell cycle phase distribution of OSCC cells was detected by flow cytometry. In the present study, DAM and NDAM showed cytotoxicity towards OSCC cell lines and the maximum growth inhibition for both compounds was observed in H400 cells with IC50 value of 1.9 and 6.8 μg/ml, respectively, after 72 h treatment. The results also demonstrated the inhibition of H400 OSCC cells proliferation, internucleosomal cleavage of DNA, activation of intrinsic apoptosis pathway, and cell cycle arrest caused by DAM and NDAM. Therefore, these findings suggest that DAM and NDAM can be potentially used as antitumor agents for oral cancer therapy.
Collapse
Affiliation(s)
- Gohar Shaghayegh
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Aied M Alabsi
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Rola Ali-Saeed
- School of Biotechnology, Faculty of Bioresource and Food Industry, University Sultan Zainal Abidin, 22200, Kuala Terengganu, Terengganu, Malaysia
| | - Abdul Manaf Ali
- School of Biotechnology, Faculty of Bioresource and Food Industry, University Sultan Zainal Abidin, 22200, Kuala Terengganu, Terengganu, Malaysia
| | - Vui King Vincent-Chong
- Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rosnah Binti Zain
- Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Park MH, Kim JH, Chung YH, Lee SH. Bakuchiol sensitizes cancer cells to TRAIL through ROS- and JNK-mediated upregulation of death receptors and downregulation of survival proteins. Biochem Biophys Res Commun 2016; 473:586-92. [DOI: 10.1016/j.bbrc.2016.03.127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/27/2016] [Indexed: 10/22/2022]
|
17
|
Damnacanthal and its nanoformulation exhibit anti-cancer activity via cyclin D1 down-regulation. Life Sci 2016; 152:60-6. [PMID: 27018445 DOI: 10.1016/j.lfs.2016.03.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/11/2016] [Accepted: 03/20/2016] [Indexed: 12/22/2022]
Abstract
AIMS Damnacanthal is an anthraquinone isolated from the root of Morinda citrifolia L. (noni), and it exhibits many pharmacological properties, including anti-cancer activity. Damnacanthal targets several signal transduction proteins related to cell growth inhibition or apoptosis. However, the molecular mechanisms by which damnacanthal affects cell cycle regulation have not been elucidated in detail. MAIN METHODS Cyclin D1 is an important regulatory protein in cell cycle progression and is overexpressed in many cancer cells. In this study, we investigated the molecular mechanism of damnacanthal on cyclin D1 expression. KEY FINDINGS We found that damnacanthal inhibited growth of several cancer cell lines (HCT-116, HT-29, MCF-7 and PC-3) in a dose- and time-dependent manner with a decrease in cyclin D1 protein expression. Damnacanthal did not change mRNA of cyclin D1; rather it suppressed cyclin D1 expression at the post-translational level. Subsequent experiments with several mutant cyclin D1 constructs suggest that the lysine sites of cyclin D1 play a pivotal role in damnacanthal-mediated cyclin D1 degradation. Furthermore, damnacanthal was encapsulated in self-assembled chitosan nanoparticles to improve both physicochemical and biological activities. SIGNIFICANCE Our results suggest that encapsulated damnacanthal exhibits better activity in cell growth inhibition, compared to non-encapsulated damnacanthal. Thus, damnacanthal has potential to be a candidate for the development of chemoprevention or therapeutic agents for cancers.
Collapse
|
18
|
Günay E, Celik S, Sarinc-Ulasli S, Özyürek A, Hazman Ö, Günay S, Özdemir M, Ünlü M. Comparison of the Anti-inflammatory Effects of Proanthocyanidin, Quercetin, and Damnacanthal on Benzo(a)pyrene Exposed A549 Alveolar Cell Line. Inflammation 2016; 39:744-51. [DOI: 10.1007/s10753-015-0301-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Marine Drugs Regulating Apoptosis Induced by Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL). Mar Drugs 2015; 13:6884-909. [PMID: 26580630 PMCID: PMC4663558 DOI: 10.3390/md13116884] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/02/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022] Open
Abstract
Marine biomass diversity is a tremendous source of potential anticancer compounds. Several natural marine products have been described to restore tumor cell sensitivity to TNF-related apoptosis inducing ligand (TRAIL)-induced cell death. TRAIL is involved during tumor immune surveillance. Its selectivity for cancer cells has attracted much attention in oncology. This review aims at discussing the main mechanisms by which TRAIL signaling is regulated and presenting how marine bioactive compounds have been found, so far, to overcome TRAIL resistance in tumor cells.
Collapse
|
20
|
Dai X, Zhang J, Arfuso F, Chinnathambi A, Zayed ME, Alharbi SA, Kumar AP, Ahn KS, Sethi G. Targeting TNF-related apoptosis-inducing ligand (TRAIL) receptor by natural products as a potential therapeutic approach for cancer therapy. Exp Biol Med (Maywood) 2015; 240:760-73. [PMID: 25854879 DOI: 10.1177/1535370215579167] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to selectively induce apoptotic cell death in various tumor cells by engaging its death-inducing receptors (TRAIL-R1 and TRAIL-R2). This property has led to the development of a number of TRAIL-receptor agonists such as the soluble recombinant TRAIL and agonistic antibodies, which have shown promising anticancer activity in preclinical studies. However, besides activating caspase-dependent apoptosis in several cancer cells, TRAIL may also activate nonapoptotic signal transduction pathways such as nuclear factor-kappa B, mitogen-activated protein kinases, AKT, and signal transducers and activators of transcription 3, which may contribute to TRAIL resistance that is being now frequently encountered in various cancers. TRAIL resistance can be overcome by the application of efficient TRAIL-sensitizing pharmacological agents. Natural compounds have shown a great potential in sensitizing cells to TRAIL treatment through suppression of distinct survival pathways. In this review, we have summarized both apoptotic and nonapoptotic pathways activated by TRAIL, as well as recent advances in developing TRAIL-receptor agonists for cancer therapy. We also briefly discuss combination therapies that have shown great potential in overcoming TRAIL resistance in various tumors.
Collapse
Affiliation(s)
- Xiaoyun Dai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jingwen Zhang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Frank Arfuso
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University, Western Australia 6009, Australia
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - M E Zayed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University, Western Australia 6009, Australia Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University, Western Australia 6009, Australia Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
21
|
García-Vilas JA, Quesada AR, Medina MA. Damnacanthal, a noni anthraquinone, inhibits c-Met and is a potent antitumor compound against Hep G2 human hepatocellular carcinoma cells. Sci Rep 2015; 5:8021. [PMID: 25620570 PMCID: PMC4306130 DOI: 10.1038/srep08021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/29/2014] [Indexed: 12/17/2022] Open
Abstract
Damnacanthal, an anthraquinone present in noni plants, targets several tyrosine kinases and has antitumoral effects. This study aims at getting additional insight on the potential of damnacanthal as a natural antitumor compound. The direct effect of damnacanthal on c-Met was tested by in vitro activity assays. Additionally, Western blots of c-Met phosphorylation in human hepatocellular carcinoma Hep G2 cells were performed. The antitumor effects of damnacanthal were tested by using cell growth, soft agar clonogenic, migration and invasion assays. Their mechanisms were studied by Western blot, and cell cycle, apoptosis and zymographic assays. Results show that damnacanthal targets c-Met both in vitro and in cell culture. On the other hand, damnacanthal also decreases the phosphorylation levels of Akt and targets matrix metalloproteinase-2 secretion in Hep G2 cells. These molecular effects are accompanied by inhibition of the growth and clonogenic potential of Hep G2 hepatocellular carcinoma cells, as well as induction of Hep G2 apoptosis. Since c-Met has been identified as a new potential therapeutical target for personalized treatment of hepatocellular carcinoma, damnacanthal and noni extract supplements containing it could be potentially interesting for the treatment and/or chemoprevention of hepatocellular carcinoma through its inhibitory effects on the HGF/c-Met axis.
Collapse
Affiliation(s)
- Javier A García-Vilas
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga)
| | - Ana R Quesada
- 1] Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga) [2] CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga, Spain
| | - Miguel A Medina
- 1] Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga) [2] CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga, Spain
| |
Collapse
|
22
|
Mitochondrial inhibitor sensitizes non-small-cell lung carcinoma cells to TRAIL-induced apoptosis by reactive oxygen species and Bcl-X(L)/p53-mediated amplification mechanisms. Cell Death Dis 2014; 5:e1579. [PMID: 25522273 PMCID: PMC4649849 DOI: 10.1038/cddis.2014.547] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/13/2014] [Accepted: 11/17/2014] [Indexed: 12/20/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for anticancer therapy; however, non-small-cell lung carcinoma (NSCLC) cells are relatively TRAIL resistant. Identification of small molecules that can restore NSCLC susceptibility to TRAIL-induced apoptosis is meaningful. We found here that rotenone, as a mitochondrial respiration inhibitor, preferentially increased NSCLC cells sensitivity to TRAIL-mediated apoptosis at subtoxic concentrations, the mechanisms by which were accounted by the upregulation of death receptors and the downregulation of c-FLIP (cellular FLICE-like inhibitory protein). Further analysis revealed that death receptors expression by rotenone was regulated by p53, whereas c-FLIP downregulation was blocked by Bcl-XL overexpression. Rotenone triggered the mitochondria-derived reactive oxygen species (ROS) generation, which subsequently led to Bcl-XL downregulation and PUMA upregulation. As PUMA expression was regulated by p53, the PUMA, Bcl-XL and p53 in rotenone-treated cells form a positive feedback amplification loop to increase the apoptosis sensitivity. Mitochondria-derived ROS, however, promote the formation of this amplification loop. Collectively, we concluded that ROS generation, Bcl-XL and p53-mediated amplification mechanisms had an important role in the sensitization of NSCLC cells to TRAIL-mediated apoptosis by rotenone. The combined TRAIL and rotenone treatment may be appreciated as a useful approach for the therapy of NSCLC that warrants further investigation.
Collapse
|
23
|
Kawashima A, Sekizawa A, Koide K, Hasegawa J, Satoh K, Arakaki T, Takenaka S, Matsuoka R. Vitamin C Induces the Reduction of Oxidative Stress and Paradoxically Stimulates the Apoptotic Gene Expression in Extravillous Trophoblasts Derived From First-Trimester Tissue. Reprod Sci 2014; 22:783-90. [PMID: 25519716 DOI: 10.1177/1933719114561561] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
AIM To investigate the effects of vitamin C on the expression of the genes related to apoptosis in extravillous trophoblasts (EVTs) in the first trimester. METHODS Extravillous trophoblasts were cultured under 2% O2 followed by 2% O2 or 8% O2 with or without vitamin C. The level of reactive oxygen species (ROS) in the cultured medium was estimated using electron spin resonance spectroscopy. The expression levels of the genes TP53, BCL2, and BAX were quantified using real-time quantitative polymerase chain reaction. RESULTS Reactive oxygen species were found to be decreased after adding vitamin C under increasing oxygen concentrations. In addition, the ratio of BAX/BCL2 also increased after adding vitamin C under conditions of 2% O2, while the gene expression level of BCL2 increased after adding vitamin C under increasing oxygen concentrations. In contrast, the gene expression level of TP53 and the ratio of BAX/BCL2 both decreased. CONCLUSION We have revealed that vitamin C reduces ROS and may promote the apoptosis of EVTs under conditions of 2% O2 while paradoxically preventing apoptosis under increasing oxygen concentrations.
Collapse
Affiliation(s)
- Akihiro Kawashima
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Shinagawa, Japan
| | - Akihiko Sekizawa
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Shinagawa, Japan
| | - Keiko Koide
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Shinagawa, Japan
| | - Junichi Hasegawa
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Shinagawa, Japan
| | - Kazue Satoh
- Department of Anatomy, Showa University School of Medicine, Shinagawa, Japan
| | - Tatsuya Arakaki
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Shinagawa, Japan
| | - Shin Takenaka
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Shinagawa, Japan
| | - Ryu Matsuoka
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Shinagawa, Japan
| |
Collapse
|
24
|
Makam N S, Chidambara Murthy KN, Sultanpur CM, Rao RM. Natural molecules as tumour inhibitors: Promises and prospects. J Herb Med 2014. [DOI: 10.1016/j.hermed.2014.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Li B, Wang L, Lu Q, Da W. Liver injury attenuation by curcumin in a rat NASH model: an Nrf2 activation-mediated effect? Ir J Med Sci 2014; 185:93-100. [PMID: 25385666 DOI: 10.1007/s11845-014-1226-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 11/01/2014] [Indexed: 02/06/2023]
Abstract
AIM Nuclear factor-erythroid 2-related factor-2 (Nrf2) acts as a defense system in the development of nonalcoholic steatohepatitis (NASH). Curcumin is a phenolic compound with lipid regulatory, anti-oxidative, anti-inflammatory and anti-tumorigenic properties that is beneficial in defending against NASH and was recently proved to be an Nrf2 activator. The aim of this study was to evaluate whether Nrf2 activation could be involved in NASH mitigation by curcumin. METHODS Hepatic, metabolic, and inflammatory parameters, along with hepatic Nrf2 protein expression were explored in adult Sprague-Dawley rats developing high-fat-diet-induced NASH and submitted to curcumin gavage for 6 weeks. RESULTS Curcumin administration led to lower degrees of hepatic steatosis and inflammation; lower levels of serum aminotransferases, lipids, and homeostasis model assessment of insulin resistance; and lower serum and hepatic contents of tumor necrosis factor-α (TNF-α), interleukin-6, and malondialdehyde. In contrast, higher hepatic contents of glutathione, heme oxygenase-1 and superoxide dismutase were observed in rats with curcumin. Moreover, Nrf2 expression in liver cell nuclei was significantly higher in rats with curcumin. CONCLUSIONS Curcumin can prevent and ameliorate NASH via lipid reduction, improve insulin resistance, improve anti-inflammatory, and have antioxidant effects, possibly related to its activation of Nrf2.
Collapse
Affiliation(s)
- B Li
- Department of Gastroenterology, Jiaxing Second Hospital, 1518 North Ring Road, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - L Wang
- Department of Gastroenterology, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yi Shan Road, Shanghai, 200233, People's Republic of China.
| | - Q Lu
- Department of Gastroenterology, Jiaxing Second Hospital, 1518 North Ring Road, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - W Da
- Department of Gastroenterology, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yi Shan Road, Shanghai, 200233, People's Republic of China
| |
Collapse
|
26
|
Kim MH, Jeong HJ. Damnacanthal inhibits the NF-κB/RIP-2/caspase-1 signal pathway by inhibiting p56lcktyrosine kinase. Immunopharmacol Immunotoxicol 2014; 36:355-63. [DOI: 10.3109/08923973.2014.952819] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Yen SY, Tseng JK, Chuang SM, Chen SE, Ju JC. Expression and activation of mitogen-activated protein kinases in matured porcine oocytes under thermal stress. J Reprod Dev 2014; 60:388-94. [PMID: 25087868 PMCID: PMC4219997 DOI: 10.1262/jrd.2014-004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we determined the expression and activation of p38 MAPK in matured porcine oocytes subjected to heat shock
(HS). When MII oocytes were heated, only the phosphorylated p38 levels relative to the total p38 levels decreased (P <
0.01) after HS, but no clear relationship with HS treatments was observed in the ERK, JNK and p90rsk expressions
of matured oocytes. To confirm p38 activation in matured oocytes, immunocytochemical staining was performed to localize its
expression and distribution in the ooplasm, and the results were largely consistent with previous Western blot analyses.
Moreover, when matured oocytes were co-cultured with a P38 MAPK inhibitor, SB203580, for 4 h at 41.5 C, the activation of its
immediate downstream substrate MAPKAPK-2 was not inhibited within any of the treatment groups. It appears that the MAPKAPK2
levels increased only under prolonged culture (HS4h and C4h) compared with the control group. In conclusion, p38 activity in
porcine oocytes was decreased after exposure to HS and prolonged culture. These alterations of p38 and activation of MAPKAPK2
may be associated with porcine oocyte viability under HS conditions, and a potential cross-talk between p38 MAPK and other
signaling cascades may exist, which warrants additional investigation.
Collapse
Affiliation(s)
- Shih-Ying Yen
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | | | | | | | | |
Collapse
|
28
|
Si Shen Wan Inhibits mRNA Expression of Apoptosis-Related Molecules in p38 MAPK Signal Pathway in Mice with Colitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:432097. [PMID: 24223057 PMCID: PMC3816044 DOI: 10.1155/2013/432097] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/28/2013] [Accepted: 08/28/2013] [Indexed: 11/17/2022]
Abstract
Si Shen Wan (SSW) is used to effectively treat ulcerative colitis (UC) as a formula of traditional Chinese medicine. To explore the mechanism of SSW-inhibited apoptosis of colonic epithelial cell, the study observed mRNA expression of apoptosis-related molecules in p38 MAPK signal pathway in colonic mucosa in colitis mice treated with SSW. Experimental colitis was induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) in mice; meanwhile, the mice were administrated daily either SSW (5 g/kg) or p38 MAPK inhibitor (2 mg/kg) or vehicle (physiological saline) for 10 days. While microscopical evaluation was observed, apoptosis rate of colonic epithelial cell and mRNA expression of apoptosis-related molecules were tested. Compared with colitis mice without treatment, SSW alleviated colonic mucosal injuries and decreased apoptosis rate of colonic epithelial cell, while the mRNA expressions of p38 MAPK, p53, caspase-3, c-jun, c-fos, Bax, and TNF- α were decreased in the colonic mucosa in colitis mice treated with SSW, and Bcl-2 mRNA and the ratio of Bcl-2/Bax were increased. The present study demonstrated that SSW inhibited mRNA expression of apoptosis-related molecules in p38 MAPK signal pathway to downregulate colonic epithelial cells apoptosis in colonic mucosa in mice with colitis.
Collapse
|
29
|
Kim EY, Ryu JH, Kim AK. CAPE promotes TRAIL-induced apoptosis through the upregulation of TRAIL receptors via activation of p38 and suppression of JNK in SK-Hep1 hepatocellular carcinoma cells. Int J Oncol 2013; 43:1291-300. [PMID: 23857473 DOI: 10.3892/ijo.2013.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/21/2013] [Indexed: 11/05/2022] Open
Abstract
Caffeic acid phenethyl ester (CAPE), a phenolic compound derived from honeybee propolis, has been reported to possess anticancer activities in several types of malignant cells. Here, we show that treatment with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in combination with CAPE significantly sensitized SK-Hep1 cells to TRAIL-induced apoptosis. The sensitization to TRAIL was accompanied by the activation of extrinsic and intrinsic apoptotic pathways, leading to the activation of caspases, mitochondrial disruption and PARP cleavage. Moreover, TRAIL receptors, such as DR4 and DR5 were significantly upregulated by CAPE treatment, and both DR4/Fc and DR5/Fc chimera markedly abrogated apoptosis induced by CAPE and TRAIL, demonstrating the critical role of these death receptors in combination-induced apoptosis. The effect of CAPE on mitogen-activated protein kinases (MAPKs) was further examined, where CAPE treatment resulted in the activation of p38 and the inhibition of JNK, without affecting levels of phospho-ERK. Our results showed that p38 and JNK exhibited the opposite role in SK-Hep1 cells. The inhibition of p38, using SB203580, blocked the CAPE-induced expression of death receptors and attenuated the combination‑induced apoptosis, suggesting the pro-apoptotic role of p38. In contrast, JNK-specific inhibition, by SP600125, triggered upregulation of DR4 and DR5, and sensitized SK-Hep1 cells to TRAIL, indicating that the CAPE-induced suppression of JNK may contribute to the sensitizing effect of CAPE through the upregulation of death receptors. Taken together, these results indicate that CAPE potentiated TRAIL-induced apoptosis in SK-Hep1 cells, through upregulation of TRAIL receptors via modulation of p38 and JNK signaling pathways.
Collapse
Affiliation(s)
- Eun Young Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | | | | |
Collapse
|
30
|
Lee YS, Lee DG, Lee JY, Kim TR, Hong SS, Kwon SW, Kim YS. A formulated red ginseng extract upregulates CHOP and increases TRAIL-mediated cytotoxicity in human hepatocellular carcinoma cells. Int J Oncol 2013; 43:591-9. [PMID: 23708152 DOI: 10.3892/ijo.2013.1964] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/29/2013] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent because its cytotoxicity is selective for tumor cells. Despite promising outcomes in clinical trials using this ligand, sustained clinical responses have been impeded because cancer cells acquire resistance to TRAIL-based therapies. Ginseng, a well-known food product consumed globally, has been reported to reduce fatigue and possess antioxidant and antitumor activities. We explored the sensitizing influence of a formulated red ginseng extract (RGE) on TRAIL-derived cell death in hepatocellular carcinoma (HCC) cell lines and the underlying molecular mechanisms responsible for TRAIL sensitization. We found that the RGE promoted TRAIL-derived apoptosis in HepG2, Huh-7 and Hep3B cell lines. We also found that death receptor 5 expression was induced by the RGE and mediated by C/EBP homologous protein (CHOP). shRNA-induced downregulation of CHOP expression effectively suppressed cell death induced by combined treatment with the RGE and TRAIL in the HepG2 cell line, indicating that RGE-related upregulation of the CHOP protein plays an important role in sensitizing TRAIL-derived apoptosis. In summary, we showed that the RGE sensitized human HCC cell lines to TRAIL-derived cell death and could be utilized as a dietary supplement in combination with cancer treatment.
Collapse
Affiliation(s)
- Yun-Sun Lee
- Institute for Medical Sciences, Ajou University School of Medicine, Suwon 443-749, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
YU YANZHE, XIAO YONGLONG, WANG HUI, LI JUNYANG, ZUO XIANGRONG, WANG HONG, XIE WEIPING. Protective effect of nicorandil on hypoxia-induced apoptosis in HPAECs through inhibition of p38 MAPK phosphorylation. Mol Med Rep 2013; 7:816-20. [DOI: 10.3892/mmr.2013.1255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/30/2012] [Indexed: 11/06/2022] Open
|
32
|
Dibwe DF, Awale S, Kadota S, Tezuka Y. Damnacanthal from the Congolese medicinal plant Garcinia huillensis has a potent preferential cytotoxicity against human pancreatic cancer PANC-1 cells. Phytother Res 2012; 26:1920-6. [PMID: 22447631 DOI: 10.1002/ptr.4672] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 02/09/2012] [Accepted: 02/15/2012] [Indexed: 01/08/2023]
Abstract
Screening of eight Congolese medicinal plants showed that the CHCl(3) and MeOH extracts of Aframomum melegueta (PC(50) = 47.8 µg/mL and 13.8 µg/mL, respectively) and CHCl(3) extracts of Garcinia huillensis (PC(50) = 17.8 µg/mL) and Securidaca longepedunculata (PC(50) = 23.4 µg/mL) had preferential cytotoxicity against human pancreatic cancer PANC-1 cells under nutrient-deprived conditions. The active constituents of the CHCl(3) extract of G. huillensis were examined and 12 known anthraquinones were identified. Among them, damnacanthal (1) caused preferential necrotic cell death of PANC-1 and PSN-1 cells under nutrient-deprived and serum-sensitive conditions (PC(50) = 4.46 µm and 3.77 µm, respectively).
Collapse
Affiliation(s)
- Dya Fita Dibwe
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan
| | | | | | | |
Collapse
|
33
|
Wang JH, Zhou YJ, Zhang M, Kan L, He P. Active lipids of Ganoderma lucidum spores-induced apoptosis in human leukemia THP-1 cells via MAPK and PI3K pathways. JOURNAL OF ETHNOPHARMACOLOGY 2012; 139:582-589. [PMID: 22172327 DOI: 10.1016/j.jep.2011.11.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 11/20/2011] [Accepted: 11/29/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ganoderma lucidum (Lingzhi) is traditionally drug, which has been traditionally effective used in the treatment of chronic hepatopathy, hypertension, hyperglycemia and cancer. MATERIALS AND METHODS THP-1 and HL-60 apoptosis induced by active lipids of Ganoderma lucidum spores was quantified by flow cytometry using FITC-conjugated annexin V and PI; MAPK and Akt were measured by Western blot, and caspase-3, -8 and -9 activities were also detected by spectrophotometric assay. RESULTS Our results showed that active lipids of Ganoderma lucidum spores decreased phosphorylation-ERK1/2 (P-ERK1/2), P-Akt and increased P-JNK1/2, but did not affect expressions of P-p38 MAPK in THP-1 cells. Moreover, treatment of THP-1 cells with active lipids of Ganoderma lucidum spores resulted in activation of caspase-3, -8 and -9. Furthermore, LY294002 (Akt inhibitor) or PD98059 (ERK1/2 inhibitor) significantly enhanced active lipids of Ganoderma lucidum spores-induced apoptosis in THP-1 cells, whereas caspase inhibitors or SP600125 (JNK inhibitor), decreased apoptosis in THP-1 cells. CONCLUSION Taken together, our study for the first time suggests that active lipids of Ganoderma lucidum spores is able to enhance apoptosis in THP-1 cells, at least in part, through inhibition of ERK1/2, Akt and activation of JNK1/2 signaling pathways. Moreover, it also triggers caspase-3, -8 and -9 activation mediated apoptotic induction.
Collapse
Affiliation(s)
- Jia-He Wang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China.
| | | | | | | | | |
Collapse
|
34
|
Essack M, Bajic VB, Archer JA. Recently confirmed apoptosis-inducing lead compounds isolated from marine sponge of potential relevance in cancer treatment. Mar Drugs 2011; 9:1580-1606. [PMID: 22131960 PMCID: PMC3225937 DOI: 10.3390/md9091580] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 08/31/2011] [Accepted: 09/07/2011] [Indexed: 01/23/2023] Open
Abstract
Despite intense efforts to develop non-cytotoxic anticancer treatments, effective agents are still not available. Therefore, novel apoptosis-inducing drug leads that may be developed into effective targeted cancer therapies are of interest to the cancer research community. Targeted cancer therapies affect specific aberrant apoptotic pathways that characterize different cancer types and, for this reason, it is a more desirable type of therapy than chemotherapy or radiotherapy, as it is less harmful to normal cells. In this regard, marine sponge derived metabolites that induce apoptosis continue to be a promising source of new drug leads for cancer treatments. A PubMed query from 01/01/2005 to 31/01/2011 combined with hand-curation of the retrieved articles allowed for the identification of 39 recently confirmed apoptosis-inducing anticancer lead compounds isolated from the marine sponge that are selectively discussed in this review.
Collapse
Affiliation(s)
| | | | - John A.C. Archer
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +966-544-700-701; Fax: +966-(2)-802-0127
| |
Collapse
|