1
|
Wang H, Yu W, Wang T, Fang D, Wang Z, Wang Y. Therapeutic potential and pharmacological insights of total glucosides of paeony in dermatologic diseases: a comprehensive review. Front Pharmacol 2025; 15:1423717. [PMID: 39822741 PMCID: PMC11735457 DOI: 10.3389/fphar.2024.1423717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/27/2024] [Indexed: 01/19/2025] Open
Abstract
Total glucosides of paeony (TGP) are a group of monoterpenes extracted from Paeonia lactiflora Pall., primarily including metabolites such as paeoniflorin and oxypaeoniflorin. Modern pharmacological studies have shown that TGP possesses a variety of biological effects, including immunomodulatory, anti-inflammatory, hepatoprotective, nephroprotective, antidepressant, and cell proliferation regulatory activities. In recent years, clinical research has demonstrated favorable therapeutic effects of TGP on disorders of the liver, cardiovascular, nervous, endocrine, and skeletal systems. Particularly in dermatological treatments, TGP has been found to significantly improve clinical symptoms and shorten the course of the disease. However, there are still certain limitations in the scientific rigor of existing studies and in its clinical application. To assess the potential of TGP in treating dermatologic diseases, this article provides a review of its botanical sources, preparation and extraction processes, quality control, and major chemical metabolites, as well as its pharmacological research and clinical applications in dermatology. Additionally, the mechanisms of action, research gaps, and future directions for TGP in the treatment of dermatologic diseases are discussed, offering valuable guidance for future clinical research on TGP in dermatology.
Collapse
Affiliation(s)
- Huige Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wenchao Yu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tong Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dianwei Fang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zeyun Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuanhong Wang
- Department of Dermatology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Dogra S, Koul B, Singh J, Mishra M, Yadav D. Phytochemical Analysis, Antimicrobial Screening and In Vitro Pharmacological Activity of Artemisia vestita Leaf Extract. Molecules 2024; 29:1829. [PMID: 38675649 PMCID: PMC11054168 DOI: 10.3390/molecules29081829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Artemisia vestita Wall. Ex Besser is a folklore medicinal plant that belongs to Asteraceae family and a treasure trove of drugs. The aim of this research study was to investigate the phytoconstituents, antimicrobial activity, antioxidant, anti-inflammatory, cytotoxicity and wound healing potential of A. vestita leaf extract (ALE). Phytochemical analysis of the ALE was carried out by Soxhlet extraction and GCMS (gas chromatography-mass spectrometry) analysis. Antimicrobial activity was performed by the agar well diffusion method against selected bacterial and fungal strains. Free radical scavenging potential was evaluated by DPPH (2,2-Diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) and FRAP (Ferric reducing antioxidant power) assays. Anti-inflammatory activity was performed by enzyme inhibition assay-COXII. The cytotoxicity of ALE on HaCaT cells was studied via MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. An in vitro scratch assay was performed for the evaluation of the wound healing property of ALE. It showed satisfactory antimicrobial activity against Staphylococcus aureus (14.2 ± 0.28 mm), Escherichia coli (17.6 ± 0.52 mm), Bacillus subtilis (13.1 ± 0.37 mm), Streptococcus pyogenes (17.3 ± 0.64 mm), Proteus mirabilis (9.4 ± 0.56 mm), Aspergillus niger (12.7 ± 0.53 mm), Aspergilus flavus (15.3 ± 0.25 mm) and Candida albicans (17.6 ± 0.11 mm). In ALE, 36 phytochemicals were detected by GCMS analysis, but 22 were dominant. Moreover, the ALE was effective in scavenging free radicals with different assays and exhibited reasonable anti-inflammatory activity. The MTT assay revealed that ALE had a cytotoxic effect on the HaCaT cells. The scratch assay showed 94.6% wound closure (after 24 h incubation) compared to the positive control Cipladine, which is remarkable wound healing activity. This is the first report on the wound healing property of A. vestita, which can serve as a potential agent for wound healing and extends knowledge on its therapeutic potential.
Collapse
Affiliation(s)
- Shivani Dogra
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Bhupendra Koul
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Joginder Singh
- Department of Botany, Nagaland University, Zunheboto 798627, Zunheboto, India;
| | - Meerambika Mishra
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Dhananjay Yadav
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
3
|
Dogra S, Singh J, Koul B, Yadav D. Artemisia vestita: A Folk Medicine with Hidden Herbal Fortune. Molecules 2023; 28:molecules28062788. [PMID: 36985759 PMCID: PMC10054384 DOI: 10.3390/molecules28062788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Traditional medicines are nature's gift and our native heritage, which play a vital role in maintaining a disease-free life. Artemisia vestita Wall. ex Besser (family: Asteraceae), popularly known as "Kubsha" or "Russian wormwood", is a highly enriched folklore medicine with wound- healing, antiphlogistic, antifebrile, antifeedant, anti-helminthic, antimicrobial, antiviral, antitumor, and antiproliferative potential attributed to the presence of various volatile and non-volatile secondary metabolites. A systematic and extensive review of the literature on A. vestita was carried out via the Web of Science, PubMed, INMEDPLAN, EMBASE, Google Scholar, and NCBI, as well as from several websites. The highly relevant literature contained in 109 references was selected for further inclusion in this review. A total of 202 bioactive compounds belonging to different chemical classes such as terpenoids, coumarins, flavonoids, alkaloids, acetylenes, tannins, carotenoids, and sterols have been reported in A. vestita, which are responsible for different pharmacological activities. The chemical structures obtained from the PubChem and Chem Spider databases were redrawn using the software Chem Draw® version 8.0. This review paper summarizes the distribution, botanical description, phytochemistry, pharmacological activities, and conservation of A. vestita, which will assist scientists for further investigation. Extensive studies on the active constituents, pharmaceutical standardization, mode of action, and sustainable conservation of A. vestita are needed to further explore its wound-healing and allied medicinal properties.
Collapse
Affiliation(s)
- Shivani Dogra
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Bhupendra Koul
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Dhananjay Yadav
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
4
|
Protection against Doxorubicin-Related Cardiotoxicity by Jaceosidin Involves the Sirt1 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9984330. [PMID: 34422218 PMCID: PMC8371661 DOI: 10.1155/2021/9984330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/23/2021] [Accepted: 07/24/2021] [Indexed: 12/28/2022]
Abstract
The clinical use of doxorubicin (DOX) is largely limited by its cardiotoxicity. Previous studies have shown that jaceosidin has many biological activities. However, little is known about whether jaceosidin can attenuate DOX-related acute cardiotoxicity. Here, we investigated the therapeutic effects of jaceosidin on DOX-induced acute cardiotoxicity. Mice were intraperitoneally injected with a single dose of DOX to establish an acute cardiac injury model. To explore the protective effects, mice were orally administered jaceosidin daily for 7 days, with dosing beginning 2 days before DOX injection. The results demonstrated that jaceosidin dose-dependently reduced free radical generation, inflammation accumulation, and cell loss induced by DOX in cardiomyocytes. Further studies showed that jaceosidin treatment inhibited myocardial oxidative damage and the inflammatory response and attenuated myocardial apoptotic death, thus improving cardiac function in mice injected with DOX. The inhibitory effects of jaceosidin on DOX-related acute cardiotoxicity were mediated by activation of the sirtuin1 (Sirt1) signaling pathway. Jaceosidin lost its protective effect against DOX-related injury in Sirt1-deficient cardiomyocytes and mice. In conclusion, jaceosidin has protective potential in treating DOX-related cardiac injury through activation of the Sirt1 signaling pathway.
Collapse
|
5
|
Nageen B, Rasul A, Hussain G, Shah MA, Anwar H, Hussain SM, Uddin MS, Sarfraz I, Riaz A, Selamoglu Z. Jaceosidin: A Natural Flavone with Versatile Pharmacological and Biological Activities. Curr Pharm Des 2021; 27:456-466. [PMID: 32348212 DOI: 10.2174/1381612826666200429095101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/17/2020] [Indexed: 11/22/2022]
Abstract
Nature always remains an inexhaustible source of treasures for mankind. It remains a mystery for every challenge until the completion of the challenge. While we talk about the complicated health issues, nature offers us a great variety of chemical scaffolds and their various moieties packed in the form of natural products e.g., plants, microorganisms (fungi, algae, protozoa), and terrestrial vertebrates and invertebrates. This review article is an update about jaceosidin, a bioactive flavone, from genus Artemisia. This potentially active compound exhibits a variety of pharmacological activities including anti-inflammatory, anti-oxidant, anti-bacterial, antiallergic and anti-cancer activities. The bioactivities and the therapeutic action of jaceosidin, especially the modulation of different cell signaling pathways (ERK1/2, NF-κB, PI3K/Akt and ATM-Chk1/2) which become deregulated in various pathological disorders, have been focused here. The reported data suggest that the bioavailability of this anti-cancer compound should be enhanced by utilizing various chemical, biological and computational techniques. Moreover, it is recommended that researchers and scientists should work on exploring the mode of action of this particular flavone to precede it further as a potent anti-cancer compound.
Collapse
Affiliation(s)
- Bushra Nageen
- Cell and Molecular Biology Lab, Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Azhar Rasul
- Cell and Molecular Biology Lab, Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad A Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Syed M Hussain
- Cell and Molecular Biology Lab, Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Iqra Sarfraz
- Cell and Molecular Biology Lab, Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Ammara Riaz
- Cell and Molecular Biology Lab, Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Campus 51240, Nigde, Turkey
| |
Collapse
|
6
|
Gahramanova M, Nargiz Medical Center, Baku, Azerbaijan, ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Ukraine. THE USE OF HERBAL REMEDIES IN THE TREATMENT OF HEPATOBILIARY DISEASES: TRENDS AND PROSPECTS. BIOTECHNOLOGIA ACTA 2019. [DOI: 10.15407/biotech12.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Zhou Y, Chen B, Chen J, Dong Y, Wang S, Wen C, Wang X, Yu X. Determination and pharmacokinetic study of jaceosidin in rat plasma by UPLC–MS/MS. ACTA CHROMATOGR 2018. [DOI: 10.1556/1326.2017.00104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Yunfang Zhou
- The Laboratory of Clinical Pharmacy, The People's Hospital of Lishui, Lishui 323000, China
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou 325035, China
| | - Bingbao Chen
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou 325035, China
| | - Junyan Chen
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou 325035, China
| | - Yanwen Dong
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou 325035, China
| | - Shuanghu Wang
- The Laboratory of Clinical Pharmacy, The People's Hospital of Lishui, Lishui 323000, China
| | - Congcong Wen
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou 325035, China
| | - Xianqin Wang
- Analytical and Testing Center, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaomin Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
8
|
Ouyang Z, Li W, Meng Q, Zhang Q, Wang X, Elgehama A, Wu X, Shen Y, Sun Y, Wu X, Xu Q. A natural compound jaceosidin ameliorates endoplasmic reticulum stress and insulin resistance via upregulation of SERCA2b. Biomed Pharmacother 2017; 89:1286-1296. [PMID: 28320096 DOI: 10.1016/j.biopha.2017.03.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/14/2022] Open
Abstract
Increased endoplasmic reticulum (ER) stress has emerged as a vital contributor to dysregulated glucose homeostasis, and impaired function of sarco-endoplasmic reticulum Ca2+-ATPase 2b (SERCA2b) is one of the central mechanisms underlying ER stress. In this study, we reported that SERCA2b upregulation contributed to the amelioration of ER stress and insulin resistance by a small natural compound jaceosidin. In a model of differentiated C2C12 myotubes, jaceosidin-triggered SERCA2b upregulation enhanced insulin sensitivity and decreased ER stress. Moreover, the activity of Ca2+-ATPase in thapsigargin-treated myotubes was also augmented by jaceosidin. Furthermore, jaceosidin significantly suppressed blood glucose levels, improved glucose tolerance and lowered body weight, but did not alter food intake in insulin-resistant obese mice. In addition, this compound markedly reduced lipid accumulation, suppressed the expression of lipogenic genes in liver and ameliorated liver injury. The ameliorative effects of jaceosidin were due to its ability to reduce ER stress via increasing the expression of SERCA2b in the muscles of obese mice. Taken together, jaceosidin could improve ER stress and attenuate insulin resistance via SERCA2b upregulation in mice skeletal muscles.
Collapse
Affiliation(s)
- Zijun Ouyang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wanshuai Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qianqian Meng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xingqi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ahmed Elgehama
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xudong Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
9
|
Jung Y, Kim B, Ryu MH, Kim H. Chinese medicines reported to have effects on contact dermatitis in the last 20 years. Chin J Integr Med 2017; 24:64-71. [DOI: 10.1007/s11655-016-2535-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Indexed: 12/19/2022]
|
10
|
Li X, Wang X, Jiang H, Zhang G, Tan R, Sun Y, Wu X, Tan R, Xu Q. Herpetol ameliorates allergic contact dermatitis through regulating T-lymphocytes. Int Immunopharmacol 2016; 40:131-138. [DOI: 10.1016/j.intimp.2016.08.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/23/2016] [Accepted: 08/23/2016] [Indexed: 01/16/2023]
|
11
|
Kumar R, Lu Y, Elliott AG, Kavanagh AM, Cooper MA, Davis RA. Semi-synthesis and NMR spectral assignments of flavonoid and chalcone derivatives. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2016; 54:880-886. [PMID: 27379746 DOI: 10.1002/mrc.4482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 06/29/2016] [Accepted: 07/01/2016] [Indexed: 06/06/2023]
Abstract
Previous investigations of the aerial parts of the Australian plant Eremophila microtheca and Syzygium tierneyanum resulted in the isolation of the antimicrobial flavonoid jaceosidin (4) and 2',6'-dihydroxy-4'-methoxy-3',5'-dimethyl chalcone (7), respectively. In this current study, compounds 4 and 7 were derivatized by acetylation, pivaloylation, and methylation reactions. The final products, 5,7,4'-triacetoxy jaceosidin (10), 5,7,4'-tripivaloyloxy jaceosidin (11), 5,7,4'-trimethoxy jaceosidin (12), 2',6'-diacetoxy-4'-methoxy-3',5'-dimethyl chalcone (13), 2'-hydroxy-4'-methoxy-6'-pivaloyloxy-3',5'-dimethyl chalcone (14), and 2'-hydroxy-4',6'-dimethoxy-3',5'-dimethyl chalcone (15) were all fully characterized by NMR and MS. Derivatives 10 and 13 have been previously reported but were only partially characterized. This is the first reported synthesis of 11 and 14. The natural products and their derivatives were evaluated for their antibacterial and antifungal properties, and the natural product, jaceosidin (4) and the acetylated derivative, 5,7,4'-triacetoxy jaceosidin (10), showed modest antibacterial activity (32-128 µg/ml) against Staphylococcus aureus strains. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Rohitesh Kumar
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, 4111, QLD, Australia
| | - Yuting Lu
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, 4111, QLD, Australia
| | - Alysha G Elliott
- Institute for Molecular Bioscience, University of Queensland, St Lucia, 4072, QLD, Australia
| | - Angela M Kavanagh
- Institute for Molecular Bioscience, University of Queensland, St Lucia, 4072, QLD, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, University of Queensland, St Lucia, 4072, QLD, Australia
| | - Rohan A Davis
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, 4111, QLD, Australia.
| |
Collapse
|
12
|
Han HM, Kim SJ, Kim JS, Kim BH, Lee HW, Lee YT, Kang KH. Ameliorative effects of Artemisia argyi Folium extract on 2,4‑dinitrochlorobenzene‑induced atopic dermatitis‑like lesions in BALB/c mice. Mol Med Rep 2016; 14:3206-14. [PMID: 27571702 PMCID: PMC5042749 DOI: 10.3892/mmr.2016.5657] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 07/21/2016] [Indexed: 12/13/2022] Open
Abstract
Artemisia argyi Folium has been used to treat skin diseases, including eczema and dermatitis, in South Korean medicine. The present study investigated the curative effects of Artemisia argyi Folium extract (AAFE) on 2,4‑dinitrochlorobenzene (DNCB)‑induced atopic dermatitis (AD)‑like skin lesions in a BALB/c mouse model. Briefly, the dorsal skin of the BALB/c mice was sensitized three times with DNCB, whereas the ears were challenged twice. Repeated treatment with DNCB induced AD‑like lesions. The effects of AAFE on AD‑like lesions were evaluated by clinical observation, histopathological analysis, immunohistochemistry and enzyme‑linked immunosorbent assay. In addition, reverse transcription‑polymerase chain reaction and western blotting were performed. Treatment with AAFE reduced AD‑like lesions, as determined by clinical observation, histopathological analysis, and detection of the serum levels of histamine, immunoglobulin E and cytokines. With regards to its mechanism of action, AAFE inhibited the phosphorylation of Lck/yes‑related novel tyrosine kinase (Lyn), spleen tyrosine kinase (Syk), mitogen‑activated protein kinases (MAPKs), phosphoinositide 3‑kinase (PI3K)/Akt and IκBα, which have essential roles in the production of various cytokines in lymph nodes. The suppressive activity of AAFE may be due to the inhibition of a series of immunopathological events, including the release of proinflammatory cytokines. The results of the present study strongly suggest that AAFE exerts an anti‑AD effect by inhibiting the Lyn, Syk, MAPKs, PI3K/Akt and IκBα pathways. Therefore, AAFE may be considered an effective herbal remedy for the treatment of AD.
Collapse
Affiliation(s)
- Hyoung-Min Han
- Department of Physiology, College of Korean Medicine, Dong‑Eui University, Busan 614‑851, Republic of Korea
| | - Seung-Ju Kim
- Department of Physiology, College of Korean Medicine, Dong‑Eui University, Busan 614‑851, Republic of Korea
| | - Jong-Sik Kim
- Department of Anatomy, College of Medicine, Kosin University, Busan 602‑703, Republic of Korea
| | - Bum Hoi Kim
- Department of Anatomy, College of Korean Medicine, Dong‑Eui University, Busan 614‑851, Republic of Korea
| | - Hai Woong Lee
- Department of Public Health, College of Korean Medicine, Dong‑Eui University, Busan 614‑851, Republic of Korea
| | - Yong Tae Lee
- Department of Physiology, College of Korean Medicine, Dong‑Eui University, Busan 614‑851, Republic of Korea
| | - Kyung-Hwa Kang
- Department of Physiology, College of Korean Medicine, Dong‑Eui University, Busan 614‑851, Republic of Korea
| |
Collapse
|
13
|
Purath U, Ibrahim R, Zeitvogel J, Renz H, Runkel F, Schmidts T, Dobler D, Werfel T, Müller A, Garn H. Efficacy of T-cell transcription factor-specific DNAzymes in murine skin inflammation models. J Allergy Clin Immunol 2015; 137:644-647.e8. [PMID: 26560045 DOI: 10.1016/j.jaci.2015.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 08/07/2015] [Accepted: 09/02/2015] [Indexed: 10/22/2022]
Affiliation(s)
| | - Rouba Ibrahim
- Medical Faculty, Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Philipps University Marburg, Marburg, Germany
| | - Jana Zeitvogel
- Clinic for Dermatology, Allergology and Venerology, Division of Immunodermatology and Allergy Research, Hannover Medical School, Hannover, Germany
| | - Harald Renz
- Medical Faculty, Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Philipps University Marburg, Marburg, Germany
| | - Frank Runkel
- Institute of Bioprocessengineering and Biopharmaceutical Technology, Technische Hochschule Mittelhessen, Giessen, Germany
| | - Thomas Schmidts
- Institute of Bioprocessengineering and Biopharmaceutical Technology, Technische Hochschule Mittelhessen, Giessen, Germany
| | - Dorota Dobler
- Institute of Bioprocessengineering and Biopharmaceutical Technology, Technische Hochschule Mittelhessen, Giessen, Germany
| | - Thomas Werfel
- Clinic for Dermatology, Allergology and Venerology, Division of Immunodermatology and Allergy Research, Hannover Medical School, Hannover, Germany
| | - Anke Müller
- Sterna Biologicals GmbH & Co. KG, Marburg, Germany
| | - Holger Garn
- Medical Faculty, Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Philipps University Marburg, Marburg, Germany.
| |
Collapse
|
14
|
Gao X, Yang H, Xu Y, Xiong Y, Wang G, Ye X, Ye J. Iminosugar derivative WGN-26 suppresses acute allograft rejection via inhibiting the IFN-γ/p-STAT1/T-bet signaling pathway. Int Immunopharmacol 2014; 23:688-95. [DOI: 10.1016/j.intimp.2014.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 11/16/2022]
|
15
|
Park JM, Han YM, Lee JS, Ko KH, Hong SP, Kim EH, Hahm KB. Nrf2-mediated mucoprotective and anti-inflammatory actions of Artemisia extracts led to attenuate stress related mucosal damages. J Clin Biochem Nutr 2014; 56:132-42. [PMID: 25759519 PMCID: PMC4345182 DOI: 10.3164/jcbn.14-76] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/10/2014] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to compare biological actions between isopropanol and ethanol extracts of Artemisia including antioxidant, anti-inflammatory, and cytoprotective actions. Antioxidant activities were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) method and confocal microscopy on lipopolysaccharide-induced RGM1 cells, cytoprotection effects evaluated by detecting heme oxygenase-1 (HO-1), Nf-E2 related factor2 (Nrf2) and heat shock protein 70 (HSP70), and anti-inflammatory effects investigated by measuring inflammatory mediators. Water immersion restraint stress was imposed to provoke stress related mucosal damages (SRMD) in rats. Isopropanol extracts of Artemisia showed the higher DPPH radical scavenging activity and lesser LPS-induced reactive oxygen species productions and increased HO-1 expression through increased nuclear translocation of Nrf2 transcription factor compared to ethanol extracts. The increased expression of HSP70 and decreased expression of endothelin-1 were only increased with isopropanol extracts. A concentration-dependent inhibition of LPS-induced COX-2 and iNOS even at a rather lower concentration than ethanol extract was achieved with isopropanol extracts. Cytokine protein array revealed Artemisia extracts significantly attenuated the levels of CXCL-1, CXCL-16, and MCP-1. These orchestrated actions led to significant rescue from SRMD. Conclusively, Artemisia extracts imposed significant antioxidant and anti-inflammatory activity against SRMD and isopropanol extracts were superior to ethanol extracts in these beneficiary actions of Artemisia.
Collapse
Affiliation(s)
- Jong-Min Park
- CHA Cancer Prevention Research Center, CHA University, 605 Yeoksam 1-dong, Gangnam-gu, Seoul 135-081, Korea
| | - Young-Min Han
- CHA Cancer Prevention Research Center, CHA University, 605 Yeoksam 1-dong, Gangnam-gu, Seoul 135-081, Korea
| | - Jin-Seok Lee
- Jeil pharmaceutical Co., Ltd., Seoul 137-041, Korea
| | - Kwang Hyun Ko
- Digestive Disease Center, CHA University Bundang Medical Center, Seongnam 463-838, Korea
| | - Sung-Pyo Hong
- Digestive Disease Center, CHA University Bundang Medical Center, Seongnam 463-838, Korea
| | - Eun-Hee Kim
- CHA Cancer Prevention Research Center, CHA University, 605 Yeoksam 1-dong, Gangnam-gu, Seoul 135-081, Korea
| | - Ki-Baik Hahm
- CHA Cancer Prevention Research Center, CHA University, 605 Yeoksam 1-dong, Gangnam-gu, Seoul 135-081, Korea ; Digestive Disease Center, CHA University Bundang Medical Center, Seongnam 463-838, Korea
| |
Collapse
|
16
|
Zamanai Taghizadeh Rabe S, Iranshahi M, Rastin M, Tabasi N, Mahmoudi M. In vitroimmunomodulatory properties of a sesquiterpene lactone-bearing fraction fromArtemisia khorassanica. J Immunotoxicol 2014; 12:223-30. [DOI: 10.3109/1547691x.2014.930079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
17
|
Paeoniflorin inhibits inflammatory responses in mice with allergic contact dermatitis by regulating the balance between inflammatory and anti-inflammatory cytokines. Inflamm Res 2013; 62:1035-44. [PMID: 24096935 DOI: 10.1007/s00011-013-0662-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 08/23/2013] [Indexed: 01/27/2023] Open
|
18
|
Evaluation of the immunosuppressive activity of artesunate in vitro and in vivo. Int Immunopharmacol 2013; 16:306-12. [PMID: 23583335 DOI: 10.1016/j.intimp.2013.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 02/19/2013] [Accepted: 03/13/2013] [Indexed: 01/01/2023]
Abstract
Artemisinin and its derivatives have been reported to have immunosuppressive activity in some laboratory studies. However, the detail of mechanism remains to be demonstrated. The objective of this study is to clarify the immunosuppressive activity of artesunate (AST), one kind of artemisinin derivatives, and to find its unexplored mode of action. In vitro, the proliferation of T lymphocytes and its cytotoxicity were measured by WST-1 and MTT assay. In vivo, the immunomodulatory effect of AST was evaluated in a mouse model of delayed type hypersensitivity reaction (DTH), which was based on a T cell-mediated immune response. The data displayed that AST had a relatively high immunosuppressive activity with low toxicity, and could inhibit T lymphocyte proliferation induced by mitogen and alloantigen. Meanwhile, topical administration of AST could suppress DTH response significantly. Moreover, AST could also increase the secretion of TFG-β, coupling with the striking enhance of NF-κB/p65 and Smad2/3 signaling. The promotion of CD4(+)CD25(+) regulatory T cells (Tregs) was shown to be a possible mechanism involved in AST-mediated regulation. Taken together, these observations exhibit the potential of developing AST as a novel safe remedy for the treatment of T cell-mediated immune disorders.
Collapse
|
19
|
Bocian C, Urbanowitz AK, Owens RT, Iozzo RV, Götte M, Seidler DG. Decorin potentiates interferon-γ activity in a model of allergic inflammation. J Biol Chem 2013; 288:12699-711. [PMID: 23460644 DOI: 10.1074/jbc.m112.419366] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proteoglycan decorin modulates leukocyte recruitment during delayed-type hypersensitivity responses. Decorin-deficient (Dcn(-/-)) mice show reduced edema formation during the first 24 h with a concurrent attenuated recruitment of CD8(+) leukocytes in the inflamed Dcn(-/-) ears. The aim of this study was to elucidate the molecular pathways affected by the loss of decorin. In vivo, reduced numbers of CD8(+) cells in Dcn(-/-) ears correlated with a reduced interferon-γ (Ifn-γ) and CXCL-10 expression. In vitro, Dcn(-/-) lymphocytes displayed an increased adhesion to brain microvascular (bEnd.3) endothelial cells. Decorin treatment of bEnd.3 increased Icam1 and down-regulated Vcam1 expression after TNF-α stimulation. However, Dcn(-/-) and wild-type lymphocytes produced IFN-γ after activation with CD3ε. Upon incubation with decorin, endothelial cells and fibroblasts responded differently to IFN-γ and TNF-α; CCL2 in bEnd.3 cells was more prominently up-regulated by TNF-α compared with IFN-γ. Notably, both factors were more potent in the presence of decorin. Compared with TNF-α, IFN-γ treatment induced significantly more CXCL-10, and both factors increased synthesis of CXCL-10 in the presence of decorin. The response to IFN-γ was similar in Dcn(-/-) and wild-type fibroblasts, an additional source of CXCL-10. However, addition of decorin yielded significantly more CXCL-10. Notably, decorin increased the stability of IFN-γ in vitro and potentiated IFN-γ-induced activation of STAT-1. Furthermore, only dermatan sulfate influenced IFN-γ signaling by significantly increasing CXCL-10 expression in contrast to decorin protein core alone. Our data demonstrate that decorin modulates delayed-type hypersensitivity responses by augmenting the induction of downstream effector cytokines of IFN-γ and TNF-α, thereby influencing the recruitment of CD8(+) lymphocytes into the inflamed tissue.
Collapse
Affiliation(s)
- Carla Bocian
- Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstrasse 15, 48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Nam Y, Choi M, Hwang H, Lee MG, Kwon BM, Lee WH, Suk K. Natural Flavone Jaceosidin is a Neuroinflammation Inhibitor. Phytother Res 2012; 27:404-11. [DOI: 10.1002/ptr.4737] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/23/2012] [Accepted: 04/23/2012] [Indexed: 01/06/2023]
Affiliation(s)
- Youngpyo Nam
- Department of Pharmacology, Brain Science and Engineering Institute, CMRI; Kyungpook National University School of Medicine; Daegu Korea
| | - Mijung Choi
- Department of Pharmacology, Brain Science and Engineering Institute, CMRI; Kyungpook National University School of Medicine; Daegu Korea
| | - Heehong Hwang
- Department of Pharmacology, Brain Science and Engineering Institute, CMRI; Kyungpook National University School of Medicine; Daegu Korea
| | - Maan-Gee Lee
- Department of Pharmacology, Brain Science and Engineering Institute, CMRI; Kyungpook National University School of Medicine; Daegu Korea
| | - Byoung-Mog Kwon
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology; University of Science and Technology; Daejeon Korea
| | - Won-Ha Lee
- Department of Genetic Engineering, School of Life Sciences and Biotechnology; Kyungpook National University; Daegu Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, CMRI; Kyungpook National University School of Medicine; Daegu Korea
| |
Collapse
|