1
|
Ahmadzadeh AM, Aliabadi MM, Mirheidari SB, Hamedi-Asil M, Garousi S, Mottahedi M, Sahebkar A. Beneficial effects of resveratrol on diabetes mellitus and its complications: focus on mechanisms of action. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2407-2442. [PMID: 39446148 DOI: 10.1007/s00210-024-03527-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Diabetes mellitus (DM) is a significant global health issue, associated with various microvascular and macrovascular complications that significantly impair patients' quality of life as well as healthspan and lifespan. Despite the availability of several anti-diabetic medications with different mechanisms of action, there remains no definite curative treatment. Hence, discovering new efficient complementary therapies is essential. Natural products have received significant attention due to their advantages in various pathological conditions. Resveratrol is a natural polyphenol that possesses antioxidant and anti-inflammatory properties, and its efficacy has been previously investigated in several diseases, including DM. Herein, we aimed to provide a holistic view of the signaling pathways and mechanisms of action through which resveratrol exerts its effects against DM and its complications.
Collapse
Affiliation(s)
- Amir Mahmoud Ahmadzadeh
- Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Mahdie Hamedi-Asil
- School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Department of Surgical and Interventional Sciences, McGill University, Montreal, Quebec, Canada
| | - Mehran Mottahedi
- Department of Surgical and Interventional Sciences, McGill University, Montreal, Quebec, Canada
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Singh H, Singh R, Singh A, Singh H, Singh G, Kaur S, Singh B. Role of oxidative stress in diabetes-induced complications and their management with antioxidants. Arch Physiol Biochem 2024; 130:616-641. [PMID: 37571852 DOI: 10.1080/13813455.2023.2243651] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 08/13/2023]
Abstract
Diabetes mellitus (DM) is a huge global health issue and one of the most studied diseases, with a large global prevalence. Oxidative stress is a cytotoxic consequence of the excessive development of ROS and suppression of the antioxidant defense system for ROS elimination, which accelerates the progression of diabetes complications such as diabetic neuropathy, retinopathy, and nephropathy. Hyperglycaemia induced oxidative stress causes the activation of seven major pathways implicated in the pathogenesis of diabetic complications. These pathways increase the production of ROS and RNS, which contributes to dysregulated autophagy, gene expression changes, and the development of numerous pro-inflammatory mediators which may eventually lead to diabetic complications. This review will illustrate that oxidative stress plays a vital role in the pathogenesis of diabetic complications, and the use of antioxidants will help to reduce oxidative stress and thus may alleviate diabetic complications.
Collapse
Affiliation(s)
- Hasandeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Rajanpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Arshdeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Harshbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Gurpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Sarabjit Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| |
Collapse
|
3
|
Li P, Alenazi KKK, Dally J, Woods EL, Waddington RJ, Moseley R. Role of oxidative stress in impaired type II diabetic bone repair: scope for antioxidant therapy intervention? FRONTIERS IN DENTAL MEDICINE 2024; 5:1464009. [PMID: 39917650 PMCID: PMC11797775 DOI: 10.3389/fdmed.2024.1464009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/02/2024] [Indexed: 02/09/2025] Open
Abstract
Impaired bone healing is a significant complication observed in individuals with type 2 diabetes mellitus (T2DM), leading to prolonged recovery, increased risk of complications, impaired quality of life, and increased risk of patient morbidity. Oxidative stress, resulting from an imbalance between the generation of reactive oxygen species (ROS) and cellular/tissue antioxidant defence mechanisms, has been identified as a critical contributor to the pathogenesis of impaired bone healing in T2DM. Antioxidants have shown promise in mitigating oxidative stress and promoting bone repair, particularly non-enzymic antioxidant entities. This comprehensive narrative review aims to explore the underlying mechanisms and intricate relationship between oxidative stress, impaired bone healing and T2DM, with a specific focus on the current preclinical and clinical evidence advocating the potential of antioxidant therapeutic interventions in improving bone healing outcomes in individuals with T2DM. From the ever-emerging evidence available, it is apparent that exogenously supplemented antioxidants, especially non-enzymic antioxidants, can ameliorate the detrimental effects of oxidative stress, inflammation, and impaired cellular function on bone healing processes during uncontrolled hyperglycaemia; and therefore, hold considerable promise as novel efficacious therapeutic entities. However, despite such conclusions, several important gaps in our knowledge remain to be addressed, including studies involving more sophisticated enzymic antioxidant-based delivery systems, further mechanistic studies into how these antioxidants exert their desirable reparative effects; and more extensive clinical trial studies into the optimisation of antioxidant therapy dosing, frequency, duration and their subsequent biodistribution and bioavailability. By enhancing our understanding of such crucial issues, we can fully exploit the oxidative stress-neutralising properties of these antioxidants to develop effective antioxidant interventions to mitigate impaired bone healing and reduce the associated complications in such T2DM patient populations.
Collapse
Affiliation(s)
- Pui Li
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Kuraym Khalid Kuraym Alenazi
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Jordanna Dally
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Emma Louise Woods
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Rachel Jane Waddington
- Biomaterials Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Ryan Moseley
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
4
|
Raina J, Firdous A, Singh G, Kumar R, Kaur C. Role of polyphenols in the management of diabetic complications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155155. [PMID: 37922790 DOI: 10.1016/j.phymed.2023.155155] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Diabetes Mellitus is an endocrine disorder that will affect, about 693 million adults by 2045 worldwide, (>50% increase from 2017). The conventional treatment of the disease, include the oral hypoglycemic drugs which are given in combination with other drugs and are known to possess various adverse effects like gastrointestinal disturbance, nausea, water retention etc. PURPOSE: Due to the urgent need of combating this disorder without side effects, the alternative and complementary therapies should be explored due to their natural origins and comparable safety. Herbal sources serve as new leads, due to the presence of phytoconstituents with potential therapeutic properties, efficacy and safety. In this review, we tried to summarise the polyphenolic phytoconstituents effective in the treatment of diabetic complications. METHODS A systematic literature search was conducted using 4 databases (Google scholar, Pubmed, Scopus, Embase) for the identification of relevant data. Search was performed using various key words such as "diabetes", "polyphenols", "marine sources","anti-diabetic polyphenols". The in vitro studies involving the cell lines used in diabetes and animal models were also considered for inclusion. Additional research papers were identified by reviewing abstracts, scrutinizing reference lists, and reviewing previously published review articles. RESULTS Polyphenols, a group of phytoconstituents are known worldwide for their tremendous antioxidant potential. So, various research groups have explored their mechanism and therapeutic value in diabetic complications, to improve the insulin sensitivity and glucose metabolism, in controlling the glycemic conditions. CONCLUSION Polyphenols exhibit effective therapeutic potential in managing diabetic complications through their multifaceted mechanism of action. They exhibit antioxidative, anti-inflammatory, and anti-glycemic properties, which collectively contribute to their beneficial effects in mitigating diabetic complications. Thus, the inclusion of polyphenols into the diet, may be cosidered as an approach of managing diabetes on long term basis. In this review, we have tried to identify polyphenols effective in diabetes and summarize their mechanism of action along with their potential, for the treatment of diabetic complications.
Collapse
Affiliation(s)
- Jeevika Raina
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | | | - Gurvinder Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India.
| |
Collapse
|
5
|
Wang T, Wang YY, Shi MY, Liu L. Mechanisms of action of natural products on type 2 diabetes. World J Diabetes 2023; 14:1603-1620. [DOI: 10.4239/wjd.v14.i11.1603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/14/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
Over the past several decades, type 2 diabetes mellitus (T2DM) has been considered a global public health concern. Currently, various therapeutic modalities are available for T2DM management, including dietary modifications, moderate exercise, and use of hypoglycemic agents and lipid-lowering medications. Although the curative effect of most drugs on T2DM is significant, they also exert some adverse side effects. Biologically active substances found in natural medicines are important for T2DM treatment. Several recent studies have reported that active ingredients derived from traditional medicines or foods exert a therapeutic effect on T2DM. This review compiled important articles regarding the therapeutic effects of natural products and their active ingredients on islet β cell function, adipose tissue inflammation, and insulin resistance. Additionally, this review provided an in-depth understanding of the multiple regulatory effects on different targets and signaling pathways of natural medicines in the treatment of T2DM as well as a theoretical basis for clinical effective application.
Collapse
Affiliation(s)
- Tao Wang
- Clinical Molecular Immunology Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Yang-Yang Wang
- Clinical Molecular Immunology Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Meng-Yue Shi
- Clinical Molecular Immunology Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Lian Liu
- Department of Pharmacology, Yangtze University, Jingzhou 434023, Hubei Province, China
| |
Collapse
|
6
|
Su X, Lu G, Ye L, Shi R, Zhu M, Yu X, Li Z, Jia X, Feng L. Moringa oleifera Lam.: a comprehensive review on active components, health benefits and application. RSC Adv 2023; 13:24353-24384. [PMID: 37588981 PMCID: PMC10425832 DOI: 10.1039/d3ra03584k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Moringa oleifera Lam. is an edible therapeutic plant that is native to India and widely cultivated in tropical countries. In this paper, the current application of M. oleifera was discussed by summarizing its medicinal parts, active components and potential mechanism. The emerging products of various formats such as drug preparation and product application reported in the last years were also clarified. Based on literature reports, the unique components and biological activities of M. oleifera need to be further studied. In the future, a variety of new technologies should be applied to the development of M. oleifera products, to enrich the varieties of dosage forms, improve the bitter taste masking technology, and make it better for use in the fields of food and medicine.
Collapse
Affiliation(s)
- Xinyue Su
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Guanzheng Lu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Liang Ye
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Ruyu Shi
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Maomao Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Xinming Yu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Zhiyong Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 P. R. China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| |
Collapse
|
7
|
Luo W, Deng J, He J, Yin L, You R, Zhang L, Shen J, Han Z, Xie F, He J, Guan Y. Integration of molecular docking, molecular dynamics and network pharmacology to explore the multi-target pharmacology of fenugreek against diabetes. J Cell Mol Med 2023. [PMID: 37257051 DOI: 10.1111/jcmm.17787] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/15/2023] [Accepted: 05/13/2023] [Indexed: 06/02/2023] Open
Abstract
Fenugreek is an ancient herb that has been used for centuries to treat diabetes. However, how the fenugreek-derived chemical compounds work in treating diabetes remains unclarified. Herein, we integrate molecular docking and network pharmacology to elucidate the active constituents and potential mechanisms of fenugreek against diabetes. First, 19 active compounds from fenugreek and 71 key diabetes-related targets were identified through network pharmacology analysis. Then, molecular docking and simulations results suggest diosgenin, luteolin and quercetin against diabetes via regulation of the genes ESR1, CAV1, VEGFA, TP53, CAT, AKT1, IL6 and IL1. These compounds and genes may be key factors of fenugreek in treating diabetes. Cells results demonstrate that fenugreek has good biological safety and can effectively improve the glucose consumption of IR-HepG2 cells. Pathway enrichment analysis revealed that the anti-diabetic effect of fenugreek was regulated by the AGE-RAGE and NF-κB signalling pathways. It is mainly associated with anti-oxidative stress, anti-inflammatory response and β-cell protection. Our study identified the active constituents and potential signalling pathways involved in the anti-diabetic effect of fenugreek. These findings provide a theoretical basis for understanding the mechanism of the anti-diabetic effect of fenugreek. Finally, this study may help for developing anti-diabetic dietary supplements or drugs based on fenugreek.
Collapse
Affiliation(s)
- Wenfeng Luo
- School of Life Science, South China Normal University, Guangzhou, China
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
- Medical Imaging Institute of Panyu, Guangzhou, China
| | - Jie Deng
- Shunde Polytecnic, Foshan, China
| | - Jiecheng He
- School of Life Science, South China Normal University, Guangzhou, China
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Liang Yin
- School of Life Science, South China Normal University, Guangzhou, China
| | - Rong You
- School of Life Science, South China Normal University, Guangzhou, China
| | - Lingkun Zhang
- School of Life Science, South China Normal University, Guangzhou, China
| | - Jian Shen
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Zeping Han
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Fangmei Xie
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Jinhua He
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Yanqing Guan
- School of Life Science, South China Normal University, Guangzhou, China
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
8
|
Huang J, Huang N, Mao Q, Shi J, Qiu Y. Natural bioactive compounds in Alzheimer's disease: From the perspective of type 3 diabetes mellitus. Front Aging Neurosci 2023; 15:1130253. [PMID: 37009462 PMCID: PMC10062602 DOI: 10.3389/fnagi.2023.1130253] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
There is a close relationship between Alzheimer's disease (AD) and diabetes mellitus (DM), and the link between the two is often referred to as type 3 diabetes mellitus (T3DM). Many natural bioactive compounds have shown the potential to treat AD and diabetes. We mainly review the polyphenols represented by resveratrol (RES) and proanthocyanidins (PCs) and alkaloids represented by berberine (BBR) and Dendrobium nobile Lindl. alkaloids (DNLA) from the perspective of T3DM to review the neuroprotective effects and molecular mechanisms of natural compounds in AD.
Collapse
Affiliation(s)
- Juan Huang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Nanqu Huang
- National Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Qianhua Mao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
- Jingshan Shi
| | - Yu Qiu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yu Qiu
| |
Collapse
|
9
|
Ding Y, Yang P, Li S, Zhang H, Ding X, Tan Q. Resveratrol accelerates wound healing by inducing M2 macrophage polarisation in diabetic mice. PHARMACEUTICAL BIOLOGY 2022; 60:2328-2337. [PMID: 36469602 PMCID: PMC9728132 DOI: 10.1080/13880209.2022.2149821] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT The reduction in M2 macrophage polarisation plays a major role during diabetic wound healing. Resveratrol (RSV) can promote the polarisation of M2 macrophages and accelerate diabetic wound healing. However, the specific mechanism by which RSV regulates M2 macrophage polarisation to promote diabetic wound healing is unclear. OBJECTIVE This study evaluated the effectiveness of RSV on diabetic wound healing and analysed the underlying mechanisms. MATERIALS AND METHODS STZ-induced C57/B6 mice were used as a diabetic mice model for a period of 15 days. RSV (10 μmol/L) was injected around the wound to evaluate the effect of RSV on the healing process of diabetic wounds. The human monocyte line THP-1 was used to evaluate the effects of RSV (10 μmol/L) on polarisation of M2 macrophages and the secretion of pro-inflammatory factors. RESULTS In vivo, RSV significantly increased diabetic wound healing (p < 0.05) and make the regenerated skin structure more complete. And it promoted the expression of α-SMA and Collagen I (p < 0.05). Moreover, RSV reduced the secretion of inflammatory factors (TNF-α, iNOS and IL-1β) (p < 0.05) and promoted M2 macrophage polarisation by increasing Arg-1 and CD206 expression (p < 0.01). In vitro, RSV promoted the polarisation of M2 macrophages (p < 0.001) and reduced the secretion of pro-inflammatory factors (TNF-α, IL-6 and IL-1β) (p < 0.05). The therapeutic effects of RSV were all significantly reversed with LY294002 (p < 0.01). DISCUSSION AND CONCLUSIONS RSV has the positive effects on promoting the acceleration and quality of skin wound healing, which provides a scientific basis for clinical treatment in diabetic wound.
Collapse
Affiliation(s)
- Youjun Ding
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
- Department of Emergency Surgery, The Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Fourth People’s Hospital), Zhenjiang, China
| | - Ping Yang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shiyan Li
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hao Zhang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaofeng Ding
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Department of Burns and Plastic Surgery, Anqing Shihua Hospital of Nanjing Drum Tower Hospital Group, Anqing, China
- CONTACT Qian Tan Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Froldi G, Ragazzi E. Selected Plant-Derived Polyphenols as Potential Therapeutic Agents for Peripheral Artery Disease: Molecular Mechanisms, Efficacy and Safety. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207110. [PMID: 36296702 PMCID: PMC9611444 DOI: 10.3390/molecules27207110] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
Vascular diseases, such as peripheral artery disease (PAD), are associated with diabetes mellitus and a higher risk of cardiovascular disease and even death. Surgical revascularization and pharmacological treatments (mainly antiplatelet, lipid-lowering drugs, and antidiabetic agents) have some effectiveness, but the response and efficacy of therapy are overly dependent on the patient’s conditions. Thus, the demand for new cures exists. In this regard, new studies on natural polyphenols that act on key points involved in the pathogenesis of vascular diseases and, thus, on PAD are of great urgency. The purpose of this review is to take into account the mechanisms that lead to endothelium dysfunction, such as the glycoxidation process and the production of advanced glycation end-products (AGEs) that result in protein misfolding, and to suggest plant-derived polyphenols that could be useful in PAD. Thus, five polyphenols are considered, baicalein, curcumin, mangiferin, quercetin and resveratrol, reviewing the literature in PubMed. The key molecular mechanisms and preclinical and clinical studies of each selected compound are examined. Furthermore, the safety profiles of the polyphenols are outlined, together with the unwanted effects reported in humans, also by searching the WHO database (VigiBase).
Collapse
|
11
|
Anapali M, Kaya-Dagistanli F, Akdemir AS, Aydemir D, Ulusu NN, Ulutin T, Uysal O, Tanriverdi G, Ozturk M. Combined resveratrol and vitamin D treatment ameliorate inflammation-related liver fibrosis, ER stress, and apoptosis in a high-fructose diet/streptozotocin-induced T2DM model. Histochem Cell Biol 2022; 158:279-296. [PMID: 35849204 DOI: 10.1007/s00418-022-02131-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 12/14/2022]
Abstract
A high fructose diet is a major cause of diabetes and various metabolic disorders, including fatty liver. In this study, we investigated the effects of resveratrol and vitamin D (VitD) treatments on endoplasmic reticulum (ER) stress, oxidative stress, inflammation, apoptosis, and liver regeneration in a rat model of type 2 diabetes mellitus, namely, T2DM Sprague-Dawley rats. This T2DM rat model was created through a combination treatment of a 10% fructose diet and 40 mg/kg streptozotocin (STZ). Resveratrol (1 mg/kg/day) and VitD (170/IU/week) were administered alone and in combination to both the diabetic and control groups. Immunohistochemical staining was performed to evaluate PCNA, NF-κB, TNF-α, IL-6, IL-1β, GRP78, and active caspase-3 in liver tissue. The TUNEL method and Sirius red staining were used to determine apoptosis and fibrosis, respectively. G6PD, 6-PGD, GR, and GST activities were measured to determine oxidative stress status. We found that the expressions of cytokines (TNF-α, IL-6, and IL-1β) correlated with NF-κB activation and were significantly increased in the T2DM rats. Increased GRP78 expression, indicating ER stress, increased in apoptotic cells, enhanced caspase-3 activation, and collagen accumulation surrounding the central vein were observed in the T2DM group compared with the other groups. The combination VitD + resveratrol treatment improved antioxidant defense via increasing G6PD, 6-PGD, GR, and GST activities compared to the diabetic groups. We concluded that the combined administration of resveratrol with VitD ameliorates the adverse effects of T2DM by regulating blood glucose levels, increasing antioxidant defense mechanisms, controlling ER stress, enhancing tissue regeneration, improving inflammation, and reducing apoptosis in liver cells. In conclusion, this study indicates that the combination treatment of resveratrol + VitD can be a beneficial option for preventing liver damage in fructose-induced T2DM.
Collapse
Affiliation(s)
- Merve Anapali
- Department of Medical Biology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Fatma Kaya-Dagistanli
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Ayse Seda Akdemir
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Duygu Aydemir
- Department of Medical Biochemistry, School of Medicine, Koc University, Istanbul, Turkey.,Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Nuriye Nuray Ulusu
- Department of Medical Biochemistry, School of Medicine, Koc University, Istanbul, Turkey.,Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Turgut Ulutin
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Omer Uysal
- Department of Biostatistics, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gamze Tanriverdi
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Melek Ozturk
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| |
Collapse
|
12
|
Beegum F, P V A, George KT, K P D, Begum F, Krishnadas N, Shenoy RR. Sirtuins as therapeutic targets for improving delayed wound healing in diabetes. J Drug Target 2022; 30:911-926. [PMID: 35787722 DOI: 10.1080/1061186x.2022.2085729] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Sirtuins are a vast family of histone deacetylases, which are NAD+ dependent enzymes, consisting of seven members, namely SIRT 1, SIRT 6 and SIRT 7 located within the nucleus, SIRT 2 in the cytoplasm and SIRT 3, SIRT 4, and SIRT 5 in the mitochondria. They have vital roles in regulating various biological functions such as age-related metabolic disorders, inflammation, stress response, cardiovascular and neuronal functions. Delayed wound healing is one of the complication of diabetes, which can lead to lower limb amputation if not treated timely. SIRT 1, 3 and 6 are potent targets for diabetic wound healing. SIRT 1 deficiency reduces recruitment of fibroblasts, macrophages, mast cells, neutrophils to wound site and delays wound healing; negatively expressing MMP-9. The SIRT 1 mediated signalling pathway in diabetic wound healing is the SIRT 1-foxo-C-Myc pathway. On the contrary SIRT 3 deficiency, impairs proliferation and migration of fibroblasts and SIRT 6 deficiency impairs wound closure rate and interrupts the vascular remodelling. This review focuses on the role of sirtuins in improving delayed wound healing in diabetes and its natural modulators with their specific functions towards healing diabetic wounds.
Collapse
Affiliation(s)
- Fathima Beegum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Anuranjana P V
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Krupa Thankam George
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Divya K P
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Farmiza Begum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Nandakumar Krishnadas
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Rekha R Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| |
Collapse
|
13
|
Su M, Zhao W, Xu S, Weng J. Resveratrol in Treating Diabetes and Its Cardiovascular Complications: A Review of Its Mechanisms of Action. Antioxidants (Basel) 2022; 11:antiox11061085. [PMID: 35739982 PMCID: PMC9219679 DOI: 10.3390/antiox11061085] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Diabetes mellitus (DM) is one of the most prevalent chronic diseases worldwide. High morbidity and mortality caused by DM are closely linked to its complications in multiple organs/tissues, including cardiovascular complications, diabetic nephropathy, and diabetic neuropathy. Resveratrol is a plant-derived polyphenolic compound with pleiotropic protective effects, ranging from antioxidant and anti-inflammatory to hypoglycemic effects. Recent studies strongly suggest that the consumption of resveratrol offers protection against diabetes and its cardiovascular complications. The protective effects of resveratrol involve the regulation of multiple signaling pathways, including inhibition of oxidative stress and inflammation, enhancement of insulin sensitivity, induction of autophagy, regulation of lipid metabolism, promotion of GLUT4 expression, and translocation, and activation of SIRT1/AMPK signaling axis. The cardiovascular protective effects of resveratrol have been recently reviewed in the literature, but the role of resveratrol in preventing diabetes mellitus and its cardiovascular complications has not been systematically reviewed. Therefore, in this review, we summarize the pharmacological effects and mechanisms of action of resveratrol based on in vitro and in vivo studies, highlighting the therapeutic potential of resveratrol in the prevention and treatment of diabetes and its cardiovascular complications.
Collapse
|
14
|
Vahdat-Lasemi F, Aghaee-Bakhtiari SH, Tasbandi A, Jaafari MR, Sahebkar A. Targeting interleukin-β by plant-derived natural products: Implications for the treatment of atherosclerotic cardiovascular disease. Phytother Res 2021; 35:5596-5622. [PMID: 34390063 DOI: 10.1002/ptr.7194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 05/21/2021] [Accepted: 05/29/2021] [Indexed: 01/31/2023]
Abstract
Inflammation is the main contributing factor to atheroma formation in atherosclerosis. Interleukin-1 beta (IL-1β) is an inflammatory mediator found in endothelial cells and resident leukocytes. Canakinumab is a selective monoclonal antibody against IL-1β which attenuates inflammation and concurrently precipitates fatal infections and sepsis. Natural products derived from medicinal plants, herbal remedy and functional foods are widely used nowadays. Experimental and clinical trial evidence supports that some natural products such as curcumin, resveratrol, and quercetin have potential effects on IL-1β suppression. In this review, we tried to document findings that used medicinal plants and plant-based natural products for treating atherosclerosis and its related diseases through the suppression of IL-1β.
Collapse
Affiliation(s)
- Fatemeh Vahdat-Lasemi
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Aida Tasbandi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia
| |
Collapse
|
15
|
Ramos PA, Lytle KA, Delivanis D, Nielsen S, LeBrasseur NK, Jensen MD. Insulin-Stimulated Muscle Glucose Uptake and Insulin Signaling in Lean and Obese Humans. J Clin Endocrinol Metab 2021; 106:e1631-e1646. [PMID: 33382888 PMCID: PMC7993573 DOI: 10.1210/clinem/dgaa919] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE Skeletal muscle is the primary site for insulin-stimulated glucose disposal, and muscle insulin resistance is central to abnormal glucose metabolism in obesity. Whether muscle insulin signaling to the level of Akt/AS160 is intact in insulin-resistant obese humans is controversial. METHODS We defined a linear range of insulin-stimulated systemic and leg glucose uptake in 14 obese and 14 nonobese volunteers using a 2-step insulin clamp (Protocol 1) and then examined the obesity-related defects in muscle insulin action in 16 nonobese and 25 obese male and female volunteers matched for fitness using a 1-step, hyperinsulinemic, euglycemic clamp coupled with muscle biopsies (Protocol 2). RESULTS Insulin-stimulated glucose disposal (Si) was reduced by > 60% (P < 0.0001) in the obese group in Protocol 2; however, the phosphorylation of Akt and its downstream effector AS160 were not different between nonobese and obese groups. The increase in phosphorylation of Akt2 in response to insulin was positively correlated with Si for both the nonobese (r = 0.53, P = 0.03) and the obese (r = 0.55, P = 0.01) groups. Total muscle GLUT4 protein was 17% less (P < 0.05) in obese subjects. CONCLUSIONS We suggest that reduced muscle glucose uptake in obesity is not due to defects in the insulin signaling pathway at the level of Akt/AS160, which suggests there remain significant gaps in our knowledge of muscle insulin resistance in obesity. Our data imply that models of acute lipotoxicity do not replicate the pathophysiology of obesity.
Collapse
Affiliation(s)
- Paola A Ramos
- Endocrine Research Unit, Mayo Clinic, Rochester, MN, USA
| | - Kelli A Lytle
- Endocrine Research Unit, Mayo Clinic, Rochester, MN, USA
| | | | - Søren Nielsen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus C, Denmark
| | | | - Michael D Jensen
- Endocrine Research Unit, Mayo Clinic, Rochester, MN, USA
- Correspondence: Michael D. Jensen, MD, Division of Endocrinology, Mayo Clinic, 200 First St SW, Joseph Rm 5–194, Rochester MN 55905, USA.
| |
Collapse
|
16
|
Abstract
Over the past decade, oxidative stress was shown to be a key factor for various diseases. The term “antioxidant” also rapidly gained attention worldwide, viewed as beneficial in disease prevention. Resveratrol (RSV), a natural polyphenol, is a plant antitoxin formed in response to harmful environmental factors such as infection and injury. This antitoxin is found in grapes, strawberries, peanuts, or herbal medicines and exhibits many pharmacological effects involved in antitumor, anti-inflammatory, antiaging, and antioxidation stress mechanisms. Recently, numerous in vitro and in vivo experiments have shown that RSV harbors antioxidative stress properties and can be used as an antioxidant. Here, we review the free radical scavenging ability, antioxidant properties, signaling pathways, expression and regulation of antioxidant enzymes, and oxidative stress-related diseases associated with RSV.
Collapse
|
17
|
Lim YRI, Preshaw PM, Lin H, Tan KS. Resveratrol and Its Analogs as Functional Foods in Periodontal Disease Management. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.636423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Periodontitis is a common chronic inflammatory disease driven by the interaction between a dysbiotic oral microbiome and the dysregulated host immune-inflammatory response. Naturally derived nutraceuticals, such as resveratrol and its analogs, are potential adjunctive therapies in periodontal treatment due to their antimicrobial and anti-inflammatory properties. Furthermore, different analogs of resveratrol and the choice of solvents used may lead to varying effects on therapeutic properties. This review presents the current findings and gaps in our understanding on the potential utility of resveratrol and its analogs in periodontal treatment.
Collapse
|
18
|
Cirano FR, Molez AM, Ribeiro FV, Tenenbaum HC, Casati MZ, Corrêa MG, Pimentel SP. Resveratrol and insulin association reduced alveolar bone loss and produced an antioxidant effect in diabetic rats. J Periodontol 2020; 92:748-759. [PMID: 32827164 DOI: 10.1002/jper.19-0718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND The present investigation studied the effects of systemic administration of resveratrol (RSV) on the development of experimental periodontitis (EP) and on the release of markers of inflammation, bone metabolism, and oxidative stress in diabetic rats. METHODS Seventy-five male rats were divided into five groups: DM+PLAC: Diabetes Mellitus + placebo solution; DM+INS: DM + insulin therapy; DM+RSV: DM + RSV; DM+RSV+INS: DM + RSV and insulin; NDM: non-diabetic. Streptozotocin was used to induce DM and EP was induced by the placement of a ligature at the fist mandibular and the second maxillary molars. Euthanasia occurred 30 days after the initiation of the study and mandible specimens were subjected for morphometric analysis of bone level. Gingival tissues from mandibular molars were collected for quantification of inflammatory and oxidative stress markers by multiplex assay system and ELISA assay, respectively. Maxillary gingival tissues were processed for real-time polymerase chain reaction (real-time PCR) assessment of markers of bone metabolism and oxidative stress. RESULTS Morphometric analysis revealed greater bone loss in DM+PLAC and DM+INS in comparison to the other treatments (P < 0.05). RSV used in conjunction with INS reduced the levels of interleukin (IL)-1β, IL-6, IL-17, interferon-gamma (IFN-γ) and superoxide dismutase 1 (SOD) (P < 0.05). RSV alone reduced nicotinamide adenine dinucleotide phosphatase oxidase (NADPH oxidase) levels, in comparison to DM+INS and DM+RSV+INS (P < 0.05). All treatments upregulated mRNA levels for osteoprotegerin (OPG) in comparison to PLAC (P < 0.05). Sirtuin 1 (SIRT) mRNA levels were lower in PLAC when compared to DM+RSV, DM+RSV+INS and NDM (P < 0.05). CONCLUSION RSV reduced the progression of EP and the levels of NADPH oxidase. Co-treatment with RSV and insulin reduced the levels of pro-inflammatory factors (either proteins or mRNA) and increased the levels of SOD. The data also demonstrated that treatment with RSV and INS alone or in combination had beneficial effects on bone loss.
Collapse
Affiliation(s)
| | - Andréia Manetta Molez
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, Brazil
| | | | - Howard C Tenenbaum
- Department of Periodontology, Faculty of Dentistry, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, Faculty of Medicine University of Toronto, Toronto, Ontario, Canada.,School of Dental Medicine, Department of Periodontics, Tel Aviv University, Tel Aviv, Israel.,Department of Dentistry and Centre for Advanced Dental Research and Care, Sinai Health System, Toronto, Ontario, Canada
| | - Marcio Z Casati
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, Brazil
| | | | - Suzana Peres Pimentel
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, Brazil
| |
Collapse
|
19
|
Jiang G, Xiao G, Luo C, Tang Z, Teng Z, Peng X. Correlation Between SNPs at the 3'UTR of the FGF2 Gene and Their Interaction with Environmental Factors in Han Chinese Diabetic Peripheral Neuropathy Patients. J Mol Neurosci 2020; 71:203-214. [PMID: 32613556 DOI: 10.1007/s12031-020-01641-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 06/19/2020] [Indexed: 12/12/2022]
Abstract
FGF2 is a neurotrophic factor that can act as a key regulatory molecule of neuroprotection, neurogenesis, and angiogenesis in various injuries. To explore the genetic background of the FGF2 gene on DPN development, this study analyzed the correlation between SNPs in the 3'UTR of the FGF2 gene and their interaction with environmental factors in DPN patients of Han Chinese nationality. Sanger sequencing was used to analyze the FGF2 genotypes at the rs1048201, rs3804158, rs41348645, rs6854081, rs3747676, rs7683093, rs1476215, and rs1476217 loci in 150 DPN patients, 150 NDPN patients, and 150 healthy control patients. Plasma FGF2 levels were measured in all subjects by using ELISAs. Subjects carrying the T allele at the rs1048201 locus in the FGF2 gene had a significantly lower risk of developing DPN compared with subjects carrying the C allele (OR = 0.43, 95% CI = 0.33-0.56, p < 0.01). Subjects with the G genotype at the rs6854081 locus had an exceptionally higher risk of developing DPN than subjects with the T allele (OR = 1.66, 95% CI = 1.39-1.89, p < 0.01). Individuals harboring the G allele at the rs7683093 locus had a markedly higher risk of DPN than patients with the C allele (OR = 1.63, 95% CI = 1.36-1.87, p < 0.01). Finally, individuals having the A genotype at the rs1476215 locus had a significantly higher risk of DPN than individuals carrying the T allele (OR = 1.82, 95% CI = 1.53-2.02, p < 0.01). There was an interaction between age and alcohol consumption and the SNP rs7683093. SNPs at rs1048201, rs6854081, rs7683093, and rs1476215 in the FGF2 3'UTR were strongly associated with plasma levels of FGF2 (p < 0.05). SNPs at the rs1048201, rs6854081, rs7683093, and rs1476215 loci in the FGF2 gene were significantly associated with the risk of DPN. A possible mechanism is that these SNPs affect the expression level of FGF2 by interrupting the binding of microRNAs to target sites in the 3'UTR.
Collapse
Affiliation(s)
- Guangyuan Jiang
- Department of Neurosurgery, The Chongqing City Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Gang Xiao
- Department of Neurosurgery, The Chongqing City Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Chao Luo
- Department of Neurosurgery, The Chongqing City Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Zhaohua Tang
- Departmen of neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhipeng Teng
- Department of Neurosurgery, The Chongqing City Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xing Peng
- Department of Neurosurgery, The Chongqing City Hospital of Traditional Chinese Medicine, Chongqing, China.
| |
Collapse
|
20
|
Inhibition of NF-κB and Wnt/β-catenin/GSK3β Signaling Pathways Ameliorates Cardiomyocyte Hypertrophy and Fibrosis in Streptozotocin (STZ)-induced Type 1 Diabetic Rats. Curr Med Sci 2020; 40:35-47. [DOI: 10.1007/s11596-020-2144-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/10/2019] [Indexed: 12/23/2022]
|
21
|
Huang DD, Shi G, Jiang Y, Yao C, Zhu C. A review on the potential of Resveratrol in prevention and therapy of diabetes and diabetic complications. Biomed Pharmacother 2020; 125:109767. [PMID: 32058210 DOI: 10.1016/j.biopha.2019.109767] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/18/2019] [Accepted: 11/29/2019] [Indexed: 02/08/2023] Open
Abstract
Diabetes mellitus (DM) is a major world health problem and one of the most studied diseases, which are highly prevalent in the whole world, it is frequently associated with severe clinical complications, such as diabetic cardiomyopathy, nephropathy, retinopathy, neuropathy etc. Scientific research is continuously casting about for new monomer molecules from Chinese herbal medicine that could be invoked as candidate drugs for fighting against diabetes and its complications. Resveratrol (RES), a polyphenol phytoalexin, possesses diverse biochemical and physiological actions, including antiplatelet, estrogenic, and anti-inflammatory properties. It is recently gaining scientific interest for RES in controlling blood sugar and fighting against diabetes and its complications properties in various types of diabetic models. These beneficial effects seem to be due to the multiple actions of RES on cellular functions, which make RES become a promising molecule for the treatment of diabetes and diabetic complications. Here, we review the mechanism of action and potential therapeutic use of RES in prevention and mitigation of these diseases in recent ten years to provide a reference for further research and development of RES.
Collapse
Affiliation(s)
- Dan-Dan Huang
- Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Fujian, 362000, China
| | - Guangjiang Shi
- School of pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yaping Jiang
- School of Pharmacology, Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan, 750004, China
| | - Chao Yao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, 211198, China
| | - Chuanlin Zhu
- Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| |
Collapse
|
22
|
Ko CY, Lin RH, Lo YM, Chang WC, Huang DW, Wu JSB, Chang YF, Huang WC, Shen SC. Effect of Ruellia tuberosa L. on aorta endothelial damage-associated factors in high-fat diet and streptozotocin-induced type 2 diabetic rats. Food Sci Nutr 2019; 7:3742-3750. [PMID: 31763023 PMCID: PMC6848814 DOI: 10.1002/fsn3.1233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/31/2019] [Accepted: 08/12/2019] [Indexed: 01/06/2023] Open
Abstract
Hyperglycemia plays crucial roles in vascular disease development, including macrovascular and microvascular diseases from diabetes mellitus (DM). Our previous study demonstrated that Ruellia tuberosa L. (RTL) aqueous and ethanol extracts alleviate hyperglycemia and inhibit insulin resistance in diabetic rats. This study investigated the protective effect of RTL ethanol extract against aorta dysfunction in high-fat diet (HFD) and streptozotocin (STZ)-induced type 2 DM (T2DM) rats. Results showed that RTL ethanol extract (100 and 400 mg/kg BW/day) ameliorated serum lipid profiles, including triglyceride, free fatty acid, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol levels. It also significantly reduced the level of serum cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 in T2DM rats. Additionally, RTL extract decreased endothelin-1 and endothelial nitric oxide contents, reduced the level of cell adhesion factors, including monocyte chemoattractant protein-1 and cell adhesion factor vascular cell adhesion molecule-1, while decreasing content of damage factors, namely tissue factor and von Willebrand factor in aortic tissues of diabetic rats. Equally noteworthy is that RTL extract enhanced the activity of aorta antioxidative enzymes, including superoxidase dismutase and catalase in diabetic rats, suggesting that RTL ethanol extract may ameliorate aorta dysfunction via enhancing aortic antioxidative enzyme activity, which subsequently suppresses aorta endothelial damage-associated factors in HFD with STZ-induced T2DM rats.
Collapse
Affiliation(s)
- Chih-Yuan Ko
- Department of Respiratory and Critical Care Medicine The Second Affiliated Hospital of Fujian Medical University Quanzhou China
- Department of Clinical Nutrition The Second Affiliated Hospital of Fujian Medical University Quanzhou China
- Respiratory Medicine Center of Fujian Province Quanzhou China
- The Sleep Medicine Key Laboratory of Fujian Province Universities Quanzhou China
| | - Ru-Hai Lin
- Department of Endocrinology and Metabolism The Second Affiliated Hospital of Fujian Medical University Quanzhou China
| | | | - Wen-Chang Chang
- Department of Food Science National Chiayi University Chiayi City Taiwan
| | - Da-Wei Huang
- Department of Biotechnology and Food Technology Southern Taiwan University of Science and Technology Tainan City Taiwan
| | - James Swi-Bea Wu
- Graduate Institute of Food Science and Technology National Taiwan University Taipei Taiwan
| | - Yu-Fang Chang
- Graduate Program of Nutrition Science National Taiwan Normal University Taipei Taiwan
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology Chang Gung University of Science and Technology Taoyuan Taiwan
| | - Szu-Chuan Shen
- Graduate Program of Nutrition Science National Taiwan Normal University Taipei Taiwan
| |
Collapse
|
23
|
Xiao D, Zhu L, Edirisinghe I, Fareed J, Brailovsky Y, Burton-Freeman B. Attenuation of Postmeal Metabolic Indices with Red Raspberries in Individuals at Risk for Diabetes: A Randomized Controlled Trial. Obesity (Silver Spring) 2019; 27:542-550. [PMID: 30767409 DOI: 10.1002/oby.22406] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/29/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVE This study investigated the effect of red raspberry intake on meal-induced postprandial metabolic responses in individuals who have overweight or obesity with prediabetes and insulin resistance (PreDM-IR), and in metabolically healthy individuals (Reference). METHODS Thirty-two adults (PreDM-IR, n = 21; Reference, n = 11) were randomized to a controlled, three-arm, single-blinded, crossover trial. Participants were provided 0 g of frozen red raspberries (Control), 125 g of frozen red raspberries (RR-125) (~1 cup), or 250 g of frozen red raspberries (RR-250) (~2 cups), with a challenge breakfast meal (high carbohydrate/moderate fat) on three separate days. Multiple blood samples were collected up to 8 hours post breakfast with a final blood sample at 24 hours. A snack was provided at 6 hours. RESULTS Breakfast containing RR-125 and RR-250 significantly reduced 2-hour insulin area under the curve, and RR-250 reduced peak insulin, peak glucose, and 2-hour glucose AUC compared with Control in the PreDM-IR group (P < 0.05). Postprandial triglycerides were significantly lower after RR-125 versus RR-250 (P = 0.01) but not different from Control (P > 0.05). No significant meal-related differences were observed for oxidative stress or inflammatory biomarkers. CONCLUSIONS Our findings suggest that red raspberries aid in postmeal glycemic control in individuals with PreDM-IR, reducing glycemic burden with less insulin, which may be related to improved tissue insulin sensitivity.
Collapse
Affiliation(s)
- Di Xiao
- Center for Nutrition Research, Institution for Food Safety and Health, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Lanjun Zhu
- Center for Nutrition Research, Institution for Food Safety and Health, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Indika Edirisinghe
- Center for Nutrition Research, Institution for Food Safety and Health, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Jawed Fareed
- Department of Pharmacology, Loyola University Medical Center, Maywood, Illinois, USA
| | - Yevgeniy Brailovsky
- Department of Medicine, Loyola University Medical Center, Maywood, Illinois, USA
| | - Britt Burton-Freeman
- Center for Nutrition Research, Institution for Food Safety and Health, Illinois Institute of Technology, Chicago, Illinois, USA
- Department of Nutrition, University of California, Davis, California, USA
| |
Collapse
|
24
|
dos Santos DP, Soares Lopes DP, de Moraes RC, Vieira Gonçalves C, Pereira Rosa L, da Silva Rosa FC, da Silva RAA. Photoactivated resveratrol against Staphylococcus aureus infection in mice. Photodiagnosis Photodyn Ther 2019; 25:227-236. [PMID: 30630110 DOI: 10.1016/j.pdpdt.2019.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/22/2018] [Accepted: 01/04/2019] [Indexed: 01/02/2023]
|
25
|
Xiao D, Zhou T, Fu Y, Wang R, Zhang H, Li M, Lin Y, Li Z, Xu C, Yang B, Zhang Y, Zhang Y. MicroRNA-17 impairs glucose metabolism in insulin-resistant skeletal muscle via repressing glucose transporter 4 expression. Eur J Pharmacol 2018; 838:170-176. [PMID: 30170066 DOI: 10.1016/j.ejphar.2018.08.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 01/01/2023]
Abstract
Elimination of glucose transporter 4 (GLUT4) inevitably induces insulin resistance (IR), aggravating inflammation- and oxidative stress-related disorders. However, the underlying molecular mechanisms remain incompletely understood. In this study, we identified miR-17 as an important regulator of IR by targeting GLUT4. MiR-17 expression was found significantly elevated in skeletal tissues of rats with type 2 diabetes mellitus (T2DM), along with marked downregulation of GLUT4 protein level. Luciferase reporter gene assay demonstrated a direct interaction between miR-17 and the 3'untranslated region of GLUT4 mRNA. Correlation analyses (Spearman, Pearson, and Kendall) revealed that miR-17 level was negatively correlated with GLUT4 expression. Additionally, loss- and gain-of-function analyses showed that overexpression of miR-17 impaired glucose metabolism in L6 rat skeletal muscle cell line. In contrast, knockdown of endogenous miR-17 ameliorated glucose metabolism, accompanied by elevation of GLUT4 protein level. These findings unraveled a novel mechanism for IR that involves repression of GLUT4 by miR-17 and suggested miR-17 as a potential molecular target for the development of new therapeutic approaches for the treatment of T2DM.
Collapse
Affiliation(s)
- Dan Xiao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Tong Zhou
- Department of Pharmacy, the First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Yujie Fu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Rui Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Haiying Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Mingqi Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Yuan Lin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Zhange Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Chaoqian Xu
- Mudanjiang Medical University, 157000, China
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China; Department of Pharmacology and Therapeutics, Melbourne School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Melbourne 3010, Australia
| | - Ying Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China.
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China; Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin 150086, China.
| |
Collapse
|
26
|
Xu L, Li Y, Dai Y, Peng J. Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms. Pharmacol Res 2018; 130:451-465. [PMID: 29395440 DOI: 10.1016/j.phrs.2018.01.015] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 02/06/2023]
Abstract
Epidemiological studies have implied that diabetes mellitus (DM) will become an epidemic accompany with metabolic and endocrine disorders worldwide. Most of DM patients are affected by type 2 diabetes mellitus (T2DM) with insulin resistance and insulin secretion defect. Generally, the strategies to treat T2DM are diet control, moderate exercise, hypoglycemic and lipid-lowing agents. Despite the therapeutic benefits for the treatment of T2DM, most of the drugs can produce some undesirable side effects. Considering the pathogenesis of T2DM, natural products (NPs) have become the important resources of bioactive agents for anti-T2DM drug discovery. Recently, more and more natural components have been elucidated to possess anti-T2DM properties, and many efforts have been carried out to elucidate the possible mechanisms. The aim of this paper was to overview the activities and underlying mechanisms of NPs against T2DM. Developments of anti-T2DM agents will be greatly promoted with the increasing comprehensions of NPs for their multiple regulating effects on various targets and signal pathways.
Collapse
Affiliation(s)
- Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yue Li
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yan Dai
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
27
|
Morgan-Bathke M, Harteneck D, Jaeger P, Sondergaard E, Karwoski R, De Ycaza AE, Carranza-Leon BG, Faubion WA, Oliveira AM, Jensen MD. Comparison of Methods for Analyzing Human Adipose Tissue Macrophage Content. Obesity (Silver Spring) 2017; 25:2100-2107. [PMID: 28985040 PMCID: PMC5705319 DOI: 10.1002/oby.22012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 08/18/2017] [Accepted: 08/19/2017] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The relationship between inflammation, obesity, and adverse metabolic conditions is associated with adipose tissue macrophages (ATM). This study compared the measurements of human ATM using flow cytometry, immunohistochemistry (IHC), and real-time polymerase chain reaction (RT-PCR) of ATM markers. METHODS A new software program (AMCounter) was evaluated to help measure ATM using IHC, and this was compared to flow cytometry and RT-PCR. RESULTS IHC had good intraindividual reproducibility for total (CD68), proinflammatory (CD14), and anti-inflammatory (CD206) ATM. The AMCounter improved interreader agreement and was more time efficient. Flow cytometry had acceptable intraindividual reproducibility for the percentage of CD68+ cells that were CD14+ or CD206+ , but not for ATMs per gram of tissue. ATMs per gram of tissue was much greater using IHC than flow cytometry. The flow cytometry and IHC measures of ATM from the same biopsies were not correlated. There were statistically significant correlations between RT-PCR CD68 and IHC CD68, CD14, and CD206 ATMs per 100 adipocytes. Also of interest were statistically significant correlations between RT-PCR CD68 and IHC CD68, CD14, and adipose flow cytometry measures of CD68+ , CD68+ /CD14+ , and CD68+ /CD206+ ATMs per gram of tissue. CONCLUSIONS The AMCounter software helps provide reproducible and efficient measures of IHC ATMs. Flow cytometry, IHC, and RT-PCR measures of adipose inflammation provide somewhat different information.
Collapse
Affiliation(s)
| | - Debra Harteneck
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota USA
| | - Philippa Jaeger
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota USA
| | - Esben Sondergaard
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota USA
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus DENMARK
| | - Ron Karwoski
- Biomedical Imaging Resources, Mayo Clinic, Rochester, Minnesota USA
| | | | | | | | | | - Michael D. Jensen
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota USA
- Corresponding Author: Michael D. Jensen, Mayo Clinic, Endocrine Research Unit, 200 1 St SW, Rm 5-194 Joseph, Rochester, MN 55905, 507-255-6515 (tel), 507-255-4828 (fax),
| |
Collapse
|
28
|
Zhang Z, Chen W, Wang Y, Xiong T, Zhou C, Yao X, Lin B. Antioxidant and anti-inflammatory effects of DHK-medicated serum on high glucose-induced injury in endothelial cells. Mol Med Rep 2017; 16:7745-7751. [DOI: 10.3892/mmr.2017.7571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 07/18/2017] [Indexed: 11/05/2022] Open
|
29
|
The Role of Nrf2 in Cardiovascular Function and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9237263. [PMID: 29104732 PMCID: PMC5618775 DOI: 10.1155/2017/9237263] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
Abstract
Free radicals, reactive oxygen/nitrogen species (ROS/RNS), hydrogen sulphide, and hydrogen peroxide play an important role in both intracellular and intercellular signaling; however, their production and quenching need to be closely regulated to prevent cellular damage. An imbalance, due to exogenous sources of free radicals and chronic upregulation of endogenous production, contributes to many pathological conditions including cardiovascular disease and also more general processes involved in aging. Nuclear factor erythroid 2-like 2 (NFE2L2; commonly known as Nrf2) is a transcription factor that plays a major role in the dynamic regulation of a network of antioxidant and cytoprotective genes, through binding to and activating expression of promoters containing the antioxidant response element (ARE). Nrf2 activity is regulated by many mechanisms, suggesting that tight control is necessary for normal cell function and both hypoactivation and hyperactivation of Nrf2 are indicated in playing a role in different aspects of cardiovascular disease. Targeted activation of Nrf2 or downstream genes may prove to be a useful avenue in developing therapeutics to reduce the impact of cardiovascular disease. We will review the current status of Nrf2 and related signaling in cardiovascular disease and its relevance to current and potential treatment strategies.
Collapse
|
30
|
Zhai JL, Weng XS, Wu ZH, Guo SG. Effect of Resveratrol on Preventing Steroid-induced Osteonecrosis in a Rabbit Model. Chin Med J (Engl) 2017; 129:824-30. [PMID: 26996479 PMCID: PMC4819304 DOI: 10.4103/0366-6999.178952] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Prevention of osteonecrosis (ON) has seldom been addressed. The purpose of this study was to evaluate the effect of resveratrol on preventing steroid-induced ON in rabbits. Methods: Seventy-two rabbits were divided into four groups: (1) NEC (ON) group: thirty rabbits were treated with lipopolysaccharide (LPS) once, then with methylprednisolone (MPS) daily for 3 days; (2) PRE (prevention) group: thirty rabbits were given one dose of LPS, then MPS daily for 3 days, and resveratrol on day 0 and daily for 2 weeks; (3) RES (resveratrol) group: six rabbits were given resveratrol for 2 weeks but without LPS/MPS; (4) CON (control) group: six rabbits were given alcohol for 2 weeks but without LPS/MPS. Levels of plasma tissue-type plasminogen activator (t-PA), plasminogen activator inhibitor 1 (PAI-1), thrombomodulin (TM), vascular endothelial growth factor (VEGF), maximum enhancement (ME) by magnetic resonance imaging, and ON incidence were evaluated. Results: The PRE group had a lower ON incidence than the NEC group, but with no significant differences at 2 weeks and 12 weeks. The RES and CON groups did not develop ON. TM and VEGF were significantly higher in the NEC group compared with the PRE group at weeks 1, 2, and 4 (TM: 1 week, P = 0.029; 2 weeks, P = 0.005; and 4 weeks, P = 0.047; VEGF: 1 week, P = 0.039; 2 weeks, P = 0.021; 4 weeks, P = 0.014), but the difference disappeared at 12 weeks. The levels of t-PA and PAI-1 were not significantly different between the NEC and PRE groups. The TM, t-PA, PAI-1, and VEGF concentrations in the RES and CON groups did not change over time. Compared to the baseline, ME in the NEC group decreased significantly (P = 0.025) at week 1, increased significantly (P = 0.021) at week 2, and was decreased at week 12. The variance was insignificant in the PRE group. Conclusions: Resveratrol may improve blood supply to bone in a rabbit model of ON of the femoral head via anti-inflammatory effects to protect the vascular endothelium and reduce thrombosis.
Collapse
Affiliation(s)
| | - Xi-Sheng Weng
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | | | | |
Collapse
|
31
|
Pektaş A, Pektaş MB, Koca HB, Tosun M, Aslan E, Koca S, Sadi G. Effects of resveratrol on diabetes-induced vascular tissue damage and inflammation in male rats. TURKISH JOURNAL OF BIOCHEMISTRY 2017. [DOI: 10.1515/tjb-2016-0196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AbstractObjective:The present study aims to investigate the short-term effects of resveratrol on histopathological characteristics and inflammatory cytokines of the heart and thoracic aorta tissues in animal models of streptozotocin (STZ)-induced diabetes.Methods:Male Wistar rats were randomly divided into four groups; (1) control/vehicle, (2) control/20 mg/kg resveratrol, (3) diabetic/vehicle, (4) diabetic/20 mg/kg resveratrol. Heart and thoracic aorta were examined histopathologically and the levels of interleukin (IL)-1β, IL-18 and tissue necrosis factor (TNF)-α were analyzed by ELISA. Malondialdehyde (MDA) contents were determined with HPLC.Results:Diabetes group had significantly higher vascular MDA content (p<0.05) as compared with the control and resveratrol treated groups. Resveratrol significantly reduced vascular MDA level in diabetic animals (p<0.05). Significant elevation in IL-1β and TNF-α contents in thoracic aorta and IL-18 contents in cardiac and arterial tissues with diabetes were almost normalized with resveratrol treatment. Additionally, diabetic animals demonstrated significant endothelial damage, irregularities in smooth muscle fibers and degeneration of elastic fibers in thoracic aortas together with significant irregularities and hypertrophy in cardiac muscle fibers. Resveratrol significantly improved most of these histopathological alterations.Conclusion:Four-week-long intraperitoneal administration of resveratrol may restore the diabetes related inflammation and oxidative stress within the cardiovascular system.
Collapse
|
32
|
Muhammad SA, Raza W, Nguyen T, Bai B, Wu X, Chen J. Cellular Signaling Pathways in Insulin Resistance-Systems Biology Analyses of Microarray Dataset Reveals New Drug Target Gene Signatures of Type 2 Diabetes Mellitus. Front Physiol 2017; 8:13. [PMID: 28179884 PMCID: PMC5264126 DOI: 10.3389/fphys.2017.00013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/09/2017] [Indexed: 01/09/2023] Open
Abstract
Purpose: Type 2 diabetes mellitus (T2DM) is a chronic and metabolic disorder affecting large set of population of the world. To widen the scope of understanding of genetic causes of this disease, we performed interactive and toxicogenomic based systems biology study to find potential T2DM related genes after cDNA differential analysis. Methods: From the list of 50-differential expressed genes (p < 0.05), we found 9-T2DM related genes using extensive data mapping. In our constructed gene-network, T2DM-related differentially expressed seeder genes (9-genes) are found to interact with functionally related gene signatures (31-genes). The genetic interaction network of both T2DM-associated seeder as well as signature genes generally relates well with the disease condition based on toxicogenomic and data curation. Results: These networks showed significant enrichment of insulin signaling, insulin secretion and other T2DM-related pathways including JAK-STAT, MAPK, TGF, Toll-like receptor, p53 and mTOR, adipocytokine, FOXO, PPAR, P13-AKT, and triglyceride metabolic pathways. We found some enriched pathways that are common in different conditions. We recognized 11-signaling pathways as a connecting link between gene signatures in insulin resistance and T2DM. Notably, in the drug-gene network, the interacting genes showed significant overlap with 13-FDA approved and few non-approved drugs. This study demonstrates the value of systems genetics for identifying 18 potential genes associated with T2DM that are probable drug targets. Conclusions: This integrative and network based approaches for finding variants in genomic data expect to accelerate identification of new drug target molecules for different diseases and can speed up drug discovery outcomes.
Collapse
Affiliation(s)
- Syed Aun Muhammad
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya UniversityMultan, Pakistan; Institute of Biopharmaceutical Informatics and Technologies, Wenzhou Medical UniversityWenzhou, China; Wenzhou Medical University, 1st Affiliate Hospital WenzhouWenzhou, China
| | - Waseem Raza
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University Multan, Pakistan
| | - Thanh Nguyen
- Institute of Biopharmaceutical Informatics and Technologies, Wenzhou Medical UniversityWenzhou, China; Wenzhou Medical University, 1st Affiliate Hospital WenzhouWenzhou, China; Department of Computer and Information Science, Purdue UniversityIndianapolis, IN, USA
| | - Baogang Bai
- Institute of Biopharmaceutical Informatics and Technologies, Wenzhou Medical University Wenzhou, China
| | - Xiaogang Wu
- Institute for Systems Biology Seattle, WA, USA
| | - Jake Chen
- Institute of Biopharmaceutical Informatics and Technologies, Wenzhou Medical UniversityWenzhou, China; Wenzhou Medical University, 1st Affiliate Hospital WenzhouWenzhou, China; Department of Computer and Information Science, Purdue UniversityIndianapolis, IN, USA; Indiana Center for Systems Biology and Personalized Medicine, Indiana University-Purdue UniversityIndianapolis, IN, USA; Informatics Institute, School of Medicine, The University of AlabamaBirmingham, AL, USA
| |
Collapse
|
33
|
Huang Z, Dong X, Zhuang X, Hu X, Wang L, Liao X. Exogenous hydrogen sulfide protects against high glucose‑induced inflammation and cytotoxicity in H9c2 cardiac cells. Mol Med Rep 2016; 14:4911-4917. [PMID: 27748941 DOI: 10.3892/mmr.2016.5846] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 09/02/2016] [Indexed: 11/06/2022] Open
Abstract
Hyperglycemia serves an important role in the pathogenesis of diabetic cardiomyopathy. The aim of the present study was to investigate whether exogenous hydrogen sulfide (H2S) protects against high glucose‑induced inflammation and cytotoxicity in cardiac cells by inhibiting the p38 mitogen‑activated protein kinase (MAPK)/nuclear factor‑κB (NF‑κB), cyclooxygenase‑2 (COX‑2) and inducible nitric oxide synthase (iNOS) signaling pathways. Rat H9c2 myocardium cells were exposed to 33 mM glucose (high glucose, HG) for 24 h to stimulate HG‑induced cytotoxicity. One group of cells was pretreated with NaHS (a donor of H2S) prior to HG exposure, and cell viability was determined using the Cell Counting Kit‑8 assay. The protein expression levels of p38MAPK, the phosphorylated p65 subunit of NF‑κB, iNOS, COX‑2 and caspase‑3 were analyzed by western blotting, and the protein expression levels of interleukin (IL)‑1β and IL‑6 were detected by enzyme‑linked immunosorbent assay (ELISA). Pretreatment of H9c2 cells with NaHS for 30 min prior to exposure to HG significantly ameliorated the expression of p38MAPK and NF‑κB. In addition, pretreatment with NaHS markedly attenuated p38MAPK/NF‑κB‑mediated cytotoxicity and inflammation, as evidenced by the significant increase in cell viability and decrease in iNOS, COX‑2, IL‑1β and IL‑6 expression levels. Furthermore, treatment of cells with NaHS significantly decreased the expression of caspase‑3, which suggested that NaHS attenuated HG‑induced apoptosis. In conclusion, the results of the present study provided evidence to suggest that exogenous H2S protects against HG‑induced cytotoxicity and inflammation in H9c2 cardiac cells. H2S may exert these cytoprotective effects via inhibition of the p38MAPK/NF‑κB, COX‑2 and iNOS signaling pathways.
Collapse
Affiliation(s)
- Zena Huang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaobian Dong
- Department of Cardiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaodong Zhuang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xun Hu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Lichun Wang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xinxue Liao
- Department of Cardiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
34
|
Li YC, Liu YM, Shen JD, Chen JJ, Pei YY, Fang XY. Resveratrol Ameliorates the Depressive-Like Behaviors and Metabolic Abnormalities Induced by Chronic Corticosterone Injection. Molecules 2016; 21:molecules21101341. [PMID: 27754387 PMCID: PMC6274283 DOI: 10.3390/molecules21101341] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/24/2016] [Accepted: 10/06/2016] [Indexed: 12/17/2022] Open
Abstract
Chronic glucocorticoid exposure is known to cause depression and metabolic disorders. It is critical to improve abnormal metabolic status as well as depressive-like behaviors in patients with long-term glucocorticoid therapy. This study aimed to investigate the effects of resveratrol on the depressive-like behaviors and metabolic abnormalities induced by chronic corticosterone injection. Male ICR mice were administrated corticosterone (40 mg/kg) by subcutaneous injection for three weeks. Resveratrol (50 and 100 mg/kg), fluoxetine (20 mg/kg) and pioglitazone (10 mg/kg) were given by oral gavage 30 min prior to corticosterone administration. The behavioral tests showed that resveratrol significantly reversed the depressive-like behaviors induced by corticosterone, including the reduced sucrose preference and increased immobility time in the forced swimming test. Moreover, resveratrol also increased the secretion of insulin, reduced serum level of glucose and improved blood lipid profiles in corticosterone-treated mice without affecting normal mice. However, fluoxetine only reverse depressive-like behaviors, and pioglitazone only prevent the dyslipidemia induced by corticosterone. Furthermore, resveratrol and pioglitazone decreased serum level of glucagon and corticosterone. The present results indicated that resveratrol can ameliorate depressive-like behaviors and metabolic abnormalities induced by corticosterone, which suggested that the multiple effects of resveratrol could be beneficial for patients with depression and/or metabolic syndrome associated with long-term glucocorticoid therapy.
Collapse
Affiliation(s)
- Yu-Cheng Li
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China.
| | - Ya-Min Liu
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China.
| | - Ji-Duo Shen
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China.
| | - Jun-Jie Chen
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China.
| | - Yang-Yi Pei
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China.
| | - Xiao-Yan Fang
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China.
| |
Collapse
|
35
|
Yonamine CY, Pinheiro-Machado E, Michalani ML, Freitas HS, Okamoto MM, Corrêa-Giannella ML, Machado UF. Resveratrol improves glycemic control in insulin-treated diabetic rats: participation of the hepatic territory. Nutr Metab (Lond) 2016; 13:44. [PMID: 27366200 PMCID: PMC4928352 DOI: 10.1186/s12986-016-0103-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/22/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Resveratrol is a natural polyphenol that has been proposed to improve glycemic control in diabetes, by mechanisms that involve improvement in insulin secretion and activity. In type 1 diabetes (T1D), in which insulin therapy is obligatory, resveratrol treatment has never been investigated. The present study aimed to evaluate resveratrol as an adjunctive agent to insulin therapy in a T1D-like experimental model. METHODS Rats were rendered diabetic by streptozotocin (STZ) treatment. Twenty days later, four groups of animals were studied: non-diabetic (ND); diabetic treated with placebo (DP); diabetic treated with insulin (DI) and diabetic treated with insulin plus resveratrol (DIR). After 30 days of treatment, 24-hour urine was collected; then, blood, soleus muscle, proximal small intestine, renal cortex and liver were sampled. Specific glucose transporter proteins were analyzed (Western blotting) in each territory of interest. Solute carrier family 2 member 2 (Slc2a2), phosphoenolpyruvate carboxykinase (Pck1) and glucose-6-phosphatase catalytic subunit (G6pc) mRNAs (qPCR), glycogen storage and sirtuin 1 (SIRT1) activity were analyzed in liver. RESULTS Diabetes induction increased blood glucose, plasma fructosamine concentrations, and glycosuria. Insulin therapy partially recovered the glycemic control; however, resveratrol as adjunctive therapy additionally improved glycemic control and restored plasma fructosamine concentration to values of non-diabetic rats. Resveratrol did not alter the expression of the glucose transporters GLUT2 and SGLT1 in the intestine, GLUT2 and SGLT2 in kidney and GLUT4 in soleus, suggesting that fluxes of glucose in these territories were unaltered. Differently, in liver, resveratrol promoted a reduction in Slc2a2, Pck1, and G6pc mRNAs, as well as in GLUT2 protein (P < 0.05, DIR vs. DI); besides, it increased (P < 0.01, DIR vs. DI) the hepatic glycogen content, and SIRT1 protein. CONCLUSIONS Resveratrol is able to improve glycemic control in insulin-treated T1D-like rats. This effect seems not to involve changes in glucose fluxes in the small intestine, renal proximal tubule, and soleus skeletal muscle; but to be related to several changes in the liver, where downregulation of Slc2a2/GLUT2, Pck1, and G6pc expression was observed, favoring reduction of glucose production and efflux. Besides, resveratrol increased SIRT1 nuclear protein content in liver, which may be related to the observed gene expression regulations.
Collapse
Affiliation(s)
- Caio Yogi Yonamine
- />Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, 05508-000 São Paulo, SP Brazil
| | - Erika Pinheiro-Machado
- />Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, 05508-000 São Paulo, SP Brazil
| | - Maria Luiza Michalani
- />Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, 05508-000 São Paulo, SP Brazil
| | - Helayne Soares Freitas
- />Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, 05508-000 São Paulo, SP Brazil
| | - Maristela Mitiko Okamoto
- />Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, 05508-000 São Paulo, SP Brazil
| | - Maria Lucia Corrêa-Giannella
- />Laboratory of Medical Investigation 18 (LIM-18) and Cell and Molecular Therapy Center (NUCEL), Medical School, University of São Paulo, São Paulo, Brazil
| | - Ubiratan Fabres Machado
- />Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, 05508-000 São Paulo, SP Brazil
| |
Collapse
|
36
|
Abstract
AbstractThe endothelium, a thin single sheet of endothelial cells, is a metabolically active layer that coats the inner surface of blood vessels and acts as an interface between the circulating blood and the vessel wall. The endothelium through the secretion of vasodilators and vasoconstrictors serves as a critical mediator of vascular homeostasis. During the development of the vascular system, it regulates cellular adhesion and vessel wall inflammation in addition to maintaining vasculogenesis and angiogenesis. A shift in the functions of the endothelium towards vasoconstriction, proinflammatory and prothrombic states characterise improper functioning of these cells, leading to endothelial dysfunction (ED), implicated in the pathogenesis of many diseases including diabetes. Major mechanisms of ED include the down-regulation of endothelial nitric oxide synthase levels, differential expression of vascular endothelial growth factor, endoplasmic reticulum stress, inflammatory pathways and oxidative stress. ED tends to be the initial event in macrovascular complications such as coronary artery disease, peripheral arterial disease, stroke and microvascular complications such as nephropathy, neuropathy and retinopathy. Numerous strategies have been developed to protect endothelial cells against various stimuli, of which the role of polyphenolic compounds in modulating the differentially regulated pathways and thus maintaining vascular homeostasis has been proven to be beneficial. This review addresses the factors stimulating ED in diabetes and the molecular mechanisms of natural polyphenol antioxidants in maintaining vascular homeostasis.
Collapse
|
37
|
Wang HW, Shi L, Xu YP, Qin XY, Wang QZ. Oxymatrine inhibits renal fibrosis of obstructive nephropathy by downregulating the TGF-β1-Smad3 pathway. Ren Fail 2016; 38:945-51. [PMID: 27050799 DOI: 10.3109/0886022x.2016.1164185] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study investigated whether oxymatrine (OMT) treatment can ameliorate renal interstitial fibrosis in unilateral ureteral obstruction (UUO) mice model. Moreover, the potential mechanisms of such treatment were analyzed. Twenty-four C57/BL6 mice were randomly divided into three groups, namely sham group, vehicle plus unilateral ureteral obstruction (UUO)-treated group, and 100 mg/kg/d OMT plus UUO-treated group. All mice were euthanized seven days after surgery, and their kidneys were harvested. Renal injury, fibrosis, expression of proinflammatory cytokines, and the transforming growth factor-β1/Smads (TGF-β/Smads) and nuclear factor-kappa B (NF-κB)-signaling pathways were assessed. The results showed OMT significantly prevented kidney injury and fibrosis, as evidenced by decreased expression of collagen-1 and fibronectin. Furthermore, OMT administration inhibited the release of inflammatory factors including tumor necrosis factor-α, (TNF-α) interleukin-1β (IL-1β), and interleukin-6 (IL-6), as well as phosphorylated NF-κB p65. In addition, OMT blocked the activation of myofibroblasts by inhibiting the TGF-β/Smad3-signaling pathway. The findings indicate that OMT-attenuated renal fibrosis and inflammation, and this renoprotective effect may be ascribed to the inactivation of the TGF-β/Smad3 and NF-κB p65 pathways.
Collapse
Affiliation(s)
- Hong-Wei Wang
- a Department of Cardiology , People's Hospital of Xianfeng County , Xianfeng , China
| | - Lei Shi
- b Department of Oncology , Renmin Hospital of Wuhan University , Wuhan , China
| | - Yan-Ping Xu
- c Department of Scientific Research Office , Renmin Hospital of Wuhan University , Wuhan , China
| | - Xing-Ya Qin
- d Department of Orthopedics , People's Hospital of Xianfeng County , Xianfeng , China
| | - Qi-Zhi Wang
- e Department of Gastroenterology , People's Hospital of Xianfeng County , Xianfeng , China
| |
Collapse
|
38
|
Extract of Polygonum cuspidatum Attenuates Diabetic Retinopathy by Inhibiting the High-Mobility Group Box-1 (HMGB1) Signaling Pathway in Streptozotocin-Induced Diabetic Rats. Nutrients 2016; 8:140. [PMID: 26950148 PMCID: PMC4808869 DOI: 10.3390/nu8030140] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/18/2016] [Accepted: 02/25/2016] [Indexed: 12/25/2022] Open
Abstract
High-mobility group box-1 (HMGB1) is a well-known pro-inflammatory cytokine. We aimed to investigate the effect of the ethanol extract of the root of P. cuspidatum (PCE) on retinal inflammation in diabetic retinopathy. PCE (100 or 350 mg/kg/day) was administered to diabetic rats for 16 weeks, and hyperglycemia and body weight loss developed in the diabetic rats. The retinal expression levels of HMGB1 and receptor for advanced glycation end products (RAGE) and the activity of nuclear factor-kappa B (NF-κB) in the retina were examined. Additionally, a chromatin immunoprecipitation assay was performed to analyze the binding of NF-κB binding to the RAGE promoter in the diabetic retinas. The levels of HMGB1 and RAGE expression, NF-κB activity, and NF-κB binding to the RAGE promoter were increased in the diabetic retinas. However, treatment with PCE ameliorated the increases in HMGB1 and RAGE expression, and NF-κB activity in the retina. In addition, in diabetic rats, retinal vascular permeability and the loosening of the tight junctions were inhibited by PCE. These findings suggest that PCE has a preventative effect against diabetes-induced vascular permeability by inhibiting HMGB1-RAGE-NF-κB activation in diabetic retinas. The oral administration of PCE may significantly help to suppress the development of diabetic retinopathy in patients with diabetes.
Collapse
|
39
|
Apigenin and naringenin regulate glucose and lipid metabolism, and ameliorate vascular dysfunction in type 2 diabetic rats. Eur J Pharmacol 2016; 773:13-23. [DOI: 10.1016/j.ejphar.2016.01.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 12/21/2015] [Accepted: 01/19/2016] [Indexed: 01/13/2023]
|
40
|
Oleanolic Acid Attenuates Insulin Resistance via NF-κB to Regulate the IRS1-GLUT4 Pathway in HepG2 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:643102. [PMID: 26843885 PMCID: PMC4710921 DOI: 10.1155/2015/643102] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/09/2015] [Accepted: 12/15/2015] [Indexed: 12/16/2022]
Abstract
The aim of our study is to elucidate the mechanisms of oleanolic acid (OA) on insulin resistance (IR) in HepG2 cells. HepG2 cells were induced with FFA as the insulin resistance model and were treated with OA. Then the glucose content and the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were analyzed. Moreover, protein expression of nuclear factor kappa B (NF-κB), insulin receptor substrate 1(IRS1), and glucose transporter 4 (GLUT4) in cells treated with OA were measured by Western blot analysis. Additionally, IRS1 protein expression exposed to OA was detected after using pyrrolidine dithiocarbamate (PDTC).Our results revealed that OA decreased the glucose content in HepG2 cells in vitro. Moreover, OA reduced the levels of TNF-α and IL-6 and upregulated IRS1 and GLUT4 protein expression. Furthermore, OA also reduced NF-κB protein expression in insulin-resistant HepG2 cells. After blocking NF-κB, the expression of IRS1 protein had no obvious changes when treated with OA. OA attenuated insulin resistance and decreased the levels of TNF-α and IL-6. Meanwhile, OA decreased NF-κB protein expression and upregulated IRS1 and GLUT4 protein expression. Therefore, regulating the IRS1-GLUT4 pathway via NF-κB was the underlying mechanism of OA on insulin resistance.
Collapse
|
41
|
Jiang Y, Li Y, Ding Y, Dai X, Ma X, Bao L, Zhang Z, Li Y. Grape seed proanthocyanidin extracts prevent high glucose-induced endothelia dysfunction via PKC and NF-κB inhibition. Biosci Biotechnol Biochem 2015; 79:1493-503. [DOI: 10.1080/09168451.2014.991679] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Abstract
In our study, it has been detected in vivo and in vitro that GSPE reversed high glucose-induced the increase of ICAM-1 and VCAM-1. It is shown that by western blotting detection, GSPE significantly inhibited the activation of NF-κB induced by high glucose while there was significant decrease of the expression of PKC with GSPE intervention. By adding the NF-κB blocker PDTC and the PKC inhibitor peptide 19–31(10−6 M), no significant difference was found in the levels of VCAM-1 and ICAM-1 among GSPE group, the PKC inhibitor peptide 19–31-added GSPE group and the PDTC-added GSPE group. So the conclusion could be drawn that PKC inhibition must be involved in GSPE decreasing the level of ICAM-1 and VCAM-1.We proved for the first time that GSPE prevented high glucose-induced the increase of ICAM-1 and VCAM-1 by PKC and NF-κB inhibition. These findings show a novel mechanism of the action GSPE preventing endothelial dysfunction, which may have clinical application values.
Collapse
Affiliation(s)
- Yanfei Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Yujie Li
- Center for Hygienic Assessment and Research, Institute of Disease Control and Prevention of PLA, Beijing, China
| | - Ye Ding
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Xiaoqian Dai
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Xiaotao Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Lei Bao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Zhaofeng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
42
|
Kaempferol alleviates insulin resistance via hepatic IKK/NF-κB signal in type 2 diabetic rats. Int Immunopharmacol 2015; 28:744-50. [PMID: 26263168 DOI: 10.1016/j.intimp.2015.07.018] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 06/10/2015] [Accepted: 07/14/2015] [Indexed: 02/06/2023]
|
43
|
Bedarida T, Baron S, Vibert F, Ayer A, Henrion D, Thioulouse E, Marchiol C, Beaudeux JL, Cottart CH, Nivet-Antoine V. Resveratrol Decreases TXNIP mRNA and Protein Nuclear Expressions With an Arterial Function Improvement in Old Mice. J Gerontol A Biol Sci Med Sci 2015; 71:720-9. [PMID: 26041427 DOI: 10.1093/gerona/glv071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 04/24/2015] [Indexed: 01/01/2023] Open
Abstract
Aging leads to a high prevalence of glucose intolerance and cardiovascular diseases, with oxidative stress playing a potential role. Resveratrol has shown promising effects on glucose tolerance and tends to improve endothelial function in elderly patients. Thioredoxin-interacting protein (TXNIP) was recently proposed as a potential link connecting glucose metabolism to oxidative stress. Here, we investigated the resveratrol-induced improvement of arterial aging phenotype in old mice and the expression of aortic TXNIP. Using an in vivo model of old mice with or without 3-month resveratrol treatment, we investigated the effects of resveratrol on age-related impairments from a cardiovascular Doppler analysis, to a molecular level, by studying inflammation and oxidative stress factors. We found a dual effect of resveratrol, with a decrease of age-related glucose intolerance and oxidative stress imbalance leading to reduced matrix remodeling that forestalls arterial aging phenotype in terms of intima-media thickness and arterial distensibility. These results provide the first evidence that aortic TXNIP mRNA and protein nuclear expressions are increased in the arterial aging and decreased by resveratrol treatment. In conclusion, we demonstrated that resveratrol helped to restore several aging impaired processes in old mice, with a decrease of aortic TXNIP mRNA and protein nuclear expressions.
Collapse
Affiliation(s)
- Tatiana Bedarida
- Faculty of Pharmacy, Inserm UMRS_1140, Paris, France. Paris Descartes University, Sorbonne Paris Cité, Paris, France.
| | - Stephanie Baron
- Paris Descartes University, Sorbonne Paris Cité, Paris, France. Department of Physiology, Georges Pompidou European Hospital, AP-HP, Paris, France
| | - Françoise Vibert
- Paris Descartes University, Sorbonne Paris Cité, Paris, France. Faculty of Pharmacy, UMR-S 1139, Paris, France
| | - Audrey Ayer
- CNRS UMR 6214, INSERM U1083, Angers University, Angers, France
| | - Daniel Henrion
- CNRS UMR 6214, INSERM U1083, Angers University, Angers, France
| | | | - Carmen Marchiol
- Paris Descartes University, Sorbonne Paris Cité, Paris, France. PIPA, Cochin Institute - U1016, Paris, France
| | - Jean-Louis Beaudeux
- Paris Descartes University, Sorbonne Paris Cité, Paris, France. Faculty of Pharmacy, UMR-S 1139, Paris, France. Clinical Biochemistry, Necker Hospital, AP-HP, Paris, France
| | - Charles-Henry Cottart
- Paris Descartes University, Sorbonne Paris Cité, Paris, France. Clinical Biochemistry, Necker Hospital, AP-HP, Paris, France
| | - Valerie Nivet-Antoine
- Faculty of Pharmacy, Inserm UMRS_1140, Paris, France. Paris Descartes University, Sorbonne Paris Cité, Paris, France. Department of Biochemistry, Georges Pompidou European Hospital, AP-HP, Paris, France
| |
Collapse
|
44
|
Baicalein attenuates renal fibrosis by inhibiting inflammation via down-regulating NF-κB and MAPK signal pathways. J Mol Histol 2015; 46:283-90. [DOI: 10.1007/s10735-015-9621-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/11/2015] [Indexed: 11/27/2022]
|
45
|
Liang H. Renal Protective Effects of a Diet and Exercise Intervention in Type 2 Diabetic Rats. Biol Res Nurs 2015; 18:76-81. [PMID: 25903687 DOI: 10.1177/1099800415583106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose: Diabetic nephropathy (DN) is one of the most common diabetic microvascular complications. Inflammatory factors participate in each stage of DN, and nuclear factor (NF)-κB and monocyte chemoattractant protein-1(MCP-1) play important mediation roles. The purpose of this study was to investigate the renal protective effects of a diet and exercise intervention in a rat model of Type 2 diabetes mellitus (T2DM). Method: Control rats (Group A, n = 10) were fed a normal diet, while 30 rats were fed a high-glucose, high-fat diet and given an intraperitoneal injection of streptozocin to establish the T2DM model. Model rats ( n = 8 per group) were randomized into Groups B, C, and D. Groups C and D were treated with glibenclamide, and Group D received an 8-week diet and exercise intervention. Blood, 12-hr urine, and kidney tissue samples were collected postintervention for detecting blood glucose and lipid levels, expression of MCP-1 and NF-κB, and renal function indices. Results: Postintervention, blood glucose, and lipid levels in Groups C and D were lower than those in Group B, with decreases in Group D significantly greater than in Group C. Every index of renal protection showed greater improvement in Group D than in Group C ( p < .05). The expression of NF-κB and MCP-1 was lower in Group D than in Group C ( p < .05). Conclusions: The diet and exercise intervention reduced the inflammatory reaction and delayed T2DM and DN progression by inhibiting the activation of NF-κB and downregulating the expression of MCP-1.
Collapse
Affiliation(s)
- Hua Liang
- People’s Hospital of Zhengzhou, Zhengzhou, China
| |
Collapse
|
46
|
Resveratrol alleviates vascular inflammatory injury by inhibiting inflammasome activation in rats with hypercholesterolemia and vitamin D2 treatment. Inflamm Res 2015; 64:321-32. [DOI: 10.1007/s00011-015-0810-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022] Open
|
47
|
Zhen L, Fan DS, Zhang Y, Cao XM, Wang LM. Resveratrol ameliorates experimental periodontitis in diabetic mice through negative regulation of TLR4 signaling. Acta Pharmacol Sin 2015; 36:221-8. [PMID: 25530164 DOI: 10.1038/aps.2014.131] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/30/2014] [Indexed: 12/11/2022]
Abstract
AIM To investigate the therapeutic effects of resveratrol (RSV) on periodontitis in diabetic mice and to explore the underlying mechanisms in vitro. METHODS Experimental periodontitis was induced in db/db mice by ligature application of porphyromonas gingivalis. The mice were treated with RSV (20 mg/kg, p.o.) daily for 4 weeks. Alveolar bone loss, proinflammatory cytokines and TLR4 expression in the gingival tissue were measured. Cultured gingival epithelial cells (GECs) were used for in vitro studies. The transcriptional activity of TLR4 downstream signaling was analyzed using Western blotting. RESULTS RSV administration significantly decreased the blood glucose levels, and ameliorated alveolar bone loss in db/db mice with experimental periodontitis. RSV administration also suppressed the high levels of IL-1β, IL-6, IL-8, TNF-α, and TLR4 in gingival tissue of the mice. In the GECs incubated in high glucose medium, TLR4 expression was substantially upregulated, which was partly blocked in the presence of RSV. Lipopolysaccharides markedly increased the expression and secretion of IL-1β, IL-6, IL-8, and TNF-α in the GECs cultured in high glucose medium, which was also partly blocked in the presence of RSV. Furthermore, RSV significantly suppressed the phosphorylation of TLR4 downstream factors NF-κB p65, p38MAPK, and STAT3. CONCLUSION RSV exerts protective effects against experimental periodontitis in db/db mice via negative regulation of TLR4 signaling.
Collapse
|
48
|
Park EJ, Pezzuto JM. The pharmacology of resveratrol in animals and humans. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1071-113. [PMID: 25652123 DOI: 10.1016/j.bbadis.2015.01.014] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 01/01/2015] [Accepted: 01/21/2015] [Indexed: 12/12/2022]
Abstract
In addition to thousands of research papers related to resveratrol (RSV), approximately 300 review articles have been published. Earlier research tended to focus on pharmacological activities of RSV related to cardiovascular systems, inflammation, and carcinogenesis/cancer development. More recently, the horizon has been broadened by exploring the potential effect of RSV on the aging process, diabetes, neurological dysfunction, etc. Herein, we primarily focus on the in vivo pharmacological effects of RSV reported over the past 5 years (2009-2014). In addition, recent clinical intervention studies performed with resveratrol are summarized. Some discrepancies exist between in vivo studies with animals and clinical studies, or between clinical studies, which are likely due to disparate doses of RSV, experimental settings, and subject variation. Nevertheless, many positive indications have been reported with mammals, so it is reasonable to advocate for the conduct of more definitive clinical studies. Since the safety profile is pristine, an added advantage is the use of RSV as a dietary supplement. This article is part of a Special Issue entitled: Resveratrol: Challenges in translating pre-clinical findings to improved patient outcomes.
Collapse
Affiliation(s)
- Eun-Jung Park
- The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI 96720, USA
| | - John M Pezzuto
- The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI 96720, USA.
| |
Collapse
|
49
|
Caldarelli I, Speranza MC, Bencivenga D, Tramontano A, Borgia A, Pirozzi AVA, Perrotta S, Oliva A, Della Ragione F, Borriello A. Resveratrol mimics insulin activity in the adipogenic commitment of human bone marrow mesenchymal stromal cells. Int J Biochem Cell Biol 2015; 60:60-72. [PMID: 25562512 DOI: 10.1016/j.biocel.2014.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 11/07/2014] [Accepted: 12/22/2014] [Indexed: 01/01/2023]
Abstract
Bone marrow mesenchymal stromal cells (BM-MSCs) are multipotent cells capable of differentiating toward osteoblatic and adipocytic phenotypes. BM-MSCs play several key roles including bone remodeling, establishment of hematopoietic niche and immune tolerance induction. Here, we investigated the effect of resveratrol (RSV), a therapeutically promising natural polyphenol, on the commitment of human BM-MSCs primary cultures. Cell differentiation was evaluated by means of morphological analysis, specific staining and expression of osteogenic and adipocytic master genes (Runx-2, PPARγ). To maintain BM-MSC multipotency, all experiments were performed on cells at very early passages. At any concentration RSV, added to standard medium, did not affect the phenotype of confluent BM-MSCs, while, when added to osteogenic or adipogenic medium, 1 μM RSV enhances the differentiation toward osteoblasts or adipocytes, respectively. Conversely, the addition of higher RSV concentration (25 μM) to both differentiation media resulted exclusively in BM-MSCs adipogenesis. Surprisingly, the analysis of RSV molecular effects demonstrated that the compound completely substitutes insulin, a key component of adipogenic medium. We also observed that RSV treatment is associated to enhanced phosphorylation of CREB, a critical effector of insulin adipogenic activity. Finally, our observations contribute to the mechanistic elucidation of the well-known RSV positive effect on insulin sensitivity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Ilaria Caldarelli
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Maria Carmela Speranza
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Debora Bencivenga
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Annunziata Tramontano
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Alessia Borgia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | | | - Silverio Perrotta
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica, Second University of Naples, Naples, Italy
| | - Adriana Oliva
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Fulvio Della Ragione
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.
| | - Adriana Borriello
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.
| |
Collapse
|
50
|
An extract from medical leech improve the function of endothelial cells in vitro and attenuates atherosclerosis in ApoE null mice by reducing macrophages in the lesions. Biochem Biophys Res Commun 2014; 455:119-25. [DOI: 10.1016/j.bbrc.2014.10.135] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/27/2014] [Indexed: 11/21/2022]
|