1
|
Wang S, Peng Y, Zhuang Y, Wang N, Jin J, Zhan Z. Purification, Structural Analysis and Cardio-Protective Activity of Polysaccharides from Radix Astragali. Molecules 2023; 28:molecules28104167. [PMID: 37241906 DOI: 10.3390/molecules28104167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Two polysaccharides, named APS2-I and APS3-I, were purified from the water extract of Radix Astragali. The average molecular weight of APS2-I was 1.96 × 106 Da and composed of Man, Rha, GlcA, GalA, Glc, Gal, Xyl, and Ara in a molar ratio of 2.3:4.8:1.7:14.0:5.8:11.7:2.8:12.6, while the average molecular weight of APS3-I was 3.91 × 106 Da and composed of Rha, GalA, Glc, Gal, and Ara in a molar ratio of 0.8:2.3:0.8:2.3:4.1. Biological evaluation showed APS2-I and APS3-I had significant antioxidant activity and myocardial protection activity. Furthermore, total polysaccharide treatment could significantly enhance hemodynamic parameters and improve cardiac function in rat ischemia and reperfusion isolated heart models. These results provided important information for the clinical application of APS in the field of cardiovascular disease and implied that Astragalus polysaccharides (APS) could be considered as a reference for the quality control of Radix Astragali.
Collapse
Affiliation(s)
- Shilei Wang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yuan Peng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yixin Zhuang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Nan Wang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jianchang Jin
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Zhajun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
2
|
Biradar DO, Mane YD, Reddy BS, Yadav J. Stereoselective total syntheses of dodoneine and its diastereomer, epidodoneine via Prins cyclisation. Tetrahedron 2023. [DOI: 10.1016/j.tet.2022.133242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
3
|
Calderon-Rivera A, Loya-Lopez S, Gomez K, Khanna R. Plant and fungi derived analgesic natural products targeting voltage-gated sodium and calcium channels. Channels (Austin) 2022; 16:198-215. [PMID: 36017978 PMCID: PMC9423853 DOI: 10.1080/19336950.2022.2103234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Voltage-gated sodium and calcium channels (VGSCs and VGCCs) play an important role in the modulation of physiologically relevant processes in excitable cells that range from action potential generation to neurotransmission. Once their expression and/or function is altered in disease, specific pharmacological approaches become necessary to mitigate the negative consequences of such dysregulation. Several classes of small molecules have been developed with demonstrated effectiveness on VGSCs and VGCCs; however, off-target effects have also been described, limiting their use and spurring efforts to find more specific and safer molecules to target these channels. There are a great number of plants and herbal preparations that have been empirically used for the treatment of diseases in which VGSCs and VGCCs are involved. Some of these natural products have progressed to clinical trials, while others are under investigation for their action mechanisms on signaling pathways, including channels. In this review, we synthesize information from ~30 compounds derived from natural sources like plants and fungi and delineate their effects on VGSCs and VGCCs in human disease, particularly pain. [Figure: see text].
Collapse
Affiliation(s)
- Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA,NYU Pain Research Center, New York University, New York, NY, USA
| | - Santiago Loya-Lopez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA,NYU Pain Research Center, New York University, New York, NY, USA
| | - Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA,NYU Pain Research Center, New York University, New York, NY, USA
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA,NYU Pain Research Center, New York University, New York, NY, USA,CONTACT Rajesh Khanna
| |
Collapse
|
4
|
Komla K, Tcha P, Aklesso M, Balakiyém K, Mindede A, Patrick B, Aurelien C. Pharmacological Effects of Hydrocotyle bonariensis Comm. ex Lam (Araliaceae) Extract on Cardiac Activity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1961352. [PMID: 36212942 PMCID: PMC9536924 DOI: 10.1155/2022/1961352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/19/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
Abstract
Hydrocotyle bonariensis is one of the medicinal plants used in traditional medicine for the management of hypertension in Africa, Asia, and Latin America. However, the real impact of the traditional use of this plant on arterial hypertension has not yet been the subject of conclusive scientific information in the literature. This study aimed essentially to evaluate the potential cardiomodulatory effect of the hydroethanolic extract of Hydrocotyle bonariensis. In other to do so, the hydroethanolic extract of H. bonariensis was studied in vivo on the Wistar rat ECG and then in vitro on the isolated perfused Wistar rat heart using the Langendorff system. The extract was also tested on isolated guinea pig atria kept alive in the organ-specific vessel under physiological conditions similar to those of a living organism. At the cellular level, the effects of the extract were evaluated on the human cardiac sodium current INav1.5 and on the human cardiac pacemaker current If. We noted that the extract caused a decrease in P wave and T wave amplitudes and heart rate and an increase in the duration of the RR interval on the in vivo rat ECG. On the isolated perfused Langendorff heart as well as on the isolated atria, a decrease in the RR interval and in the heart rate was noted. The extract had no effect on human cardiac sodium current, but it did reduce human cardiac pacemaker current. In conclusion, the present study demonstrated that Hydrocotyle bonariensis, a medicinal plant traditionally used to prevent and treat hypertension, has an overall cardiomoderating effect. This effect would contribute to the reduction of blood pressure.
Collapse
Affiliation(s)
- Kaboua Komla
- Laboratory of Physiology-Pharmacology, FDS, University of Lomé, BP 1515, Lomé, Togo
| | - Pakoussi Tcha
- Laboratory of Physiology-Pharmacology, FDS, University of Lomé, BP 1515, Lomé, Togo
| | - Mouzou Aklesso
- Laboratory of Physiology-Pharmacology, FDS, University of Lomé, BP 1515, Lomé, Togo
| | - Kadissoli Balakiyém
- Laboratory of Physiology-Pharmacology, FDS, University of Lomé, BP 1515, Lomé, Togo
| | - Assih Mindede
- Laboratory of Physiology-Pharmacology, FDS, University of Lomé, BP 1515, Lomé, Togo
| | - Bois Patrick
- Laboratory of Signaling and Membrane Ion Transport, Pôle Biosanté, University of Poitiers, BP 86000, Poitiers, France
| | - Chatelier Aurelien
- Laboratory of Signaling and Membrane Ion Transport, Pôle Biosanté, University of Poitiers, BP 86000, Poitiers, France
| |
Collapse
|
5
|
Syed N, Singh S, Chaturvedi S, Nannaware AD, Khare SK, Rout PK. Production of lactones for flavoring and pharmacological purposes from unsaturated lipids: an industrial perspective. Crit Rev Food Sci Nutr 2022; 63:10047-10078. [PMID: 35531939 DOI: 10.1080/10408398.2022.2068124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The enantiomeric pure and natural (+)-Lactones (C ≤ 14) with aromas obtained from fruits and milk are considered flavoring compounds. The flavoring value is related to the lactones' ring size and chain length, which blend in varying concentrations to produce different stone-fruit flavors. The nature-identical and enantiomeric pure (+)-lactones are only produced through whole-cell biotransformation of yeast. The industrially important γ-decalactone and δ-decalactone are produced by a four-step aerobic-oxidation of ricinoleic acid (RA) following the lactonization mechanism. Recently, metabolic engineering strategies have opened up new possibilities for increasing productivity. Another strategy for increasing yield is to immobilize the RA and remove lactones from the broth regularly. Besides flavor impact, γ-, δ-, ε-, ω-lactones of the carbon chain (C8-C12), the macro-lactones and their derivatives are vital in pharmaceuticals and healthcare. These analogues are isolated from natural sources or commercially produced via biotransformation and chemical synthesis processes for medicinal use or as active pharmaceutical ingredients. The various approaches to biotransformation have been discussed in this review to generate more prospects from a commercial point of view. Finally, this work will be regarded as a magical brick capable of containing both traditional and genetic engineering technology while contributing to a wide range of commercial applications.
Collapse
Affiliation(s)
- Naziya Syed
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Suman Singh
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Shivani Chaturvedi
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, New Delhi, India
| | - Ashween Deepak Nannaware
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad, Uttar Pradesh, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, New Delhi, India
| | - Prasant Kumar Rout
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad, Uttar Pradesh, India
| |
Collapse
|
6
|
Zhao Z, Zheng B, Li J, Wei Z, Chu S, Han X, Chu L, Wang H, Chu X. Influence of Crocetin, a Natural Carotenoid Dicarboxylic Acid in Saffron, on L-Type Ca 2+ Current, Intracellular Ca 2+ Handling and Contraction of Isolated Rat Cardiomyocytes. Biol Pharm Bull 2021; 43:1367-1374. [PMID: 32879211 DOI: 10.1248/bpb.b20-00298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Crocetin is a major bioactive ingredient in saffron (Crocus sativus L.) and has favorable cardiovascular effects. Here, the effects of crocetin on L-type Ca2+ current (ICa-L), contractility, and the Ca2+ transients of rat cardiomyocytes, were investigated via patch-clamp technique and the Ion Optix system. A 600 µg/mL dose of crocetin decreased ICa-L 31.50 ± 2.53% in normal myocytes and 35.56 ± 2.42% in ischemic myocytes, respectively. The current voltage nexus of the calcium current, the reversal of the calcium current, and the activation/deactivation of the calcium current was not changed. At 600 µg/mL, crocetin abated cell shortening by 28.6 ± 2.31%, with a decrease in the time to 50% of the peak and a decrease in the time to 50% of the baseline. At 600 µg/mL, crocetin abated the crest value of the ephemeral Ca2+ by 31.87 ± 2.57%. The time to half maximal of Ca2+ peak and the time constant of decay of Ca2+ transient were both reduced. Our results suggest that crocetin inhibits L-type Ca2+ channels, causing decreased intracellular Ca2+ concentration and contractility in adult rat ventricular myocytes. These findings reveal crocetin's potential use as a calcium channel antagonist for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Zhifeng Zhao
- School of Pharmacy, Hebei University of Chinese Medicine
| | - Bin Zheng
- School of Pharmacy, Hebei University of Chinese Medicine
| | - Jinghan Li
- School of Pharmacy, Hebei University of Chinese Medicine
| | - Ziheng Wei
- School of Pharmacy, Hebei University of Chinese Medicine
| | - Sijie Chu
- School of Pharmacy, Hebei University of Chinese Medicine
| | - Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine.,Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease
| | - Hongfang Wang
- School of Pharmacy, Hebei University of Chinese Medicine.,Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation
| | - Xi Chu
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University
| |
Collapse
|
7
|
Gao J, Yuan G, Xu Z, Lan L, Xin W. Chenodeoxycholic and deoxycholic acids induced positive inotropic and negative chronotropic effects on rat heart. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:765-773. [PMID: 32808070 DOI: 10.1007/s00210-020-01962-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/06/2020] [Indexed: 12/25/2022]
Abstract
Bile acids are endogenous amphiphilic steroids from the metabolites of cholesterol. Studies showed that they might contribute to the pathogenesis of cardiopathy in cholestatic liver diseases. Chenodeoxycholic acid (CDCA) and deoxycholic acid (DCA) is associated with colon cancer, gallstones, and gastrointestinal disorders. However, little information is available regarding their cardiac effects. Here, we reported that CDCA (100 μM) and DCA (100 μM) significantly increased the left ventricular developed pressure of the isolated rat hearts to 122.3 ± 5.6% and 145.1 ± 13.7%, and the maximal rate of the pressure development rising and descending (± dP/dtmax) to 103.4 ± 17.6% and 124.4 ± 37.7% of the basal levels, respectively. They decreased the heart rate and prolonged the RR, QRS, and QT intervals of Langendorff-perfused hearts in a concentration-dependent manner. Moreover, CDCA and DCA increased the developed tension of left ventricular muscle and the cytosolic Ca2+ concentrations in left ventricular myocytes; these functions positively coordinated with their inotropic effects on hearts. Additionally, CDCA (150 μM) and DCA (100 μM) decreased the sinoatrial node beating rate to 80.6 ± 3.0% and 79.7 ± 0.9% of the basal rate (334.2 ± 10.7 bpm), respectively. These results were consistent with their chronotropic effects. In conclusion, CDCA and DCA induced positive inotropic effects by elevating the Ca2+ in left ventricular myocytes. They exerted negative chronotropic effects by lowering the pace of the sinoatrial node in rat heart. These results indicated that the potential role of bile acids in cardiopathy related to cholestasis.
Collapse
Affiliation(s)
- Jie Gao
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Guanyin Yuan
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Zhan Xu
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Luyao Lan
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Wenkuan Xin
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, 2 Tiansheng Road, Beibei, Chongqing, 400715, China.
| |
Collapse
|
8
|
|
9
|
Protective effect of quercetin against myocardial ischemia as a Ca 2+ channel inhibitor: involvement of inhibiting contractility and Ca 2+ influx via L-type Ca 2+ channels. Arch Pharm Res 2020; 43:808-820. [PMID: 32761308 DOI: 10.1007/s12272-020-01261-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023]
Abstract
Many studies describe the stimulating effect of quercetin on Ca2+ channels and the treatment of cardiovascular diseases such as myocardial ischemia and hypertension. However, these studies are scattered and contradictory. The aim of this study is to elucidate the protective effects of quercetin against isoproterenol (ISO)-induced myocardial ischemia and verify the cellular mechanisms based on the L-type Ca2+ channel (LTCC), Ca2+ transients, and myocardial contractility. An animal model of myocardial ischemia was established by subcutaneous injection of ISO for 2 days. Quercetin significantly reduced J-point elevation, heart rate, reactive oxygen species, serum levels of myocardial enzymes, superoxide dismutase, catalase, glutathione, glutathione peroxidase, glutathione S-transferase and improved heart pathologic morphology. L-type Ca2+ current (ICa-L) was tested in an experiment with isolated rat myocardial cells by using the whole-cell patch-clamp recording technique and IonOptix Myocam detection system. Quercetin reduced ICa-L in a concentration-dependent fashion with a half-maximal inhibitory concentration of 4.67 × 10-4 M. Quercetin also shifted the current-voltage curve upwards, moved the activation and inactivation curves to the left and inhibited the amplitude of the cell shortening and Ca2+ transients. The results showed that quercetin acts as a LTCC inhibitor and exerts a cardioprotective effect by inhibiting Ca2+ influx and contractility in rats.
Collapse
|
10
|
Zhao J, Wang Y, Gao J, Jing Y, Xin W. Berberine Mediated Positive Inotropic Effects on Rat Hearts via a Ca 2+-Dependent Mechanism. Front Pharmacol 2020; 11:821. [PMID: 32581792 PMCID: PMC7289965 DOI: 10.3389/fphar.2020.00821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 05/19/2020] [Indexed: 11/13/2022] Open
Abstract
Previous studies showed that berberine, an alkaloid from Coptis Chinensis Franch, might exert a positive inotropic effect on the heart. However, the underlying mechanisms were unclear. Here, we reported that berberine at 10–20 µM increased the left ventricular (LV) developed pressure and the maximal rate of the pressure rising, and it increased the maximal rate of the pressure descending at 20 µM in Langendorff-perfused isolated rat hearts. These effects diminished with the concentration of berberine increasing to 50 µM. In the concentration range of 50–300 µM, berberine increased the isometric tension of isolated left ventricular muscle (LVM) strips with or without electrical stimulations, and it (30–300 µM) also increased the intracellular Ca2+ level in the isolated LV myocytes. The removal of extracellular Ca2+ hindered the berberine-induced increases in the tension of LVM strips and the intracellular Ca2+ level of LV myocytes. These suggested that berberine might exert its positive inotropic effects via enhancing Ca2+ influx. The blockade of L-type Ca2+ channels (LTCCs) with nifedipine significantly attenuated 300 μM berberine-induced tension increase in LVM strips but not the increase in the intracellular Ca2+ level. Berberine (300 μM) further increased the LVM tension following the treatment with the LTCC opener FPL-64716 (10 μM), indicating an LTCC-independent effect of berberine. Lowering extracellular Na+ attenuated the berberine-induced increases in both the tension of LVM strips and the intracellular Ca2+ level of LV myocytes. In conclusion, berberine might exert a positive inotropic effect on the isolated rat heart by enhancing the Ca2+ influx in LV myocytes; these were extracellular Na+-dependent.
Collapse
Affiliation(s)
- Junli Zhao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Yaqian Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Jie Gao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Yang Jing
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Wenkuan Xin
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Yuan G, Jing Y, Wang T, Fernandes VS, Xin W. The bitter taste receptor agonist-induced negative chronotropic effects on the Langendorff-perfused isolated rat hearts. Eur J Pharmacol 2020; 876:173063. [DOI: 10.1016/j.ejphar.2020.173063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/29/2020] [Accepted: 03/10/2020] [Indexed: 11/27/2022]
|
12
|
Avula SK, Das B, Csuk R, Al-Rawahi A, Al-Harrasi A. Recent Advances in the Stereoselective Total Synthesis of Natural Pyranones Having Long Side Chains. Molecules 2020; 25:molecules25081905. [PMID: 32326105 PMCID: PMC7221952 DOI: 10.3390/molecules25081905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 11/16/2022] Open
Abstract
Pyranone natural products have attracted great attention in recent years from chemists and biologists due to their fascinating stereoisomeric structural features and impressive bioactivities. A large number of stereoselective total syntheses of these compounds have been described in the literature. The natural pyranones with long side chains have recently received significant importance in the synthetic field. In the present article, we aim to review the modern progress of the stereoselective total syntheses of these natural pyranones containing long-chain substituents.
Collapse
Affiliation(s)
- Satya Kumar Avula
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz 616, Nizwa, Oman; (S.K.A.); (B.D.); (A.A.-R.)
| | - Biswanath Das
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz 616, Nizwa, Oman; (S.K.A.); (B.D.); (A.A.-R.)
| | - Rene Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, d-06120 Halle (Saale), Germany;
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz 616, Nizwa, Oman; (S.K.A.); (B.D.); (A.A.-R.)
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz 616, Nizwa, Oman; (S.K.A.); (B.D.); (A.A.-R.)
- Correspondence: , Tel.: +968-25446328
| |
Collapse
|
13
|
Carreyre H, Carré G, Ouedraogo M, Vandebrouck C, Bescond J, Supuran CT, Thibaudeau S. Bioactive Natural Product and Superacid Chemistry for Lead Compound Identification: A Case Study of Selective hCA III and L-Type Ca 2+ Current Inhibitors for Hypotensive Agent Discovery. Molecules 2017; 22:molecules22060915. [PMID: 28561785 PMCID: PMC6152723 DOI: 10.3390/molecules22060915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 05/23/2017] [Accepted: 05/23/2017] [Indexed: 12/30/2022] Open
Abstract
Dodoneine (Ddn) is one of the active compounds identified from Agelanthusdodoneifolius, which is a medicinal plant used in African pharmacopeia and traditional medicine for the treatment of hypertension. In the context of a scientific program aiming at discovering new hypotensive agents through the original combination of natural product discovery and superacid chemistry diversification, and after evidencing dodoneine's vasorelaxant effect on rat aorta, superacid modifications allowed us to generate original analogues which showed selective human carbonic anhydrase III (hCA III) and L-type Ca2+ current inhibition. These derivatives can now be considered as new lead compounds for vasorelaxant therapeutics targeting these two proteins.
Collapse
Affiliation(s)
- Hélène Carreyre
- Superacid Group/Organic Synthesis Team, Université de Poitiers, IC2MP-UMR CNRS 7285, 86073 Poitiers CEDEX 09, France.
| | - Grégoire Carré
- STIM-ERL CNRS 7368 Université de Poitiers, 86073 Poitiers Cedex 9, France.
| | - Maurice Ouedraogo
- Laboratoire de Physiologie Animale, Université de Ouagadougou, 03 BP 7021 Ouagadougou 01, Burkina Faso.
| | | | - Jocelyn Bescond
- STIM-ERL CNRS 7368 Université de Poitiers, 86073 Poitiers Cedex 9, France.
| | - Claudiu T Supuran
- Department of Neurofarba, Sez, Chimica Farmaceutica e Nutraceutica, University of Florence, 50019 Sesto Fiorentino, Italy.
| | - Sébastien Thibaudeau
- Superacid Group/Organic Synthesis Team, Université de Poitiers, IC2MP-UMR CNRS 7285, 86073 Poitiers CEDEX 09, France.
| |
Collapse
|
14
|
Anwar MA, Al Disi SS, Eid AH. Anti-Hypertensive Herbs and Their Mechanisms of Action: Part II. Front Pharmacol 2016; 7:50. [PMID: 27014064 PMCID: PMC4782109 DOI: 10.3389/fphar.2016.00050] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/22/2016] [Indexed: 01/20/2023] Open
Abstract
Traditional medicine has a history extending back to thousands of years, and during the intervening time, man has identified the healing properties of a very broad range of plants. Globally, the use of herbal therapies to treat and manage cardiovascular disease (CVD) is on the rise. This is the second part of our comprehensive review where we discuss the mechanisms of plants and herbs used for the treatment and management of high blood pressure. Similar to the first part, PubMed and ScienceDirect databases were utilized, and the following keywords and phrases were used as inclusion criteria: hypertension, high blood pressure, herbal medicine, complementary and alternative medicine, endothelial cells, nitric oxide (NO), vascular smooth muscle cell (VSMC) proliferation, hydrogen sulfide, nuclear factor kappa-B (NF-κB), oxidative stress, and epigenetics/epigenomics. Each of the aforementioned keywords was co-joined with plant or herb in question, and where possible with its constituent molecule(s). This part deals in particular with plants that are used, albeit less frequently, for the treatment and management of hypertension. We then discuss the interplay between herbs/prescription drugs and herbs/epigenetics in the context of this disease. The review then concludes with a recommendation for more rigorous, well-developed clinical trials to concretely determine the beneficial impact of herbs and plants on hypertension and a disease-free living.
Collapse
Affiliation(s)
- M Akhtar Anwar
- Department of Biological and Environmental Sciences, Qatar University Doha, Qatar
| | - Sara S Al Disi
- Department of Biological and Environmental Sciences, Qatar University Doha, Qatar
| | - Ali H Eid
- Department of Biological and Environmental Sciences, Qatar UniversityDoha, Qatar; Department of Pharmacology and Toxicology, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| |
Collapse
|
15
|
Zhu F, Chu X, Wang H, Zhang X, Zhang Y, Liu Z, Guo H, Liu H, Liu Y, Chu L, Zhang J. New Findings on the Effects of Tannic Acid: Inhibition of L-Type Calcium Channels, Calcium Transient and Contractility in Rat Ventricular Myocytes. Phytother Res 2016; 30:510-6. [PMID: 26762248 DOI: 10.1002/ptr.5558] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 12/03/2015] [Accepted: 12/05/2015] [Indexed: 11/07/2022]
Abstract
Tannic acid (TA) is a group of water-soluble polyphenolic compounds that occur mainly in plant-derived feeds, food grains and fruits. Many studies have explored its biomedical properties, such as anticancer, antibacterial, antimutagenic, antioxidant, antidiabetic, antiinflammatory and antihypertensive activities. However, the effects of TA on the L-type Ca(2+) current (ICa-L) of cardiomyocytes remain undefined. The present study examined the effects of TA on ICa-L using the whole-cell patch-clamp technique and on intracellular Ca(2+) handling and cell contractility in rat ventricular myocytes with the aid of a video-based edge detection system. Exposure to TA resulted in a concentration- and voltage-dependent blockade of ICa-L, with the half maximal inhibitory concentration of 1.69 μM and the maximal inhibitory effect of 46.15%. Moreover, TA significantly inhibited the amplitude of myocyte shortening and peak value of Ca(2+) transient and increased the time to 10% of the peak. These findings provide new experimental evidence for the cellular mechanism of action of TA and may help to expand clinical treatments for cardiovascular disease.
Collapse
Affiliation(s)
- Fengli Zhu
- Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
| | - Xi Chu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Hua Wang
- Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
| | - Xuan Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Yuanyuan Zhang
- Department of Medicinal Chemistry, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Zhenyi Liu
- Department of Medicinal Chemistry, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Hui Guo
- Department of Medicinal Chemistry, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Hongying Liu
- Department of Infectious Diseases, Hebei General Hospital, No. 348, Heping West Road, Shijiazhuang, Hebei, 050051, China
| | - Yang Liu
- Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
| | - Li Chu
- Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China.,Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Jianping Zhang
- Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China.,Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| |
Collapse
|
16
|
Liu T, Chu X, Wang H, Zhang X, Zhang Y, Guo H, Liu Z, Dong Y, Liu H, Liu Y, Chu L, Zhang J. Crocin, a carotenoid component of Crocus cativus, exerts inhibitory effects on L-type Ca(2+) current, Ca(2+) transient, and contractility in rat ventricular myocytes. Can J Physiol Pharmacol 2015; 94:302-8. [PMID: 26674933 DOI: 10.1139/cjpp-2015-0214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Crocin, a carotenoid component of Crocus sativus L. belonging to the Iridaceae family, has demonstrated cardioprotective effects. To investigate the cellular mechanisms of these cardioprotective effects, here we studied the influence of crocin on L-type Ca(2+)current (I(Ca-L)), intracellular Ca(2+) ([Ca(2+)]i), and contraction of isolated rat cardiomyocytes by using the whole-cell patch-clamp technique and video-based edge detection and dual excitation fluorescence photomultiplier systems. Crocin inhibited I(Ca-L) in a concentration-dependent manner with the half-maximal inhibitory concentration (IC50) of 45 μmol/L and the maximal inhibitory effect of 72.195% ± 1.54%. Neither current-voltage relationship of I(Ca-L), reversal potential of I(Ca-L), nor the activation/inactivation of I(Ca-L) was significantly changed. Crocin at 1 μmol/L reduced cell shortening by 44.64% ± 2.12% and the peak value of the Ca(2+) transient by 23.66% ± 4.52%. Crocin significantly reduced amplitudes of myocyte shortening and [Ca(2+)]i with an increase in the time to reach 10% of the peak (Tp) and a decrease in the time to 10% of the baseline (Tr). Thus, the cardioprotective effects of crocin may be attributed to the attenuation of [Ca(2+)]i through the inhibition of I(Ca-L) in rat cardiomyocytes and negative inotropic effects on myocardial contractility.
Collapse
Affiliation(s)
- Tao Liu
- a Hebei Medical University, No. 361, East Zhongshan Road, Shijiazhuang 050017, Hebei, China
| | - Xi Chu
- b The Fourth Hospital of Hebei Medical University, No. 12, Jiankang Road, Shijiazhuang 050011, Hebei, China
| | - Hua Wang
- a Hebei Medical University, No. 361, East Zhongshan Road, Shijiazhuang 050017, Hebei, China
| | - Xuan Zhang
- c Hebei University of Chinese Medicine, No. 3, Xingyuan Road, Shijiazhuang 050200, Hebei, China
| | - Yuanyuan Zhang
- c Hebei University of Chinese Medicine, No. 3, Xingyuan Road, Shijiazhuang 050200, Hebei, China
| | - Hui Guo
- c Hebei University of Chinese Medicine, No. 3, Xingyuan Road, Shijiazhuang 050200, Hebei, China
| | - Zhenyi Liu
- c Hebei University of Chinese Medicine, No. 3, Xingyuan Road, Shijiazhuang 050200, Hebei, China
| | - Yongsheng Dong
- d Intensive Care Unit, Air Force General Hospital, No. 30, Fucheng Road, Haidian 100142, Beijing, China
| | - Hongying Liu
- e Department of Infectious Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shijiazhuang, China
| | - Yang Liu
- a Hebei Medical University, No. 361, East Zhongshan Road, Shijiazhuang 050017, Hebei, China
| | - Li Chu
- a Hebei Medical University, No. 361, East Zhongshan Road, Shijiazhuang 050017, Hebei, China.,c Hebei University of Chinese Medicine, No. 3, Xingyuan Road, Shijiazhuang 050200, Hebei, China
| | - Jianping Zhang
- a Hebei Medical University, No. 361, East Zhongshan Road, Shijiazhuang 050017, Hebei, China.,c Hebei University of Chinese Medicine, No. 3, Xingyuan Road, Shijiazhuang 050200, Hebei, China
| |
Collapse
|
17
|
Carre G, Ouedraogo M, Magaud C, Carreyre H, Becq F, Bois P, Supuran CT, Thibaudeau S, Vandebrouck C, Bescond J. Vasorelaxation induced by dodoneine is mediated by calcium channels blockade and carbonic anhydrase inhibition on vascular smooth muscle cells. JOURNAL OF ETHNOPHARMACOLOGY 2015; 169:8-17. [PMID: 25847623 DOI: 10.1016/j.jep.2015.03.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 03/05/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dodoneine (Ddn) is one of the active compounds identified from Agelanthus dodoneifolius (DC.) Polhill and Wiens, a medicinal plant used in traditional medicine for the treatment of hypertension. This dihydropyranone exerts hypotensive and vasorelaxant effects on rats, and two molecular targets have been characterized: the carbonic anhydrase and the L-type calcium channel in cardiomyocytes with biochemical and electrophysiological techniques, respectively. To further evaluate the involvement of these two molecular targets in vasorelaxation, the effect of Ddn on rat vascular smooth muscle was investigated. MATERIAL AND METHODS The effects of Ddn on L-type calcium current and on resting membrane potential were characterized in A7r5 cell line using the whole-cell patch-clamp configuration. The molecular identities of carbonic anhydrase isozymes in smooth muscle cells were examined with RT-PCR. Vascular response was measured on rat aortic rings in an organ bath apparatus and the effect of Ddn on intracellular pH was determined by flow cytometry using the pH-sensitive fluorescent probe BCECF-AM [2,7-Bis-(2-Carboxyethyl)-5-(and-6)-Carboxyfluorescein, Acetoxymethyl Ester]. RESULTS 100µM Ddn reduced calcium current density of about 30%. In addition, carbonic anhydrase II, III, XIII and XIV were shown to be expressed in rat aorta and inhibited in smooth muscle cells by Ddn. This inhibition resulted in a rise in pHi of about 0.31, leading to KCa channel activation, thereby inducing membrane hyperpolarization and vasorelaxation. The results of vascular reactivity experiments obtained with pharmacological tools acting on the L-type calcium current and carbonic anhydrase suggest that Ddn produces its vasorelaxant effect via the inhibition of these two molecular targets. CONCLUSION This study demonstrates that Ddn induced vasorelaxation by targeting two proteins involved in the modulation of excitation-contraction coupling: L-type calcium channels and carbonic anhydrase.
Collapse
Affiliation(s)
- Grégoire Carre
- Signalisation et Transports Ioniques Membranaires, Université de Poitiers, CNRS ERL 7368; 1 rue Georges Bonnet F-86073 Poitiers Cedex 09, France
| | - Maurice Ouedraogo
- Laboratoire de Physiologie Animale, Université de Ouagadougou, 03 BP 7021, Ouagadougou 01, Burkina Faso
| | - Christophe Magaud
- Signalisation et Transports Ioniques Membranaires, Université de Poitiers, CNRS ERL 7368; 1 rue Georges Bonnet F-86073 Poitiers Cedex 09, France
| | - Hélène Carreyre
- Superacid group in "Organic Synthesis" team, Université de Poitiers, CNRS UMR 7285 IC2MP, 4 avenue Michel Brunet, Poitiers 86022 Cedex, France
| | - Frédéric Becq
- Signalisation et Transports Ioniques Membranaires, Université de Poitiers, CNRS ERL 7368; 1 rue Georges Bonnet F-86073 Poitiers Cedex 09, France
| | - Patrick Bois
- Signalisation et Transports Ioniques Membranaires, Université de Poitiers, CNRS ERL 7368; 1 rue Georges Bonnet F-86073 Poitiers Cedex 09, France
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm 188, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Firenze), Italy
| | - Sébastien Thibaudeau
- Superacid group in "Organic Synthesis" team, Université de Poitiers, CNRS UMR 7285 IC2MP, 4 avenue Michel Brunet, Poitiers 86022 Cedex, France
| | - Clarisse Vandebrouck
- Signalisation et Transports Ioniques Membranaires, Université de Poitiers, CNRS ERL 7368; 1 rue Georges Bonnet F-86073 Poitiers Cedex 09, France
| | - Jocelyn Bescond
- Signalisation et Transports Ioniques Membranaires, Université de Poitiers, CNRS ERL 7368; 1 rue Georges Bonnet F-86073 Poitiers Cedex 09, France.
| |
Collapse
|