1
|
Rajamanickam A, Babu S. Unraveling the Dynamics of Human Filarial Infections: Immunological Responses, Host Manifestations, and Pathogen Biology. Pathogens 2025; 14:223. [PMID: 40137708 PMCID: PMC11945129 DOI: 10.3390/pathogens14030223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Lymphatic filariasis (LF), or elephantiasis, is a neglected tropical disease caused by filarial worms, primarily Wuchereria bancrofti, transmitted through mosquito bites. It often begins in childhood but may not show symptoms until later, leaving many individuals asymptomatic for long periods. LF disrupts the lymphatic system, causing severe swelling in the limbs and genitals, leading to deformities and disabilities. The World Health Organization estimates that around 51 million people are affected globally, with 36 million suffering from chronic conditions like lymphedema and hydrocele. In 2021, approximately 882.5 million people in 44 countries required preventive chemotherapy, making LF the second leading parasitic cause of disability, significantly impacting socioeconomic status. The immune response to filarial parasites is complex, involving both innate and adaptive immune cells. A key feature of LF immunology is the antigen-specific Th2 response, expansion of IL-10-producing CD4+ T cells, and a muted Th1 response. This T cell hypo-responsiveness is crucial for sustaining long-term infections with high parasite densities. While the correlates of protective immunity are not fully understood-due in part to a lack of suitable animal models-T cells, particularly CD4+ Th2 cells, and B cells, play essential roles in immune protection. Moreover, host immune responses contribute to the disease's pathological manifestations. A failure to induce T cell hypo-responsiveness can lead to exaggerated inflammatory conditions such as lymphedema, hydrocele, and elephantiasis. Filarial infections also induce bystander effects on various immune responses, impacting responses to other infectious agents. This intricate immune interplay offers valuable insights into the regulation of immune responses to chronic infections. This review explores recent immunological research on lymphatic filarial worms, highlighting their effects on both innate and adaptive immune responses in humans and the mechanisms underlying this neglected tropical disease.
Collapse
Affiliation(s)
- Anuradha Rajamanickam
- National Institute of Allergy and Infectious Diseases, National Institutes of Health—International Center for Excellence in Research, Chennai 600031, India;
| | - Subash Babu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health—International Center for Excellence in Research, Chennai 600031, India;
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Mohammadgholi M, Hosseinimehr SJ. Crosstalk between Oxidative Stress and Inflammation Induced by Ionizing Radiation in Healthy and Cancerous Cells. Curr Med Chem 2024; 31:2751-2769. [PMID: 37026495 DOI: 10.2174/0929867330666230407104208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 04/08/2023]
Abstract
Radiotherapy (RT) is a unique modality in cancer treatment with no replacement in many cases and uses a tumoricidal dose of various ionizing radiation (IR) types to kill cancer cells. It causes oxidative stress through reactive oxygen species (ROS) production or the destruction of antioxidant systems. On the other hand, RT stimulates the immune system both directly and indirectly by releasing danger signals from stress-exposed and dying cells. Oxidative stress and inflammation are two reciprocal and closely related mechanisms, one induced and involved by the other. ROS regulates the intracellular signal transduction pathways, which participate in the activation and expression of pro-inflammatory genes. Reciprocally, inflammatory cells release ROS and immune system mediators during the inflammation process, which drive the induction of oxidative stress. Oxidative stress or inflammation-induced damages can result in cell death (CD) or survival mechanisms that may be destructive for normal cells or beneficial for cancerous cells. The present study has focused on the radioprotection of those agents with binary effects of antioxidant and anti-inflammatory mechanisms IR-induced CD.
Collapse
Affiliation(s)
- Mohsen Mohammadgholi
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
3
|
Williams PDE, Kashyap SS, Robertson AP, Martin RJ. Diethylcarbamazine elicits Ca 2+ signals through TRP-2 channels that are potentiated by emodepside in Brugia malayi muscles. Antimicrob Agents Chemother 2023; 67:e0041923. [PMID: 37728916 PMCID: PMC10583680 DOI: 10.1128/aac.00419-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/03/2023] [Indexed: 09/22/2023] Open
Abstract
Filarial nematode infections are a major health concern in several countries. Lymphatic filariasis is caused by Wuchereria bancrofti and Brugia spp. affecting over 120 million people. Heavy infections can lead to elephantiasis, which has serious effects on individuals' lives. Although current anthelmintics are effective at killing microfilariae in the bloodstream, they have little to no effect against adult parasites found in the lymphatic system. The anthelmintic diethylcarbamazine is one of the central pillars of lymphatic filariasis control. Recent studies have reported that diethylcarbamazine can open transient receptor potential (TRP) channels in the muscles of adult female Brugia malayi, leading to contraction and paralysis. Diethylcarbamazine has synergistic effects in combination with emodepside on Brugia, inhibiting motility: emodepside is an anthelmintic that has effects on filarial nematodes and is under trial for the treatment of river blindness. Here, we have studied the effects of diethylcarbamazine on single Brugia muscle cells by measuring the change in Ca2+ fluorescence in the muscle using Ca2+-imaging techniques. Diethylcarbamazine interacts with the transient receptor potential channel, C classification (TRPC) ortholog receptor TRP-2 to promote Ca2+ entry into the Brugia muscle cells, which can activate Slopoke (SLO-1) Ca2+-activated K+ channels, the putative target of emodepside. A combination of diethylcarbamazine and emodepside leads to a bigger Ca2+ signal than when either compound is applied alone. Our study shows that diethylcarbamazine targets TRP channels to promote Ca2+ entry that is increased by emodepside activation of SLO-1 K+ channels.
Collapse
Affiliation(s)
| | | | - Alan P. Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Richard J. Martin
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
4
|
Williams PDE, Kashyap SS, Robertson AP, Martin RJ. Diethylcarbamazine elicits Ca 2+ signals through TRP-2 channels that are potentiated by emodepside in Brugia malayi muscles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536248. [PMID: 37090573 PMCID: PMC10120635 DOI: 10.1101/2023.04.10.536248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Filarial nematode infections are a major health concern in several countries. Lymphatic filariasis is caused by Wucheria bancrofti and Brugia spp. affecting over 120 million people. Heavy infections can lead to elephantiasis having serious effects on individuals’ lives. Although current anthelmintics are effective at killing the microfilariae in the bloodstream, they have little to no effect against adult parasites found in the lymphatic system. The anthelmintic diethylcarbamazine is one of the central pillars of lymphatic filariasis control. Recent studies have reported that diethylcarbamazine can open Transient Receptor Potential (TRP) channels on the muscles of adult female Brugia malayi leading to contraction and paralysis. Diethylcarbamazine has synergistic effects in combination with emodepside on Brugia inhibiting motility: emodepside is an anthelmintic that has effects on filarial nematodes and is under trials for treatment of river blindness. Here we have studied the effects of diethylcarbamazine on single Brugia muscle cells by measuring the change in Ca 2+ fluorescence in the muscle using Ca 2+ -imaging techniques. Diethylcarbamazine interacts with the TRPC orthologue receptor TRP-2 to promote Ca 2+ entry into the Brugia muscle cells which can activate SLO-1 Ca 2+ activated K + channels, the putative target of emodepside. A combination of diethylcarbamazine and emodepside leads to a bigger Ca 2+ signal than when either compound is applied alone. Our study shows that diethylcarbamazine targets TRP channels to promote Ca 2+ entry that is increased by emodepside activation of SLO-1 channels.
Collapse
|
5
|
Mazumdar R, Dutta PP, Saikia J, Borah JC, Thakur D. Streptomyces sp. Strain PBR11, a Forest-Derived Soil Actinomycetia with Antimicrobial Potential. Microbiol Spectr 2023; 11:e0348922. [PMID: 36719230 PMCID: PMC10101066 DOI: 10.1128/spectrum.03489-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/21/2022] [Indexed: 02/01/2023] Open
Abstract
The Actinomycetia isolate PBR11 was isolated from the forest rhizosphere soil of Pobitora Wildlife Sanctuary (PWS), Assam, India. The isolate was identified as Streptomyces sp. with 92.91% sequence similarity to their closest type strain, Streptomyces atrovirens NRRL B-16357 DQ026672. The strain demonstrated significant antimicrobial activity against 19 test pathogens, including multidrug-resistant (MDR) clinical isolates and dermatophytes. Phenol, 2,5-bis(1,1-dimethylethyl), is the major chemical compound detected by gas chromatography-mass spectrometry in the ethyl acetate extract of PBR11 (EtAc-PBR11). The presence of the PKS type II gene (type II polyketide synthases) and chitinase gene suggested that it has been involved in the production of antimicrobial compounds. Metabolic profiling of the EtAc-PBR11 was performed by thin-layer chromatography and flash chromatography resulted in the extraction of two bioactive fractions, namely, PBR11Fr-1 and PBR11Fr-2. Liquid chromatography-tandem mass spectrometry analysis of both the fractions demonstrated the presence of significant antimicrobial compounds, including ethambutol. This is the first report on the detection of antituberculosis drug in the bioactive fractions of Streptomyces sp. PBR11. EtAc-PBR11 and PBR11Fr-1 showed the lowest MIC values (>0.097 and >0.048 μg/mL, respectively) against Candida albicans MTCC 227, whereas they showed the highest MIC values (>0.390 and >0.195 μg/mL, respectively) against Escherichia coli ATCC BAA-2469. The effects of PBR11Fr-1 were investigated on the pathogens by using a scanning electron microscope. The results indicated major morphological alterations in the cytoplasmic membrane. PBR11Fr-1 exhibited low cytotoxicity on normal hepatocyte cell line (CC-1) and the percent cell viability started to decline as the concentration increased from 50 μg/mL (87.07% ± 3.22%) to 100 μg/mL (81.26% ± 2.99%). IMPORTANCE Novel antibiotic breakthroughs are urgently required to combat antimicrobial resistance. Actinomycetia are the principal producers of antibiotics. The present study demonstrated the broad-spectrum antimicrobial potential of an Actinomycetia strain Streptomyces sp. strain PBR11 isolated from the PWS of Assam, India, which represents diverse, poorly screened habitats for novel microorganisms. The strain displayed 92.4% sequence similarity with genes of the closest type strain, indicating that the strain may represent a novel taxon within the phylum Actinomycetota. The metabolomics studies of EtAc-PBR11 revealed structurally diverse antimicrobial agents, including the detection of the antituberculosis drug ethambutol, in the bioactive fraction of Streptomyces sp. PBR11 for the first time. The PBR11 strain also yielded positive results for the antibiotic synthesis gene and the chitinase gene, both of which are responsible for broad-spectrum antimicrobial activity. This suggests that the untouched forest ecosystems have a tremendous potential to harbor potent actinomycetia for future drug discovery.
Collapse
Affiliation(s)
- Rajkumari Mazumdar
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, India
| | | | - Juri Saikia
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
- Department of Biotechnology, Gauhati University, Guwahati, India
| | - Jagat Chandra Borah
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Debajit Thakur
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| |
Collapse
|
6
|
Mohana Karthikeyan S, Nikisha GN. Efficacy and Safety of Diethylcarbamazine in Treatment of Allergic Rhinitis: A Double Blind Randomised Controlled Trial. Indian J Otolaryngol Head Neck Surg 2022; 74:1169-1177. [PMID: 36452711 PMCID: PMC9702384 DOI: 10.1007/s12070-020-02249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/24/2020] [Indexed: 10/23/2022] Open
Abstract
There are many evidences showing diethylcarbamazine as a potential drug for the treatment of allergic rhinitis. This study evaluated the effectiveness of diethylcarbamazine in the treatment of allergic rhinitis and compared it with montelukast and levocetirizine. This parallel double-blind randomized clinical trial was done in allergic rhinitis patients. Seven hundred and twelve participants who met the inclusion criteria and provided informed written consent were randomized and divided into 2 equal groups. Diethylcarbamazine 300 mg/day orally in divided doses was given to group A, and montelukast 10 mg and levocetirizine 5 mg/day orally at night for 21 days was given to group B. Primary outcomes were the change in symptoms, absolute eosinophil count, serum total IgE, phadiatop and response in skin prick from baseline to 21 days and 3 months after treatment. Secondary outcome was to compare it with montelukast and levocetirizine. The mean (SD) age of the patients was 33 (10.6) years, with 374 (52.5%) males and 338 (47.5%) females. There was statistically significant improvement in all the parameters in both groups. Improvement was better with diethylcarbamazine compared to montelukast and levocetirizine and the effects were sustained for 3 months in diethylcarbamazine group. The findings suggest that diethylcarbamazine is effective in the treatment of allergic rhinitis. It gives better control and is cost-effective than montelukast and levocetirizine. Trial Registration: https://www.ctri.nic.in Identifier: CTRI/2020/03/024145 registered on 20-03-2020.
Collapse
Affiliation(s)
- S. Mohana Karthikeyan
- Department of ENT and Head and Neck Surgery, Karpaga Vinayaka Institute of Medical Sciences and Research Center, Chinna Kolambakkam, Madurantagam, Tamil Nadu 603308 India
| | - G. N. Nikisha
- Department of ENT and Head and Neck Surgery, Karpaga Vinayaka Institute of Medical Sciences and Research Center, Chinna Kolambakkam, Madurantagam, Tamil Nadu 603308 India
| |
Collapse
|
7
|
Kazancioglu MZ. Synthesis and Characterization of Novel N-Propylaniline-Phenylpiperazine Sulfonamide and Urea Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1954040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mustafa Zahrittin Kazancioglu
- Yusuf Serefoglu Faculty of Health Sciences, Kilis 7 Aralik University, Kilis, Turkey
- Advanced Technology Application and Research Center, Kilis 7 Aralik University, Kilis, Turkey
| |
Collapse
|
8
|
Datta R, Robertson A, Martin R, Kashyap S. High concentrations of the anthelmintic diethylcarbamazine paralyze C. elegans independently of TRP-2. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000548. [PMID: 35622518 PMCID: PMC9021882 DOI: 10.17912/micropub.biology.000548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/04/2022] [Accepted: 04/20/2022] [Indexed: 12/01/2022]
Abstract
Diethylcarbamazine (DEC) has been used to treat lymphatic filariasis in tropical countries since the 1940s. Its mode of action is still unclear, with several reports suggesting a host immune system-mediated mechanism. We previously demonstrated that DEC causes transient spastic paralysis in the filarial nematode Brugia malayi due to the activation of TRP-2. Here we show that DEC causes transient paralysis in C. elegans at high concentrations and is 200x less potent compared to its effect on B. malayi. C. elegans trp-2(sy691) mutants are like the wild-type and only paralyzed by high concentrations of DEC. Our results demonstrate that high concentrations of DEC cause paralysis of C. elegans independent of TRP-2.
Collapse
Affiliation(s)
- Real Datta
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011 USA
| | - Alan Robertson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011 USA
| | - Richard Martin
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011 USA
| | - Sudhanva Kashyap
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
9
|
Ghone U, Sarode G, Sarode SC, Sengupta N. Anti-filarial drug Diethylcarbamazine in treatment of oral submucous fibrosis. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Magnaval JF, Bouhsira E, Fillaux J. Therapy and Prevention for Human Toxocariasis. Microorganisms 2022; 10:microorganisms10020241. [PMID: 35208697 PMCID: PMC8875715 DOI: 10.3390/microorganisms10020241] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 01/08/2023] Open
Abstract
For the last four decades, knowledge about human toxocariasis with regard to its epidemiology, pathophysiology, clinical spectrum, and imaging or laboratory diagnosis has substantially progressed. Knowledge about specific therapy with anthelmintics has lagged behind. To date, only four drugs are registered for human use, and their efficacy has rarely been assessed in prospective controlled trials. It is likely that the repurposing of potent anthelmintics from veterinary medicine will improve this situation. Due to its wide availability and a lack of major side effects during short regimens, albendazole has become the drug of choice. However, its efficacy should be more precisely assessed. The role of anthelmintics in the treatment of neurological or ocular toxocariasis remains to be clarified. Prophylactic measures in humans or companion animals are efficient and represent first-line treatments for the control of this zoonosis. Unfortunately, their implementation in areas or countries where toxocariasis epidemiology is driven by poverty is quite difficult or unrealistic.
Collapse
Affiliation(s)
- Jean-François Magnaval
- Service de Parasitologie Médicale, Faculté de Médecine, Université de Toulouse, 37 Allées Jules-Guesde, 31000 Toulouse, France
- Correspondence:
| | - Emilie Bouhsira
- Service de Parasitologie, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, 31076 Toulouse, France;
| | - Judith Fillaux
- Service de Parasitologie-Mycologie, Hôpital Purpan, Centre Hospitalier Universitaire de Toulouse, 330 Avenue de Grande-Bretagne, 31059 Toulouse, France;
| |
Collapse
|
11
|
Medina-De la Garza CE, Salvador Flores-Torres A, García-Hernández M, de Los Ángeles Castro-Corona M. Diethylcarbamazine as potential treatment of COVID-19 lung fibrosis. Med Hypotheses 2022; 160:110774. [PMID: 35095174 PMCID: PMC8788098 DOI: 10.1016/j.mehy.2022.110774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/13/2021] [Accepted: 01/10/2022] [Indexed: 11/29/2022]
Abstract
Diethylcarbamazine, the antiparasitic drug, also possesses anti-inflammatory and immunomodulatory activities. The anti-fibrotic activity of diethylcarbamazine makes it a potential candidate to treat coronavirus disease 2019 (COVID-19)-related pulmonary fibrosis. Experimental and clinical studies should assess this possible effect.
Collapse
Affiliation(s)
- Carlos Eduardo Medina-De la Garza
- Immunomodulation Unit, Center for Research and Development in Health Sciences (CIDICS), Universidad Autónoma de Nuevo León, Monterrey, Mexico
- Immunology Service
| | - Armando Salvador Flores-Torres
- Immunomodulation Unit, Center for Research and Development in Health Sciences (CIDICS), Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Marisela García-Hernández
- Immunomodulation Unit, Center for Research and Development in Health Sciences (CIDICS), Universidad Autónoma de Nuevo León, Monterrey, Mexico
- Biochemistry and Molecular Medicine Department, Medical School and University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - María de Los Ángeles Castro-Corona
- Immunomodulation Unit, Center for Research and Development in Health Sciences (CIDICS), Universidad Autónoma de Nuevo León, Monterrey, Mexico
- Immunology Service
| |
Collapse
|
12
|
Marcelino HR, Gabinio BM, Lima MND, Urtiga SCDC, Rodrigues GB, Dantas BB, Araújo DAMD, Peixoto CA, Oliveira EE. Development of diethylcarbamazine-loaded poly(caprolactone) nanoparticles for anti-inflammatory purpose: Preparation and characterization. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
13
|
Population pharmacokinetics of diethylcarbamazine in patients with lymphatic filariasis and healthy individuals. Antimicrob Agents Chemother 2021; 65:e0031721. [PMID: 34310218 DOI: 10.1128/aac.00317-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diethylcarbamazine (DEC) is a drug of choice to treat lymphatic filariasis (LF) either used alone or in combination as mass drug administration (MDA) preventive strategies. The objective of this study was to develop a population pharmacokinetic model for DEC in subjects infected with lymphatic filariasis (LF) compared to healthy individuals, and to evaluate the effect of covariates on the volume of distribution (V/F) and oral clearance (CL/F) of DEC. This was an open-label cohort study of treatment naïve Wuchereria bancrofti-infected (n=32) and uninfected (n=24) adults residing in the Agboville district of Côte d'Ivoire. The population pharmacokinetic model for DEC was built using Phoenix NLME 8.0 software. The covariates included in the model building process were age, gender, bodyweight, infection status, creatinine clearance (CrCl), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. A total of 56 adults were enrolled in the study and a total of 728 samples were obtained over 168 hours. A one-compartment linear pharmacokinetic model with first-order absorption with an absorption lag-time (Tlag) best described the data. After determining the pharmacokinetics (PK) parameters of DEC, body weight and gender were found to be the significant covariates for DEC V/F. The final population pharmacokinetic model adequately described the pharmacokinetics of DEC in the studied population. Model-based simulation indicated that the body weight significantly impacted the exposure in both the male and female population. This analysis may further support the drug-drug interaction model development of DEC with different co-administered drugs/agents in disease control programs.
Collapse
|
14
|
Abeygunasekera A, Jayasinghe S. Is the anti-filarial drug diethylcarbamazine useful to treat COVID-19? Med Hypotheses 2020; 143:109843. [PMID: 32492560 PMCID: PMC7232076 DOI: 10.1016/j.mehy.2020.109843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 01/03/2023]
Abstract
SARS-CoV-2 virus has resulted in a devastating pandemic of COVID-19. Exploring compounds that could offer a breakthrough in treatment is the need of the hour. Re-positioning cheap, freely available and safe drugs is a priority. The paper proposes evidence for the potential use of diethylcarbamazine (DEC) in the treatment of COVID-19. DEC has inhibitory effects on arachidonic acid metabolism to prostaglandins, little known anti-viral effects on animal retroviruses and demonstrated anti-inflammatory actions in animal models of lung inflammation indicating the need to explore this hypothesis further. We believe this is the first time DEC is being proposed to treat COVID-19.
Collapse
Affiliation(s)
| | - Saroj Jayasinghe
- Faculty of Medicine of University of Colombo, Kynsey Road, Colombo 00800, Sri Lanka.
| |
Collapse
|
15
|
Cortez-Maya S, Moreno-Herrera A, Palos I, Rivera G. Old Antiprotozoal Drugs: Are They Still Viable Options for Parasitic Infections or New Options for Other Diseases? Curr Med Chem 2020; 27:5403-5428. [DOI: 10.2174/0929867326666190628163633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/31/2019] [Accepted: 06/10/2019] [Indexed: 01/16/2023]
Abstract
Parasitic diseases, caused by helminths (ascariasis, hookworm, trichinosis, and schistosomiasis)
and protozoa (chagas, leishmaniasis, and amebiasis), are considered a serious public
health problem in developing countries. Additionally, there is a limited arsenal of anti-parasitic
drugs in the current pipeline and growing drug resistance. Therefore, there is a clear need for the
discovery and development of new compounds that can compete and replace these drugs that have
been controlling parasitic infections over the last decades. However, this approach is highly resource-
intensive, expensive and time-consuming. Accordingly, a drug repositioning strategy of the
existing drugs or drug-like molecules with known pharmacokinetics and safety profiles is alternatively
being used as a fast approach towards the identification of new treatments. The artemisinins,
mefloquine, tribendimidine, oxantel pamoate and doxycycline for the treatment of helminths, and
posaconazole and hydroxymethylnitrofurazone for the treatment of protozoa are promising candidates.
Therefore, traditional antiprotozoal drugs, which were developed in some cases decades ago,
are a valid solution. Herein, we review the current status of traditional anti-helminthic and antiprotozoal
drugs in terms of drug targets, mode of action, doses, adverse effects, and parasite resistance
to define their suitability for repurposing strategies. Current antiparasitic drugs are not only
still viable for the treatment of helminth and protozoan infections but are also important candidates
for new pharmacological treatments.
Collapse
Affiliation(s)
- Sandra Cortez-Maya
- Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Circuito Exterior, Coyoacan, 04510 Ciudad de Mexico, Mexico
| | - Antonio Moreno-Herrera
- Laboratorio de Biotecnologia Farmaceutica, Centro de Biotecnologia Genomica, Instituto Politecnico Nacional, 88710 Reynosa, Mexico
| | - Isidro Palos
- Unidad AcadEmica Multidisciplinaria Reynosa-Rodhe, Universidad AutOnoma de Tamaulipas, 88710 Reynosa, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnologia Farmaceutica, Centro de Biotecnologia Genomica, Instituto Politecnico Nacional, 88710 Reynosa, Mexico
| |
Collapse
|
16
|
Verma S, Kashyap SS, Robertson AP, Martin RJ. Diethylcarbamazine activates TRP channels including TRP-2 in filaria, Brugia malayi. Commun Biol 2020; 3:398. [PMID: 32724078 PMCID: PMC7387335 DOI: 10.1038/s42003-020-01128-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/05/2020] [Indexed: 01/19/2023] Open
Abstract
Diethylcarbamazine is an important classic drug used for prevention and treatment of lymphatic filariasis and loiasis, diseases caused by filarial nematodes. Despite many studies, its site of action has not been established. Until now, the consensus has been that diethylcarbamazine works by activating host immune systems, not by a direct action on the parasites. Here we show that low concentrations of diethylcarbamazine have direct and rapid (<30 s) temporary spastic paralyzing effects on the parasites that lasts around 4 h, which is produced by diethylcarbamazine opening TRP channels in muscle of Brugia malayi involving TRP-2 (TRPC-like channel subunits). GON-2 and CED-11, TRPM-like channel subunits, also contributed to diethylcarbamazine responses. Opening of these TRP channels produces contraction and subsequent activation of calcium-dependent SLO-1K channels. Recovery from the temporary paralysis is consistent with inactivation of TRP channels. Our observations elucidate mechanisms for the rapid onset and short-lasting therapeutic actions of diethylcarbamazine.
Collapse
Affiliation(s)
- Saurabh Verma
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Sudhanva S Kashyap
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Alan P Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Richard J Martin
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
17
|
Farzipour S, Amiri FT, Mihandoust E, Shaki F, Noaparast Z, Ghasemi A, Hosseinimehr SJ. Radioprotective effect of diethylcarbamazine on radiation-induced acute lung injury and oxidative stress in mice. J Bioenerg Biomembr 2019; 52:39-46. [PMID: 31853753 DOI: 10.1007/s10863-019-09820-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/12/2019] [Indexed: 11/25/2022]
Abstract
The present study was designed to evaluate the radioprotective effect of diethylcarbamazine (DEC) against oxidative stress and acute lung injury induced by total body radiation (TBI) in mice. For study the optimum dose for radiation protection of DEC, mice were administrated with three dose of DEC (10, 50 and 100 mg/kg), once daily for eight consecutive days. Animals were exposed whole body to 5 Gy X-radiation on the 9 day. The radioprotective potential of DEC in lung tissues was assessed using oxidative stress examinations at 24 h after TBI and histopathological assay also was analyzed one week after TBI. Results from biochemical analyses demonstrated increased malonyldialdehyde (MDA), nitric oxide (NO) and protein carbonyl (PC) levels of lung tissues in only irradiated group. Histopathologic findings also showed an increase in the number of inflammatory cells and the acute lung injury in this group. DEC pretreatment significantly mitigated the oxidative stress biomarkers as well as histological damages in irradiated mice. The favorable radioprotective effect against lungs injury was observed at a dose of 10 mg/kg of DEC in mice as compared with two other doses (50 and 100 mg/kg). The data of this study showed that DEC at a dose of 10 mg/kg with having antioxidant and anti-inflammatory properties can be used as a therapeutic candidate for protecting the lung from radiation-induced damage.
Collapse
Affiliation(s)
- Soghra Farzipour
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical, Sciences, Sari, Iran
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Ehsan Mihandoust
- Department of Radiotherapy, Imam Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Shaki
- Department of Toxicology and Pharmacology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zohreh Noaparast
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical, Sciences, Sari, Iran
| | - Arash Ghasemi
- Department of Radiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical, Sciences, Sari, Iran.
| |
Collapse
|
18
|
Murthy PK. Strategies to Control Human Lymphatic Filarial Infection: Tweaking Host’s Immune System. Curr Top Med Chem 2019; 19:1226-1240. [DOI: 10.2174/1568026619666190618110613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 12/17/2022]
Abstract
Human lymphatic filariasis (LF), a parasitic infection caused by the nematodes Wuchereria bancrofti, Brugia malayi and B. timori, and transmitted by mosquito, results in a debilitating disease commonly identified as ‘elephantiasis’. LF affects millions of people in India and several other tropical and sub-tropical countries imposing a huge economic burden on governments due to disability associated loss of man-hours and for disease management. Efforts to control the infection by WHO’s mass drug administration (MDA) strategy using three antifilarials diethylcarbamazine, albendazole and ivermectin are only partly successful and therefore, there is an immediate need for alternative strategies. Some of the alternative strategies being explored in laboratories are: enhancing the immune competence of host by immunomodulation, combining immunomodulation with antifilarials, identifying immunoprophylactic parasite molecules (vaccine candidates) and identifying parasite molecules that can be potential drug targets. This review focuses on the advances made in this direction.
Collapse
Affiliation(s)
- Puvvada Kalpana Murthy
- Department of Zoology, University of Lucknow, University Road, Lucknow 226 007, Uttar Pradesh, India
| |
Collapse
|
19
|
Heat shock protein 70 of filarial parasite Setaria equina: Cloning, expression, and analysis of binding with diethylcarbamazine citrate. Int J Biol Macromol 2019; 133:202-213. [DOI: 10.1016/j.ijbiomac.2019.04.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 11/24/2022]
|
20
|
Rodrigues GB, Oliveira EE, Junior FJBM, Santos LAMD, Oliveira WHD, França MERD, Lós DB, Gabínio BM, Peixoto CA. A new diethylcarbamazine formulation (NANO-DEC) as a therapeutic tool for hepatic fibrosis. Int Immunopharmacol 2018; 64:280-288. [PMID: 30219503 DOI: 10.1016/j.intimp.2018.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/31/2018] [Accepted: 09/08/2018] [Indexed: 12/18/2022]
Abstract
The aim of the present study was to assess if the uninterrupted and prolonged administration of nanoparticles containing diethylcarbamazine (NANO-DEC) would cause liver, kidney and heart toxicity and then analyze for the first time its action in model of liver fibrosis. Thus, NANO-DEC was administered in C57BL/6 mice daily for 48 days, and at the end the blood was collected for biochemical analyzes. In the long-term administration assay, the evaluation of serological parameters (CK-MB, creatinine, ALT, AST and urea) allowed the conclusion that NANO-DEC prolonged administration did not cause hepatic, renal and cardiac damage. For fibrosis assays, C57BL/6 mice were divided into six groups: 1) control (Cont); 2) carbon tetrachloride (CCl4); 3) CCl4 + DEC 25 mg/kg; 4) CCl4 + DEC 50 mg/kg; 5) CCl4 + NANO-DEC 5 mg/kg and 6) CCl4 + NANO-DEC 12.5 mg/kg. Carbon tetrachloride induced hepatic fibrosis observed through increased inflammatory (TNF-α, IL-1β, COX-2, NO and iNOS) and fibrotic markers (TGF-β and TIMP-1), changes in the hepatic morphology, high presence of collagen fibers and elevated serum levels of AST, ALT and ALP. Treatment with NANO-DEC exhibited a superior anti-inflammatory and anti-fibrotic effects compared to the DEC traditional formulation, restoring liver morphology, reducing the content of collagen fibers and serological parameters, besides decreasing the expression of inflammatory and fibrotic markers. The present formulation of nanoencapsulated DEC is a well tolerated anti-inflammatory and anti-fibrotic drug and therefore could be a potential therapeutic tool for the treatment of chronic liver disorders.
Collapse
Affiliation(s)
- Gabriel Barros Rodrigues
- Laboratório de Ultraestrutura, Instituto Aggeu Magalhães - FIOCRUZ, Recife, Brazil; Programa de Pós-graduação em Ciências Biológicas, Centro de Biociências, Universidade Federal de Pernambuco - UFPE, Recife, Brazil.
| | - Elquio Eleamen Oliveira
- Laboratório de Síntese e Vetorização de Moléculas (LSVM), Universidade Estadual da Paraíba, João Pessoa, Brazil
| | | | | | - Wilma Helena de Oliveira
- Laboratório de Ultraestrutura, Instituto Aggeu Magalhães - FIOCRUZ, Recife, Brazil; Programa de Pós-graduação em Ciências Biológicas, Centro de Biociências, Universidade Federal de Pernambuco - UFPE, Recife, Brazil
| | - Maria Eduarda Rocha de França
- Laboratório de Ultraestrutura, Instituto Aggeu Magalhães - FIOCRUZ, Recife, Brazil; Programa de Pós-graduação em Ciências Biológicas, Centro de Biociências, Universidade Federal de Pernambuco - UFPE, Recife, Brazil
| | - Deniele Bezerra Lós
- Programa de Pós-graduação em Biotecnologia/RENORBIO, Universidade Federal de Pernambuco - UFPE, Recife, Brazil
| | - Brennda Martins Gabínio
- Laboratório de Síntese e Vetorização de Moléculas (LSVM), Universidade Estadual da Paraíba, João Pessoa, Brazil
| | | |
Collapse
|
21
|
Characterization and evaluation of nanoencapsulated diethylcarbamazine in model of acute hepatic inflammation. Int Immunopharmacol 2018; 50:330-337. [PMID: 28743082 DOI: 10.1016/j.intimp.2017.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 12/17/2022]
Abstract
Previous studies from our laboratory have demonstrated that Diethylcarbamazine (DEC) is a potent anti-inflammatory drug. The aim of the present study was to characterize the nanoencapsulation of DEC and to evaluate its effectiveness in a model of inflammation for the first time. C57BL/6 mice were divided into six groups: 1) Control; 2) Carbon tetrachloride (CCl4); 3) DEC 25mg/kg+CCl4; 4) DEC 50mg/kg+CCl4; 5) DEC-NANO 05mg/kg+CCl4 and 6) DEC-NANO 12.5mg/kg+CCl4. Liver fragments were stained with hematoxylin-eosin, and processed for Western blot, ELISA and immunohistochemistry. Serum was also collected for biochemical measurements. Carbon tetrachloride induced hepatic injury, observed through increased inflammatory markers (TNF-α, IL-1β, PGE2, COX-2 and iNOS), changes in liver morphology, and increased serum levels of total cholesterol, triglycerides, TGO and TGP, LDL, as well as reduced HDL levels. Nanoparticles containing DEC were characterized by diameter, polydispersity index and zeta potential. Treatment with 12.5 nanoencapsulated DEC exhibited a superior anti-inflammatory action to the DEC traditional dose (50mg/kg) used in murine assays, restoring liver morphology, improving serological parameters and reducing the expression of inflammatory markers. The present formulation of nanoencapsulated DEC is therefore a potential therapeutic tool for the treatment of inflammatory hepatic disorders, permitting the use of smaller doses and reducing treatment time, while maintaining high efficacy.
Collapse
|
22
|
Targeting Human Onchocerciasis: Recent Advances Beyond Ivermectin. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2018. [DOI: 10.1016/bs.armc.2018.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
Ribeiro EL, Fragoso IT, Gomes FODS, Oliveira AC, Silva AKSE, Silva PME, Ciambarella BT, Ramos IPR, Peixoto CA. Diethylcarbamazine: A potential treatment drug for pulmonary hypertension? Toxicol Appl Pharmacol 2017; 333:92-99. [PMID: 28851623 DOI: 10.1016/j.taap.2017.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/09/2017] [Accepted: 08/25/2017] [Indexed: 01/16/2023]
Abstract
The present study demonstrated the potential effects of diethylcarbamazine (DEC) on monocrotaline (MCT)-induced pulmonary hypertension. MCT solution (600mg/kg) was administered once per week, and 50mg/kg body weight of DEC for 28days. Three C57Bl/6 male mice groups (n=10) were studied: Control; MCT28, and MCT28/DEC. Echocardiography analysis was performed and lung tissues were collected for light microscopy (hematoxylin-eosin and Masson's trichrome staining), immunohistochemistry (αSMA, FADD, caspase 8, caspase 3, BAX, BCL2, cytochrome C and caspase 9) western blot (FADD, caspase 8, caspase 3, BAX, BCL2, cytochrome C and caspase 9) and qRt-PCR (COL-1α and αSMA). Echocardiography analysis demonstrated an increase in the pulmonary arterial blood flow gradient and velocity in the systole and RV area in the MCT28 group, while treatment with DEC resulted in a significant reduction in these parameters. Deposition of collagen fibers and αSMA staining around the pulmonary arteries was evident in the MCT28 group, while treatment with DEC reduced both. Western blot analysis revealed a decrease in BMPR2 in the MCT28 group, in contrast DEC treatment resulted in a significant increase in the level of BMPR2. DEC also significantly reduced the level of VEGF compared to the MCT28 group. Apoptosis extrinsic and intrinsic pathway markers were reduced in the MCT28 group. After treatment with DEC these levels returned to baseline. The results of this study indicate that DEC attenuates PH in an experimental monocrotaline-induced model by inhibiting a series of markers involved in cell proliferation/death.
Collapse
Affiliation(s)
- Edlene Lima Ribeiro
- Laboratory of Ultrastructure, Aggeu Magalhães Research Center - CPqAM, Pernambuco, Brazil; Federal University of Pernambuco, Brazil
| | - Ingrid Tavares Fragoso
- Laboratory of Ultrastructure, Aggeu Magalhães Research Center - CPqAM, Pernambuco, Brazil; Federal University of Pernambuco, Brazil
| | | | - Amanda Costa Oliveira
- Laboratory of Ultrastructure, Aggeu Magalhães Research Center - CPqAM, Pernambuco, Brazil; Federal University of Pernambuco, Brazil
| | - Amanda Karoline Soares E Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Research Center - CPqAM, Pernambuco, Brazil; Federal University of Pernambuco, Brazil
| | | | | | - Isalira Peroba Rezende Ramos
- National Center Structural Biology and Bio-imaging, Carlos Chagas Filho Biophysics Institute, Department of Radiology, University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
24
|
El-Sisi AEDES, Sokar SS, Shebl AM, Mohamed DZ. Antifibrotic effect of diethylcarbamazine combined with hesperidin against ethanol induced liver fibrosis in rats. Biomed Pharmacother 2017; 89:1196-1206. [DOI: 10.1016/j.biopha.2017.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 03/03/2017] [Accepted: 03/05/2017] [Indexed: 02/09/2023] Open
|
25
|
Diethylcarbamazine attenuates the expression of pro-fibrogenic markers and hepatic stellate cells activation in carbon tetrachloride-induced liver fibrosis. Inflammopharmacology 2017; 26:599-609. [DOI: 10.1007/s10787-017-0329-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/17/2017] [Indexed: 01/26/2023]
|
26
|
Fragoso IT, Ribeiro EL, Gomes FODS, Donato MAM, Silva AKS, Oliveira ACOD, Araújo SMDR, Barbosa KPS, Santos LAM, Peixoto CA. Diethylcarbamazine attenuates LPS-induced acute lung injury in mice by apoptosis of inflammatory cells. Pharmacol Rep 2017; 69:81-89. [DOI: 10.1016/j.pharep.2016.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/25/2016] [Accepted: 09/23/2016] [Indexed: 12/31/2022]
|
27
|
Potential Value of Triple Drug Therapy with Ivermectin, Diethylcarbamazine, and Albendazole (IDA) to Accelerate Elimination of Lymphatic Filariasis and Onchocerciasis in Africa. PLoS Negl Trop Dis 2017; 11:e0005163. [PMID: 28056015 PMCID: PMC5215784 DOI: 10.1371/journal.pntd.0005163] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
28
|
Ghiselli G. Drug-Mediated Regulation of Glycosaminoglycan Biosynthesis. Med Res Rev 2016; 37:1051-1094. [DOI: 10.1002/med.21429] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Giancarlo Ghiselli
- Glyconova Srl; Parco Scientifico Silvano Fumero; Via Ribes 5 Colleretto Giacosa, (TO) Italy
| |
Collapse
|
29
|
Kwarteng A, Ahuno ST, Akoto FO. Killing filarial nematode parasites: role of treatment options and host immune response. Infect Dis Poverty 2016; 5:86. [PMID: 27716412 PMCID: PMC5047298 DOI: 10.1186/s40249-016-0183-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/05/2016] [Indexed: 02/08/2023] Open
Abstract
Background There is compelling evidence that not only do anti-filarials significantly reduce larval forms, but that host immune responses also contribute to the clearance of filarial parasites; however, the underlying mechanisms have not been fully elucidated. Main text Filarial infections caused by Wuchereria bancrofti and Brugia species (lymphatic filariasis) and Onchocerca volvulus (onchocerciasis) affect almost 200 million individuals worldwide and pose major public health challenges in endemic regions. Indeed, the collective disability-adjusted life years for both infections is 3.3 million. Infections with these thread-like nematodes are chronic and, although most individuals develop a regulated state, a portion develop severe forms of pathology. Mass drug administration (MDA) programmes on endemic populations focus on reducing prevalence of people with microfilariae, the worm's offspring in the blood, to less than 1 %. Although this has been successful in some areas, studies show that MDA will be required for longer than initially conceived. Conclusion This paper highlights the mode of action of the various antifilarial treatment strategies and role of host immune response. Electronic supplementary material The online version of this article (doi:10.1186/s40249-016-0183-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexander Kwarteng
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), PMB, KNUST, Kumasi, Ghana. .,Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science Technology, PMB, Kumasi, Ghana.
| | - Samuel Terkper Ahuno
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science Technology, PMB, Kumasi, Ghana
| | - Freda Osei Akoto
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science Technology, PMB, Kumasi, Ghana
| |
Collapse
|
30
|
Abdel-Latif M. Diethylcarbamazine citrate ameliorates insulin resistance in high-fat diet-induced obese mice via modulation of adipose tissue inflammation. Int Immunopharmacol 2015; 29:607-612. [DOI: 10.1016/j.intimp.2015.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/17/2015] [Accepted: 09/23/2015] [Indexed: 01/21/2023]
|
31
|
Zakai HA, Khan W. Effects of filaricidal drugs on longevity and enzyme activities of the microfilariae of Setaria cervi in white rats. Asian Pac J Trop Biomed 2015. [DOI: 10.1016/j.apjtb.2015.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
32
|
Martin RJ, Verma S, Choudhary S, Kashyap S, Abongwa M, Zheng F, Robertson AP. Anthelmintics: The best way to predict the future is to create it. Vet Parasitol 2015; 212:18-24. [PMID: 26138153 DOI: 10.1016/j.vetpar.2015.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/08/2015] [Accepted: 05/20/2015] [Indexed: 01/25/2023]
Abstract
'The best way to predict the future is to create it.' When we look at drugs that are used to control parasites, we see that new knowledge has been created (discovered) about their modes of action. This knowledge will allow us to predict combinations of drugs which can be used together rationally to increase the spectrum of action and to slow the development of anthelmintic resistance. In this paper we comment on some recent observations of ours on the modes of action of emodepside, diethylcarbamazine and tribendimidine. Emodepside increases the activation of a SLO-1 K(+) current inhibiting movement, and diethylcarbamazine has a synergistic effect on the effect of emodepside on the SLO-1 K(+) current, increasing the size of the response. The combination may be considered for further testing for therapeutic use. Tribendimidine is a selective cholinergic nematode B-subtype nAChR agonist, producing muscle depolarization and contraction. It has different subtype selectivity to levamisole and may be effective in the presence of some types of levamisole resistance. The new information about the modes of action may aid the design of rational drug combinations designed to slow the development of resistance or increase the spectrum of action.
Collapse
Affiliation(s)
- Richard J Martin
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.
| | - Saurabh Verma
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Shivani Choudhary
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Sudhanva Kashyap
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Melanie Abongwa
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Fudan Zheng
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Alan P Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
33
|
Rodrigues GB, Rocha SWS, Santos LAMD, de Oliveira WH, Gomes FODS, de França MEDR, Lós DB, Peixoto CA. Diethylcarbamazine: Possible therapeutic alternative in the treatment of alcoholic liver disease in C57BL/6 mice. Clin Exp Pharmacol Physiol 2015; 42:369-79. [DOI: 10.1111/1440-1681.12369] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/12/2015] [Accepted: 01/28/2015] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | | | | | | | - Deniele Bezerra Lós
- Postgraduate Program in Biotechnology (RENORBIO); Federal University of Pernambuco; Pernambuco Brazil
| | | |
Collapse
|
34
|
Greenberg RM. Ion channels and drug transporters as targets for anthelmintics. CURRENT CLINICAL MICROBIOLOGY REPORTS 2014; 1:51-60. [PMID: 25554739 PMCID: PMC4278637 DOI: 10.1007/s40588-014-0007-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Infections with parasitic helminths such as schistosomes and soil-transmitted nematodes are hugely prevalent and responsible for a major portion of the global health and economic burdens associated with neglected tropical diseases. In addition, many of these parasites infect livestock and plants used in agriculture, resulting in further impoverishment. Treatment and control of these pathogens rely on anthelmintic drugs, which are few in number, and against which drug resistance can develop rapidly. The neuromuscular system of the parasite, and in particular, the ion channels and associated receptors underlying excitation and signaling, have proven to be outstanding targets for anthelmintics. This review will survey the different ion channels found in helminths, focusing on their unique characteristics and pharmacological sensitivities. It will also briefly review the literature on helminth multidrug efflux that may modulate parasite susceptibility to anthelmintics and may prove useful targets for new or repurposed agents that can enhance parasite drug susceptibility and perhaps overcome drug resistance.
Collapse
Affiliation(s)
- Robert M Greenberg
- Department of Pathobiology School of Veterinary Medicine University of Pennsylvania 3800 Spruce Street Philadelphia PA 19104 Tel: 215-898-5678
| |
Collapse
|
35
|
Diethylcarbamazine reduces chronic inflammation and fibrosis in carbon tetrachloride- (CCl₄-) induced liver injury in mice. Mediators Inflamm 2014; 2014:696383. [PMID: 25374445 PMCID: PMC4211150 DOI: 10.1155/2014/696383] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 08/15/2014] [Accepted: 08/27/2014] [Indexed: 02/07/2023] Open
Abstract
This study investigated the anti-inflammatory effects of DEC on the CCl4-induced hepatotoxicity in C57BL/6 mice. Chronic inflammation was induced by i.p. administration of CCl4 0.5 μL/g of body weight through two injections a week for 6 weeks. DEC (50 mg/kg) was administered by gavage for 12 days before finishing the CCl4 induction. Histological analyses of the DEC-treated group exhibited reduced inflammatory process and prevented liver necrosis and fibrosis. Immunohistochemical and immunofluorescence analyses of the DEC-treated group showed reduced COX-2, IL1β, MDA, TGF-β, and αSMA immunopositivity, besides exhibiting decreased IL1β, COX-2, NFκB, IFNγ, and TGFβ expressions in the western blot analysis. The DEC group enhanced significantly the IL-10 expression. The reduction of hepatic injury in the DEC-treated group was confirmed by the COX-2 and iNOS mRNA expression levels. Based on the results of the present study, DEC can be used as a potential anti-inflammatory drug for chronic hepatic inflammation.
Collapse
|
36
|
García-Hernández M, Castro-Corona MA, Segoviano-Ramírez JC, Brattig NW, Medina-De la Garza CE. Immunomodulatory effect of diethylcarbamazine in mice infected with Nocardia brasiliensis. Int Immunopharmacol 2014; 23:113-20. [PMID: 25150175 DOI: 10.1016/j.intimp.2014.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 07/26/2014] [Accepted: 08/07/2014] [Indexed: 11/16/2022]
Abstract
We tested whether diethylcarbamazine (DEC) or ivermectin (IVM), both antiparasitic drugs with reported immunomodulatory properties, were able to affect the immune system to potentiate host defense mechanisms and protect against actinomycetoma in a mouse model. Male BALB/c mice of 10-12 weeks of age were injected with either Nocardia brasiliensis or saline solution. Recorded were the effects of a treatment by DEC (6 mg/kg per os daily for one week) or IVM (200 μg/kg subcutaneously on days 1 and 3) on (i) the development of mycetoma lesion, (ii) the expression of reactive oxygen intermediates (ROI) by phagocytes, (iii) the proliferation index of lymphocytes and (iv) antibody production of IgG and IgM. After an initial lesion in all mice, DEC inhibited a full development and progression of actinomycetoma resulting in a reduced lesion size (p < 0.001). IVM had no inhibitory effect on the development of mycetoma. Furthermore, DEC treatment was associated with a significant enhancement of ROI expression (p < 0.05) by polymorphonuclear neutrophils at day 3 after infection. Lymphocyte proliferation in response to N. brasiliensis antigens and concanavalin A in DEC-treated group was higher than in non-treated group at day 21 and 28 postinfection (p < 0.01). Significant changes in antibody response were not observed. By all parameters tested, DEC was superior to IVM regarding immunostimulatory potency. In conclusion, DEC expressed an in vivo influence on the immune status during the infection by N. brasiliensis leading to retrogression of the mycetoma and increasing cellular immune responses. Our findings may indicate a potential use of DEC as a putative adjuvant in infectious disease or vaccination.
Collapse
Affiliation(s)
- M García-Hernández
- Immunology Department, School of Medicine, Universidad Autonóma de Nuevo León (UANL), Monterrey, Mexico; Centro de Investigación y Desarrollo en Ciencias de la Salud (CIDICS), Universidad Autonóma de Nuevo León (UANL), Monterrey, Mexico
| | - M A Castro-Corona
- Immunology Department, School of Medicine, Universidad Autonóma de Nuevo León (UANL), Monterrey, Mexico; Centro de Investigación y Desarrollo en Ciencias de la Salud (CIDICS), Universidad Autonóma de Nuevo León (UANL), Monterrey, Mexico
| | - J C Segoviano-Ramírez
- Histology Department, School of Medicine, Universidad Autonóma de Nuevo León (UANL), Monterrey, Mexico; Centro de Investigación y Desarrollo en Ciencias de la Salud (CIDICS), Universidad Autonóma de Nuevo León (UANL), Monterrey, Mexico
| | - N W Brattig
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - C E Medina-De la Garza
- Immunology Department, School of Medicine, Universidad Autonóma de Nuevo León (UANL), Monterrey, Mexico; Centro de Investigación y Desarrollo en Ciencias de la Salud (CIDICS), Universidad Autonóma de Nuevo León (UANL), Monterrey, Mexico.
| |
Collapse
|