1
|
Ding J, Li X, Jin Z, Hachem MA, Bai Y. Efficient glycosylation of polyphenols via dynamic complexation of cyclodextrin and synchronous coupling reaction with cyclodextrin glycosyltransferase in water. Int J Biol Macromol 2024; 280:136065. [PMID: 39353521 DOI: 10.1016/j.ijbiomac.2024.136065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Glycosylation is an effective way to promote the total intake of polyphenols in humans by increasing the solubility of polyphenols. In this study, an efficient glycosylation system was built via the dynamic complexation of CD with polyphenols and synchronous coupling reaction with cyclodextrin glycosyltransferase (CGTase) in water. The glycosylation efficiencies of quercetin, naringenin, rutin, resveratrol and caffeic acid were 20.9, 3.6, 2.7, 3.4 and 1.5 times higher than the non-complexed system. To quantify conversion rate and determine the rate-limiting step, the mixed product was treated with amyloglucosidase to obtain α-glucosyl rutin, which was identified as rutin 4"-O-α-D-glucopyranoside with purity of 93.6 % and yield of 34.8 % from NMR, MS and HPLC analysis. The results of half-reaction kinetics showed that the catalytic efficiencies of ring-opening of γ-CD (k1) and glycosylation reaction of rutin (k2) were 621.92 and 9.43 mM-1·s-1. The rate-limiting step was clarified for the first time, showing that the ring-opening ability of CGTase to CD was much higher than its glycosylation ability to polyphenols. It is speculated that the rapid ring-opening reaction of CD affected its dynamic complexation, releasing many polyphenols which were not utilized by CGTase in time. Therefore, adjusting the ratio and concentration of CD resulted in an optimal glycosylation molar yield of 84.1 % for rutin, which was the highest yield reported so far in water. This study established a universal system and clarified the rate-limiting step in the enzymatic glycosylation, providing theoretical guidance for efficient production of polyphenol glycosylation.
Collapse
Affiliation(s)
- Jiaqi Ding
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoxiao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maher Abou Hachem
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Ren H, Feng J, Hong M, Liu Z, Muyey DM, Zhang Y, Xu Z, Tan Y, Ren F, Chang J, Chen X, Wang H. Baicalein attenuates oxidative damage in mice haematopoietic cells through regulation of PDGFRβ. Mol Cell Probes 2024; 76:101966. [PMID: 38866345 DOI: 10.1016/j.mcp.2024.101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/26/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Platelet-derived growth factor receptor β (PDGFRβ) plays a crucial role in murine haematopoiesis. Baicalein (BAI), a naturally occurring flavonoid, can alleviate disease damage through anti-oxidative, anti-apoptotic, and anti-inflammatory mechanisms. However, whether BAI attenuates oxidative damage in murine haematopoietic cells by PDGFRβ remains unexplored. In this study, we utilized a tert-butyl hydroperoxide (TBHP)-induced BaF3 cell injury model and an ionising radiation (IR)-induced mice injury model to investigate the impact of the presence or absence of PDGFRβ on the pharmacological effects of BAI. In addition, the BAI-PDGFRβ interaction was characterized by molecular docking and dynamics simulations. The results show that a specific concentration of BAI led to increased cell viability, reduced reactive oxygen species (ROS) content, upregulated nuclear factor erythroid 2-related factor 2 (NRF2) expression, and its downstream target genes heme oxygenase 1 (HO-1) and NAD(P)H Quinone Dehydrogenase 1 (NQO1), and activated protein kinase B (AKT) pathway in cells expressing PDGFRβ plasmid and experiencing damage. Similarly, BAI elevated lineage-Sca1+cKIT+ (LSK) cell proportion, promoted haematopoietic restoration, enhanced NRF2-mediated antioxidant response in PDGFRβ+/+ mice. However, despite BAI usage, PDGFRβ knockout mice (PDGFRβ-/-) showed lower LSK proportion and less antioxidant capacity than the total body irradiation (TBI) group. Furthermore, we demonstrated an interaction between BAI and PDGFRβ at the molecular level. Collectively, our results indicate that BAI attenuates oxidative stress injury and helps promote haematopoietic cell recovery through regulation of PDGFRβ.
Collapse
Affiliation(s)
- Huanying Ren
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jingyi Feng
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Minglin Hong
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Zhuang Liu
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Daniel Muteb Muyey
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yaofang Zhang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Zhifang Xu
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yanhong Tan
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Fanggang Ren
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jianmei Chang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xiuhua Chen
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Hongwei Wang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
3
|
Tian Y, Xu W, Guang C, Zhang W, Mu W. Glycosylation of flavonoids by sucrose- and starch-utilizing glycoside hydrolases: A practical approach to enhance glycodiversification. Crit Rev Food Sci Nutr 2024; 64:7408-7425. [PMID: 36876518 DOI: 10.1080/10408398.2023.2185201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Flavonoids are ubiquitous and diverse in plants and inseparable from the human diet. However, in terms of human health, their further research and application in functional food and pharmaceutical industries are hindered by their low water solubility. Therefore, flavonoid glycosylation has recently attracted research attention because it can modulate the physicochemical and biochemical properties of flavonoids. This review represents a comprehensive overview of the O-glycosylation of flavonoids catalyzed by sucrose- and starch-utilizing glycoside hydrolases (GHs). The characteristics of this feasible biosynthesis approach are systematically summarized, including catalytic mechanism, specificity, reaction conditions, and yields of the enzymatic reaction, as well as the physicochemical properties and bioactivities of the product flavonoid glycosides. The cheap glycosyl donor substrates and high yields undoubtedly make it a practical flavonoid modification approach to enhance glycodiversification.
Collapse
Affiliation(s)
- Yuqing Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Wang C, Niu D, Mchunu NP, Zhang M, Singh S, Wang Z. Secretory expression of amylosucrase in Bacillus licheniformis through twin-arginine translocation pathway. J Ind Microbiol Biotechnol 2024; 51:kuae004. [PMID: 38253396 PMCID: PMC10849164 DOI: 10.1093/jimb/kuae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Amylosucrase (EC 2.4.1.4) is a versatile enzyme with significant potential in biotechnology and food production. To facilitate its efficient preparation, a novel expression strategy was implemented in Bacillus licheniformis for the secretory expression of Neisseria polysaccharea amylosucrase (NpAS). The host strain B. licheniformis CBBD302 underwent genetic modification through the deletion of sacB, a gene responsible for encoding levansucrase that synthesizes extracellular levan from sucrose, resulting in a levan-deficient strain, B. licheniformis CBBD302B. Neisseria polysaccharea amylosucrase was successfully expressed in B. licheniformis CBBD302B using the highly efficient Sec-type signal peptide SamyL, but its extracellular translocation was unsuccessful. Consequently, the expression of NpAS via the twin-arginine translocation (TAT) pathway was investigated using the signal peptide SglmU. The study revealed that NpAS could be effectively translocated extracellularly through the TAT pathway, with the signal peptide SglmU facilitating the process. Remarkably, 62.81% of the total expressed activity was detected in the medium. This study marks the first successful secretory expression of NpAS in Bacillus species host cells, establishing a foundation for its future efficient production. ONE-SENTENCE SUMMARY Amylosucrase was secreted in Bacillus licheniformis via the twin-arginine translocation pathway.
Collapse
Affiliation(s)
- Caizhe Wang
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dandan Niu
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Nokuthula Peace Mchunu
- National Research Foundation, PO Box 2600 Pretoria 0001, South Africa
- School of Life Science, University of KwaZulu Natal, Durban 4000, South Africa
| | - Meng Zhang
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Suren Singh
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, PO Box 1334, Durban 4001, South Africa
| | - Zhengxiang Wang
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China
| |
Collapse
|
5
|
Ren J, Barton CD, Zhan J. Engineered production of bioactive polyphenolic O-glycosides. Biotechnol Adv 2023; 65:108146. [PMID: 37028465 DOI: 10.1016/j.biotechadv.2023.108146] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/04/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Polyphenolic compounds (such as quercetin and resveratrol) possess potential medicinal values due to their various bioactivities, but poor water solubility hinders their health benefits to humankind. Glycosylation is a well-known post-modification method to biosynthesize natural product glycosides with improved hydrophilicity. Glycosylation has profound effects on decreasing toxicity, increasing bioavailability and stability, together with changing bioactivity of polyphenolic compounds. Therefore, polyphenolic glycosides can be used as food additives, therapeutics, and nutraceuticals. Engineered biosynthesis provides an environmentally friendly and cost-effective approach to generate polyphenolic glycosides through the use of various glycosyltransferases (GTs) and sugar biosynthetic enzymes. GTs transfer the sugar moieties from nucleotide-activated diphosphate sugar (NDP-sugar) donors to sugar acceptors such as polyphenolic compounds. In this review, we systematically review and summarize the representative polyphenolic O-glycosides with various bioactivities and their engineered biosynthesis in microbes with different biotechnological strategies. We also review the major routes towards NDP-sugar formation in microbes, which is significant for producing unusual or novel glycosides. Finally, we discuss the trends in NDP-sugar based glycosylation research to promote the development of prodrugs that positively impact human health and wellness.
Collapse
Affiliation(s)
- Jie Ren
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA
| | - Caleb Don Barton
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA.
| |
Collapse
|
6
|
Baicalin Inhibits Airway Smooth Muscle Cells Proliferation through the RAS Signaling Pathway in Murine Asthmatic Airway Remodeling Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:4144138. [PMID: 36814956 PMCID: PMC9940961 DOI: 10.1155/2023/4144138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/31/2022] [Accepted: 01/12/2023] [Indexed: 02/17/2023]
Abstract
Background Studies that looked at asthma airway remodeling pathogenesis and prevention have led to the discovery of the rat sarcoma viral oncogene (RAS) signaling pathway as a key mechanism that controls airway smooth muscle cell (ASMC) proliferation. Baicalin has great anti-inflammatory, proliferation-inhibited, and respiratory disease-relieving properties. However, the inhibitory effects and mechanisms of baicalin on ASMC-mediated airway remodeling in mice are still poorly understood. Methods After establishing the asthmatic mice model by ovalbumin (OVA) and interfering with baicalin, airway remodeling characteristics such as airway resistance, mRNA, and protein expression levels of remodeling-related cytokines were measured by histopathological assessment, quantitative real-time polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA), and western blot. Further efforts on detailed mechanisms were used antibody arrays to compare the expression and activation of proteins involved in the RAS signaling pathway. In addition, validation experiments were performed in ASMC proliferation model and low-expression cells of the target gene by using shRNA. Results In OVA-induced asthmatic mice model, baicalin significantly reduced the infiltration of inflammatory cells in lung tissue, attenuated airway resistance, and decreased mRNA and protein expression levels of remodeling-related cytokines such as interleukin-13 (IL-13), vascular endothelial growth factor (VEGF), transforming growth factor-beta 1 (TGF-β1), matrix metallopeptidase 9 (MMP9), and tissue inhibitor of metalloproteinase 1 (TIMP1). The results of antibody arrays involved in RAS signaling pathway revealed that OVA and baicalin administration altered the activation of protein kinase C alpha type (PKC-α), A-rapidly accelerated fibrosarcoma (A-RAF), mitogen-activated protein kinase 2 (MEK2), extracellular regulated MAP kinase (ERK), MAPK interacting serine/threonine kinase 1 (MNK1), and ETS transcription factor 1 (ELK1). The above results were further verified in the ASMC proliferation model. A-RAF silencing (shA-RAF) could promote ASMC proliferation and downregulate p-MEK2, p-ERK, p-MNK1, and p-ELK1 expression. Conclusion The effects of baicalin against airway remodeling and ASMC proliferation might partially be achieved by suppressing the RAS signaling pathway. Baicalin may be a new therapeutic option for managing airway remodeling in asthma patients.
Collapse
|
7
|
Ji W, Zhuang X, Hu C, Zhang Y. Revealing the Active Compounds and Mechanism of Banxia Xiexin Decoction Against Gastric Ulcer by Network Pharmacology and Molecular Docking. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221118487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Gastric ulcer (GU) is a clinically common gastrointestinal disease with a long disease course that frequently reoccurs. Banxia Xiexin decoction (BXD), a traditional Chinese medicine prescription, has a prominent protective effect against GU. Nonetheless, the therapeutic mechanisms of BXD against GU remain elusive. In this study, a rat model of GU was established by gavage with 95% ethanol, and BXD significantly attenuated the inflammatory effect of GU in rats. An “active ingredient–target” interaction and GU protein–protein interaction networks were constructed based on system biology, which could screen out the crucial active ingredients. The target protein–protein interaction network for the BXD treatment of GU was constructed to identify the key target proteins with network topology parameters. The DAVID database was then used to perform Gene Ontology and Kyoto encyclopedia of genes and genomes enrichment analysis on the proteins targeted by BXD in the treatment of GU. Finally, molecular docking technology was used to study the interactions between key active ingredients and core target proteins. A total of 89 active ingredients of BXD were screened and 63 target proteins of BXD in the treatment of GU were identified. Through the analysis of protein–protein interaction and the active ingredient–target protein network diagram, it was found that tumor necrosis factor-α(TNF-α), AKT1, and PTGS2 may play a key role in the treatment of GU by BXD. Molecular docking showed that these 3 core target proteins had a good affinity with the main components of BXD, including baicalein, norwogonin, and skullcapflavone II. The mechanism of BXD against GU may involve the inhibition of inflammatory response and oxidative stress, involving signaling pathways such as TNF, hypoxia-inducible factor-1, and mitogen-activated protein kinase. Network pharmacology and molecular docking technology indicated the key active ingredients, target proteins, and signal pathways that may be the biological basis of BXD in the treatment of GU.
Collapse
Affiliation(s)
- Wanli Ji
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiaoyu Zhuang
- Science and Technology Experiment Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Hu
- Science and Technology Experiment Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifan Zhang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
8
|
Enzymatic Synthesis of Novel and Highly Soluble Puerarin Glucoside by Deinococcus geothermalis Amylosucrase. Molecules 2022; 27:molecules27134074. [PMID: 35807322 PMCID: PMC9268652 DOI: 10.3390/molecules27134074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 02/03/2023] Open
Abstract
Puerarin (daidzein-8-C-glucoside) is an isoflavone isolated from several leguminous plants of the genus Pueraria. Puerarin possesses several pharmacological properties; however, the poor solubility of puerarin limits its applications. To resolve this poor solubility, Deinococcus geothermalis amylosucrase (DgAS) was used to modify puerarin into more soluble derivatives. The results showed that DgAS could biotransform puerarin into a novel compound: puerarin-4′-O-α-glucoside. The biotransformation reaction was manipulated at different temperatures, pH values, sucrose concentrations, reaction times, and enzyme concentrations. The results showed that the optimal reaction condition was biotransformed by 200 μg/mL DgAS with 20% (w/v) sucrose at pH 6 and incubated at 40 °C for 48 h, and the optimal production yield was 35.1%. Puerarin-4′-O-α-glucoside showed 129-fold higher solubility than that of puerarin and, thus, could be further applied for pharmacological use in the future.
Collapse
|
9
|
Ni D, Chen Z, Tian Y, Xu W, Zhang W, Kim BG, Mu W. Comprehensive utilization of sucrose resources via chemical and biotechnological processes: A review. Biotechnol Adv 2022; 60:107990. [PMID: 35640819 DOI: 10.1016/j.biotechadv.2022.107990] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
Sucrose, one of the most widespread disaccharides in nature, has been available in daily human life for many centuries. As an abundant and cheap sweetener, sucrose plays an essential role in our diet and the food industry. However, it has been determined that many diseases, such as obesity, diabetes, hyperlipidemia, etc., directly relate to the overconsumption of sucrose. It arouses many explorations for the conversion of sucrose to high-value chemicals. Production of valuable substances from sucrose by chemical methods has been studied since a half-century ago. Compared to chemical processes, biotechnological conversion approaches of sucrose are more environmentally friendly. Many enzymes can use sucrose as the substrate to generate functional sugars, especially those from GH68, GH70, GH13, and GH32 families. In this review, enzymatic catalysis and whole-cell fermentation of sucrose for the production of valuable chemicals were reviewed. The multienzyme cascade catalysis and metabolic engineering strategies were addressed.
Collapse
Affiliation(s)
- Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ziwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuqing Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
10
|
Baicalein: promising therapeutic applications with special reference to published patents. Pharm Pat Anal 2022; 11:23-32. [PMID: 35345898 DOI: 10.4155/ppa-2021-0027] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Baicalein is a medicinally important flavonoid present in Scutellaria baicalensis, which has numerous biological benefits like anti-oxidant, anti-inflammatory, antihepatotoxicity, anticancer properties, etc. Recent studies have revealed that baicalein is an efficient antihepatoma agent and has the strongest antiproliferative effect toward cancerous bladder cell lines, and suppression of cell cycle progression in prostate cancer cells. This natural substance has a high commercial value because it strengthens the heart and cerebral vessels and protects the nervous system and also reduces diabetes and diabetic complications. In addition, baicalein is known to decrease inflammatory markers such as IL-1β, IL-6 and TNF-α. In this review, we have attempted to compile the list of recent therapeutic patents of baicalein used for treating different disorders.
Collapse
|
11
|
Basu B. The radiophiles of Deinococcaceae family: Resourceful microbes for innovative biotechnological applications. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100153. [PMID: 35909625 PMCID: PMC9325910 DOI: 10.1016/j.crmicr.2022.100153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/24/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
- Corresponding author.
| |
Collapse
|
12
|
Moon K, Lee S, Park H, Cha J. Enzymatic Synthesis of Resveratrol α-Glucoside by Amylosucrase of Deinococcus geothermalis. J Microbiol Biotechnol 2021; 31:1692-1700. [PMID: 34584041 PMCID: PMC9706033 DOI: 10.4014/jmb.2108.08034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022]
Abstract
Glycosylation of resveratrol was carried out by using the amylosucrase of Deinococcus geothermalis, and the glycosylated products were tested for their solubility, chemical stability, and biological activities. We synthesized and identified these two major glycosylated products as resveratrol-4'-O-α-glucoside and resveratrol-3-O-α-glucoside by nuclear magnetic resonance analysis with a ratio of 5:1. The water solubilities of the two resveratrol-α-glucoside isomers (α-piceid isomers) were approximately 3.6 and 13.5 times higher than that of β-piceid and resveratrol, respectively, and they were also highly stable in buffered solutions. The antioxidant activity of the α-piceid isomers, examined by radical scavenging capability, showed it to be initially lower than that of resveratrol, but as time passed, the α-piceid isomers' activity reached a level similar to that of resveratrol. The α-piceid isomers also showed better inhibitory activity against tyrosinase and melanin synthesis in B16F10 melanoma cells than β-piceid. The cellular uptake of the α-piceid isomers, which was assessed by ultra-performance liquid chromatography (UPLC) analysis of the cell-free extracts of B16F10 melanoma cells, demonstrated that the glycosylated form of resveratrol was gradually converted to resveratrol inside the cells. These results indicate that the enzymatic glycosylation of resveratrol could be a useful method for enhancing the bioavailability of resveratrol.
Collapse
Affiliation(s)
- Keumok Moon
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Seola Lee
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
| | - Hyunsu Park
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
| | - Jaeho Cha
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea,Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea,Corresponding author Phone: +82-51-510-2196 Fax: +82-51-514-1778 E-mail:
| |
Collapse
|
13
|
Hong S, Siziya IN, Seo MJ, Park CS, Seo DH. Molecular Docking and Kinetic Studies of the A226N Mutant of Deinococcus geothermalis Amylosucrase with Enhanced Transglucosylation Activity. J Microbiol Biotechnol 2020; 30:1436-1442. [PMID: 32522959 PMCID: PMC9728394 DOI: 10.4014/jmb.2003.03066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/10/2020] [Indexed: 12/15/2022]
Abstract
Amylosucrase (ASase, E.C. 2.4.1.4) is capable of efficient glucose transfer from sucrose, acting as the sole donor molecule, to various functional acceptor compounds, such as polyphenols and flavonoids. An ASase variant from Deinococcus geothermalis, in which the 226th alanine is replaced with asparagine (DgAS-A226N), shows increased polymerization activity due to changes in the flexibility of the loop near the active site. In this study, we further investigated how the mutation modulates the enzymatic activity of DgAS using molecular dynamics and docking simulations to evaluate interactions between the enzyme and phenolic compounds. The computational analysis revealed that the A226N mutation could induce and stabilize structural changes near the substratebinding site to increase glucose transfer efficiency to phenolic compounds. Kinetic parameters of DgAS-A226N and WT DgAS were determined with sucrose and 4-methylumbelliferone (MU) as donor and acceptor molecules, respectively. The kcat/Km value of DgAS-A226N with MU (6.352 mM-1min-1) was significantly higher than that of DgAS (5.296 mM-1min-1). The enzymatic activity was tested with a small phenolic compound, hydroquinone, and there was a 1.4-fold increase in α-arbutin production. From the results of the study, it was concluded that DgAS-A226N has improved acceptor specificity toward small phenolic compounds by way of stabilizing the active conformation of these compounds.
Collapse
Affiliation(s)
- Seungpyo Hong
- Research Group of Healthcare, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Inonge Noni Siziya
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Myung-Ji Seo
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Cheon-Seok Park
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Dong-Ho Seo
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea,Corresponding author Phone: +82-63-270-2571 Fax: +82-63-270-2572 E-mail:
| |
Collapse
|
14
|
Chin YW, Jang SW, Shin HS, Kim TW, Kim SK, Park CS, Seo DH. Heterologous expression of Deinococcus geothermalis amylosucrase in Corynebacterium glutamicum for luteolin glucoside production. Enzyme Microb Technol 2020; 135:109505. [PMID: 32146930 DOI: 10.1016/j.enzmictec.2019.109505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/12/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
Abstract
Amylosucrase (ASase) has great industrial potential owing to its multifunctional activities, including transglucosylation, polymerization, and isomerization. In the present study, the properties of Deinococcus geothermalis ASase (DGAS) expressed in Corynebacterium glutamicum (cDGAS) and purified via Ni-NTA affinity chromatography were compared to those of DGAS expressed in Escherichia coli (eDGAS). The pH profile of cDGAS was similar to that of eDGAS, whereas the temperature profile of cDGAS was lower than that of eDGAS. The melting temperature of both enzymes did not differ significantly. Interestingly, polymerization activity was slightly lower in cDGAS than in eDGAS, whereas luteolin (an acceptor molecule) transglucosylation activity in cDGAS was 10 % higher than that in eDGAS. Analysis of protein secondary structure via circular dichroism spectroscopy revealed that cDGAS had a lower strand/helix ratio than eDGAS. The present results indicate that cDGAS is of greater industrial significance than eDGAS.
Collapse
Affiliation(s)
- Young-Wook Chin
- Research Group of Traditional Food, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Se-Won Jang
- Research Group of Healthcare, Korea Food Research Institute, Wanju 55365, Republic of Korea; Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Hee-Soon Shin
- Research Group of Natural Materials and Metabolism, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Tae-Wan Kim
- Research Group of Traditional Food, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Sun-Ki Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Cheon-Seok Park
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Dong-Ho Seo
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
15
|
Seo DH, Yoo SH, Choi SJ, Kim YR, Park CS. Versatile biotechnological applications of amylosucrase, a novel glucosyltransferase. Food Sci Biotechnol 2020; 29:1-16. [PMID: 31976122 PMCID: PMC6949346 DOI: 10.1007/s10068-019-00686-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/05/2019] [Accepted: 09/16/2019] [Indexed: 12/21/2022] Open
Abstract
Amylosucrase (AS; EC 2.4.1.4) is an enzyme that has great potential in the biotechnology and food industries, due to its multifunctional enzyme activities. It can synthesize α-1,4-glucans, like amylose, from sucrose as a sole substrate, but importantly, it can also utilize various other molecules as acceptors. In addition, AS produces sucrose isomers such as turanose and trehalulose. It also efficiently synthesizes modified starch with increased ratios of slow digestive starch and resistant starch, and glucosylated functional compounds with increased water solubility and stability. Furthermore, AS produces turnaose more efficiently than other carbohydrate-active enzymes. Amylose synthesized by AS forms microparticles and these can be utilized as biocompatible materials with various bio-applications, including drug delivery, chromatography, and bioanalytical sciences. This review not only compares the gene and enzyme characteristics of microbial AS, studied to date, but also focuses on the applications of AS in the biotechnology and food industries.
Collapse
Affiliation(s)
- Dong-Ho Seo
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896 Republic of Korea
| | - Sang-Ho Yoo
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, 05006 Republic of Korea
| | - Seung-Jun Choi
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Young-Rok Kim
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 Republic of Korea
| | - Cheon-Seok Park
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 Republic of Korea
| |
Collapse
|
16
|
Mo F, Ma J, Zhang P, Zhang D, Fan H, Yang X, Zhi L, Zhang J. Solubility and thermodynamic properties of baicalein in water and ethanol mixtures from 283.15 to 328.15 K. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1700116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Fei Mo
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, P. R. China
| | - Jia Ma
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, P. R. China
| | - Peipei Zhang
- Biobank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, P. R. China
| | - Dawei Zhang
- Department of Psychiatry and Psychology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, P. R. China
| | - Huihui Fan
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, P. R. China
| | - Xin Yang
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, P. R. China
| | - Liqiang Zhi
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, P. R. China
| | - Jiye Zhang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, P. R. China
| |
Collapse
|
17
|
Site-specific α-glycosylation of hydroxyflavones and hydroxyflavanones by amylosucrase from Deinococcus geothermalis. Enzyme Microb Technol 2019; 129:109361. [DOI: 10.1016/j.enzmictec.2019.109361] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/08/2019] [Accepted: 06/16/2019] [Indexed: 12/27/2022]
|
18
|
Chang TS, Wang TY, Yang SY, Kao YH, Wu JY, Chiang CM. Potential Industrial Production of a Well-Soluble, Alkaline-Stable, and Anti-Inflammatory Isoflavone Glucoside from 8-Hydroxydaidzein Glucosylated by Recombinant Amylosucrase of Deinococcus geothermalis. Molecules 2019; 24:molecules24122236. [PMID: 31208027 PMCID: PMC6631725 DOI: 10.3390/molecules24122236] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/09/2019] [Accepted: 06/14/2019] [Indexed: 12/31/2022] Open
Abstract
8-Hydroxydaidzein (8-OHDe), an ortho-hydroxylation derivative of soy isoflavone daidzein isolated from some fermented soybean foods, has been demonstrated to possess potent anti-inflammatory activity. However, the isoflavone aglycone is poorly soluble and unstable in alkaline solutions. To improve the aqueous solubility and stability of the functional isoflavone, 8-OHDe was glucosylated with recombinant amylosucrase of Deinococcus geothermalis (DgAS) with industrial sucrose, instead of expensive uridine diphosphate-glucose (UDP-glucose). One major product was produced from the biotransformation, and identified as 8-OHDe-7-α-glucoside, based on mass and nuclear magnetic resonance spectral analyses. The aqueous solubility and stability of the isoflavone glucoside were determined, and the results showed that the isoflavone glucoside was almost 4-fold more soluble and more than six-fold higher alkaline-stable than 8-OHDe. In addition, the anti-inflammatory activity of 8-OHDe-7-α-glucoside was also determined by the inhibition of lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells. The results showed that 8-OHDe-7-α-glucoside exhibited significant and dose-dependent inhibition on the production of nitric oxide, with an IC50 value of 173.2 µM, which remained 20% of the anti-inflammatory activity of 8-OHDe. In conclusion, the well-soluble and alkaline-stable 8-OHDe-7-α-glucoside produced by recombinant DgAS with a cheap substrate, sucrose, as a sugar donor retains moderate anti-inflammatory activity, and could be used in industrial applications in the future.
Collapse
Affiliation(s)
- Te-Sheng Chang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan.
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan.
| | - Szu-Yi Yang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan.
| | - Yu-Han Kao
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan.
| | - Jiumn-Yih Wu
- Department of Food Science, National Quemoy University, Kinmen County 892, Taiwan.
| | - Chien-Min Chiang
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, No. 60, Sec. 1, Erh-Jen Rd., Jen-Te District, Tainan 71710, Taiwan.
| |
Collapse
|
19
|
Jang SW, Cho CH, Jung YS, Rha C, Nam TG, Kim DO, Lee YG, Baek NI, Park CS, Lee BH, Lee SY, Shin HS, Seo DH. Enzymatic synthesis of α-flavone glucoside via regioselective transglucosylation by amylosucrase from Deinococcus geothermalis. PLoS One 2018; 13:e0207466. [PMID: 30452462 PMCID: PMC6242681 DOI: 10.1371/journal.pone.0207466] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/31/2018] [Indexed: 12/19/2022] Open
Abstract
α-Flavone glycosides have beneficial properties for applications in the pharmaceutical, cosmetic, and food industries. However, their chemical syntheses are often limited by a low efficiency or scarcity of substrates. In this study, α-flavone glucosides were enzymatically synthesized by amylosucrase from Deinococcus geothermalis (DGAS) using sucrose and various flavones as a donor for glucosyl units and acceptors, respectively. Luteolin was the most effective acceptor in the transglucosylation reaction using DGAS among nine flavone materials (apigenin, chrysin, 6,7-dihydroxyflavone, homoorientin, 7-hydroxyflavone, isorhoifolin, luteolin, luteolin-3′,7-diglucoside, and orientin). The highest production yield of luteolin glucoside was 86%, with a 7:1 molar ratio of donor to acceptor molecules, in 50 mM Tris-HCl buffer (pH 7) at 37°C for 24 h using 2 U of DGAS. The synthesized luteolin glucoside was identified as luteolin-4′-O-α-D-glucopyranoside with a glucose molecule linked to the C-4′ position on the B-ring of luteolin via an α-glucosidic bond, as determined by 1H and 13C nuclear magnetic resonance. This result clearly confirmed that the glucosylated luteolin was successfully synthesized by DGAS and it can be applied as a functional ingredient. Furthermore, this approach using DGAS has the potential to be utilized for the synthesis of various glucosylated products using different types of polyphenols to enhance their functionalities.
Collapse
Affiliation(s)
- Se-Won Jang
- Research Group of Healthcare, Korea Food Research Institute, Wanju, Republic of Korea
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, Republic of Korea
| | - Chi Heung Cho
- Research Group of Industrial Technology, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Young-Sung Jung
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, Republic of Korea
| | - Chansu Rha
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, Republic of Korea
| | - Tae-Gyu Nam
- Research Group of Healthcare, Korea Food Research Institute, Wanju, Republic of Korea
| | - Dae-Ok Kim
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, Republic of Korea
| | - Yeong-Geun Lee
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, Republic of Korea
| | - Nam-In Baek
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, Republic of Korea
| | - Cheon-Seok Park
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, Republic of Korea
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, Republic of Korea
| | - So-Young Lee
- Research Group of Healthcare, Korea Food Research Institute, Wanju, Republic of Korea
| | - Hee Soon Shin
- Research Group of Healthcare, Korea Food Research Institute, Wanju, Republic of Korea
| | - Dong-Ho Seo
- Research Group of Healthcare, Korea Food Research Institute, Wanju, Republic of Korea
- * E-mail:
| |
Collapse
|
20
|
Dymarska M, Janeczko T, Kostrzewa-Susłow E. Glycosylation of 3-Hydroxyflavone, 3-Methoxyflavone, Quercetin and Baicalein in Fungal Cultures of the Genus Isaria. Molecules 2018; 23:E2477. [PMID: 30262733 PMCID: PMC6222337 DOI: 10.3390/molecules23102477] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
Flavonoids are plant secondary metabolites with a broad spectrum of biological activities. In nature, they occur mainly in the form of glycosides, but their extraction is often difficult and expensive, as is chemical synthesis. We have shown that biotransformations are an excellent method for obtaining flavonoid glycosides. We are the first team to describe the use of Isaria microorganisms in biotransformations of flavonoid compounds. In the present study as biocatalysts, we used one strain of Isaria fumosorosea KCH J2 isolated from a spider carcass in green areas of Wroclaw and two strains of I. farinosa (J1.4 and J1.6) isolated from insects found in already unused mines in Lower Silesia. The substrates were 3-hydroxyflavone, 3-methoxyflavone, quercetin (3,3',4',5,7-pentahydroxyflavone), and baicalein (5,6,7-trihydroxyflavone). For all the substrates that were used in this study, we obtained 4-O-methylglucopyranosides. In the case of substrates with a hydroxyl group in the third position, O-β-d-glucopyranosides were also formed. Isoquercetin that was obtained by biotransformation was used as a substrate to check the kinetics of the formation of flavonoid 4-O-methylglucopyranosides in I. fumosorosea KCH J2 culture. We did not observe the attachment of the methyl group to glucose unit in isoquercetin. Our finding suggest that the attachment of 4-O-methylglucopyranose occurs in one step.
Collapse
Affiliation(s)
- Monika Dymarska
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland.
| | - Tomasz Janeczko
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland.
| | - Edyta Kostrzewa-Susłow
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland.
| |
Collapse
|
21
|
Jiang X, Zhou J, Lin Q, Gong G, Sun H, Liu W, Guo Q, Feng F, Qu W. Anti-angiogenic and anticancer effects of baicalein derivatives based on transgenic zebrafish model. Bioorg Med Chem 2018; 26:4481-4492. [PMID: 30098912 DOI: 10.1016/j.bmc.2018.07.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/19/2018] [Accepted: 07/22/2018] [Indexed: 01/10/2023]
Abstract
Angiogenesis leads to tumor neovascularization by promoting tumor growth and metastatic spread, therefore, angiogenesis is considered as an attractive target for potential small molecule anticancer drug discovery. Herein, we report the structural modification and biological evaluation of baicalein derivatives, among which compound 42 had potent in vivo anti-angiogenic activity and wide security treatment window in transgenic zebrafish model. Further, 42 exhibited the most potent inhibitory activity on HUVEC proliferation, migration and tube formation in vitro. Moreover, 42 significantly inhibited growth of human lung cancer A549 cells and weak influence on human normal fibroblast L929 cells. The present research demonstrated that the significant anti-angiogenic and anticancer effects, which provided the supportive evidence for 42 could be used as a potential compound of cancer therapy.
Collapse
Affiliation(s)
- Xueyang Jiang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Junting Zhou
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Qinghua Lin
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Guiyi Gong
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenyuan Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Qinglong Guo
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Food & Pharmaceutical Science College, Huaian 223003, China
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
22
|
Xiang L, Hu YF, Wu JS, Wang L, Huang WG, Xu CS, Meng XL, Wang P. Semi-Mechanism-Based Pharmacodynamic Model for the Anti-Inflammatory Effect of Baicalein in LPS-Stimulated RAW264.7 Macrophages. Front Pharmacol 2018; 9:793. [PMID: 30072902 PMCID: PMC6058255 DOI: 10.3389/fphar.2018.00793] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 06/29/2018] [Indexed: 11/13/2022] Open
Abstract
Monitoring of the inhibition of TNF-α, IL-6, iNOS, and NO is used to effectively evaluate anti-inflammatory drugs. Baicalein was found to have good anti-inflammatory activities, but its detailed cellular pharmacodynamic events have not been expatiated by any other study. The inflammatory mediators, including TNF-α, IL-6, iNOS, and NO production in RAW264.7 macrophage induced by LPS, were measured. It was found that these data showed a sequential pattern on time and based on these points a cellular pharmacodynamic model was developed and tested. TNF-α and IL-6 were quantified by ELISA, NO was detected by Griess and iNOS expression was measured by Western blot. The pharmacodynamic model was developed using a NLME modeling program Monolix® 2016R1.1The results showed that baicalein quickly suppressed release of TNF-α in a concentration-dependent manner, and consequently causing the diminution of IL-6 and iNOS/NO. The pharmacodynamic model simulation successfully described the experimental data, supporting the hypothesis that IL-6 and iNOS /NO release after LPS stimulation is mediated by TNF-α rather than LPS directly. The pharmacodynamic model allowed a well understanding of the cellular pharmacodynamic mechanism of baicalein in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Li Xiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying-Fan Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Si Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen-Ge Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen-Si Xu
- Chengdu Pharmoko Tech LTD corp., Chengdu, China
| | - Xian-Li Meng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
23
|
Tian Y, Xu W, Zhang W, Zhang T, Guang C, Mu W. Amylosucrase as a transglucosylation tool: From molecular features to bioengineering applications. Biotechnol Adv 2018; 36:1540-1552. [PMID: 29935268 DOI: 10.1016/j.biotechadv.2018.06.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/10/2018] [Accepted: 06/15/2018] [Indexed: 02/04/2023]
Abstract
Amylosucrase (EC 2.4.1.4, ASase), an outstanding sucrose-utilizing transglucosylase in the glycoside hydrolase family 13, can produce glucans with only α-1,4 linkages. Generally, on account of a double-displacement mechanism, ASase can catalyze polymerization, isomerization, and hydrolysis reactions with sucrose as the sole substrate, and has transglycosylation capacity to attach glucose molecules from sucrose to extra glycosyl acceptors. Based on extensive enzymology research, this review presents the characteristics of various ASases, including their microbial metabolism, preparation, and enzymatic properties, and exhibits structure-based strategies in the improvement of activity, specificity, and thermostability. As a vital transglucosylation tool of producing sugars, carbohydrate-based bioactive compounds, and materials, the bioengineering applications of ASases are also systematically summarized.
Collapse
Affiliation(s)
- Yuqing Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
24
|
Fluorescence detection of the transglycosylation activity of amylosucrase. Anal Biochem 2017; 532:19-25. [DOI: 10.1016/j.ab.2017.05.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/30/2017] [Indexed: 01/08/2023]
|
25
|
Zhou RT, He M, Yu Z, Liang Y, Nie Y, Tai S, Teng CB. Baicalein inhibits pancreatic cancer cell proliferation and invasion via suppression of NEDD9 expression and its downstream Akt and ERK signaling pathways. Oncotarget 2017; 8:56351-56363. [PMID: 28915595 PMCID: PMC5593566 DOI: 10.18632/oncotarget.16912] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/06/2017] [Indexed: 12/30/2022] Open
Abstract
Baicalein, a flavone ingredient of Scutellaria baicalensis Georgi, is a promising anti-cancer agent. However, its potential anti-pancreatic cancer effects and the underlying mechanisms are still unclear. In this study, we showed that Baicalein not only induced apoptosis, but also suppressed proliferation, migration and invasion of two pancreatic cancer cell lines BxPC-3 and PANC-1 in a dose- and time-dependent manner. Notably, Baicalein exhibited low toxicity to normal human liver or kidney cells. We further discovered that Baicalein suppressed BxPC-3 and PANC-1 cell proliferation and invasion through targeting the expression of NEDD9, a Cas scaffolding protein, to decrease Akt and ERK activities. Especially, Baicalein decreased Akt phosphorylation at T-308 via lowering NEDD9-dependent PDK1 expression. Overexpression of NEDD9 effectively rescued proliferation and invasion of BxPC-3 and PANC-1 cells dampened by Baicalein. Taken together, our findings suggest that Baicalein is a potent remedy applied to pancreatic cancer treatment in the future.
Collapse
Affiliation(s)
- Rong-Tao Zhou
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Mei He
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Ze Yu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yang Liang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yuzhe Nie
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Sheng Tai
- Department of General Surgery, The Second Hospital of Harbin Medical University, Harbin, China
| | - Chun-Bo Teng
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
26
|
Choung WJ, Hwang SH, Ko DS, Kim SB, Kim SH, Jeon SH, Choi HD, Lim SS, Shim JH. Enzymatic Synthesis of a Novel Kaempferol-3-O-β-d-glucopyranosyl-(1→4)-O-α-d-glucopyranoside Using Cyclodextrin Glucanotransferase and Its Inhibitory Effects on Aldose Reductase, Inflammation, and Oxidative Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2760-2767. [PMID: 28300406 DOI: 10.1021/acs.jafc.7b00501] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Kaempferol-3-O-β-d-glucopyranoside (astragalin, AS), a major flavonoid that exists in various plants, exerts antioxidant, antitumor, anti-human immunodeficiency virus (HIV), and anti-inflammatory effects. However, the low water solubility of AS limits its use. In this study, we used cyclodextrin glucanotransferase (CGTase) with maltose (G2) as a donor molecule to enzymatically modify AS to improve its water solubility and physiochemical properties. We isolated the glycosylated astragalin (G1-AS) and identified the structure of G1-AS as kaempferol-3-O-β-d-glucopyranosyl-(1→4)-O-α-d-glucopyranoside, where one glucose residue was transferred to AS. G1-AS retained the antioxidative activity of the original AS compound; however, the solubility of G1-AS was 65-fold higher than that of AS. In addition, G1-AS showed enhanced anti-inflammatory effects and aldose reductase inhibitory activity compared to AS when applied to rat lenses.
Collapse
Affiliation(s)
- Woo-Jae Choung
- Department of Food Science and Nutrition, Hallym University , 1 Hallymdaehak-gil, Chuncheon, Gwangwon-do 24252, South Korea
- Center for Aging and Health Care, Hallym University , 1 Hallymdaehak-gil, Chuncheon, Gwangwon-do 24252, South Korea
| | - Seung Hwan Hwang
- Department of Food Science and Nutrition, Hallym University , 1 Hallymdaehak-gil, Chuncheon, Gwangwon-do 24252, South Korea
| | - Dam-Seul Ko
- Department of Food Science and Nutrition, Hallym University , 1 Hallymdaehak-gil, Chuncheon, Gwangwon-do 24252, South Korea
- Center for Aging and Health Care, Hallym University , 1 Hallymdaehak-gil, Chuncheon, Gwangwon-do 24252, South Korea
| | - Set Byeol Kim
- Department of Food Science and Nutrition, Hallym University , 1 Hallymdaehak-gil, Chuncheon, Gwangwon-do 24252, South Korea
| | - Seo Hyun Kim
- Center for Aging and Health Care, Hallym University , 1 Hallymdaehak-gil, Chuncheon, Gwangwon-do 24252, South Korea
- Department of Life Science, Hallym University , 1 Hallymdaehak-gil, Chuncheon, Gwangwon-do 24252, South Korea
| | - Sung Ho Jeon
- Center for Aging and Health Care, Hallym University , 1 Hallymdaehak-gil, Chuncheon, Gwangwon-do 24252, South Korea
- Department of Life Science, Hallym University , 1 Hallymdaehak-gil, Chuncheon, Gwangwon-do 24252, South Korea
| | - Hee-Don Choi
- Division of Strategic Food Research, Korea Food Research Institute , Gyeonggi 13539, South Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University , 1 Hallymdaehak-gil, Chuncheon, Gwangwon-do 24252, South Korea
| | - Jae-Hoon Shim
- Department of Food Science and Nutrition, Hallym University , 1 Hallymdaehak-gil, Chuncheon, Gwangwon-do 24252, South Korea
- Center for Aging and Health Care, Hallym University , 1 Hallymdaehak-gil, Chuncheon, Gwangwon-do 24252, South Korea
| |
Collapse
|
27
|
Kim KH, Park H, Park HJ, Choi KH, Sadikot RT, Cha J, Joo M. Glycosylation enables aesculin to activate Nrf2. Sci Rep 2016; 6:29956. [PMID: 27417293 PMCID: PMC4945939 DOI: 10.1038/srep29956] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/28/2016] [Indexed: 02/08/2023] Open
Abstract
Since aesculin, 6,7-dihydroxycoumarin-6-O-β-glucopyranoside, suppresses inflammation, we asked whether its anti-inflammatory activity is associated with the activation of nuclear factor-E2-related factor 2 (Nrf2), a key anti-inflammatory factor. Our results, however, show that aesculin marginally activated Nrf2. Since glycosylation can enhance the function of a compound, we then asked whether adding a glucose makes aesculin activate Nrf2. Our results show that the glycosylated aesculin, 3-O-β-d-glycosyl aesculin, robustly activated Nrf2, inducing the expression of Nrf2-dependent genes, such as heme oxygenase-1, glutamate-cysteine ligase catalytic subunit, and NAD(P)H quinone oxidoreductase 1 in macrophages. Mechanistically, 3-O-β-d-glycosyl aesculin suppressed ubiquitination of Nrf2, retarding degradation of Nrf2. Unlike aesculin, 3-O-β-d-glycosyl aesculin significantly suppressed neutrophilic lung inflammation, a hallmark of acute lung injury (ALI), in mice, which was not recapitulated in Nrf2 knockout mice, suggesting that the anti-inflammatory function of the compound largely acts through Nrf2. In a mouse model of sepsis, a major cause of ALI, 3-O-β-d-glycosyl aesculin significantly enhanced the survival of mice, compared with aesculin. Together, these results show that glycosylation could confer the ability to activate Nrf2 on aesculin, enhancing the anti-inflammatory function of aesculin. These results suggest that glycosylation can be a way to improve or alter the function of aesculin.
Collapse
Affiliation(s)
- Kyun Ha Kim
- School of Korean Medicine, Pusan National University, Yangsan 626-870, Korea
| | - Hyunsu Park
- Department of Microbiology, Pusan National University, Busan 609-735, Korea
| | - Hee Jin Park
- Department of Microbiology, Pusan National University, Busan 609-735, Korea
| | - Kyoung-Hwa Choi
- Department of Microbiology, Pusan National University, Busan 609-735, Korea
| | - Ruxana T Sadikot
- Section of Pulmonary and Critical Care Medicine, Atlanta Veterans Affairs Medical Center, Emory University, Decatur, GA30033, USA
| | - Jaeho Cha
- Department of Microbiology, Pusan National University, Busan 609-735, Korea
| | - Myungsoo Joo
- School of Korean Medicine, Pusan National University, Yangsan 626-870, Korea
| |
Collapse
|
28
|
Moulis C, André I, Remaud-Simeon M. GH13 amylosucrases and GH70 branching sucrases, atypical enzymes in their respective families. Cell Mol Life Sci 2016; 73:2661-79. [PMID: 27141938 PMCID: PMC11108324 DOI: 10.1007/s00018-016-2244-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/22/2022]
Abstract
Amylosucrases and branching sucrases are α-retaining transglucosylases found in the glycoside-hydrolase families 13 and 70, respectively, of the clan GH-H. These enzymes display unique activities in their respective families. Using sucrose as substrate and without mediation of nucleotide-activated sugars, amylosucrase catalyzes the formation of an α-(1 → 4) linked glucan that resembles amylose. In contrast, the recently discovered branching sucrases are unable to catalyze polymerization of glucosyl units as they are rather specific for dextran branching through α-(1 → 2) or α-(1 → 3) branching linkages depending on the enzyme regiospecificity. In addition, GH13 amylosucrases and GH70 branching sucrases are naturally promiscuous and can glucosylate different types of acceptor molecules including sugars, polyols, or flavonoids. Amylosucrases have been the most investigated glucansucrases, in particular to control product profiles or to successfully develop tailored α-transglucosylases able to glucosylate various molecules of interest, for example, chemically protected carbohydrates that are planned to enter in chemoenzymatic pathways. The structural traits of these atypical enzymes will be described and compared, and an overview of the potential of natural or engineered enzymes for glycodiversification and chemoenzymatic synthesis will be highlighted.
Collapse
Affiliation(s)
- Claire Moulis
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, 31077, Toulouse, France
- CNRS, UMR5504, 31400, Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, 31400, Toulouse, France
| | - Isabelle André
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, 31077, Toulouse, France
- CNRS, UMR5504, 31400, Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, 31400, Toulouse, France
| | - Magali Remaud-Simeon
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, 31077, Toulouse, France.
- CNRS, UMR5504, 31400, Toulouse, France.
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, 31400, Toulouse, France.
| |
Collapse
|
29
|
Recent developments in the enzymatic O-glycosylation of flavonoids. Appl Microbiol Biotechnol 2016; 100:4269-81. [PMID: 27029191 DOI: 10.1007/s00253-016-7465-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/09/2016] [Accepted: 03/12/2016] [Indexed: 01/04/2023]
Abstract
The glycosylation of bioactive compounds, such as flavonoids, is of particular relevance, as it modulates many of their pharmacokinetic parameters. This article reviews the literature between 2010 and the end of 2015 that deals with the enzymatic O-glycosylation of this class of compounds. Enzymes of glycosyltransferase family 1 remain the biocatalysts of choice for glycodiversification of flavonoids, in spite of relatively low yields. Transfers of 14 different sugars, in addition to glucose, were reported. Several Escherichia coli strains were metabolically engineered to enable a (more efficient) synthesis of the required donor during in vivo glycosylations. For the transfer of glucose, enzymes of glycoside hydrolase families 13 and 70 were successfully assayed with several flavonoids. The number of acceptor substrates and of regiospecificities characterized so far is smaller than for glycosyltransferases. However, their glycosyl donors are much cheaper and yields are considerably higher. A few success stories of enzyme engineering were reported. These improved the catalytic efficiency as well as donor, acceptor, or product ranges. Currently, the development of appropriate high-throughput screening systems appears to be the major bottleneck for this powerful technology.
Collapse
|
30
|
Mo T, Liu X, Liu Y, Wang X, Zhang L, Wang J, Zhang Z, Shi S, Tu P. Expanded investigations of the aglycon promiscuity and catalysis characteristic of flavonol 3-O-rhamnosyltransferase AtUGT78D1 from Arabidopsis thaliana. RSC Adv 2016. [DOI: 10.1039/c6ra16251g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rhamnosides usually possess better bioavailabilities and improved solubilities compared with their aglycons and are a major source of bioactive natural products.
Collapse
Affiliation(s)
- Ting Mo
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- P. R. China
- School of Chinese Materia Medica
| | - Xiao Liu
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- P. R. China
| | - Yuyu Liu
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- P. R. China
- School of Chinese Materia Medica
| | - Xiaohui Wang
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- P. R. China
| | - Le Zhang
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- P. R. China
- School of Chinese Materia Medica
| | - Juan Wang
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- P. R. China
- School of Chinese Materia Medica
| | - Zhongxiu Zhang
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- P. R. China
- School of Chinese Materia Medica
| | - Shepo Shi
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- P. R. China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- P. R. China
| |
Collapse
|
31
|
Novel Investigations of Flavonoids as Chemopreventive Agents for Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2015; 2015:840542. [PMID: 26858957 PMCID: PMC4695650 DOI: 10.1155/2015/840542] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/19/2015] [Indexed: 12/16/2022]
Abstract
We would like to highlight the application of natural products to hepatocellular carcinoma (HCC). We will focus on the natural products known as flavonoids, which target this disease at different stages of hepatocarcinogenesis. In spite of the use of chemotherapy and radiotherapy in treating HCC, patients with HCC still face poor prognosis because of the nature of multidrug resistance and toxicity derived from chemotherapy and radiotherapy. Flavonoids can be found in many vegetables, fruits, and herbal medicines that exert their different anticancer effects via different intracellular signaling pathways and serve as antioxidants. In this review, we will discuss seven common flavonoids that exert different biological effects against HCC via different pathways.
Collapse
|
32
|
Overwin H, Wray V, Hofer B. Biotransformation of phloretin by amylosucrase yields three novel dihydrochalcone glucosides. J Biotechnol 2015. [DOI: 10.1016/j.jbiotec.2015.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Flavonoid glucosylation by non-Leloir glycosyltransferases: formation of multiple derivatives of 3,5,7,3′,4′-pentahydroxyflavane stereoisomers. Appl Microbiol Biotechnol 2015; 99:9565-76. [DOI: 10.1007/s00253-015-6760-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 05/24/2015] [Accepted: 06/04/2015] [Indexed: 12/26/2022]
|
34
|
Baicalein inhibits prostate cancer cell growth and metastasis via the caveolin-1/AKT/mTOR pathway. Mol Cell Biochem 2015; 406:111-9. [PMID: 25957503 PMCID: PMC4502300 DOI: 10.1007/s11010-015-2429-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/30/2015] [Indexed: 01/22/2023]
Abstract
Prostate cancer (PCa) is lethal type of genitourinary cancer due to its high morbidity and gradual resistance to androgen deprivation therapy. Accumulating evidence has recently suggested that the daily intake of flavonoids is negatively correlated with the risk of cancer. In this study, we aimed to investigate the potential effects of baicalein on androgen-independent PCa cells and the underlying mechanisms through which baicalein exerts its actions. Cell viability and flow cytometric apoptosis assays indicated that baicalein potently suppressed the growth and induced the apoptosis of DU145 and PC-3 cells in a time- and dose-dependent manner. Consistently, the inhibitory effects of baicalein on migration and invasion were also observed in vitro. Mechanistically, we found that baicalein can suppress caveolin-1 and the phosphorylation of AKT and mTOR in a time- and dose-dependent manner. Moreover, the inhibition of the activation of AKT with LY294002 significantly promoted the apoptosis and metastasis induced by baicalein. In conclusion, these findings suggested that baicalein can induce apoptosis and inhibit metastasis of androgen-independent PCa cells through inhibition of the caveolin-1/AKT/mTOR pathway, which implies that baicalein may be a potential therapeutic agent for the treatment of androgen-independent prostate cancer patients.
Collapse
|
35
|
Topical anti-inflammatory effects of isorhamnetin glycosides isolated from Opuntia ficus-indica. BIOMED RESEARCH INTERNATIONAL 2015; 2015:847320. [PMID: 25821823 PMCID: PMC4363586 DOI: 10.1155/2015/847320] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 12/17/2022]
Abstract
Opuntia ficus-indica (OFI) has been widely used in Mexico as a food and for the treatment of different health disorders such as inflammation and skin aging. Its biological properties have been attributed to different phytochemicals such as the isorhamnetin glycosides which are the most abundant flavonoids. Moreover, these compounds are considered a chemotaxonomic characteristic of OFI species. The aim of this study was to evaluate the effect of OFI extract and its isorhamnetin glycosides on different inflammatory markers in vitro and in vivo. OFI extract was obtained by alkaline hydrolysis of OFI cladodes powder and pure compounds were obtained by preparative chromatography. Nitric oxide (NO), cyclooxygenase-2 (COX-2), tumor necrosis factor- (TNF-) α, and interleukin- (IL-) 6 production were measured. NO production was tested in lipopolysaccharide-stimulated RAW 264.7 cells while in vivo studies were carried on croton oil-induced ear edema model. OFI extract and diglycoside isorhamnetin-glucosyl-rhamnoside (IGR) at 125 ng/mL suppressed the NO production in vitro (73.5 ± 4.8% and 68.7 ± 5.0%, resp.) without affecting cell viability. Likewise, IGR inhibited the ear edema (77.4 ± 5.7%) equating the indomethacin effects (69.5 ± 5.3%). Both IGR and OFI extract significantly inhibited the COX-2, TNF-α, and IL-6 production. IGR seems to be a suitable natural compound for development of new anti-inflammatory ingredient.
Collapse
|