1
|
Dos Santos JG, Fernandes CC, Silva NBS, Calefi GG, Martins CHG, Volpini GA, Crotti AEM, Ribeiro AB, Esperandim TR, Tavares DC, Batalini C, Miranda MLD. Volatile compounds of hexane extract from Pterodon pubescens Benth seeds and its significant in vitro potential against different bacterial strains. Nat Prod Res 2025; 39:1428-1433. [PMID: 38143320 DOI: 10.1080/14786419.2023.2297405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023]
Abstract
Pterodon pubescens Benth is a Brazilian medicinal plant (sucupira, in Brazilian Portuguese). This paper aims to determine the volatile composition and antibacterial activities of hexane extract from P. pubescens seeds (HE-PP). Antibacterial activities were screened by the microdilution broth method in 96-well culture plates and MIC values were expressed as µg/mL. HE-PP was active against several oral bacteria whose MIC values ranged between 12.5 µg/mL and 50 µg/mL and against three mycobacterial strains (MIC = 125 µg/mL and 500 µg/mL). In addition, HE-PP was active against Xanthomonas citri strain (MIC = 100 µg/mL). Cytotoxic activity of the extract was evaluated in human tumour and non-tumour cell lines. HE-PP showed selective cytotoxicity to cervical adenocarcinoma (HeLa cells - IC50 = 53.47 µg/mL). Its major constituents were identified by GC-MS and GC-FID: E-caryophyllene, vouacapane, E-geranylgeraniol and dehydroabietol. Results reinforce the biological potential of HE-PP against a broad spectrum of pathogenic and phytopathogenic bacteria.
Collapse
Affiliation(s)
- Jaciel G Dos Santos
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde, GO, Brazil
| | - Cassia C Fernandes
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde, GO, Brazil
| | - Nagela B S Silva
- Laboratório de Ensaios Antimicrobiano (LEA), Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Gabriel G Calefi
- Laboratório de Ensaios Antimicrobiano (LEA), Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Carlos H G Martins
- Laboratório de Ensaios Antimicrobiano (LEA), Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Guilherme A Volpini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Antônio E M Crotti
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | - Mayker L D Miranda
- Instituto Federal de Educação, Ciência e Tecnologia do Triângulo Mineiro, Campus Uberlândia Centro, MG, Brazil
| |
Collapse
|
2
|
Azizi F, Gorji N, Jokar R, Rezghi M, Shirafkan H, Moeini R. The effects of Pistacia atlantica Desf. Fruit oil on primary knee osteoarthritis: A randomized controlled clinical trial. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119387. [PMID: 39855435 DOI: 10.1016/j.jep.2025.119387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/10/2024] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pistacia atlantica Desf. (Baneh) is a native tree in many areas of Iran such as Zagros mountains and Sistan va Baluchestan Province. It is famous mostly due to its oleo-gum resin and there are many studies on its effects on gastrointestinal disorders and musculoskeletal problems. However, the oil from its fruits is also of use in local communities as a part of their food and for therapeutic purposes such as analgesic effects on joint pains. AIM OF THE STUDY Osteoarthritis is a widespread form of joint pain in older adults. This double-blinded randomized clinical trial aimed to compare the effects of Baneh fruit oil on knee osteoarthritis with topical diclofenac. MATERIAL AND METHODS Ninety-two patients with primary knee osteoarthritis were randomly divided into two groups and asked to rub a fingertip of Baneh ointment or diclofenac on their knee 3 times a day for four weeks. The Knee Injury and Osteoarthritis Outcome Score (KOOS) and Visual Analog Scale (VAS) were completed at the beginning, fourth and eighth weeks. The data was analyzed in SPSS software and intention to treat (ITT) analysis was performed. A P-value less than 0.05 was considered statistically significant. RESULTS After 4 weeks, all parameters improved significantly in both groups but the pain (based on VAS and KOOS), activity, and quality-of-life showed statistically more improvement in the Baneh group (P = 0.001, P < 0.001, and P = 0.009, respectively). Four weeks after stopping the interventions, all parameters in both groups were still significantly better than the baseline (P ≤ 0.05). However, improvement in pain (VAS and KOOS) and activity was stayed better in the Baneh group (P = 0.028, P = 0.001, and P = 018, respectively). Only one case of temporary itching was reported. CONCLUSION This study revealed that Baneh oil had a positive effect on relieving the symptoms of knee osteoarthritis, however, more clinical trials with longer duration of treatment and larger sample sizes are recommended.
Collapse
Affiliation(s)
- Fatemeh Azizi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.
| | - Narjes Gorji
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Rahmatollah Jokar
- Clinical Research Development Center, Shahid Beheshti Hospital, Babol University of Medical Sciences, Babol, Iran; Department of Orthopedic Surgery, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | - Maedeh Rezghi
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Hoda Shirafkan
- Social Determinants of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Reihaneh Moeini
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
3
|
Giang An NT, Duc Giang L, Tran Trung H, Xuan Duc D, Thi Thu N, Thu Hien NT, Xuan Ha N, Khoa Nguyen D, Sy Vo V. Chemical Constituents, Biological Activities and Molecular Docking Studies of Root and Aerial Part Essential Oils from Erigeron sublyratus Roxb. ex DC. (Asteraceae). Chem Biodivers 2025; 22:e202401356. [PMID: 39343745 DOI: 10.1002/cbdv.202401356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024]
Abstract
In this work, the volatile components of Erigeron sublyratus essential oils and their anti-inflammatory and cytotoxic activities were investigated for the first time. Gas chromatography-mass spectrometry (GC-MS) analysis identified 28 components in the root and aerial part essential oils. The main components included cis-lachnophyllum ester (53.4-64.2 %), germacrene D (5.6-8.6 %), trans-β-ocimene (2.6-7.5 %), β-caryophyllene (4.7-6.8 %), β-myrcene (2.0-6.3 %), and (E)-β-farnesene (4.8-5.0 %). The aerial part essential oil inhibited nitric oxide (NO) production on LPS-induced RAW 264.7 cells, with an IC50 value of 1.41±0.10 μg/mL. In addition, both root and aerial part essential oils exhibited cytotoxic activity against MCF-7, SK-LU-1, and HepG2. Molecular docking simulation results revealed that (E)-β-farnesene strongly binds to the VEGFR-2 enzyme, while δ-cadinene has a high affinity to the COX-2 enzyme via hydrophobic interactions. These findings proposed that E. sublyratus essential oils can be exploited for their anti-inflammatory and anti-cytotoxicity potential.
Collapse
MESH Headings
- Oils, Volatile/pharmacology
- Oils, Volatile/chemistry
- Oils, Volatile/isolation & purification
- Molecular Docking Simulation
- Mice
- Humans
- Animals
- RAW 264.7 Cells
- Plant Components, Aerial/chemistry
- Plant Roots/chemistry
- Nitric Oxide/metabolism
- Nitric Oxide/antagonists & inhibitors
- Nitric Oxide/biosynthesis
- Erigeron/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/isolation & purification
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/chemistry
- Anti-Inflammatory Agents/isolation & purification
- Lipopolysaccharides/antagonists & inhibitors
- Lipopolysaccharides/pharmacology
- Structure-Activity Relationship
- Drug Screening Assays, Antitumor
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Cell Survival/drug effects
- Cell Line, Tumor
- Gas Chromatography-Mass Spectrometry
Collapse
Affiliation(s)
- Nguyen Thi Giang An
- Department of Biology, Vinh University, 182 Le Duan, Vinh City, Nghean 43000, Vietnam
| | - Le Duc Giang
- Department of Chemistry, Vinh University, 182 Le Duan, Vinh City, Nghean 43000, Vietnam
| | - Hieu Tran Trung
- Department of Chemistry, Vinh University, 182 Le Duan, Vinh City, Nghean 43000, Vietnam
| | - Dau Xuan Duc
- Department of Chemistry, Vinh University, 182 Le Duan, Vinh City, Nghean 43000, Vietnam
| | - Nguyen Thi Thu
- Department of Analytical Chemistry and Standardization, National Institute of Medicinal Materials (NIMM), 3B Quang Trung, Hoan Kiem, Hanoi 11022, Vietnam
| | - Nguyen Thi Thu Hien
- Faculty of Pharmacy, Nguyen Tat Thanh University, 300 A Nguyen Tat Thanh, Ward 13, District 4, Ho Chi Minh City, 70000, Vietnam
| | - Nguyen Xuan Ha
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
| | - Dang Khoa Nguyen
- Institute of Applied Science and Technology, School of Technology, Van Lang University, 69/68 Dang Thuy Tram, Binh Thanh, Ho, Chi Minh City 70000, Vietnam
- Faculty of Applied Technology, School of Technology, Van Lang University, 69/68 Dang Thuy Tram, Binh Thanh, Ho, Chi Minh City 70000, Vietnam
| | - Van Sy Vo
- Department of Pharmacy, Da Nang University of Medical Technology and Pharmacy, 99 Hung Vuong, Hai Chau, Da Nang 500000, Vietnam
| |
Collapse
|
4
|
Greiss PM, Rich JD, McKay GA, Nguyen D, Lefsrud MG, Eidelman DH, Baglole CJ. The effect of cannabis-derived terpenes on alveolar macrophage function. FRONTIERS IN TOXICOLOGY 2025; 6:1504508. [PMID: 39958606 PMCID: PMC11825813 DOI: 10.3389/ftox.2024.1504508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/30/2024] [Indexed: 02/18/2025] Open
Abstract
Cannabis sativa (marijuana) is used by millions of people around the world. C. sativa produces hundreds of secondary metabolites including cannabinoids, flavones and terpenes. Terpenes are a broad class of organic compounds that give cannabis and other plants its aroma. Previous studies have demonstrated that terpenes may exert anti-inflammatory properties on immune cells. However, it is not known whether terpenes derived from cannabis alone or in combination with the cannabinoid ∆9-THC impacts the function of alveolar macrophages, a specialized pulmonary innate immune cell that is important in host defense against pathogens. Therefore, we investigated the immunomodulatory properties of two commercially-available cannabis terpene mixtures on the function of MH-S cells, a murine alveolar macrophage cell line. MH-S cells were exposed to terpene mixtures at sublethal doses and to the bacterial product lipopolysaccharide (LPS). We measured inflammatory cytokine levels using qRT-PCR and multiplex ELISA, as well as phagocytosis of opsonized IgG-coated beads or mCherry-expressing Escherichia coli via flow cytometry. Neither terpene mixture affected inflammatory cytokine production by MH-S cells in response to LPS. Terpenes increased MH-S cell uptake of opsonized beads but had no effect on phagocytosis of E. coli. Addition of ∆9-THC to terpenes did not potentiate cytotoxicity nor phagocytosis. These results suggest that terpenes from cannabis have minimal impact on the function of alveolar macrophages.
Collapse
Affiliation(s)
- Patrick M. Greiss
- Meakins-Christie Laboratories, Montreal, QC, Canada
- Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Jacquelyn D. Rich
- Meakins-Christie Laboratories, Montreal, QC, Canada
- Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | | | - Dao Nguyen
- Meakins-Christie Laboratories, Montreal, QC, Canada
- Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Mark G. Lefsrud
- Department of Bioresource Engineering, McGill University, Montreal, QC, Canada
| | - David H. Eidelman
- Meakins-Christie Laboratories, Montreal, QC, Canada
- Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Carolyn J. Baglole
- Meakins-Christie Laboratories, Montreal, QC, Canada
- Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
5
|
McCallum L, Fox SW. d-limonene suppresses RANKL-induced osteoclast differentiation and promotes osteoblast activity in vitro. Biosci Biotechnol Biochem 2025; 89:232-240. [PMID: 39533827 DOI: 10.1093/bbb/zbae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Treatments for osteoporosis are typically given postfracture. Therefore, identifying safe prophylactic interventions to reduce fracture risk would be beneficial. One approach is to utilize the bioactive properties of natural compounds to modify osteoclast and osteoblast activity. d-limonene a well-tolerated, anti-inflammatory monoterpene found in citrus fruits holds promise due to its suppressive effect on NFκB, a key regulator of bone cell activity. We found that limonene promoted osteoblast differentiation and bone nodule formation and inhibited RANKL-induced osteoclast formation and bone resorption in vitro. Limonene also reduced the proresorptive signal provided by osteoblast, augmenting markers of osteoblast differentiation (alkaline phosphatase, osterix, and osteocalcin) and significantly decreasing osteoclastogenic cytokine production (PTHrP, IL-1β, and TNF-α). Therefore, limonene supplementation represents a potential route in combination with current interventions to optimize bone cell activity to maintain or enhance bone mass.
Collapse
Affiliation(s)
- Lynn McCallum
- Agri-Pharmacy Group, School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, UK
| | - Simon W Fox
- Agri-Pharmacy Group, School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, UK
| |
Collapse
|
6
|
Rigano F, Vento F, Cafarella C, Trovato E, Trozzi A, Dugo P, Mondello L. Determination of main lipids and volatile compounds in unconventional cold-pressed seed oils through chromatographic techniques. J Food Sci 2025; 90:e17661. [PMID: 39828411 PMCID: PMC11743071 DOI: 10.1111/1750-3841.17661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
The purpose of this study was to characterize unconventional cold-pressed seed oils (rosehip, strawberry, blackcurrant, carrot, plum, pomegranate, radish, and raspberry) as novel alternative edible oil source. A chemical characterization of different lipid components (total fatty acid composition, triacylglycerols, and vitamin E) and volatiles responsible for the particular aroma of these oils was reported. All the oils showed a content of unsaturated fatty acids, mainly oleic, linoleic, and α-linolenic acid, that potentially contribute to the prevention of cardiovascular diseases, in the range of 80%-90%. Moreover, an isomer of α-linolenic acid, namely, punicic acid, was quantified at a level of near to 40% in pomegranate seed oil. Triolein was the most abundant triacylglycerol in most of the analyzed seed oils, with the exception of raspberry and strawberry dominated by trilinolein and pomegranate seed oil, composed for almost 50% of tripunicine. The highest content of vitamin E was found in pomegranate oil (256 mg/100 g), while the lowest amount was found in strawberry (65 mg/100 g). Overall, >300 compounds were identified from volatile profile of oil samples. Among these, aldehydes were the predominant molecule class identified in plum, pomegranate, and strawberry oils, while terpenes were the main volatiles in blackcurrant, carrot, and rosehip oils. Extremely low values were obtained for atherogenicity (0.05-0.10) and thrombogenicity (0.07-0.30) nutritional indices in all the investigated oils. Principal component analysis of the lipid profile was used as strategy to discriminate and classify the samples, highlighting their similarity related to the presence of beneficial compounds. PRACTICAL APPLICATION: Unconventional food products can find wide applicability in both cosmetic and food industry as alternative source that harmonize with consumers' preferences for personal care and nutraceutical purpose. They often address food security, sustainability, and nutritional challenges. Within this context, the chemical characterization of both major (triacylglycerols and total fatty acid composition) and minor components (volatile compounds and vitamin E) was useful to demonstrate that the cold-pressed seed oils here investigated are rich in essential nutrients. Hence, they can cater to specific dietary needs, thus creating new markets in food tech, agriculture, and biotechnology industries.
Collapse
Affiliation(s)
- Francesca Rigano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina Institute of TechnologyUniversity of MessinaMessinaItaly
| | - Federica Vento
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina Institute of TechnologyUniversity of MessinaMessinaItaly
| | - Cinzia Cafarella
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina Institute of TechnologyUniversity of MessinaMessinaItaly
| | - Emanuela Trovato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina Institute of TechnologyUniversity of MessinaMessinaItaly
| | - Alessandra Trozzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina Institute of TechnologyUniversity of MessinaMessinaItaly
| | - Paola Dugo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina Institute of TechnologyUniversity of MessinaMessinaItaly
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, Chromaleont s.r.l.University of MessinaMessinaItaly
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina Institute of TechnologyUniversity of MessinaMessinaItaly
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, Chromaleont s.r.l.University of MessinaMessinaItaly
| |
Collapse
|
7
|
Lteif A, Shebaby W, El Hage M, Azar-Atallah S, Mroue D, Mroueh M, Daher CF. Lebanese cannabis oil as a potential treatment for acute myeloid leukemia: In vitro and in vivo evaluations. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118512. [PMID: 38964627 DOI: 10.1016/j.jep.2024.118512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Cannabis sativa L. ssp. indica (Lam.) plant has been historically utilized as a natural herbal remedy for the treatment of several ailments. In Lebanon, cannabis extracts have long been traditionally used to treat arthritis, diabetes, and cancer. AIM OF THE STUDY The current study aims to investigate the anti-cancer properties of Lebanese cannabis oil extract (COE) on acute myeloid leukemia using WEHI-3 cells, and a WEHI-3-induced leukemia mouse model. MATERIALS AND METHODS WEHI-3 cells were treated with increasing concentrations of COE to determine the IC50 after 24, 48 and 72-h post treatment. Flow cytometry was utilized to identify the mode of cell death. Western blot assay was performed to assess apoptotic marker proteins. In vivo model was established by inoculating WEHI-3 cells in BALB/c mice, and treatment commencing 10 days post-inoculation and continued for a duration of 3 weeks. RESULTS COE exhibited significant cytotoxicity with IC50 of 7.76, 3.82, and 3.34 μg/mL at 24, 48, and 72 h respectively post-treatment. COE treatment caused an induction of apoptosis through an inhibition of the MAPK/ERK pathway and triggering a caspase-dependent apoptosis via the extrinsic and intrinsic modes independent of ROS production. Animals treated with COE exhibited a significantly higher survival rate, reduction in spleen weight as well as white blood cells count. CONCLUSION COE exhibited a potent anti-cancer activity against AML cells, both in vitro and in vivo. These findings emphasize the potential application of COE as a chemotherapeutic adjuvant in treatment of acute myeloid leukemia.
Collapse
Affiliation(s)
- Anthony Lteif
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Wassim Shebaby
- Departement of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Marissa El Hage
- Departement of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Shirine Azar-Atallah
- Departement of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Dima Mroue
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Mohamad Mroueh
- Departement of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Costantine F Daher
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon; Alice Ramez Chagoury School of Nursing, Lebanese American University, Byblos, 1102 2801, Lebanon.
| |
Collapse
|
8
|
Shin J, Kim DU, Bae GS, Han JY, Lim DW, Lee YM, Kim E, Kwon E, Han D, Kim S. Antidepressant-like Effects of Cannabis sativa L. Extract in an Lipopolysaccharide Model: Modulation of Mast Cell Activation in Deep Cervical Lymph Nodes and Dura Mater. Pharmaceuticals (Basel) 2024; 17:1409. [PMID: 39459047 PMCID: PMC11510560 DOI: 10.3390/ph17101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Lipopolysaccharide (LPS)-induced neuroinflammation is a well-established model for studying depression-like behavior, driven by pro-inflammatory cytokines such as TNF-α and IL-1β. Mast cells (MCs) contribute to neuroinflammation by releasing mediators that exacerbate depressive-like symptoms. This study evaluates the antidepressant-like and anti-inflammatory effects of Cannabis sativa L. inflorescence extract (CSL) in an LPS-induced neuroinflammation model. METHODS Male C57BL/6 mice were intraperitoneally injected with CSL at doses of 10, 20, and 30 mg/kg, 30 min prior to LPS (0.83 mg/kg) administration. Depressive behaviors were assessed using the sucrose preference test (SPT), tail suspension test (TST), and forced swimming test (FST). The neutrophil-to-lymphocyte ratio (NLR) was measured to assess systemic inflammation. Cytokine levels in the prefrontal cortex (PFC) were measured, and mast cell degranulation in the lymph nodes and dura mater was analyzed histologically (approval number: WKU24-64). RESULTS CSL significantly improved depressive-like behaviors and decreased the NLR, indicating reduced systemic inflammation. CSL also significantly reduced TNF-α and IL-1β levels in the PFC. Furthermore, CSL inhibited MC degranulation in the deep cervical lymph nodes and dura mater, with the strongest effects observed at 30 mg/kg. CONCLUSIONS CSL demonstrated antidepressant-like and anti-inflammatory effects in an LPS-induced neuroinflammation model, likely through the modulation of cytokine expression and mast cell activity. These results suggest the potential of CSL as a therapeutic option for treating inflammation-related depression.
Collapse
Affiliation(s)
- Joonyoung Shin
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (J.S.); (D.H.)
| | - Dong-Uk Kim
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (D.-U.K.); (G.-S.B.)
| | - Gi-Sang Bae
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (D.-U.K.); (G.-S.B.)
| | - Ji-Ye Han
- Department of Oriental Pharmacy, Wonkwang-Oriental Medicines Research Institute, College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea; (J.-Y.H.); (D.-W.L.); (Y.-M.L.)
| | - Do-Won Lim
- Department of Oriental Pharmacy, Wonkwang-Oriental Medicines Research Institute, College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea; (J.-Y.H.); (D.-W.L.); (Y.-M.L.)
| | - Young-Mi Lee
- Department of Oriental Pharmacy, Wonkwang-Oriental Medicines Research Institute, College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea; (J.-Y.H.); (D.-W.L.); (Y.-M.L.)
| | - Eunjae Kim
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (E.K.); (E.K.)
| | - Eunjeong Kwon
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (E.K.); (E.K.)
| | - Dongwoon Han
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (J.S.); (D.H.)
- Department of Global Health and Development, Hanyang University, Seoul 04763, Republic of Korea
| | - Sungchul Kim
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (J.S.); (D.H.)
| |
Collapse
|
9
|
Tan KBC, Alexander HD, Linden J, Murray EK, Gibson DS. Anti-inflammatory effects of phytocannabinoids and terpenes on inflamed Tregs and Th17 cells in vitro. Exp Mol Pathol 2024; 139:104924. [PMID: 39208564 DOI: 10.1016/j.yexmp.2024.104924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
AIMS Phytocannabinoids and terpenes from Cannabis sativa have demonstrated limited anti-inflammatory and analgesic effects in several inflammatory conditions. In the current study, we test the hypothesis that phytocannabinoids exert immunomodulatory effects in vitro by decreasing inflammatory cytokine expression and activation. KEY METHODS CD3/CD28 and lipopolysaccharide activated peripheral blood mononuclear cells (PBMCs) from healthy donors (n = 6) were treated with phytocannabinoid compounds and terpenes in vitro. Flow cytometry was used to determine regulatory T cell (Treg) and T helper 17 (Th17) cell responses to treatments. Cell pellets were harvested for qRT-PCR gene expression analysis of cytokines, cell activation markers, and inflammation-related receptors. Cell culture supernatants were analysed by ELISA to quantify IL-6, TNF-α and IL-10 secretion. MAIN FINDINGS In an initial screen of 20 μM cannabinoids and terpenes which were coded to blind investigators, cannabigerol (GL4a), caryophyllene oxide (GL5a) and gamma-terpinene (GL6a) significantly reduced cytotoxicity and gene expression levels of IL6, IL10, TNF, TRPV1, CNR1, HTR1A, FOXP3, RORC and NFKΒ1. Tetrahydrocannabinol (GL7a) suppression of T cell activation was associated with downregulation of RORC and NFKΒ1 gene expression and reduced IL-6 (p < 0.0001) and IL10 (p < 0.01) secretion. Cannabidiol (GL1b) significantly suppressed activation of Tregs (p < 0.05) and Th17 cells (p < 0.05) in a follow-on in vitro dose-response study. IL-6 (p < 0.01) and IL-10 (p < 0.01) secretion was significantly reduced with 50 μM cannabidiol. SIGNIFICANCE The study provides the first evidence that cannabidiol and tetrahydrocannabinol suppress extracellular expression of both anti- and pro-inflammatory cytokines in an in vitro PBMC model of inflammation.
Collapse
Affiliation(s)
- Kyle B C Tan
- Personalised Medicine Centre, School of Medicine, Ulster University, C-TRIC Building, Londonderry BT47 6SB, United Kingdom
| | - H Denis Alexander
- Personalised Medicine Centre, School of Medicine, Ulster University, C-TRIC Building, Londonderry BT47 6SB, United Kingdom
| | - James Linden
- GreenLight Pharmaceuticals Ltd, Unit 2, Block E, Nutgrove Office Park, Dublin 14, Ireland
| | - Elaine K Murray
- Personalised Medicine Centre, School of Medicine, Ulster University, C-TRIC Building, Londonderry BT47 6SB, United Kingdom
| | - David S Gibson
- Personalised Medicine Centre, School of Medicine, Ulster University, C-TRIC Building, Londonderry BT47 6SB, United Kingdom.
| |
Collapse
|
10
|
Noor AAM. Exploring the Therapeutic Potential of Terpenoids for Depression and Anxiety. Chem Biodivers 2024; 21:e202400788. [PMID: 38934531 DOI: 10.1002/cbdv.202400788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
This review focus on the terpenoids as potential therapeutic agents for depression and anxiety disorders, which naturally found in a variety of plants and exhibit a wide range of biological activities. Among the terpenoids discussed in this review are α-pinene, β-caryophyllene, α-phellandrene, limonene, β-linalool, 1, 8-cineole, β-pinene, caryophyllene oxide, p-cymene, and eugenol. All of these compounds have been studied extensively regarding their pharmacological properties, such as neuroprotective effect, anti-inflammation, antibacterial, regulation of neurotransmitters and antioxidant effect. Preclinical evidence are reviewed to highlight their diverse mechanisms of action and therapeutic potential to support antidepressant and anxiolytic properties. Additionally, challenges and future directions are also discussed to emphasize therapeutic utility of terpenoids for mental health disorders. Overall, this review provides a promising role of terpenoids as novel therapeutic agents for depression and anxiety, with potential implications for the development of more effective and well-tolerated treatments in the field of psychopharmacology.
Collapse
Affiliation(s)
- Arif Azimi Md Noor
- Harvard Medical School, Department of Biomedical Informatics, 10 Shattuck Street Suite 514, Boston MA, 02115, United States of America
- Eyes Specialist Clinic, Raja Perempuan Zainab 2 Hospital, 15586, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
11
|
Herkenhoff ME, Brödel O, Frohme M. Hops across Continents: Exploring How Terroir Transforms the Aromatic Profiles of Five Hop ( Humulus lupulus) Varieties Grown in Their Countries of Origin and in Brazil. PLANTS (BASEL, SWITZERLAND) 2024; 13:2675. [PMID: 39409545 PMCID: PMC11478771 DOI: 10.3390/plants13192675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024]
Abstract
Humulus lupulus, or hops, is a vital ingredient in brewing, contributing bitterness, flavor, and aroma. The female plants produce strobiles rich in essential oils and acids, along with bioactive compounds like polyphenols, humulene, and myrcene, which offer health benefits. This study examined the aromatic profiles of five hop varieties grown in Brazil versus their countries of origin. Fifty grams of pelletized hops from each strain were collected and analyzed using HS-SPME/GC-MS to identify volatile compounds, followed by statistical analysis with PLS-DA and ANOVA. The study identified 330 volatile compounds and found significant aromatic differences among hops from different regions. For instance, H. Mittelfrüher grown in Brazil has a fruity and herbaceous profile, while the German-grown variety is more herbal and spicy. Similar variations were noted in the Magnum, Nugget, Saaz, and Sorachi Ace varieties. The findings underscore the impact of terroir on hop aromatic profiles, with Brazilian-grown hops displaying distinct profiles compared to their counterparts from their countries of origin, including variations in aromatic notes and α-acid content.
Collapse
Affiliation(s)
- Marcos Edgar Herkenhoff
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
- Food Research Center FoRC, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
| | - Oliver Brödel
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, 15745 Wildau, Germany; (O.B.); (M.F.)
| | - Marcus Frohme
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, 15745 Wildau, Germany; (O.B.); (M.F.)
| |
Collapse
|
12
|
Łyko L, Olech M, Gawlik U, Krajewska A, Kalemba D, Tyśkiewicz K, Piórecki N, Prokopiv A, Nowak R. Rhododendron luteum Sweet Flower Supercritical CO 2 Extracts: Terpenes Composition, Pro-Inflammatory Enzymes Inhibition and Antioxidant Activity. Int J Mol Sci 2024; 25:9952. [PMID: 39337440 PMCID: PMC11432528 DOI: 10.3390/ijms25189952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Terpenes are plant secondary metabolites known for their anti-inflammatory and antioxidant activities. According to ethnobotanical knowledge, Rhododendron luteum Sweet was used in traditional medicine against inflammation. The present study was conducted to determine the triterpene profile and antioxidant and anti-inflammatory activity of supercritical CO2 (SC-CO2) extracts of Rhododendron luteum Sweet flower (RLF). An LC-APCI-MS/MS analysis showed the presence of eight pentacyclic triterpenes and one phytosterol in the extracts obtained with pure CO2 as well as CO2 with the addition of aqueous ethanol as a co-solvent. Among the compounds detected, oleanolic/ursolic acid, β-sitosterol and 3β-taraxerol were the most abundant. The extract obtained with pure SC-CO2 was additionally subjected to HS-SPME-GC-FID-MS, which revealed more than 100 volatiles, mainly eugenol, β-phenylethanol, dodecane, β-caryophyllene, estragole and (Z)- and (E)-cinnamyl alcohol, followed by δ-cadinene. The extracts demonstrated significant hyaluronidase inhibition and exhibited varying modes of lipoxygenase and xanthine oxidase inhibitory activities. The studies of RLF have shown that their SC-CO2 extracts can be a rich source of triterpenes with anti-inflammatory potential.
Collapse
Affiliation(s)
- Lena Łyko
- Department of Pharmaceutical Botany, Medical University of Lublin, ul. Chodźki 1, 20-093 Lublin, Poland
| | - Marta Olech
- Department of Pharmaceutical Botany, Medical University of Lublin, ul. Chodźki 1, 20-093 Lublin, Poland
| | - Urszula Gawlik
- Department of Biochemistry and Food Chemistry, University of Life Sciences, ul. Skromna 8, 20-704 Lublin, Poland
| | - Agnieszka Krajewska
- Institute of Natural Products and Cosmetics, Lodz University of Technology, ul. Stefanowskiego 4/10, 90-924 Łódź, Poland
| | - Danuta Kalemba
- Institute of Natural Products and Cosmetics, Lodz University of Technology, ul. Stefanowskiego 4/10, 90-924 Łódź, Poland
| | - Katarzyna Tyśkiewicz
- Supercritical Extraction Department, Łukasiewicz Research Network-New Chemical Syntheses Institute, ul. Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
| | - Narcyz Piórecki
- Bolestraszyce Arboretum and Institute of Physiography, Bolestraszyce 130, 37-722 Wyszatyce, Poland
- Institute of Physical Culture Sciences, Medical College, University of Rzeszow, ul. Cicha 2A, 35-326 Rzeszow, Poland
| | - Andriy Prokopiv
- Department of Botany, Botanical Garden, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| | - Renata Nowak
- Department of Pharmaceutical Botany, Medical University of Lublin, ul. Chodźki 1, 20-093 Lublin, Poland
| |
Collapse
|
13
|
Villagrán-Andrade KM, Núñez-Carro C, Blanco FJ, de Andrés MC. Nutritional Epigenomics: Bioactive Dietary Compounds in the Epigenetic Regulation of Osteoarthritis. Pharmaceuticals (Basel) 2024; 17:1148. [PMID: 39338311 PMCID: PMC11434976 DOI: 10.3390/ph17091148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Nutritional epigenomics is exceptionally important because it describes the complex interactions among food compounds and epigenome modifications. Phytonutrients or bioactive compounds, which are secondary metabolites of plants, can protect against osteoarthritis by suppressing the expression of inflammatory and catabolic mediators, modulating epigenetic changes in DNA methylation, and the histone or chromatin remodelling of key inflammatory genes and noncoding RNAs. The combination of natural epigenetic modulators is crucial because of their additive and synergistic effects, safety and therapeutic efficacy, and lower adverse effects than conventional pharmacology in the treatment of osteoarthritis. In this review, we have summarized the chondroprotective properties of bioactive compounds used for the management, treatment, or prevention of osteoarthritis in both human and animal studies. However, further research is needed into bioactive compounds used as epigenetic modulators in osteoarthritis, in order to determine their potential value for future clinical applications in osteoarthritic patients as well as their relation with the genomic and nutritional environment, in order to personalize food and nutrition together with disease prevention.
Collapse
Affiliation(s)
- Karla Mariuxi Villagrán-Andrade
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Carmen Núñez-Carro
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Francisco J Blanco
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
- Grupo de Investigación en Reumatología y Salud, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, Universidade da Coruña (UDC), 15008 A Coruña, Spain
| | - María C de Andrés
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| |
Collapse
|
14
|
Vora LK, Gholap AD, Hatvate NT, Naren P, Khan S, Chavda VP, Balar PC, Gandhi J, Khatri DK. Essential oils for clinical aromatherapy: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118180. [PMID: 38614262 DOI: 10.1016/j.jep.2024.118180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aromatherapy, a holistic healing practice utilizing the aromatic essences of plant-derived essential oils, has gained significant attention for its therapeutic potential in promoting overall well-being. Use of phytoconstituent based essential oil has played a significant role in the evolving therapeutic avenue of aromatherapy as a complementary system of medicine. AIM OF THE STUDY This comprehensive review article aims to explore the usage of essential oils for aromatherapy, shedding light on their diverse applications, scientific evidence, and safety considerations. Furthermore, the growing interest in using essential oils as complementary therapies in conjunction with conventional medicine is explored, underscoring the significance of collaborative healthcare approaches. MATERIALS AND METHODS Literature search was performed from databases like PubMed, ScienceDirect, Scopus, and Bentham using keywords like Aromatherapy, Aromatic Plants, Essential oils, Phytotherapy, and complementary medicine. The keywords were used to identify literature with therapeutic and mechanistic details of herbal agents with desired action. RESULTS The integration of traditional knowledge with modern scientific research has led to a renewed interest in essential oils as valuable tools in contemporary healthcare. Various extraction methods used to obtain essential oils are presented, emphasizing their impact on the oil's chemical composition and therapeutic properties. Additionally, the article scrutinizes the factors influencing the quality and purity of essential oils, elucidating the significance of standardization and certification for safe usage. A comprehensive assessment of the therapeutic effects of essential oils is provided, encompassing their potential as antimicrobial, analgesic, anxiolytic, and anti-inflammatory agents, among others. Clinical trials and preclinical studies are discussed to consolidate the existing evidence on their efficacy in treating diverse health conditions, both physical and psychological. Safety considerations are of paramount importance when employing essential oils, and this review addresses potential adverse effects, contraindications, and best practices to ensure responsible usage. CONCLUSIONS This comprehensive review provides valuable insights into the exploration of essential oils for aromatherapy, emphasizing their potential as natural and potent remedies for a wide range of ailments. By amalgamating traditional wisdom and modern research, this article aims to encourage further investigation into the therapeutic benefits of essential oils while advocating for their responsible and evidence-based incorporation into healthcare practices.
Collapse
Affiliation(s)
- Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK.
| | - Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, 401404, Maharashtra, India
| | - Navnath T Hatvate
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna, 431213, Maharashtra, India
| | - Padmashri Naren
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Sabiya Khan
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India.
| | - Pankti C Balar
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Jimil Gandhi
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Dharmendra Kumar Khatri
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India.
| |
Collapse
|
15
|
Wang F, He K, Wang R, Ma H, Marriott PJ, Hill MR, Simon GP, Holl MMB, Wang H. A Homochiral Porous Organic Cage-Polymer Membrane for Enantioselective Resolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400709. [PMID: 38721928 DOI: 10.1002/adma.202400709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/07/2024] [Indexed: 05/21/2024]
Abstract
Membrane-based enantioselective separation is a promising method for chiral resolution due to its low cost and high efficiency. However, scalable fabrication of chiral separation membranes displaying both high enantioselectivity and high flux of enantiomers is still a challenge. Here, the authors report the preparation of homochiral porous organic cage (Covalent cage 3 (CC3)-R)-based enantioselective thin-film-composite membranes using polyamide (PA) as the matrix, where fully organic and solvent-processable cage crystals have good compatibility with the polymer scaffold. The hierarchical CC3-R channels consist of chiral selective windows and inner cavities, leading to favorable chiral resolution and permeation of enantiomers; the CC3-R/PA composite membranes display an enantiomeric excess of 95.2% for R-(+)-limonene over S-(-)-limonene and a high flux of 99.9 mg h-1 m-2. This work sheds light on the use of homochiral porous organic cages for preparing enantioselective membranes and demonstrates a new route for the development of next-generation chiral separation membranes.
Collapse
Affiliation(s)
- Fanmengjing Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Kaiqiang He
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Ruoxin Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Hongyu Ma
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Philip J Marriott
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Matthew R Hill
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - George P Simon
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Mark M Banaszak Holl
- Department of Mechanical and Materials Engineering, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
16
|
Shin J, Choi S, Park AY, Ju S, Kweon B, Kim DU, Bae GS, Han D, Kwon E, Hong J, Kim S. In Vitro and In Vivo Anti-Inflammatory and Antidepressant-like Effects of Cannabis sativa L. Extracts. PLANTS (BASEL, SWITZERLAND) 2024; 13:1619. [PMID: 38931051 PMCID: PMC11207413 DOI: 10.3390/plants13121619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Cannabis sativa L. has been widely used by humans for centuries for various purposes, such as industrial, ceremonial, medicinal, and food. The bioactive components of Cannabis sativa L. can be classified into two main groups: cannabinoids and terpenes. These bioactive components of Cannabis sativa L. leaf and inflorescence extracts were analyzed. Mice were systemically administered 30 mg/kg of Cannabis sativa L. leaf extract 1 h before lipopolysaccharide (LPS) administration, and behavioral tests were performed. We conducted an investigation into the oxygen saturation, oxygen tension, and degranulation of mast cells (MCs) in the deep cervical lymph nodes (DCLNs). To evaluate the anti-inflammatory effect of Cannabis sativa L. extracts in BV2 microglial cells, we assessed nitrite production and the expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. The main bioactive components of the Cannabis sativa L. extracts were THCA (a cannabinoid) and β-caryophyllene (a terpene). Cannabis sativa L. leaf extract reduced the immobility time in the forced swimming test and increased sucrose preference in the LPS model, without affecting the total distance and time in the center in the open field test. Additionally, Cannabis sativa L. leaf extract improved oxygen levels and inhibited the degranulation of MCs in DCLNs. The Cannabis sativa L. extracts inhibited IL-1β, IL-6, TNF-α, nitrite, iNOS, and COX-2 expression in BV2 microglia cells. The efficacy of Cannabis sativa L. extracts was suggested to be due to the entourage effect of various bioactive phytochemicals. Our findings indicate that these extracts have the potential to be used as effective treatments for a variety of diseases associated with acute inflammatory responses.
Collapse
Affiliation(s)
- Joonyoung Shin
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (J.S.); (S.C.); (A.Y.P.); (S.J.); (D.H.)
| | - Sangheon Choi
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (J.S.); (S.C.); (A.Y.P.); (S.J.); (D.H.)
| | - A Yeong Park
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (J.S.); (S.C.); (A.Y.P.); (S.J.); (D.H.)
| | - Suk Ju
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (J.S.); (S.C.); (A.Y.P.); (S.J.); (D.H.)
| | - Bitna Kweon
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (B.K.); (D.-U.K.); (G.-S.B.)
| | - Dong-Uk Kim
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (B.K.); (D.-U.K.); (G.-S.B.)
| | - Gi-Sang Bae
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (B.K.); (D.-U.K.); (G.-S.B.)
- Research Center of Traditional Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Dongwoon Han
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (J.S.); (S.C.); (A.Y.P.); (S.J.); (D.H.)
- Department of Global Health and Development, Hanyang University, Seoul 04763, Republic of Korea
| | - Eunjeong Kwon
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (E.K.); (J.H.)
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (E.K.); (J.H.)
| | - Sungchul Kim
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (J.S.); (S.C.); (A.Y.P.); (S.J.); (D.H.)
- Research Center of Traditional Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
17
|
Rakha A, Rasheed H, Altemimi AB, Tul-Muntaha S, Fatima I, Butt MS, Hussain S, Bhat ZF, Mousavi Khaneghah A, Aadil RM. Tapping the nutraceutical potential of industrial hemp against arthritis and diabetes - A comprehensive review. FOOD BIOSCI 2024; 59:104195. [DOI: 10.1016/j.fbio.2024.104195] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
18
|
Tyśkiewicz K, Tyśkiewicz R, Konkol M, Gruba M, Kowalski R. Optimization of Antifungal Properties of Hop Cone Carbon Dioxide Extracts Based on Response Surface Methodology. Molecules 2024; 29:2554. [PMID: 38893430 PMCID: PMC11173884 DOI: 10.3390/molecules29112554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Response surface methodology (RSM) was employed to optimize the process parameters of the supercritical carbon dioxide extraction of hop cones in terms of their antifungal properties against Fusarium culmorum and Aspergillus niger. The effects of temperature (40-50 °C), pressure (200-300 bar), and CO2 consumption (25-75 kgCO2/kg) on the extraction yield, content of α- and β-acids, as well as pathogens' growth inhibition were investigated. Both pressure and CO2 consumption had a significant effect on antifungal properties. It was observed that the best results for antifungal properties were obtained when hop cones were extracted with pure carbon dioxide at the temperature of 50 °C, under the pressure of 300 bar with CO2 consumption at the level of 75 kgCO2/kg of feed for extraction. The highest antifungal properties of hop cone supercritical carbon dioxide extracts were analyzed as 100% for Fusarium culmorum and 68% for Aspergillus niger, calculated as the growth inhibition of tested pathogens. The aim of the study was to determine the optimum values of extraction parameters to achieve the maximum response and enable us to investigate the interaction of these parameters on the antifungal properties of hop cone extracts.
Collapse
Affiliation(s)
- Katarzyna Tyśkiewicz
- Supercritical Extraction Research Group, Łukasiewicz Research Network—New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland; (M.K.) (M.G.); (R.K.)
| | - Renata Tyśkiewicz
- Analytical Laboratory, Łukasiewicz Research Network—New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland;
| | - Marcin Konkol
- Supercritical Extraction Research Group, Łukasiewicz Research Network—New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland; (M.K.) (M.G.); (R.K.)
| | - Marcin Gruba
- Supercritical Extraction Research Group, Łukasiewicz Research Network—New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland; (M.K.) (M.G.); (R.K.)
| | - Rafał Kowalski
- Supercritical Extraction Research Group, Łukasiewicz Research Network—New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland; (M.K.) (M.G.); (R.K.)
| |
Collapse
|
19
|
Dua R, Bhardwaj T, Ahmad I, Somvanshi P. Investigating the potential of Juglans regia phytoconstituents for the treatment of cervical cancer utilizing network biology and molecular docking approach. PLoS One 2024; 19:e0287864. [PMID: 38626166 PMCID: PMC11020953 DOI: 10.1371/journal.pone.0287864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/22/2024] [Indexed: 04/18/2024] Open
Abstract
The fourth most frequent type of cancer in women and the leading cause of mortality for females worldwide is cervical cancer. Traditionally, medicinal plants have been utilized to treat various illnesses and ailments. The molecular docking method is used in the current study to look into the phytoconstituents of Juglans regia's possible anticancer effects on cervical cancer target proteins. This work uses the microarray dataset analysis of GSE63678 from the NCBI Gene Expression Omnibus database to find differentially expressed genes. Furthermore, protein-protein interactions of differentially expressed genes were constructed using network biology techniques. The top five hub genes (IGF1, FGF2, ESR1, MYL9, and MYH11) are then determined by computing topological parameters with Cytohubba. In addition, molecular docking research was performed on Juglans regia phytocompounds that were extracted from the IMPPAT database versus hub genes that had been identified. Utilizing molecular dynamics, simulation confirmed that prioritized docked complexes with low binding energies were stable.
Collapse
Affiliation(s)
- Riya Dua
- School of Computational & Integrative Sciences (SCIS), Jawaharlal Nehru University, JNU Campus, New Delhi, India
| | - Tulika Bhardwaj
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Irshad Ahmad
- College of Applied Medical Sciences, Department of Medical Rehabilitation Sciences, King Khalid University, Abha, Saudi Arabia
| | - Pallavi Somvanshi
- School of Computational & Integrative Sciences (SCIS), Jawaharlal Nehru University, JNU Campus, New Delhi, India
| |
Collapse
|
20
|
Razazi A, Kakanezhadi A, Raisi A, Pedram B, Dezfoulian O, Davoodi F. D-limonene inhibits peritoneal adhesion formation in rats via anti-inflammatory, anti-angiogenic, and antioxidative effects. Inflammopharmacology 2024; 32:1077-1089. [PMID: 38308792 DOI: 10.1007/s10787-023-01417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/21/2023] [Indexed: 02/05/2024]
Abstract
The aim of this research was to investigate the effects of D-limonene on decreasing post-operative adhesion in rats and to understand the mechanisms involved. Peritoneal adhesions were induced by creating different incisions and excising a 1 × 1 cm section of the peritoneum. The experimental groups included a sham group, a control group in which peritoneal adhesions were induced without any treatment, and two treatment groups in which animals received D-limonene with dosages of 25 and 50 mg/kg after inducing peritoneal adhesions. Macroscopic examination of adhesions showed that both treatment groups had reduced adhesion bands in comparison to the control group. Immunohistochemical assessment of TGF-β1, TNF-α, and VEGF on day 14 revealed a significant increment in the level of immunopositive cells for the mentioned markers in the control group, whereas administration of limonene in both doses significantly reduced levels of TGF-β1, TNF-α, and VEGF (P < 0.05). Induction of peritoneal adhesions in the control group significantly increased TGF-β1, TNF-α, and VEGF on days 3 and 14 in western blot evaluation, while treatment with limonene significantly reduced TNF-α level on day 14 (P < 0.05). Moreover, VEGF levels in both treatment groups significantly reduced on days 3 and 14. In the control group, a significant increment in the levels of MDA and NO and a notable decline in the levels of GPX, CAT was observed (P < 0.05). Limonene 50 group significantly reduced MDA level and increased GPx and CAT levels on day 14 (P < 0.05). In summary, D-limonene reduced adhesion bands, inflammatory cytokines, angiogenesis, and oxidative stress.
Collapse
Affiliation(s)
- Ali Razazi
- Department of Veterinary, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Ali Kakanezhadi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Abbas Raisi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Behnam Pedram
- Department of Veterinary, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Omid Dezfoulian
- Department of Pathobiology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Farshid Davoodi
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
21
|
Almeida Silva VE, de Freitas Pereira ET, Ferreira JA, Magno Teixeira A, Borges RM, da Silva LCRP. Bioactive Compounds in Citrus Species with Potential for the Treatment of Chronic Venous Disease: A Review. Curr Pharm Des 2024; 30:2835-2849. [PMID: 39108121 DOI: 10.2174/0113816128314974240724045220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/10/2024] [Indexed: 10/22/2024]
Abstract
Chronic venous disease (CVD) significantly impacts global health, presenting a complex challenge in medical management. Despite its prevalence and the burden it places on healthcare systems, CVD remains underdiagnosed and undertreated. This review aims to provide a comprehensive analysis of the bioactive compounds in the Citrus genus, exploring their therapeutic potential in CVD treatment and addressing the gap in current treatment modalities. A narrative review methodology was adopted, focusing on the pharmacological effects of Citrus-derived bioactive compounds, including flavonoids and terpenes. Additionally, the review introduced the DBsimilarity method for analyzing the chemical space and structural similarities among Citrus compounds. The review highlights the Citrus genus as a rich source of pharmacologically active compounds, notably flavonoids and terpenes, which exhibit significant anti-inflammatory, antioxidant, and veno-protective properties. Some of these compounds have been integrated into existing therapies, underscoring their potential for CVD management. The DBsimilarity analysis further identified many clusters of compounds with more than 85% structural similarity. Citrus-derived bioactive compounds offer promising therapeutic potential for managing CVD, showcasing significant anti-inflammatory, antioxidant, and veno-protective effects. The need for further comparative studies, as well as safety and efficacy investigations specific to CVD treatment, is evident. This review underlines the importance of advancing our understanding of these natural compounds and encouraging the development of novel treatments and formulations for effective CVD management. The DBsimilarity method's introduction provides a novel approach to exploring the chemical diversity within the Citrus genus, opening new pathways for pharmacological research.
Collapse
Affiliation(s)
| | | | | | - Andrew Magno Teixeira
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Moreira Borges
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
22
|
Maring M, Balaji C, Komala M, Nandi S, Latha S, Raghavendran HB. Aromatic Plants as Potential Resources to Combat Osteoarthritis. Comb Chem High Throughput Screen 2024; 27:1434-1465. [PMID: 37861046 DOI: 10.2174/0113862073267213231004094629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023]
Abstract
Osteoarthritis, which affects an estimated 10% of men and 18% of women over the age of 60 and is increasing in genetic prevalence and incidence, is acknowledged as the condition that degrades the quality of life for older adults in the world. There is currently no known treatment for osteoarthritis. The majority of therapeutic methods slow the progression of arthritis or treat its symptoms, making effective treatment to end the degenerative process of arthritis elusive. When non-pharmacological therapy is ineffective, various pharmacological therapies may be used to treat osteoarthritis. Pharmacological therapy, however, can have major adverse effects and be very expensive. As a result, alternative remedies have been researched. The promise for the safe and efficient management of osteoarthritis has been demonstrated by herbal remedies. Experimental research suggests that herbal extracts and compounds can reduce inflammation, inhibit catabolic processes, and promote anabolic processes that are important for treating osteoarthritis. Due to their therapeutic and innate pharmacological qualities, aromatic herbs are frequently employed as herbal remedies. Recent research has shown that aromatic plants have the potency to treat osteoarthritis. Additionally, complex mixtures of essential oils and their bioactive ingredients, which have anti-inflammatory and antioxidant properties and are obtained from aromatic plants, are frequently utilized as complementary therapies for osteoarthritis. To establish new study avenues, the advantageous anti-osteoarthritic effects of aromatic herbal medicines, including plants, essential oils, and their bioactive components, are extensively discussed.
Collapse
Affiliation(s)
- Maphibanri Maring
- Department of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - C Balaji
- Department of Rheumatology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - M Komala
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology & Advanced Studies, Pallavaram, Chennai, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Kashipur, India
| | - S Latha
- Department of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - H Balaji Raghavendran
- Sri Ramachandra Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| |
Collapse
|
23
|
Grazul M, Kwiatkowski P, Hartman K, Kilanowicz A, Sienkiewicz M. How to Naturally Support the Immune System in Inflammation-Essential Oils as Immune Boosters. Biomedicines 2023; 11:2381. [PMID: 37760822 PMCID: PMC10525302 DOI: 10.3390/biomedicines11092381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Efficient functionality of the immune system is needed to fight against the development of infectious diseases, including, among others, serious recurrent chronic infections. Research has shown that many modern common diseases, such as inflammatory bowel diseases and cardiovascular diseases, e.g., thromboembolism, cancer, obesity, or depression, are connected with inflammatory processes. Therefore, new, good stimulators of the immune system's response are sought. They include synthetic compounds as well as biological preparations such as lipopolysaccharides, enzymes, bacterial metabolites, and secondary metabolites of plants, demonstrating a multidirectional effect. Essential oils are characterized by many invaluable activities, including antimicrobial, antioxidant, anti-inflammatory, and immunostimulating. Essential oils may stimulate the immune system via the utilization of their constituents, such as antibodies, cytokines, and dendritic cells. Some essential oils may stimulate the proliferation of immune-competent cells, including polymorphonuclear leukocytes, macrophages, dendritic cells, natural killer cells, and B and T lymphocytes. This review is focused on the ability of essential oils to affect the immune system. It is also possible that essential oil components positively interact with recommended anti-inflammatory and antimicrobial drugs. Thus, there is a need to explore possible synergies between essential oils and their active ingredients for medical use.
Collapse
Affiliation(s)
- Magdalena Grazul
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Paweł Kwiatkowski
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Kacper Hartman
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Anna Kilanowicz
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
24
|
Nogueira Barradas T, Araujo Cardoso S, de Castro Grimaldi P, Lohan-Codeço M, Escorsim Machado D, Medina de Mattos R, Eurico Nasciutti L, Palumbo A. Development, characterization and evidence of anti-endometriotic activity of Phytocannabinoid-Rich nanoemulsions. Int J Pharm 2023; 643:123049. [PMID: 37196880 DOI: 10.1016/j.ijpharm.2023.123049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
During the last decades, the cannabinoid research for therapeutic purposes has been rapidly advancing, with an ever-growing body of evidence of beneficial effects for a wide sort of conditions, including those related to mucosal and epithelial homeostasis, inflammatory processes, immune responses, nociception, and modulating cell differentiation. β-caryophyllene (BCP) is a lipophilic volatile sesquiterpene, known as non-cannabis-derived phytocannabinoid, with documented anti-inflammatory, anti-proliferative and analgesic effects in both in vitro and in vivo models. Copaiba oil (COPA) is an oil-resin, mainly composed of BCP and other lipophilic and volatile components. COPA is reported to show several therapeutic effects, including anti-endometriotic properties and its use is widespread throughout the Amazonian folk medicine. COPA was nanoencapsulated into nanoemulsions (NE), then evaluated regarding the potential for transvaginal drug delivery and providing endometrial stromal cell proliferation in vitro. Transmission electron microscopy (TEM) showed that spherical NE were obtained with COPA concentration that varied from 5 to 7 wt%, while surfactant was maintained at 7.75 wt%. Dynamic light scattering (DLS) measurements showed droplet sizes of 30.03 ± 1.18, 35.47 ± 2.02, 43.98 ± 4.23 and PdI of 0.189, 0.175 and 0.182, respectively, with stability against coalescence and Ostwald ripening during 90 days. Physicochemical characterization results suggest that NE were able to both improve solubility and loading capacity, and increase thermal stability of COPA volatile components. Moreover, they showed slow and sustained release for up to eight hours, following the Higuchi kinetic model. Endometrial stromal cells from non-endometriotic lesions and ectopic endometrium were treated with different concentrations of COPA-loaded NE for 48 h to evaluate its effect on cell viability and morphology. The results suggested significant decrease in cell viability and morphological modifications in concentrations higher than 150 μg/ml of COPA-loaded NE, but not when cells were treated with the vehicle (without COPA). Given the relevance of Copaifera spp. species in folk medicine and their bio economical importance in the Amazon, the development of novel formulations to overcome the technological limitations related to BCP and COPA, is promising. Our results showed that COPA-loaded NE can lead to a novel, uterus-targeting, more effective and promising natural alternative treatment of endometriosis.
Collapse
Affiliation(s)
- Thaís Nogueira Barradas
- Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora (UFJF), R. José Lourenço Kelmer, s/n, Juiz de Fora, Zip Code: 36036-900, Brazil.
| | - Stephani Araujo Cardoso
- Programa de Pós-Graduação em Ciência e Tecnologia de Polímeros, Instituto de Macromoléculas. Universidade Federal do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, Cidade Universitária, Ilha do Fundão, Rio de Janeiro Zip Code: 21941-902, Brazil
| | - Paloma de Castro Grimaldi
- Instituto Federal do Rio de Janeiro (IFRJ), Rua Senador Furtado, n° 121/125, Maracanã, Rio de Janeiro Zip Code: 20260-100, Brazil
| | - Matheus Lohan-Codeço
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro (UFRJ), Rua César Pernetta, 1766 (LS.3.01), Cidade Universitária, Ilha do Fundão, Rio de Janeiro Zip Code: 21941-902, Brazil
| | - Daniel Escorsim Machado
- Laboratório de Pesquisa em Ciências Farmacêuticas (LAPESF), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brasil
| | - Romulo Medina de Mattos
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro (UFRJ), Rua César Pernetta, 1766 (LS.3.01), Cidade Universitária, Ilha do Fundão, Rio de Janeiro Zip Code: 21941-902, Brazil
| | - Luiz Eurico Nasciutti
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro (UFRJ), Rua César Pernetta, 1766 (LS.3.01), Cidade Universitária, Ilha do Fundão, Rio de Janeiro Zip Code: 21941-902, Brazil
| | - Antonio Palumbo
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro (UFRJ), Rua César Pernetta, 1766 (LS.3.01), Cidade Universitária, Ilha do Fundão, Rio de Janeiro Zip Code: 21941-902, Brazil
| |
Collapse
|
25
|
Ghazwani M, Hani U, Alqarni MH, Alam A. Beta Caryophyllene-Loaded Nanostructured Lipid Carriers for Topical Management of Skin Disorders: Statistical Optimization, In Vitro and Dermatokinetic Evaluation. Gels 2023; 9:550. [PMID: 37504429 PMCID: PMC10378941 DOI: 10.3390/gels9070550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023] Open
Abstract
This work aimed to overcome the disadvantages of the oral administration of beta-caryophyllene and boost efficiency by developing a nanostructured lipid carrier for topical administration of the drug in skin disorders. The heat emulsification method was utilized to produce beta-caryophyllene-loaded nanostructured lipid carriers. The newly created formulation was examined for its particle size, entrapment efficiency, and zeta potential after being improved using the Box-Behnken Design. The chosen formulation underwent tests to determine its ex vivo skin retention, dermatokinetic, in vitro release, antioxidant, and confocal laser scanning microscopy study. The findings of the characterization of the nanostructured lipid carriers demonstrated that the particles had a spherical form and a size of 210.86 nm (0.263 polydispersity index). The entrapment efficiency was determined to be 86.74%, and the zeta potential was measured to be -26.97 mV. The in vitro release investigation showed that nanostructure lipid carriers were capable of releasing regulated amounts of beta-caryophyllene for up to 24 hrs. In comparison to the traditional gel formulation, the ex vivo investigation demonstrated a 1.94-fold increase in the skin's capacity to retain the substance. According to the findings of the study, nanostructure lipid carriers loaded with beta-caryophyllene have the potential to be investigated for use as a topical administration method in skin disorders with enhanced skin retention and effectiveness.
Collapse
Affiliation(s)
- Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia
| | - Mohammed H Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| |
Collapse
|
26
|
Dammann I, Keil C, Hardewig I, Skrzydlewska E, Biernacki M, Haase H. Effects of combined cannabidiol (CBD) and hops (Humulus lupulus) terpene extract treatment on RAW 264.7 macrophage viability and inflammatory markers. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:19. [PMID: 37284961 DOI: 10.1007/s13659-023-00382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023]
Abstract
This study investigates the potential of cannabidiol (CBD), one major cannabinoid of the plant Cannabis sativa, alone and in combination with a terpene-enriched extract from Humulus lupulus ("Hops 1"), on the LPS-response of RAW 264.7 macrophages as an established in vitro model of inflammation. With the present study, we could support earlier findings of the anti-inflammatory potential of CBD, which showed a dose-dependent [0-5 µM] reduction in nitric oxide and tumor necrosis factor-alpha (TNF-α) released by LPS-stimulated RAW 264.7 macrophages. Moreover, we observed an additive anti-inflammatory effect after combined CBD [5 µM] and hops extract [40 µg/mL] treatment. The combination of CBD and Hops 1 showed effects in LPS-stimulated RAW 264.7 cells superior to the single substance treatments and akin to the control hydrocortisone. Furthermore, cellular CBD uptake increased dose-dependently in the presence of terpenes from Hops 1 extract. The anti-inflammatory effect of CBD and its cellular uptake positively correlated with terpene concentration, as indicated by comparison with a hemp extract containing both CBD and terpenes. These findings may contribute to the postulations for the so-called "entourage effect" between cannabinoids and terpenes and support the potential of CBD combined with phytomolecules from a non-cannabinoid source, such as hops, for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Inga Dammann
- Sanity Group GmbH, Jägerstraße 28-31, 10117, Berlin, Germany.
| | - Claudia Keil
- Department of Food Chemistry and Toxicology, Technische Universität Berlin, Straße Des 17. Juni 135, 10623, Berlin, Germany
| | - Iris Hardewig
- Sanity Group GmbH, Jägerstraße 28-31, 10117, Berlin, Germany
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Michał Biernacki
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Hajo Haase
- Department of Food Chemistry and Toxicology, Technische Universität Berlin, Straße Des 17. Juni 135, 10623, Berlin, Germany.
| |
Collapse
|
27
|
Zhou X, Zeng M, Huang F, Qin G, Song Z, Liu F. The potential role of plant secondary metabolites on antifungal and immunomodulatory effect. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12601-5. [PMID: 37272939 DOI: 10.1007/s00253-023-12601-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023]
Abstract
With the widespread use of antibiotic drugs worldwide and the global increase in the number of immunodeficient patients, fungal infections have become a serious threat to global public health security. Moreover, the evolution of fungal resistance to existing antifungal drugs is on the rise. To address these issues, the development of new antifungal drugs or fungal inhibitors needs to be targeted urgently. Plant secondary metabolites are characterized by a wide variety of chemical structures, low price, high availability, high antimicrobial activity, and few side effects. Therefore, plant secondary metabolites may be important resources for the identification and development of novel antifungal drugs. However, there are few studies to summarize those contents. In this review, the antifungal modes of action of plant secondary metabolites toward different types of fungi and fungal infections are covered, as well as highlighting immunomodulatory effects on the human body. This review of the literature should lay the foundation for research into new antifungal drugs and the discovery of new targets. KEY POINTS: • Immunocompromised patients who are infected the drug-resistant fungi are increasing. • Plant secondary metabolites toward various fungal targets are covered. • Plant secondary metabolites with immunomodulatory effect are verified in vivo.
Collapse
Affiliation(s)
- Xue Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Meng Zeng
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Fujiao Huang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Gang Qin
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China.
- Molecular Biotechnology Platform, Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| | - Fangyan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
28
|
Swiderski J, Sakkal S, Apostolopoulos V, Zulli A, Gadanec LK. Combination of Taurine and Black Pepper Extract as a Treatment for Cardiovascular and Coronary Artery Diseases. Nutrients 2023; 15:nu15112562. [PMID: 37299525 DOI: 10.3390/nu15112562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The shift in modern dietary regimens to "Western style" and sedentary lifestyles are believed to be partly responsible for the increase in the global burden of cardiovascular diseases. Natural products have been used throughout human history as treatments for a plethora of pathological conditions. Taurine and, more recently, black pepper have gained attention for their beneficial health effects while remaining non-toxic even when ingested in excess. Taurine, black pepper, and the major terpene constituents found in black pepper (i.e., β-caryophyllene; α-pinene; β-pinene; α-humulene; limonene; and sabinene) that are present in PhytoCann BP® have been shown to have cardioprotective effects based on anti-inflammatory, antioxidative, anti-hypertensive and anti-atherosclerotic mechanisms. This comprehensive review of the literature focuses on determining whether the combination of taurine and black pepper extract is an effective natural treatment for reducing cardiovascular diseases risk factors (i.e., hypertension and hyperhomocysteinemia) and for driving anti-inflammatory, antioxidative and anti-atherosclerotic mechanisms to combat coronary artery disease, heart failure, myocardial infarction, and atherosclerotic disease.
Collapse
Affiliation(s)
- Jordan Swiderski
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| |
Collapse
|
29
|
Tan JQ, Zhang L, Xu HX. Garcinia oligantha: A comprehensive overview of ethnomedicine, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116130. [PMID: 36621661 DOI: 10.1016/j.jep.2022.116130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/10/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Garcinia oligantha Merr. is an ethnomedicine plant mainly distributed in Guangdong and Hainan, China. It has the effects of heat-clearing and detoxicating, which has been used by local ethnic minorities to treat a variety of diseases, including inflammation, internal heat, toothache and scald. THE AIM OF THE REVIEW This review summarizes and discusses the progress of the chemical compounds and biological activities of G. oligantha that have been studied in recent years to provide the direction for the prospective research and applications of G. oligantha. MATERIALS AND METHODS The relevant literature about G. oligantha was accessible from ancient Chinese medical books and records, theses, as well as major scientific databases such as Google Scholar, PubMed, Web of Science, ScienceDirect, SciFinder, Baidu Scholar and China National Knowledge Infrastructure (CNKI). RESULTS To date, more than 150 chemical compounds were isolated from this plant, including xanthones, volatile oil, fatty acid, benzofurane derivative and biphenyl compounds. Xanthones are the main bioactive compounds that exhibit diverse biological effects, such as antitumor, analgesic, anti-inflammatory, antioxidative, neuroprotective, antimalarial and antibacterial effects, which are consistent with its traditional uses as a folk medicine. Modern pharmacological studies show that these compounds participate in a variety of signaling pathways underlying different pathophysiologies, making them a valuable medicinal resource. CONCLUSION G. oligantha is an ethnomedicine with a long history. However, due to regional and cultural constraints, the popularisation and use of ethnomedicine are still limited. Modern pharmacological and chemical research suggest that G. oligantha contains a variety of bioactive compounds and showed diverse biological functions, which is worthy of comprehensive and in-depth research. This review summarizes and discusses the recent progress in studies on G. oligantha, looking forward to promote further research and sustainable development of folk medicinal plants.
Collapse
Affiliation(s)
- Jia-Qi Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Li Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China.
| | - Hong-Xi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
30
|
Song SY, Ahn MS, Mekapogu M, Jung JA, Song HY, Lim SH, Jin JS, Kwon OK. Analysis of Floral Scent and Volatile Profiles of Different Aster Species by E-nose and HS-SPME-GC-MS. Metabolites 2023; 13:metabo13040503. [PMID: 37110161 PMCID: PMC10141722 DOI: 10.3390/metabo13040503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Plants from the Aster species are known to be a rich source of bioactive chemical compositions and are popularly known for their medicinal properties. To investigate the relationship between the nine species of Aster, the floral fragrance and volatile profile patterns were characterized using E-nose and HS-SPME-GC-MS. Initial optimization for fragrance analysis was performed with Aster yomena using E-nose by evaluating the scent patterns in different flowering stages. Aster yomena exhibited varied scent patterns in each flowering stage, with the highest relative aroma intensity (RAI) in the full flowering stage. PCA analysis to compare and analyze the scent characteristics of nine Aster species, showed a species-specific classification. HS-SPME-GC-MS analysis of flowers from nine Aster species revealed 52 volatile compounds including β-myrcene, α-phellandrene, D-limonene, trans-β-ocimene, caryophyllene, and β-cadinene. The terpenoid compounds accounted for the largest proportion. Among the nine Aster species flowers, Aster koraiensis had sesquiterpenes as the major component, and the remaining eight varieties had monoterpenes in abundance. These results could distinguish the species according to the scent patterns and volatile components of the nine Aster species. Additionally, flower extracts from the Aster species’ plants exhibited radical scavenging antioxidant activity. Among them, it was confirmed that Aster pseudoglehnii, Aster maackii, and Aster arenarius had high antioxidant activity. In conclusion, the results of this study provide fundamental data of the volatile compound properties and antioxidant activity of Aster species, offering basic information of valuable natural sources that can be utilized in the pharmaceutical, perfume, and cosmetic industries.
Collapse
|
31
|
Addo PW, Poudineh Z, Shearer M, Taylor N, MacPherson S, Raghavan V, Orsat V, Lefsrud M. Relationship between Total Antioxidant Capacity, Cannabinoids and Terpenoids in Hops and Cannabis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1225. [PMID: 36986914 PMCID: PMC10056619 DOI: 10.3390/plants12061225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Efficient determination of antioxidant activity in medicinal plants may provide added value to extracts. The effects of postharvest pre-freezing and drying [microwave-assisted hot air (MAHD) and freeze drying] on hops and cannabis were evaluated to determine the relationship between antioxidant activity and secondary metabolites. The 2,2-diphenyl-1-picrylhydrazine (DPPH) reduction and ferric reducing ability of power (FRAP) assays were assessed for suitability in estimating the antioxidant activity of extracted hops and cannabis inflorescences and correlation with cannabinoid and terpene content. Antioxidant activity in extracts obtained from fresh, undried samples amounted to 3.6 Trolox equivalent antioxidant activity (TEAC) (M) dry matter-1 and 2.32 FRAP (M) dry matter-1 for hops, in addition to 2.29 TEAC (M) dry matter-1 and 0.25 FRAP (M) dry matter-1 for cannabis. Pre-freezing significantly increased antioxidant values by 13% (DPPH) and 29.9% (FRAP) for hops, and by 7.7% (DPPH) and 19.4% (FRAP) for cannabis. ANOVA analyses showed a significant (p < 0.05) increase in total THC (24.2) and THCA (27.2) concentrations (g 100 g dry matter-1) in pre-frozen, undried samples compared to fresh, undried samples. Freeze-drying and MAHD significantly (p < 0.05) reduced antioxidant activity in hops by 79% and 80.2% [DPPH], respectively and 70.1% and 70.4% [FRAP], respectively, when compared to antioxidant activity in extracts obtained from pre-frozen, undried hops. DPPH assay showed that both freeze-drying and MAHD significantly (p < 0.05) reduced the antioxidant activity of cannabis by 60.5% compared to the pre-frozen samples although, there was no significant (p < 0.05) reduction in the antioxidant activity using the FRAP method. Greater THC content was measured in MAHD-samples when compared to fresh, undried (64.7%) and pre-frozen, undried (57%), likely because of decarboxylation. Both drying systems showed a significant loss in total terpene concentration, yet freeze-drying has a higher metabolite retention compared to MAHD. These results may prove useful for future experiments investigating antioxidant activity and added value to cannabis and hops.
Collapse
Affiliation(s)
- Philip Wiredu Addo
- Bioresource Engineering Department, McGill University, Macdonald Campus, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada; (P.W.A.)
| | - Zohreh Poudineh
- Bioresource Engineering Department, McGill University, Macdonald Campus, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada; (P.W.A.)
| | - Michelle Shearer
- Bloom Labs, 173 Dr Bernie MacDonald Drive, Bible Hill, NS B6L 2H5, Canada
| | - Nichole Taylor
- Bloom Labs, 173 Dr Bernie MacDonald Drive, Bible Hill, NS B6L 2H5, Canada
| | - Sarah MacPherson
- Bioresource Engineering Department, McGill University, Macdonald Campus, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada; (P.W.A.)
| | - Vijaya Raghavan
- Bioresource Engineering Department, McGill University, Macdonald Campus, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada; (P.W.A.)
| | - Valérie Orsat
- Bioresource Engineering Department, McGill University, Macdonald Campus, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada; (P.W.A.)
| | - Mark Lefsrud
- Bioresource Engineering Department, McGill University, Macdonald Campus, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada; (P.W.A.)
| |
Collapse
|
32
|
Tundis R, Xiao J, Silva AS, Carreiró F, Loizzo MR. Health-Promoting Properties and Potential Application in the Food Industry of Citrus medica L. and Citrus × clementina Hort. Ex Tan. Essential Oils and Their Main Constituents. PLANTS (BASEL, SWITZERLAND) 2023; 12:991. [PMID: 36903853 PMCID: PMC10005512 DOI: 10.3390/plants12050991] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 05/14/2023]
Abstract
Citrus is an important genus in the Rutaceae family, with high medicinal and economic value, and includes important crops such as lemons, orange, grapefruits, limes, etc. The Citrus species is rich sources of carbohydrates, vitamins, dietary fibre, and phytochemicals, mainly including limonoids, flavonoids, terpenes, and carotenoids. Citrus essential oils (EOs) consist of several biologically active compounds mainly belonging to the monoterpenes and sesquiterpenes classes. These compounds have demonstrated several health-promoting properties such as antimicrobial, antioxidant, anti-inflammatory, and anti-cancer properties. Citrus EOs are obtained mainly from peels, but also from leaves and flowers, and are widely used as flavouring ingredients in food, cosmetics, and pharmaceutical products. This review focused on the composition and biological properties of the EOs of Citrus medica L. and Citrus clementina Hort. Ex Tan and their main constituents, limonene, γ-terpinene, myrcene, linalool, and sabinene. The potential applications in the food industry have been also described. All the articles available in English or with an abstract in English were extracted from different databases such as PubMed, SciFinder, Google Scholar, Web of Science, Scopus, and Science Direct.
Collapse
Affiliation(s)
- Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Universidade de Vigo, Ourense Campus, E-32004 Ourense, Spain
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ana Sanches Silva
- National Institute for Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lágidos, Lugar da Madalena, Vairão, 4485-655 Vila do Conde, Portugal
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de St. Comba, 3000-548 Coimbra, Portugal
- Centre for Animal Science Studies (CECA), ICETA, University of Porto, 4501-401 Porto, Portugal
| | - Filipa Carreiró
- National Institute for Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lágidos, Lugar da Madalena, Vairão, 4485-655 Vila do Conde, Portugal
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de St. Comba, 3000-548 Coimbra, Portugal
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
33
|
Evaluation of the Anti-Inflammatory Properties of Mastic Oil Extracted from Pistacia lentiscus var. chia. IMMUNO 2023. [DOI: 10.3390/immuno3010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Mastic oil (MO) is extracted from the resin of the bark of Pistacia lentiscus var. chia, a tree abundantly grown in the Greek island of Chios. Various biological activities, such as antimicrobial, anticancer and antioxidant, have been associated with the dietary intake of MO. However, little is known about MO’s potential anti-inflammatory effects, while some of its main chemical constituents were reported to exert significant anti-inflammatory activity. This study aims to assay the bioactivity of MO on in vitro and in vivo experimental inflammation models, in particular on LPS-stimulated RAW264.7 macrophages, murine primary peritoneal macrophages and a model of zymosan-induced peritonitis in BALB/c mice. The per os administration of MO inhibited the recruitment of macrophages into the peritoneal cavity of zymosan-treated mice, but did not affect neutrophil mobilisation or the levels of IL-6 or TNF-α in the peritoneal fluid. Similarly, IL-6 and TNF-α secretion in primary LPS-stimulated macrophages was not affected by MO, but the levels of phosphoproteins that activate inflammation in macrophages were differentially regulated. Finally, MO and some of its individual constituents reduced nitric oxide (NO), prostaglandin E2 and TNF-α levels in supernatants of LPS-stimulated RAW264.7 cells and inhibited their phagocytosis rate. Our data imply that MO may promote an anti-inflammatory transition in macrophages due to the combined bioactivities of its individual constituents. Thus, as a mixture of various compounds, MO seems to affect multiple molecular mechanisms that are involved in the development of inflammation. Therefore, more research, focusing on MO’s individual constituents and employing various pre-clinical inflammation models that activate different mechanisms, is required for a detailed investigation of the oil’s potential anti-inflammatory activity.
Collapse
|
34
|
Antonelo FA, Rodrigues Soares M, Cruz LC, Pagnoncelli MG, Alves da Cunha MA, Bonatto SJR, Busso C, Júnior AW, Montanher PF. Bioactive compounds derived from Brazilian Myrtaceae species: Chemical composition and antioxidant, antimicrobial and cytotoxic activities. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
35
|
Hemp Seed Oil in Association with β-Caryophyllene, Myrcene and Ginger Extract as a Nutraceutical Integration in Knee Osteoarthritis: A Double-Blind Prospective Case-Control Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020191. [PMID: 36837393 PMCID: PMC9960141 DOI: 10.3390/medicina59020191] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Background and Objectives: Nutraceuticals are gaining more and more importance as a knee osteoarthritis (KOA) complementary treatment. Among nutraceuticals, hemp seed oil and terpenes are proving to be very useful as therapeutic support for many chronic diseases, but there are still few studies regarding their effectiveness for treating KOA, both in combination and separately. The aim of this study is thus to compare the effect of two dietary supplements, both containing hemp seed oil, but of which only one also contains terpenes, in relieving pain and improving joint function in patients suffering from KOA. Materials and Methods: Thirty-eight patients were recruited and divided into two groups. The control group underwent a 45 day treatment with a hemp seed oil-based dietary supplement, while the treatment group assumed a hemp seed oil and terpenes dietary supplement for the same period. Patients were evaluated at the enrollment (T0) and at the end of treatment (T1). Outcome measures were: Numeric Rating Scale (NRS), Oswestry Disability Index (ODI), Short-Form-12 (SF-12), Knee Injury Osteoarthritis Outcome Score (KOOS), and Oxford Knee Score (OKS). Results: All outcome measures improved at T1 in both groups, but NRS, KOOS and OKS had a greater significant improvement in the treatment group only. Conclusions: Hemp seed oil and terpenes resulted a more effective integrative treatment option in KOA, improving joint pain and function and representing a good complementary option for patients suffering from osteoarthritis.
Collapse
|
36
|
Alves-Silva JM, Gonçalves MJ, Silva A, Cavaleiro C, Cruz MT, Salgueiro L. Chemical Profile, Anti-Microbial and Anti-Inflammaging Activities of Santolina rosmarinifolia L. Essential Oil from Portugal. Antibiotics (Basel) 2023; 12:antibiotics12010179. [PMID: 36671380 PMCID: PMC9854695 DOI: 10.3390/antibiotics12010179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Fungal infections and the accompanying inflammatory responses are associated with great morbidity and mortality due to the frequent relapses triggered by an increased resistance to antifungal agents. Furthermore, this inflammatory state can be exacerbated during inflammaging and cellular senescence. Essential oils (EO) are receiving increasing interest in the field of drug discovery due to their lipophilic nature and complex composition, making them suitable candidates in the development of new antifungal drugs and modulators of numerous molecular targets. This work chemically characterized the EO from Santolina rosmarinifolia L., collected in Setúbal (Portugal), and assessed its antifungal potential by determining its minimum inhibitory (MIC) and minimum lethal (MLC) concentration in accordance with the Clinical Laboratory Standard Guidelines (CLSI) guidelines, as well as its effect on several Candida albicans virulence factors. The anti-inflammatory effect was unveiled using lipopolysaccharide (LPS)-stimulated macrophages by assessing several pro-inflammatory mediators. The wound healing and anti-senescence potential of the EO was also disclosed. The EO was mainly characterized by β-pinene (29.6%), borneol (16.9%), myrcene (15.4%) and limonene (5.7%). It showed a strong antifungal effect against yeasts and filamentous fungi (MIC = 0.07-0.29 mg/mL). Furthermore, it inhibited dimorphic transition (MIC/16), decreased biofilm formation with a preeminent effect after 24 h (MIC/2) and disrupted preformed biofilms in C. albicans. Additionally, the EO decreased nitric oxide (NO) release (IC50 = 0.52 mg/mL) and pro-IL-1β and inducible nitric oxide synthase (iNOS) expression in LPS-stimulated macrophages, promoted wound healing (91% vs. 81% closed wound) and reduced cellular senescence (53% vs. 73% β-galactosidase-positive cells). Overall, this study highlights the relevant pharmacological properties of S. rosmarinifolia, opening new avenues for its industrial exploitation.
Collapse
Affiliation(s)
- Jorge M. Alves-Silva
- Institute for Clinical and Biomedical Research, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
| | - Maria José Gonçalves
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Ana Silva
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Carlos Cavaleiro
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
37
|
Molecular Mechanisms Underlying the Anti-Inflammatory Properties of (R)-(-)-Carvone: Potential Roles of JNK1, Nrf2 and NF-κB. Pharmaceutics 2023; 15:pharmaceutics15010249. [PMID: 36678878 PMCID: PMC9865770 DOI: 10.3390/pharmaceutics15010249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
To explore the molecular mechanisms underlying the anti-inflammatory activity of (R)-(-)-carvone, we evaluated its ability to inhibit the signaling pathways involving the mitogen-activated protein kinases (MAPKs) and the transcription factor, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). (R)-(-)-carvone significantly decreased c-Jun N-terminal kinase (JNK) 1phosphorylation, but not that of the other MAPKs, induced by bacterial lipopolysaccharides (LPS) in the RAW 264.7 macrophage cell line. Although (R)-(-)-carvone significantly inhibited resynthesis of the inhibitor of NF-κB (IκB)-α induced by LPS, it did not interfere with the canonical NF-κB activation pathway, suggesting that it may interfere with its transcriptional activity. (R)-(-)-carvone also showed a tendency to decrease the levels of acetylated NF-κB/p65 in the nucleus, without affecting the activity and protein levels of Sirtuin-1, the major NF-κB/p65 deacetylating enzyme. Interestingly, the nuclear protein levels of the transcription factor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and the expression of its target,, heme oxygenase-1 (HO-1), an antioxidant enzyme, also showed a tendency to increase in the presence of (R)-(-)-carvone. Taken together, these results suggest that the ability of (R)-(-)-carvone to inhibit JNK1 and to activate Nrf2 can underlie its capacity to inhibit the transcriptional activity of NF-κB and the expression of its target genes. This study highlights the diversity of molecular mechanisms that can be involved in the anti-inflammatory activity of monoterpenes.
Collapse
|
38
|
Myrcene Salvages Rotenone-Induced Loss of Dopaminergic Neurons by Inhibiting Oxidative Stress, Inflammation, Apoptosis, and Autophagy. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020685. [PMID: 36677744 PMCID: PMC9863310 DOI: 10.3390/molecules28020685] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta, resulting in motor deficits. The exact etiology of PD is currently unknown; however, the pathological hallmarks of PD include excessive production of reactive oxygen species, enhanced neuroinflammation, and overproduction of α-synuclein. Under normal physiological conditions, aggregated α-synuclein is degraded via the autophagy lysosomal pathway. However, impairment of the autophagy lysosomal pathway results in α-synuclein accumulation, thereby facilitating the pathogenesis of PD. Current medications only manage the symptoms, but are unable to delay, prevent, or cure the disease. Collectively, oxidative stress, inflammation, apoptosis, and autophagy play crucial roles in PD; therefore, there is an enormous interest in exploring novel bioactive agents of natural origin for their protective roles in PD. The present study evaluated the role of myrcene, a monoterpene, in preventing the loss of dopaminergic neurons in a rotenone (ROT)-induced rodent model of PD, and elucidated the underlying mechanisms. Myrcene was administered at a dose of 50 mg/kg, 30 min prior to the intraperitoneal injections of ROT (2.5 mg/kg). Administration of ROT caused a considerable loss of dopaminergic neurons, subsequent to a significant reduction in the antioxidant defense systems, increased lipid peroxidation, and activation of microglia and astrocytes, along with the production of pro-inflammatory cytokines (IL-6, TNF-α, IL-1β) and matrix metalloproteinase-9. Rotenone also resulted in impairment of the autophagy lysosomal pathway, as evidenced by increased expression of LC3, p62, and beclin-1 with decreased expression in the phosphorylation of mTOR protein. Collectively, these factors result in the loss of dopaminergic neurons. However, myrcene treatment has been observed to restore antioxidant defenses and attenuate the increase in concentrations of lipid peroxidation products, pro-inflammatory cytokines, diminished microglia, and astrocyte activation. Myrcene treatment also enhanced the phosphorylation of mTOR, reinstated neuronal homeostasis, restored autophagy-lysosomal degradation, and prevented the increased expression of α-synuclein following the rescue of dopaminergic neurons. Taken together, our study clearly revealed the mitigating effect of myrcene on dopaminergic neuronal loss, attributed to its potent antioxidant, anti-inflammatory, and anti-apoptotic properties, and favorable modulation of autophagic flux. This study suggests that myrcene may be a potential candidate for therapeutic benefits in PD.
Collapse
|
39
|
Schoss K, Kočevar Glavač N, Kreft S. Volatile Compounds in Norway Spruce ( Picea abies) Significantly Vary with Season. PLANTS (BASEL, SWITZERLAND) 2023; 12:188. [PMID: 36616317 PMCID: PMC9824094 DOI: 10.3390/plants12010188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Norway spruce (Picea abies) is one of the most important commercial conifer species naturally distributed in Europe. In this paper, the composition and abundance of essential oil and hydrosol from the needles and branches of P. abies were investigated with an additional evaluation of changes related to different times of the year, annual shoots and branches, and differences in composition under different microenvironments. Essential oils and hydrosols obtained via hydrodistillation were analyzed using gas chromatography-mass spectrometry (GC-MS), where 246 compounds in essential oil and 53 in hydrosols were identified. The relative amounts of monoterpenes, sesquiterpenes, and diterpenes in essential oil changed significantly during the year, with the highest peak of monoterpenes observed in April (72%), the highest abundance of sesquiterpenes observed in August (21%), and the highest abundance of diterpenes observed in June (27%). The individual compound with the highest variation was manool, with variation from 1.5% (April) to 18.7% (June). Our results also indicate that the essential oil with the lowest allergenic potential (lowest quantity of limonene and linalool) was obtained in late spring or summer. Location had no significant influence on composition, while the method of collection for distillation (whole branch or annual shoots) had a minor influence on the composition. All nine main compounds identified in the hydrosol samples were oxygenated monoterpenes. The composition of P. abies hydrosol was also significantly affected by season. The method of preparing the branches for distillation did not affect the composition of P. abies hydrosol, while the location had a minor effect on composition.
Collapse
|
40
|
Ijinu TP, Prabha B, Pushpangadan P, George V. Essential Oil-Derived Monoterpenes in Drug Discovery and Development. DRUG DISCOVERY AND DESIGN USING NATURAL PRODUCTS 2023:103-149. [DOI: 10.1007/978-3-031-35205-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
41
|
Ashruf OS, Ansari MY. Natural Compounds: Potential Therapeutics for the Inhibition of Cartilage Matrix Degradation in Osteoarthritis. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010102. [PMID: 36676051 PMCID: PMC9866583 DOI: 10.3390/life13010102] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease characterized by enzymatic degradation of the cartilage extracellular matrix (ECM) causing joint pain and disability. There is no disease-modifying drug available for the treatment of OA. An ideal drug is expected to stop cartilage ECM degradation and restore the degenerated ECM. The ECM primarily contains type II collagen and aggrecan but also has minor quantities of other collagen fibers and proteoglycans. In OA joints, the components of the cartilage ECM are degraded by matrix-degrading proteases and hydrolases which are produced by chondrocytes and synoviocytes. Matrix metalloproteinase-13 (MMP-13) and a disintegrin and metalloproteinase with thrombospondin motifs 4 and 5 (ADAMTS5) are the major collagenase and aggrecanase, respectively, which are highly expressed in OA cartilage and promote cartilage ECM degradation. Current studies using various in vitro and in vivo approaches show that natural compounds inhibit the expression and activity of MMP-13, ADAMTS4, and ADAMTS5 and increase the expression of ECM components. In this review, we have summarized recent advancements in OA research with a focus on natural compounds as potential therapeutics for the treatment of OA with emphasis on the prevention of cartilage ECM degradation and improvement of joint health.
Collapse
Affiliation(s)
- Omer S. Ashruf
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209, State Route 44, Rootstown, OH 44272, USA
- College of Medicine, Northeast Ohio Medical University, 4209, State Route 44, Rootstown, OH 44272, USA
| | - Mohammad Yunus Ansari
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209, State Route 44, Rootstown, OH 44272, USA
- Musculoskeletal Research Focus Area, Northeast Ohio Medical University, 4209, State Route 44, Rootstown, OH 44272, USA
- Correspondence:
| |
Collapse
|
42
|
Meera M. Recent advances in the pharmacotherapy of osteoarthritis. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.84951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction: Osteoarthritis (OA) is a common debilitating disease affecting the geriatric population. Management of osteoarthritis is a challenge for orthopedicians because till date there has been no such drug that can completely cure the disease or at least retard/arrest the disease progression. In addition to the currently available treatment options for OA like NSAIDs, opioids, nutraceuticals (glucosamine sulphate and chondroitin sulphate), many new drugs are being discovered or repurposed for use in osteoarthritis. Most of these recent drugs aim at retarding the disease progression rather than providing just a symptomatic relief.
Materials and methods: All relevant articles regarding approved new drugs and pipeline drugs for osteoarthritis published between 2012–2021 were analysed. Those included animal studies as well as clinical trials. Some older articles were also referred to, provided they highlighted any significant data. The obtained data were analysed and compiled.
Results and discussion: Broadly the recent drugs for OA can be classified based upon their site of action as (i) drugs targeting articular cartilage, (ii) drugs targeting inflammation, (iii) drugs targeting the subchondral bone, and (iv) drugs for relieving pain. Ranging from in vitro studies to clinical trials, these drugs are in various phases of drug discovery. Early diagnosis of OA and its management with a drug that retards disease progression rather than prescribing just a symptom reliever is very much necessary in the current situation.
Conclusion: Need for new drugs for OA is increasing day by day. More number of clinical trials with larger sample sizes alone can satisfy the need of disease modifying drugs for OA. This review provides a deep insight into all the recent advances in the pharmacotherapy of osteoarthritis.
Graphical abstract:
Collapse
|
43
|
Almarzooqi S, Venkataraman B, Raj V, Alkuwaiti SAA, Das KM, Collin PD, Adrian TE, Subramanya SB. β-Myrcene Mitigates Colon Inflammation by Inhibiting MAP Kinase and NF-κB Signaling Pathways. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248744. [PMID: 36557879 PMCID: PMC9782154 DOI: 10.3390/molecules27248744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders that include Crohn's disease (CD) and ulcerative colitis (UC). The incidence of IBD is rising globally. However, the etiology of IBD is complex and governed by multiple factors. The current clinical treatment for IBD mainly includes steroids, biological agents and need-based surgery, based on the severity of the disease. Current drug therapy is often associated with adverse effects, which limits its use. Therefore, it necessitates the search for new drug candidates. In this pursuit, phytochemicals take the lead in the search for drug candidates to benefit from IBD treatment. β-myrcene is a natural phytochemical compound present in various plant species which possesses potent anti-inflammatory activity. Here we investigated the role of β-myrcene on colon inflammation to explore its molecular targets. We used 2% DSS colitis and TNF-α challenged HT-29 adenocarcinoma cells as in vivo and in vitro models. Our result indicated that the administration of β-myrcene in dextran sodium sulfate (DSS)-treated mice restored colon length, decreased disease activity index (DAI), myeloperoxidase (MPO) enzyme activity and suppressed proinflammatory mediators. β-myrcene administration suppressed mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) pathways to limit inflammation. β-myrcene also suppressed mRNA expression of proinflammatory chemokines in tumor necrosis factor-α (TNF-α) challenged HT-29 adenocarcinoma cells. In conclusion, β-myrcene administration suppresses colon inflammation by inhibiting MAP kinases and NF-κB pathways.
Collapse
Affiliation(s)
- Saeeda Almarzooqi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Balaji Venkataraman
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Vishnu Raj
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sultan Ali Abdulla Alkuwaiti
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Karuna M. Das
- Department of Radiology, Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | | | - Thomas E. Adrian
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Sandeep B. Subramanya
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence:
| |
Collapse
|
44
|
Kokilananthan S, Bulugahapitiya VP, Manawadu H, Gangabadage CS. Sesquiterpenes and monoterpenes from different varieties of guava leaf essential oils and their antioxidant potential. Heliyon 2022; 8:e12104. [PMID: 36568663 PMCID: PMC9768318 DOI: 10.1016/j.heliyon.2022.e12104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/05/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Despite that Sri Lanka is a biodiversity hotspot with numerous guava varieties (Psidium guajava L.), no adequate scientific research has been reported on leaf essential oil (EO) composition based on varieties and its pharmacological properties, namely antioxidant properties. Therefore, this study focused to evaluate the chemical compositions and antioxidative capacity of EOs isolated from leaves of seven guava varieties grown in Sri Lanka, including apple-guava (P. pomiferum , PGA), common-guava (P. guaja v a , PGCG), two wild-guava; cultivar of P. guajava (PGG) and a cultivar of P. guineense (PGE), two introduced varieties of P. guajava (PGK and PGP), and one introduced variety of P. guineense (PGC). The EOs were isolated using hydro-distillation and the chemical compositions were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS) technique, and the compounds that showed greater than 90% matching value were considered for characterization. The yields of EOs ranged from 0.02-0.26% (w/w) where PGE produced the greatest amount. About sixty-eight chemical compounds were identified from seven varieties and Sesquiterpenes were found to be the most abundant in the PGCG, PGG, PGE, and PGA varieties, whereas monoterpenes were found to be the most abundant in PGK, PGP, and PGC varieties. The sesquiterpenes, Nerolidol (70.0-7.9%), (-)-Globulol (21.0-7.0%), and Caryophyllene (20.4-1.4%) and monoterpenes, D-Limonene (30.3-14.1 %) were found as the major compounds of all studied guava varieties. Twenty-eight compounds were identified for the first time in guava EOs, including Cadinadiene-1,4, Benzylacetaldehyde, and Epiglobulol. The antioxidant efficacy of EOs varied from 329.56 ± 2.01 to 85.70 ± 2.01 μL Trolox Eq/L, where PGE showed the highest antioxidative potential. Ultimately, the chemical constituents and antioxidant capacity of isolated EOs varied with the variety, with EO from PGE leaves exerting an amazing antioxidant capacity compared to the others and being rich in Nerolidol. The findings of this study fill the gap in the literature on chemical constituents in the EO of guava leaves, and also it will open the avenue to discover novel potential compounds with outstanding pharmacological activities from guava leaves.
Collapse
|
45
|
Ghasemi-Gojani E, Kovalchuk I, Kovalchuk O. Cannabinoids and terpenes for diabetes mellitus and its complications: from mechanisms to new therapies. Trends Endocrinol Metab 2022; 33:828-849. [PMID: 36280497 DOI: 10.1016/j.tem.2022.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/29/2022] [Indexed: 11/05/2022]
Abstract
The number of people diagnosed with diabetes mellitus and its complications is markedly increasing worldwide, leading to a worldwide epidemic across all age groups, from children to older adults. Diabetes is associated with premature aging. In recent years, it has been found that peripheral overactivation of the endocannabinoid system (ECS), and in particular cannabinoid receptor 1 (CB1R) signaling, plays a crucial role in the progression of insulin resistance, diabetes (especially type 2), and its aging-related comorbidities such as atherosclerosis, nephropathy, neuropathy, and retinopathy. Therefore, it is suggested that peripheral blockade of CB1R may ameliorate diabetes and diabetes-related comorbidities. The use of synthetic CB1R antagonists such as rimonabant has been prohibited because of their psychiatric side effects. In contrast, phytocannabinoids such as cannabidiol (CBD) and tetrahydrocannabivarin (THCV), produced by cannabis, exhibit antagonistic activity on CB1R signaling and do not show any adverse side effects such as psychoactive effects, depression, or anxiety, thereby serving as potential candidates for the treatment of diabetes and its complications. In addition to these phytocannabinoids, cannabis also produces a substantial number of other phytocannabinoids, terpenes, and flavonoids with therapeutic potential against insulin resistance, diabetes, and its complications. In this review, the pathogenesis of diabetes, its complications, and the potential to use cannabinoids, terpenes, and flavonoids for its treatment are discussed.
Collapse
Affiliation(s)
| | - Igor Kovalchuk
- University of Lethbridge, Lethbridge, AB T1K3M4, Canada.
| | - Olga Kovalchuk
- University of Lethbridge, Lethbridge, AB T1K3M4, Canada.
| |
Collapse
|
46
|
Neocinnamomum caudatum Essential Oil Ameliorates Lipopolysaccharide-Induced Inflammation and Oxidative Stress in RAW 264.7 Cells by Inhibiting NF-κB Activation and ROS Production. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238193. [PMID: 36500283 PMCID: PMC9736579 DOI: 10.3390/molecules27238193] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Neocinnamomum caudatum (Lauraceae) plant is used in the traditional system of medicine and is considered a potential source of edible fruits, spices, flavoring agents and biodiesel. The leaves, bark and roots of the species are used by local communities for the treatment of inflammatory responses, such as allergies, sinusitis and urinary tract infections. However, there is no scientific evidence to support the molecular mechanism through which this plant exerts its anti-inflammatory effect. The aim of the current research was to characterize the chemical constituents of bark (NCB) and leaf (NCL) essential oil of N. caudatum and to elucidate its anti-inflammatory action in lipopolysaccharide (LPS)-treated RAW 264.7 cells. Essential oils extracted by hydrodistillation were further subjected to gas chromatography mass spectrometry (GC-MS) analysis. The major constituents in bark essential oil identified as β-pinene (13.11%), α-cadinol (11.18%) and α-pinene (10.99%), whereas leaf essential oil was found to be rich in β-pinene (45.21%), myrcene (9.97%) and α-pinene (9.27%). Treatment with NCB and NCL at a concentration of 25 µg/mL exerted significant anti-inflammatory activity by significantly reducing LPS-triggered nitric oxide (NO) production to 45.86% and 61.64%, respectively, compared to the LPS-treated group. In the LPS-treated group, the production of proinflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β, decreased after treatment with essential oil, alleviating the mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2. The essential oil also inhibited the production of intracellular ROS and attenuated the depletion of mitochondrial membrane potential in a concentration-dependent manner. Pretreatment with NCB also reduced nuclear factor kappa-B (NF-κB)/p65 translocation and elevated the levels of endogenous antioxidant enzymes in LPS-induced macrophages. The present findings, for the first time, demonstrate the anti-inflammatory potential of both bark and leaf essential oils of N. caudatum. The bark essential oil exhibited a significantly more important anti-inflammatory effect than the leaf essential oil and could be used as a potential therapeutic agent for the treatment of inflammatory diseases.
Collapse
|
47
|
Soares KD, Bordignon SAL, Apel MA. Chemical composition and anti-inflammatory activity of the essential oils of Piper gaudichaudianum and Piper mikanianum. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115533. [PMID: 35840057 DOI: 10.1016/j.jep.2022.115533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/27/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammation is the body's normal protective response to injury and is stimulated by pathogens, toxic compounds, damaged cells or radiation, promoting healing and restoring homeostasis to the injured tissue. Leaves of Piper gaudichaudianum Kunth, known as "pariparoba" are widely used in folk medicine for the relief of toothache, while the fresh roots are used as anti-inflammatory and to treat liver disorders. For P. mikanianum (Kunth) Steud is known as "aguaxima", is widely used in the treatment of inflammation, rheumatism and ulcer, with its roots being used for stomach disorders and as a diaphoretic in intermittent fevers. AIM OF THE STUDY Therefore, this work aims to chemically characterize the essential oil of Piper gaudichaudianum and Piper mikanianum, as well as the evaluation of neutrophil antichemotactic activity of both essential oils in order to complement the information of its traditional use, taking the leaves as plant material and, with that, corroborating its use in folk medicine for the treatment of inflammatory diseases. MATERIALS AND METHODS The essential oil from leaves of both Piper species were obtained from crushed fresh samples, by hydrodistillation using a Clevenger type-apparatus for 4 h. The yield determination was performed as vol/wt (v/w) and in triplicate. The amount of essential oil obtained was quantified in mL. The identification and quantification of the compounds was performed using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detection (GC-FID). The in vitro anti-inflammatory activity was evaluated using the model of modified Boyden chamber. In this test the essential oils were tested for their ability to inhibit leukocyte chemotaxis stimulated by Escherichia coli lipopolysaccharide. RESULTS The chemical composition of the essential oils revealed the identification of 26 constituents for P. gaudichaudianum being the sesquiterpenes β-selinene (14.0%) and viridiflorene (10.5%) the main compounds, followed by caryophyllene oxide (9.3%) and (E)-nerolidol (9.0%). For P. mikanianum essential oil, β-myrcene (17.2%) and bicyclogermacrene (26.3%) were the major components in the monoterpenes and sesquiterpene fractions, respectively. The essential oils were also tested for their ability to inhibit neutrophil chemotaxis in vitro when stimulated by Escherichia coli lipopolysaccharide. Both essential oils showed antichemotactic effect with reduction in migration of 0-72.2% for P. gaudichaudianum and 8.6-100% for P. mikanianum to same concentrations, suggesting a response to acute inflammatory processes. CONCLUSIONS Since up to date there is no report of this biological activities by this mechanism (antichemotactic assay) for essential oils this species. These results showed that the essential oils of P. gaudichaudianum and P. mikanianum have a great capacity to inhibit neutrophil chemotaxis in an inflammatory process, in a dose-dependent way, suggesting anti-inflammatory potential, by preventing its accumulation at the injury site with the possibility of tissue damage. Findings of these studies support the traditional use of these species in the treatment of inflammatory processes.
Collapse
Affiliation(s)
- Krissie D Soares
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Sérgio A L Bordignon
- Environmental Impact Assessment Graduate Program, La Salle University Center, Canoas, Rio Grande do Sul, Brazil
| | - Miriam A Apel
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
48
|
Xiang L, He P, Shu G, Yuan M, Wen M, Lan X, Liao Z, Tang Y. AabHLH112, a bHLH transcription factor, positively regulates sesquiterpenes biosynthesis in Artemisia annua. FRONTIERS IN PLANT SCIENCE 2022; 13:973591. [PMID: 36119570 PMCID: PMC9478121 DOI: 10.3389/fpls.2022.973591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The bHLH transcription factors play important roles in the regulation of plant growth, development, and secondary metabolism. β-Caryophyllene, epi-cedrol, and β-farnesene, three kinds of sesquiterpenes mainly found in plants, are widely used as spice in the food industry and biological pesticides in agricultural production. Furthermore, they also have a significant value in the pharmaceutical industry. However, there is currently a lack of knowledge on the function of bHLH family TFs in β-caryophyllene, epi-cedrol, and β-farnesene biosynthesis. Here, we found that AabHLH112 transcription factor had a novel function to positively regulate β-carophyllene, epi-cedrol, and β-farnesene biosynthesis in Artemisia annua. Exogenous MeJA enhanced the expression of AabHLH112 and genes of β-caryophyllene synthase (CPS), epi-cedrol synthase (ECS), and β-farnesene synthase (BFS), as well as sesquiterpenes content. Dual-LUC assay showed the activation of AaCPS, AaECS, and AaBFS promoters were enhanced by AabHLH112. Yeast one-hybrid assay showed AabHLH112 could bind to the G-box (CANNTG) cis-element in promoters of both AaCPS and AaECS. In addition, overexpression of AabHLH112 in A. annua significantly elevated the expression levels of AaCPS, AaECS, and AaBFS as well as the contents of β-caryophyllene, epi-cedrol, and β-farnesene, while suppressing AabHLH112 expression by RNAi reduced the expression of the three genes and the contents of the three sesquiterpenes. These results suggested that AabHLH112 is a positive regulator of β-caryophyllene, epi-cedrol, and β-farnesene biosynthesis in A. annua.
Collapse
Affiliation(s)
- Lien Xiang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Tibet Agriculture and Animal Husbandry College and Southwest University (TAAHC-SWU) Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Ping He
- Chongqing Academy of Science and Technology, Chongqing, China
| | - Guoping Shu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Tibet Agriculture and Animal Husbandry College and Southwest University (TAAHC-SWU) Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Mingyuan Yuan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Tibet Agriculture and Animal Husbandry College and Southwest University (TAAHC-SWU) Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Mengling Wen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Tibet Agriculture and Animal Husbandry College and Southwest University (TAAHC-SWU) Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiaozhong Lan
- The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, China
| | - Zhihua Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Tibet Agriculture and Animal Husbandry College and Southwest University (TAAHC-SWU) Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Academy of Science and Technology, Chongqing, China
| | - Yueli Tang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Tibet Agriculture and Animal Husbandry College and Southwest University (TAAHC-SWU) Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
49
|
Mariano A, Bigioni I, Misiti F, Fattorini L, d’Abusco AS, Rodio A. The Nutraceuticals as Modern Key to Achieve Erythrocyte Oxidative Stress Fighting in Osteoarthritis. Curr Issues Mol Biol 2022; 44:3481-3495. [PMID: 36005136 PMCID: PMC9406754 DOI: 10.3390/cimb44080240] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA), the most common joint disease, shows an increasing prevalence in the aging population in industrialized countries. OA is characterized by low-grade chronic inflammation, which causes degeneration of all joint tissues, such as articular cartilage, subchondral bone, and synovial membrane, leading to pain and loss of functionality. Erythrocytes, the most abundant blood cells, have as their primary function oxygen transport, which induces reactive oxygen species (ROS) production. For this reason, the erythrocytes have several mechanisms to counteract ROS injuries, which cause damage to lipids and proteins of the cell membrane. Oxidative stress and inflammation are highly correlated and are both causes of joint disorders. In the synovial fluid and blood of osteoarthritis patients, erythrocyte antioxidant enzyme expression is decreased. To date, OA is a non-curable disease, treated mainly with non-steroidal anti-inflammatory drugs and corticosteroids for a prolonged period of time, which cause several side effects; thus, the search for natural remedies with anti-inflammatory and antioxidant activities is always ongoing. In this review, we analyze several manuscripts describing the effect of traditional remedies, such as Harpagophytum procumbens, Curcumin longa, and Boswellia serrata extracts, in the treatments of OA for their anti-inflammatory, analgesic, and antioxidant activity. The effects of such remedies have been studied both in in vitro and in vivo models, considering both joint cells and erythrocytes.
Collapse
Affiliation(s)
- Alessia Mariano
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Irene Bigioni
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Misiti
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, 03043 Cassino, Italy
- Correspondence:
| | - Luigi Fattorini
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Anna Scotto d’Abusco
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Angelo Rodio
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, 03043 Cassino, Italy
| |
Collapse
|
50
|
Anti-Inflammatory and Analgesic Properties of the Cannabis Terpene Myrcene in Rat Adjuvant Monoarthritis. Int J Mol Sci 2022; 23:ijms23147891. [PMID: 35887239 PMCID: PMC9319952 DOI: 10.3390/ijms23147891] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/03/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022] Open
Abstract
Cannabis-based terpenes are believed to modulate physiological responses to disease and alter the efficacy of cannabinoids in the so-called “entourage effect”. The monoterpene myrcene can reduce nociception produced by noxious thermal and mechanical stimuli as well as reducing acute inflammation. The current study examined the role of myrcene and cannabidiol (CBD) in controlling chronic joint inflammation and pain. Chronic arthritis was induced in male Wistar rats by intra-articular injection of Freund’s complete adjuvant into the right knee. On days 7 and 21 after arthritis induction, joint pain (von Frey hair algesiometry), inflammation (intravital microscopy, laser speckle contrast analysis) and joint histopathology were assessed. Local application of myrcene (1 and 5 mg/kg s.c.) reduced joint pain and inflammation via a cannabinoid receptor mechanism. The combination of myrcene and CBD (200 μg) was not significantly different from myrcene alone. Repeated myrcene treatment had no effect on joint damage or inflammatory cytokine production. These data suggest that topical myrcene has the potential to reduce chronic arthritis pain and inflammation; however, it has no synergistic effect with CBD.
Collapse
|