1
|
He MT, Shin YS, Kim HY, Cho EJ. Carthamus tinctorius seeds- Taraxacum coreanum combination attenuates scopolamine-induced memory deficit through regulation of inflammatory response and cholinergic function. Nutr Res Pract 2024; 18:647-662. [PMID: 39398878 PMCID: PMC11464282 DOI: 10.4162/nrp.2024.18.5.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND/OBJECTIVES There is growing interest in herbal medicines for managing age-related diseases, such as Alzheimer's and Parkinson's. Safflower seeds (Carthamus tinctorius L. seeds, CTS) and dandelions (Taraxacum coreanum, TC) are widely used to treat bone- or inflammation-related diseases in Oriental countries. This study investigated the protective effect of the CTS-TC combination on scopolamine (Sco)-induced memory deficits through inflammatory response and cholinergic function. Moreover, marker components such as serotonin, N-(p-coumaroyl) serotonin, N-feruloylserotonin, chlorogenic acid, and chicoric acid in the CTS-TC combination were analyzed for their potential benefits on memory function. MATERIALS/METHODS Water extracts of CTS, TC, and the CTS-TC combination at various ratios (4:1, 1:1, and 1:4) (100 mg/kg) were orally administered to mice for 14 days. Sco (1 mg/kg) was intraperitoneally injected into the mice before each behavioral test. T-maze and novel object recognition tests were conducted to monitor behavioral changes after the treatment. Western blotting was performed to detect protein expression. In addition, the presence of 5 biomarkers, serotonin, N-(p-coumaroyl) serotonin, N-feruloylserotonin, chlorogenic acid, and chicoric acid, was analyzed using high-performance liquid chromatography (HPLC). RESULTS Behavioral tests showed that the CTS-TC combination enhanced memory function in Sco-injected mice. Inflammation-related proteins (inducible nitric oxide synthase, cyclooxygenase-2, and glial fibrillary acidic protein) were downregulated after treatment with the CTS-TC combination. The acetylcholinesterase protein expression was also downregulated. HPLC analysis revealed that N-feruloylserotonin and chicoric acid were the predominant components, followed by N-(p-coumaroyl) serotonin, chlorogenic acid, and serotonin. CONCLUSION These findings suggest that the CTS-TC combination protects against Sco-induced memory deficits by inhibiting inflammatory responses and cholinergic dysfunction. N-feruloylserotonin and chicoric acid, along with N-(p-coumaroyl) serotonin, chlorogenic acid, and serotonin, might be biomarkers for the CTS-TC combination, and their effects on memory protection warrant further study.
Collapse
Affiliation(s)
- Mei Tong He
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea
| | - Yu-Su Shin
- Department of Ginseng and Medicinal Herb, National Institute of Horticulture Herbal Science, Rural Development Administration, Eumseong 27709, Korea
| | - Hyun Young Kim
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Korea
- BK21 FOUR Program: Precision Nutrition Program for Future Global Leaders, Pusan National University, Busan 46241, Korea
| |
Collapse
|
2
|
Youn K, Jun M. Determination of Potential Lead Compound from Magnolia officinalis for Alzheimer's Disease through Pharmacokinetic Prediction, Molecular Docking, Dynamic Simulation, and Experimental Validation. Int J Mol Sci 2024; 25:10507. [PMID: 39408835 PMCID: PMC11477134 DOI: 10.3390/ijms251910507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Amyloid β protein (Aβ) deposition has been implicated as the molecular driver of Alzheimer's disease (AD) progression. The modulation of the formation of abnormal aggregates and their post-translational modification is strongly suggested as the most effective approach to anti-AD. Beta-site APP-cleaving enzyme 1 (BACE1) acts upstream in amyloidogenic processing to generate Aβ, which rapidly aggregates alone or in combination with acetylcholinesterase (AChE) to form fibrils. Accumulated Aβ promotes BACE1 activation via glycogen synthase kinase-3β (GSK-3β) and is post-translationally modified by glutaminyl cyclase (QC), resulting in increased neurotoxicity. A novel multi-target inhibitor as a potential AD agent was identified using an in silico approach and experimental validation. Magnolia officinalis, which showed the best anti-AD activity in our preliminary study, was subjected to analysis, and 82 compounds were studied. Among 23 compounds with drug-likeness, blood-brain barrier penetration, and safety, honokiol emerged as a lead structure for the inhibition of BACE1, AChE, QC, and GSK-3β in docking and molecular dynamics (MD) simulations. Furthermore, honokiol was found to be an excellent multi-target inhibitor of these enzymes with an IC50 of 6-90 μM, even when compared to other natural single-target inhibitors. Taken together, the present study is the first to demonstrate that honokiol acts as a multiple enzyme inhibitor with an excellent pharmacokinetic and safety profile which may provide inhibitory effects in broad-range areas including the overproduction, aggregation, and post-translational modification of Aβ. It also provides insight into novel structural features for the design and discovery of multi-target inhibitors for anti-AD.
Collapse
Affiliation(s)
- Kumju Youn
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea;
- Center for Food & Bio Innovation, Dong-A University, Busan 49315, Republic of Korea
| | - Mira Jun
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea;
- Center for Food & Bio Innovation, Dong-A University, Busan 49315, Republic of Korea
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
3
|
Li H, Sun J, Wu Y, Yang Y, Zhang W, Tian Y. Honokiol relieves hippocampal neuronal damage in Alzheimer's disease by activating the SIRT3-mediated mitochondrial autophagy. CNS Neurosci Ther 2024; 30:e14878. [PMID: 39097923 PMCID: PMC11298204 DOI: 10.1111/cns.14878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND This work elucidated the effect of honokiol (HKL) on hippocampal neuronal mitochondrial function in Alzheimer's disease (AD). METHODS APP/PS1 mice were used as AD mice models and exposed to HKL and 3-TYP. Morris water maze experiment was performed to appraise cognitive performance of mice. Hippocampal Aβ+ plaque deposition and neuronal survival was evaluated by immunohistochemistry and Nissl staining. Hippocampal neurons were dissociated from C57BL/6 mouse embryos. Hippocampal neuronal AD model was constructed by Aβ oligomers induction and treated with HKL, CsA and 3-TYP. Neuronal viability and apoptosis were detected by cell counting kit-8 assay and TUNEL staining. mRFP-eGFP-LC3 assay, MitoSOX Red, dichlorodihydrofluorescein diacetate, and JC-1 staining were performed to monitor neuronal autophagosomes, mitochondrial reactive oxygen species (ROS), neuronal ROS, and mitochondrial membrane potential. Autophagy-related proteins were detected by Western blot. RESULTS In AD mice, HKL improved cognitive function, relieved hippocampal Aβ1-42 plaque deposition, promoted hippocampal neuron survival, and activated hippocampal SIRT3 expression and mitochondrial autophagy. These effects of HKL on AD mice were abolished by 3-TYP treatment. In hippocampal neuronal AD model, HKL increased neuronal activity, attenuated neuronal apoptosis and Aβ aggregation, activated SIRT3 and mitochondrial autophagy, reduced mitochondrial and neuronal ROS, and elevated mitochondrial membrane potential. CsA treatment and 3-TYP treatment abrogated the protection of HKL on hippocampal neuronal AD model. The promotion of mitochondrial autophagy by HKL in hippocampal neuronal AD model was counteracted by 3-TYP. CONCLUSIONS HKL activates SIRT3-mediated mitochondrial autophagy to mitigate hippocampal neuronal damage in AD. HKL may be effective in treating AD.
Collapse
Affiliation(s)
- Haitao Li
- Department of Neurology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Jinmei Sun
- Department of Neurology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Yili Wu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Wenzhou Kangning Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang ProvinceWenzhou Medical University, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| | - Yishu Yang
- Department of Neurology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Wei Zhang
- Department of Neurology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Yuanruhua Tian
- Department of Neurology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
4
|
Wang YK, Lin H, Wang SR, Bian RT, Tong Y, Zhang WT, Cui YL. Application and mechanisms of Sanhua Decoction in the treatment of cerebral ischemia-reperfusion injury. World J Clin Cases 2024; 12:688-699. [PMID: 38322692 PMCID: PMC10841129 DOI: 10.12998/wjcc.v12.i4.688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024] Open
Abstract
Cerebral ischemia-reperfusion is a process in which the blood supply to the brain is temporarily interrupted and subsequently restored. However, it is highly likely to lead to further aggravation of pathological damage to ischemic tissues or the nervous system., and has accordingly been a focus of extensive clinical research. As a traditional Chinese medicinal formulation, Sanhua Decoction has gradually gained importance in the treatment of cerebrovascular diseases. Its main constituents include Citrus aurantium, Magnolia officinalis, rhubarb, and Qiangwu, which are primarily used to regulate qi. In the treatment of neurological diseases, the therapeutic effects of the Sanhua Decoction are mediated via different pathways, including antioxidant, anti-inflammatory, and neurotransmitter regulatory pathways, as well as through the protection of nerve cells and a reduction in cerebral edema. Among the studies conducted to date, many have found that the application of Sanhua Decoction in the treatment of neurological diseases has clear therapeutic effects. In addition, as a natural treatment, the Sanhua Decoction has received widespread attention, given that it is safer and more effective than traditional Western medicines. Consequently, research on the mechanisms of action and efficacy of the Sanhua Decoctions in the treatment of cerebral ischemia-reperfusion injury is of considerable significance. In this paper, we describe the pathogenesis of cerebral ischemia-reperfusion injury and review the current status of its treatment to examine the therapeutic mechanisms of action of the Sanhua Decoction. We hope that the findings of the research presented herein will contribute to a better understanding of the efficacy of this formulation in the treatment of cerebral ischemia-reperfusion, and provide a scientific basis for its application in clinical practice.
Collapse
Affiliation(s)
- Ya-Kuan Wang
- Department of Encephalopathy, The Second Clinical College of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- Department of Encephalopathy, Henan Provincial Hospital of Integrated Chinese and Western Medicine, Zhengzhou 450000, Henan Province, China
| | - Huang Lin
- Department of Traditional Chinese Medicine Classics, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou 450000, Henan Province, China
| | - Shu-Rui Wang
- Department of Encephalopathy, The Second Clinical College of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Ru-Tao Bian
- Department of Central Laboratory, Zhengzhou Traditional Chinese Medicine Hospital, Zhengzhou 450000, Henan Province, China
| | - Yang Tong
- Department of Encephalopathy, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou 450000, Henan Province, China
| | - Wen-Tao Zhang
- Department of Encephalopathy, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou 450000, Henan Province, China
| | - Ying-Lin Cui
- Famous Doctor Hall, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou 450000, Henan Province, China
| |
Collapse
|
5
|
Faysal M, Khan J, Zehravi M, Nath N, Singh LP, Kakkar S, Perusomula R, Khan PA, Nainu F, Asiri M, Khan SL, Das R, Emran TB, Wilairatana P. Neuropharmacological potential of honokiol and its derivatives from Chinese herb Magnolia species: understandings from therapeutic viewpoint. Chin Med 2023; 18:154. [PMID: 38001538 PMCID: PMC10668527 DOI: 10.1186/s13020-023-00846-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/30/2023] [Indexed: 11/26/2023] Open
Abstract
Honokiol is a neolignan biphenol found in aerial parts of the Magnolia plant species. The Magnolia plant species traditionally belong to China and have been used for centuries to treat many pathological conditions. Honokiol mitigates the severity of several pathological conditions and has the potential to work as an anti-inflammatory, anti-angiogenic, anticancer, antioxidant, and neurotherapeutic agent. It has a long history of being employed in the healthcare practices of Southeast Asia, but in recent years, a greater scope of research has been conducted on it. Plenty of experimental evidence suggests it could be beneficial as a neuroprotective bioactive molecule. Honokiol has several pharmacological effects, leading to its exploration as a potential therapy for neurological diseases (NDs), including Alzheimer's disease (AD), Parkinson's disease (PD), cerebral ischemia, anxiety, depression, spinal cord injury, and so on. So, based on the previous experimentation reports, our goal is to discuss the neuroprotective properties of honokiol. Besides, honokiol derivatives have been highlighted recently as possible therapeutic options for NDs. So, this review focuses on honokiol's neurotherapeutic actions and toxicological profile to determine their safety and potential use in neurotherapeutics.
Collapse
Affiliation(s)
- Md Faysal
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Jishan Khan
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, 4318, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, 51418, Buraydah, Saudi Arabia.
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, 4318, Bangladesh
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Jamuhar, Sasaram, (Rohtas), Bihar, 821305, India
| | - Saloni Kakkar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Rajashekar Perusomula
- Cognitive Science Research Initiative Lab, Vishnu Institute of Pharmaceutical Education & Research, Narsapur, India
| | - Pathan Amanulla Khan
- Department of Pharmacy Practice, Anwar Ul Uloom College of Pharmacy, New Mallepally, Hyderabad, India
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Mohammed Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, Maharashtra, 413520, India
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA.
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
6
|
Chang Y, Wang C, Zhu J, Zheng S, Sun S, Wu Y, Jiang X, Li L, Ma R, Li G. SIRT3 ameliorates diabetes-associated cognitive dysfunction via regulating mitochondria-associated ER membranes. J Transl Med 2023; 21:494. [PMID: 37481555 PMCID: PMC10362714 DOI: 10.1186/s12967-023-04246-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/05/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Diabetes is associated with an increased risk of cognitive decline and dementia. These diseases are linked with mitochondrial dysfunction, most likely as a consequence of excessive formation of mitochondria-associated membranes (MAMs). Sirtuin3 (SIRT3), a key mitochondrial NAD+-dependent deacetylase, is critical responsible for mitochondrial functional homeostasis and is highly associated with neuropathology. However, the role of SIRT3 in regulating MAM coupling remains unknown. METHODS Streptozotocin-injected diabetic mice and high glucose-treated SH-SY5Y cells were established as the animal and cellular models, respectively. SIRT3 expression was up-regulated in vivo using an adeno-associated virus in mouse hippocampus and in vitro using a recombinant lentivirus vector. Cognitive function was evaluated using behavioural tests. Hippocampus injury was assessed using Golgi and Nissl staining. Apoptosis was analysed using western blotting and TUNEL assay. Mitochondrial function was detected using flow cytometry and confocal fluorescence microscopy. The mechanisms were investigated using co-immunoprecipitation of VDAC1-GRP75-IP3R complex, fluorescence imaging of ER and mitochondrial co-localisation and transmission electron microscopy of structural analysis of MAMs. RESULTS Our results demonstrated that SIRT3 expression was significantly reduced in high glucose-treated SH-SY5Y cells and hippocampal tissues from diabetic mice. Further, up-regulating SIRT3 alleviated hippocampus injuries and cognitive impairment in diabetic mice and mitigated mitochondrial Ca2+ overload-induced mitochondrial dysfunction and apoptosis. Mechanistically, MAM formation was enhanced under high glucose conditions, which was reversed by genetic up-regulation of SIRT3 via reduced interaction of the VDAC1-GRP75-IP3R complex in vitro and in vivo. Furthermore, we investigated the therapeutic effects of pharmacological activation of SIRT3 in diabetic mice via honokiol treatment, which exhibited similar effects to our genetic interventions. CONCLUSIONS In summary, our findings suggest that SIRT3 ameliorates cognitive impairment in diabetic mice by limiting aberrant MAM formation. Furthermore, targeting the activation of SIRT3 by honokiol provides a promising therapeutic candidate for diabetes-associated cognitive dysfunction. Overall, our study suggests a novel role of SIRT3 in regulating MAM coupling and indicates that SIRT3-targeted therapies are promising for diabetic dementia patients.
Collapse
Affiliation(s)
- Yanmin Chang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cailin Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiahui Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Siyi Zheng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shangqi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanqing Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xingjun Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lulu Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Gang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
7
|
Dai X, Xie L, Liu K, Liang Y, Cao Y, Lu J, Wang X, Zhang X, Li X. The Neuropharmacological Effects of Magnolol and Honokiol: A Review of Signal Pathways and Molecular Mechanisms. Curr Mol Pharmacol 2023; 16:161-177. [PMID: 35196977 DOI: 10.2174/1874467215666220223141101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 11/22/2022]
Abstract
Magnolol and honokiol are natural lignans with good physiological effects. As the main active substances derived from Magnolia officinalis, their pharmacological activities have attracted extensive attention. It is reported that both of them can cross the blood-brain barrier (BBB) and exert neuroprotective effects through a variety of mechanisms. This suggests that these two ingredients can be used as effective therapeutic compounds to treat a wide range of neurological diseases. This article provides a review of the mechanisms involved in the therapeutic effects of magnolol and honokiol in combating diseases, such as cerebral ischemia, neuroinflammation, Alzheimer's disease, and brain tumors, as well as psychiatric disorders, such as anxiety and depression. Although magnolol and honokiol have the pharmacological effects described above, their clinical potential remains untapped. More research is needed to improve the bioavailability of magnolol and honokiol and perform experiments to examine the therapeutic potential of magnolol and honokiol.
Collapse
Affiliation(s)
- Xiaolin Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Kai Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Youdan Liang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yi Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jing Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xian Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xumin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| |
Collapse
|
8
|
Lian B, Gu J, Zhang C, Zou Z, Yu M, Li F, Wu X, Zhao AZ. Protective effects of isofraxidin against scopolamine-induced cognitive and memory impairments in mice involve modulation of the BDNF-CREB-ERK signaling pathway. Metab Brain Dis 2022; 37:2751-2762. [PMID: 35921056 DOI: 10.1007/s11011-022-00980-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Isofraxidin is a coumarin compound mainly isolated from several traditional and functional edible plants beneficial for neurodegenerative diseases, including Sarcandra glabra and Apium graveolens, and Siberian Ginseng. OBJECTIVE This study aimed to assess effects of isofraxidin against memory impairments and cognition deficits in a scopolamine-induced mouse model. MATERIALS & METHODS Animals were randomly divided into 6 groups, control, vehicle, donepezil (10 mg/kg, p.o.), and isofraxidin (3, 10, and 30 mg/kg, p.o.). Isofraxidin or donepezil was administered for 44 days, once per day. The scopolamine insults (1 mg/kg, i.p.) was given from the 21st day, once per day. Morris water maze test and Y-maze test were used for the behavioral test. After that, brain samples were collected for analysis. RESULTS Firstly, isofraxidin significantly improved scopolamine-induced behavioral impairments and cognition deficits in Morris water maze and Y-maze test. Then, isofraxidin facilitated cholinergic activity via inhibiting acetylcholinesterase (AChE) activity. Besides, isofraxidin decreased lipid peroxidation level but enhanced levels of glutathione, glutathione peroxidase, and superoxide dismutase. Moreover, isofraxidin suppressed the expression of inflammatory mediators and cytokines. Further investigations showed that isofraxidin up-regulated expression of brain-derived neurotrophic factor (BDNF), and promoted phosphorylation of tropomyosin-related kinase B (TrkB), cyclic AMP-response element-binding protein (CREB), and extracellular signal-regulated kinase (ERK). DISCUSSION & CONCLUSIONS These results suggested that isofraxidin ameliorated scopolamine-induced cognitive and memory impairments, possibly through regulating AChE activity, suppressing oxidative stress and inflammatory response, and modulating BDNF-CREB-ERK pathways.
Collapse
Affiliation(s)
- Bingliang Lian
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Jingwen Gu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Chen Zhang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Zhicong Zou
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Meng Yu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Fanghong Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Xiaoli Wu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Allan Zijian Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
9
|
Zhu S, Liu F, Zhang R, Xiong Z, Zhang Q, Hao L, Chen S. Neuroprotective Potency of Neolignans in Magnolia officinalis Cortex Against Brain Disorders. Front Pharmacol 2022; 13:857449. [PMID: 35784755 PMCID: PMC9244706 DOI: 10.3389/fphar.2022.857449] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/20/2022] [Indexed: 12/03/2022] Open
Abstract
In recent years, neurological diseases including Alzheimer’s disease, Parkinson’s disease and stroke are one of the main causes of death in the world. At the same time, the incidence of psychiatric disorders including depression and anxiety has been increasing. Accumulating elderly and stressed people suffer from these brain disorders, which is undoubtedly a huge burden on the modern aging society. Neolignans, the main active ingredients in Magnolia officinalis cortex, were reported to have neuroprotective effects. In addition, the key bioactive ingredients of neolignans, magnolol (1) and honokiol (2), were proved to prevent and treat neurological diseases and psychiatric disorders by protecting nerve cells and brain microvascular endothelial cells (BMECs). Furthermore, neolignans played a role in protecting nerve cells via regulation of neuronal function, suppression of neurotoxicity, etc. This review summarizes the neuroprotective effect, primary mechanisms of the leading neolignans and provides new prospects for the treatment of brain disorders in the future.
Collapse
Affiliation(s)
- Shun Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fang Liu, ; Shiyin Chen,
| | - Ruiyuan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zongxiang Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Hao
- Huarun Sanjiu (ya’an) Pharmaceutical Group Co., LTD., Ya’an, China
| | - Shiyin Chen
- Department of Orthopedics of Traditional Chinese Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Fang Liu, ; Shiyin Chen,
| |
Collapse
|
10
|
Qu C, Li QP, Su ZR, Ip SP, Yuan QJ, Xie YL, Xu QQ, Yang W, Huang YF, Xian YF, Lin ZX. Nano-Honokiol ameliorates the cognitive deficits in TgCRND8 mice of Alzheimer's disease via inhibiting neuropathology and modulating gut microbiota. J Adv Res 2022; 35:231-243. [PMID: 35024199 PMCID: PMC8721355 DOI: 10.1016/j.jare.2021.03.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/08/2021] [Accepted: 03/28/2021] [Indexed: 01/05/2023] Open
Abstract
Introduction Honokiol (HO) exerts neuroprotective effects in several animal models of Alzheimer's disease (AD), but the poor dissolution hampers its bioavailability and therapeutic efficacy. Objectives A novel honokiol nanoscale drug delivery system (Nano-HO) with smaller size and excellent stability was developed in this study to improve the solubility and bioavailability of HO. The anti-AD effects of Nano-HO was determined. Methods Male TgCRND8 mice were daily orally administered Nano-HO or HO at the same dosage (20 mg/kg) for 17 consecutive weeks, followed by assessment of the spatial learning and memory functions using the Morris Water Maze test (MWMT). Results Our pharmacokinetic study indicated that the oral bioavailability was greatly improved by Nano-HO. In addition, Nano-HO significantly improved cognitive deficits and inhibited neuroinflammation via suppressing the levels of TNF-α, IL-6 and IL-1β in the brain, preventing the activation of microglia (IBA-1) and astrocyte (GFAP), and reducing β-amyloid (Aβ) deposition in the cortex and hippocampus of TgCRND8 mice. Moreover, Nano-HO was more effective than HO in modulating amyloid precursor protein (APP) processing via suppressing β-secretase, as well as enhancing Aβ-degrading enzymes like neprilysin (NEP). Furthermore, Nano-HO more markedly inhibited tau hyperphosphorylation via decreasing the ratio of p-Tau (Thr 205)/tau and regulating tau-related apoptosis proteins (caspase-3 and Bcl-2). In addition, Nano-HO more markedly attenuated the ratios of p-JNK/JNK and p-35/CDK5, while enhancing the ratio of p-GSK-3β (Ser9)/GSK-3β. Finally, Nano-HO prevented the gut microflora dysbiosis in TgCRND8 mice in a more potent manner than free HO. Conclusion Nano-HO was more potent than free HO in improving cognitive impairments in TgCRND8 mice via inhibiting Aβ deposition, tau hyperphosphorylation and neuroinflammation through suppressing the activation of JNK/CDK5/GSK-3β signaling pathway. Nano-HO also more potently modulated the gut microbiota community to protect its stability than free HO. These results suggest that Nano-HO has good potential for further development into therapeutic agent for AD treatment.
Collapse
Key Words
- AD, Alzheimer’s disease
- APH-1, anterior pharynx-defective-1
- APP, amyloid precursor protein
- Aβ, β-amyloid
- BACE-1, β-site APP cleaving enzyme-1
- Bcl-2, B cell lymphoma-2
- CDK5, cyclin-dependent kinase 5
- CMC-Na, sodium carboxymethylcellulose
- Cognitive deficits
- GSK-3β, glycogen synthase kinase 3β
- Gut microbiota
- HO, Honokiol
- HPLC, high performance liquid chromatography
- Honokiol nanoscale drug delivery system
- IDE, insulin degrading enzyme
- IL-1β, interleukin 1β
- IL-6, interleukin 6
- JNK, c-Jun N-terminal kinase
- MCT, Medium-chain triglycerides
- MWMT, Morris Water Maze test
- NEP, neprilysin
- NFTs, neurofibrillary tangles
- Nano-HO, honokiol nanoscale drug delivery system
- Neuroinflammation
- PBS, phosphate-buffered saline
- PDI, poly-dispersity index
- PS-1, presenilin-1
- ROS, reactive oxygen species
- TEM, transmission electron microscope
- TNF-α, tumor necrosis factor
- Tau protein hyperphosphorylation
- TgCRND8 mice
- WT, wild type
- ZP, zeta potential
Collapse
Affiliation(s)
- Chang Qu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Qiao-Ping Li
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zi-Ren Su
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Siu-Po Ip
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.,Brain Research Centre, School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Qiu-Ju Yuan
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.,Brain Research Centre, School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - You-Liang Xie
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qing-Qing Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Wen Yang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Yan-Feng Huang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.,Brain Research Centre, School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.,Brain Research Centre, School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.,Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
11
|
Olayinka JN, Eduviere A, Adeoluwa O, Akinluyi E, Obisesan A, Akawa O, Adebanjo A. Quercetin mitigates scopolamine-induced memory dysfunction: impact on oxidative stress and cholinergic mechanisms. Metab Brain Dis 2022; 37:265-277. [PMID: 34751893 DOI: 10.1007/s11011-021-00861-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/23/2021] [Indexed: 10/19/2022]
Abstract
Despite the promising neuroprotective activities of quercetin (QT), its' effect on cholinergic neurotransmission needs further elucidation. In this study, we explored the impact of QT on oxidative stress and cholinergic neurotransmission with emphasis on the possible involvement of choline acetyltransferase (ChAT) as a potential mechanism of QT on memory function at the hippocampal sub-regions and prefrontal cortex of mice brains. Mice were administered orally with QT (12.5 and 25 mg/kg) alone or in combination with SC (3 mg/kg, intraperitoneally) once daily for seven consecutive days. Thirty minutes after the last treatment, memory function was assessed using the Y-maze test. Levels of biomarkers of oxidative stress and acetylcholinesterase (AChE) activity were determined using a microplate reader. ChAT activity was determined by immunohistochemistry. QT pretreatment enhanced memory performance and reversed scopolamine (SC)-induced memory impairment in the Y-maze test. QT also reduced malondialdehyde and nitrite levels in mice brains. Glutathione levels were increased in mice brains as a result of QT administration. Levels of antioxidant enzymes (superoxide dismutase and catalase) were significantly increased in the mice brains, but AChE activity was reduced by QT. The activity of ChAT was significantly enhanced by QT in the hippocampal sub-regions and the prefrontal cortex of the mice brains. This study has shown that QT mitigated SC-induced memory dysfunction by inhibiting oxidative stress and AChE activity. Also, QT enhanced ChAT activity, particularly in the hippocampal sub-regions and the prefrontal cortex. These mechanisms, may be possible means through which QT improves memory performance.
Collapse
Affiliation(s)
- Juliet N Olayinka
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe- Babalola University, Ado-Ekiti, Ekiti State, Nigeria.
| | - Anthony Eduviere
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Olusegun Adeoluwa
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe- Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Elizabeth Akinluyi
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe- Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Abiola Obisesan
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe- Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Oluwole Akawa
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe- Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Adeshina Adebanjo
- Department of Civil Engineering, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
12
|
da Costa Rodrigues K, Leivas de Oliveira R, da Silva Chaves J, Esteves da Rocha VM, Fuzinato Dos Santos B, Fronza MG, Luís de Campos Domingues N, Savegnago L, Wilhelm EA, Luchese C. A new arylsulfanyl-benzo-2,1,3-thiadiazoles derivative produces an anti-amnesic effect in mice by modulating acetylcholinesterase activity. Chem Biol Interact 2021; 351:109736. [PMID: 34740600 DOI: 10.1016/j.cbi.2021.109736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022]
Abstract
The aim of the present study was investigate the binding affinity of 5-((4-methoxyphenyl)thio)benzo[c][1,2,5]thiadiazole (MTDZ) with acetylcholinesterase (AChE). We also evaluated the effect of MTDZ against scopolamine (SCO)-induced amnesia in mice and we looked at the toxicological potential of this compound in mice. The binding affinity of MTDZ with AChE was investigated by molecular docking analyses. For an experimental model, male Swiss mice were treated daily with MTDZ (10 mg/kg, intragastrically (i.g.)) or canola oil (10 ml/kg, i.g.), and induced, 30 min later, with injection of SCO (0.4 mg/kg, intraperitoneally (i.p.)) or saline (0.9%, 5 ml/kg, i.p.) daily. From day 1 to day 10, mice were submitted to the behavioral tasks (Barnes maze, open-field, object recognition and location, Y-maze and step-down inhibitory avoidance tasks), 30 min after induction with SCO. On the tenth day, the animals were euthanized and blood was collected for the analysis of biochemical markers (creatinine, aspartate (AST), and alanine (ALT) aminotransferase). MTDZ interacts with residues of the AChE active site. SCO caused amnesia in mice by changing behavioral tasks. MTDZ treatment attenuated the behavioral changes caused by SCO. In ex vivo assay, MTDZ also protected against the alteration of AChE activity, reactive species (RS) levels, thiobarbituric acid reative species (TBARS) levels, catalase (CAT) activity in tissues, as well as in transaminase activities of plasma caused by SCO in mice. In conclusion, MTDZ presented anti-amnesic action through modulation of the cholinergic system and provided protection from kidney and liver damage caused by SCO.
Collapse
Affiliation(s)
- Karline da Costa Rodrigues
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Research Group in Neurobiotechnology (GPN), Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel), CEP 96010- 900, Pelotas, RS, Brazil
| | - Renata Leivas de Oliveira
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Research Group in Neurobiotechnology (GPN), Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel), CEP 96010- 900, Pelotas, RS, Brazil
| | - Julia da Silva Chaves
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Research Group in Neurobiotechnology (GPN), Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel), CEP 96010- 900, Pelotas, RS, Brazil
| | - Vanessa Macedo Esteves da Rocha
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Research Group in Neurobiotechnology (GPN), Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel), CEP 96010- 900, Pelotas, RS, Brazil
| | - Beatriz Fuzinato Dos Santos
- Laboratory of Organic Catalysis and Biocatalysis, Federal University of Grande Dourados (UFGD), 79825-070, Dourados, MS, Brazil
| | - Mariana Gallio Fronza
- Postgraduate Program in Biotechnology, GPN, Technological Development Center, UFPel, CEP, 96010-900, Pelotas, RS, Brazil
| | - Nelson Luís de Campos Domingues
- Laboratory of Organic Catalysis and Biocatalysis, Federal University of Grande Dourados (UFGD), 79825-070, Dourados, MS, Brazil
| | - Lucielli Savegnago
- Postgraduate Program in Biotechnology, GPN, Technological Development Center, UFPel, CEP, 96010-900, Pelotas, RS, Brazil
| | - Ethel Antunes Wilhelm
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Research Group in Neurobiotechnology (GPN), Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel), CEP 96010- 900, Pelotas, RS, Brazil.
| | - Cristiane Luchese
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Research Group in Neurobiotechnology (GPN), Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel), CEP 96010- 900, Pelotas, RS, Brazil.
| |
Collapse
|
13
|
Govindarajulu M, Ramesh S, Neel L, Fabbrini M, Buabeid M, Fujihashi A, Dwyer D, Lynd T, Shah K, Mohanakumar KP, Smith F, Moore T, Dhanasekaran M. Nutraceutical based SIRT3 activators as therapeutic targets in Alzheimer's disease. Neurochem Int 2021; 144:104958. [PMID: 33444675 DOI: 10.1016/j.neuint.2021.104958] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, and its incidence is increasing worldwide with increased lifespan. Currently, there is no effective treatment to cure or prevent the progression of AD, which indicates the need to develop novel therapeutic targets and agents. Sirtuins, especially SIRT3, a mitochondrial deacetylase, are NAD-dependent histone deacetylases involved in aging and longevity. Accumulating evidence indicates that SIRT3 dysfunction is strongly associated with pathologies of AD, hence, therapeutic modulation of SIRT3 activity may be a novel application to ameliorate the pathologies of AD. Natural products commonly used in traditional medicine have wide utility and appear to have therapeutic benefits for the treatment of neurodegenerative diseases such as AD. The present review summarizes the currently available natural SIRT3 activators and their potentially neuroprotective molecular mechanisms of action that make them a promising agent in the treatment and management of neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Sindhu Ramesh
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Logan Neel
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Mary Fabbrini
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Manal Buabeid
- Clinical Pharmacy Department, College of Pharmacy and Health Sciences, Ajman University, United Arab Emirates
| | - Ayaka Fujihashi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Darby Dwyer
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Tyler Lynd
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Karishma Shah
- Department of Ophthalmology, D.Y. Patil Medical College and Research Hospital, Mumbai, India
| | | | - Forrest Smith
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Timothy Moore
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA.
| |
Collapse
|
14
|
Antileishmanial Activity of Lignans, Neolignans, and Other Plant Phenols. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2021; 115:115-176. [PMID: 33797642 DOI: 10.1007/978-3-030-64853-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Secondary metabolites (SM) from organisms have served medicinal chemists over the past two centuries as an almost inexhaustible pool of new drugs, drug-like skeletons, and chemical probes that have been used in the "hunt" for new biologically active molecules with a "beneficial effect on human mind and body." Several secondary metabolites, or their derivatives, have been found to be the answer in the quest to search for new approaches to treat or even eradicate many types of diseases that oppress humanity. A special place among SM is occupied by lignans and neolignans. These phenolic compounds are generated biosynthetically via radical coupling of two phenylpropanoid monomers, and are known for their multitarget activity and low toxicity. The disadvantage of the relatively low specificity of phenylpropanoid-based SM turns into an advantage when structural modifications of these skeletons are made. Indeed, phenylpropanoid-based SM previously have proven to offer great potential as a starting point in drug development. Compounds such as Warfarin® (a coumarin-based anticoagulant) as well as etoposide and teniposide (podophyllotoxin-based anticancer drugs) are just a few examples. At the beginning of the third decade of the twenty-first century, the call for the treatment of more than a dozen rare or previously "neglected" diseases remains for various reasons unanswered. Leishmaniasis, a neglected disease that desperately needs new ways of treatment, is just one of these. This disease is caused by more than 20 leishmanial parasites that are pathogenic to humans and are spread by as many as 800 sandfly species across subtropical areas of the world. With continuing climate changes, the presence of Leishmania parasites and therefore leishmaniasis, the disease caused by these parasites, is spreading from previous locations to new areas. Thus, leishmaniasis is affecting each year a larger proportion of the world's population. The choice of appropriate leishmaniasis treatment depends on the severity of the disease and its form of manifestation. The success of current drug therapy is often limited, due in most cases to requiring long hospitalization periods (weeks to months) and the toxicity (side effects) of administered drugs, in addition to the increasing resistance of the parasites to treatment. It is thus important to develop new drugs and treatments that are less toxic, can overcome drug resistance, and require shorter periods of treatment. These aspects are especially important for the populations of developing countries. It was reported that several phenylpropanoid-based secondary metabolites manifest interesting antileishmanial activities and are used by various indigenous people to treat leishmaniasis. In this chapter, the authors shed some light on the various biological activities of phenylpropanoid natural products, with the main focus being on their possible applications in the context of antileishmanial treatment.
Collapse
|
15
|
Kim TE, Son HJ, Lim DW, Yoon M, Lee J, Kim YT, Han D, Lee C, Um MY. Memory-enhancing effects of Ishige foliacea extract: In vitro and in vivo study. J Food Biochem 2020; 44:e13162. [PMID: 32020642 DOI: 10.1111/jfbc.13162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/16/2020] [Indexed: 01/25/2023]
Abstract
Ishige foliacea is used as a functional food in East-Asian countries. We evaluated the memory-enhancing effect of an ethanol extract of I. foliacea (EEI) using in vitro and in vivo models. In vitro acetylcholinesterase and β-secretase inhibitory activities, antioxidant properties, and neuroprotective effects against human neuronal cell death by H2 O2 and β-amyloid (Aβ) were investigated. We explored the memory-enhancing effect and its underlying mechanism in a mouse model of scopolamine (SCO)-induced memory deficits. EEI showed free radical scavenging and acetylcholinesterase and β-secretase inhibition activities. Additionally, EEI significantly decreased neuronal cell death induced by H2 O2 or Aβ in human neuroblastoma SH-SY5Y cells. In behavior tests, SCO-induced memory deficits was improved by EEI administration. EEI increased the protein expression of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) and phosphorylated extracellular signal-regulated kinase, which are related to synaptic plasticity in the hippocampus. EEI may ameliorate memory deficits and prevent neurodegenerative disorders. PRACTICAL APPLICATIONS: As the population ages, dementia, a neurodegenerative disease, is becoming an important problem. Various Alzheimer's drugs have been developed based on the disease mechanism, but alternative treatments are required because of the low bioavailability and hepatotoxicity of current medications. Ishige foliacea is a type of brown algae containing various bioactive substances. Phlorotannins, known as brown algae polyphenols, have been studied for their various functionalities such as, anticancer, anti-obesity, antioxidant, and sleep improvement effects, and have attracted attention as raw materials for developing new natural products. We found that the EEI mitigates SCO-induced damage by protecting neurons from oxidative stress-induced cell damage, controlling synthesis mechanisms of the causative agents of AD, and activating BDNF-TrkB-ERK signaling to promote memory function in the hippocampus. The results of this study can serve as a foundation for further research. Additionally, I. foliacea may be useful for treating and improving AD.
Collapse
Affiliation(s)
- Tae-Eun Kim
- Research Group of Functional Food Materials, Korea Food Research Institute, Wanju, Republic of Korea
| | - Hyun Jung Son
- Research Group of Functional Food Materials, Korea Food Research Institute, Wanju, Republic of Korea
| | - Dong Wook Lim
- Research Group of Functional Food Materials, Korea Food Research Institute, Wanju, Republic of Korea
| | - Minseok Yoon
- Research Group of Functional Food Materials, Korea Food Research Institute, Wanju, Republic of Korea
| | - Jaekwang Lee
- Research Group of Functional Food Materials, Korea Food Research Institute, Wanju, Republic of Korea
| | - Yun Tai Kim
- Research Group of Functional Food Materials, Korea Food Research Institute, Wanju, Republic of Korea
| | - Daeseok Han
- Research Group of Functional Food Materials, Korea Food Research Institute, Wanju, Republic of Korea
| | - Changho Lee
- Research Group of Functional Food Materials, Korea Food Research Institute, Wanju, Republic of Korea
| | - Min Young Um
- Research Group of Functional Food Materials, Korea Food Research Institute, Wanju, Republic of Korea
- Division of Food Biotechnology, University of Science & Technology, Daejeon, Republic of Korea
| |
Collapse
|
16
|
Succinamide Derivatives Ameliorate Neuroinflammation and Oxidative Stress in Scopolamine-Induced Neurodegeneration. Biomolecules 2020; 10:biom10030443. [PMID: 32183056 PMCID: PMC7175202 DOI: 10.3390/biom10030443] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress-mediated neuroinflammatory events are the hallmark of neurodegenerative diseases. The current study aimed to synthesize a series of novel succinamide derivatives and to further investigate the neuroprotective potential of these compounds against scopolamine-induced neuronal injury by in silico, morphological, and biochemical approaches. The characterization of all the succinamide derivatives was carried out spectroscopically via proton NMR (1H-NMR), FTIR and elemental analysis. Further in vivo experiments showed that scopolamine induced neuronal injury, characterized by downregulated glutathione (GSH), glutathione S-transferase (GST), catalase, and upregulated lipid peroxidation (LPO). Moreover, scopolamine increased the expression of inflammatory mediators such as cyclooxygenase2 (COX2), nuclear factor kappa B (NF-kB), tumor necrosis factor (TNF-α), further associated with cognitive impairment. On the other hand, treatment with succinamide derivatives ameliorated the biochemical and immunohistochemical alterations induced by scopolamine, further supported by the results obtained from molecular docking and binding affinities.
Collapse
|
17
|
Kiseleva MM, Vaulina DD, Sivak KV, Alexandrov AG, Kuzmich NN, Viktorov NB, Kuznetsova OF, Gomzina NA. Radiosynthesis of a Novel
11
C‐Labeled Derivative of 4’‐
O
‐Methylhonokiol and Its Preliminary Evaluation in an LPS Rat Model of Neuroinflammation. ChemistrySelect 2020. [DOI: 10.1002/slct.201904788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mariia M Kiseleva
- Research Center of the University Hospital Centre of Québec CityLaval University 2705, boulevard Laurier Québec, QC Canada G1 V 4G2
- Department of Science and Engineering, Mineral, Metallurgical, and Materials EngineeringLaval University 2325 Rue de l'Université Québec, QC Canada QC G1 V 0 A6
| | - Daria D Vaulina
- Laboratory of radiochemistry, N.P. Bechtereva Institute of Human BrainRussian Academy of Science 9, Pavlov street Saint-Petersburg 197376, Russian Federation
| | - Konstantin V Sivak
- Laboratory of pharmaceuticals' safety, Department of pharmaceuticals' preclinical trialsWHO National Influenza Centre of Russia 15/17 Professor Popov street Saint-Petersburg 197376 Russian Federation
| | - Andrey G Alexandrov
- Laboratory of pharmaceuticals' safety, Department of pharmaceuticals' preclinical trialsWHO National Influenza Centre of Russia 15/17 Professor Popov street Saint-Petersburg 197376 Russian Federation
| | - Nikolay N Kuzmich
- Laboratory of pharmaceuticals' safety, Department of pharmaceuticals' preclinical trialsWHO National Influenza Centre of Russia 15/17 Professor Popov street Saint-Petersburg 197376 Russian Federation
- Institute of Biotechnology and Translational medicine, I. M. SechenovFirst Moscow State Medical University, 8 build.2 Trubetskaya street Moscow 119991 Russian Federation
| | - Nikolai B Viktorov
- Department of organic chemistry, Faculty of chemical and biotechnologiesSaint-Petersburg State Institute of Technology, 26 Moskovsky prospect Saint-Petersburg 190013 Russian Federation
| | - Olga F Kuznetsova
- Laboratory of radiochemistry, N.P. Bechtereva Institute of Human BrainRussian Academy of Science 9, Pavlov street Saint-Petersburg 197376, Russian Federation
| | - Natalia A Gomzina
- Laboratory of radiochemistry, N.P. Bechtereva Institute of Human BrainRussian Academy of Science 9, Pavlov street Saint-Petersburg 197376, Russian Federation
| |
Collapse
|
18
|
Pan H, Qiu H, Zhang K, Zhang P, Liang W, Yang M, Mou C, Lin M, He M, Xiao X, Zhang D, Wang H, Liu F, Li Y, Jin H, Yan X, Liang H, Cui W. Fascaplysin Derivatives Are Potent Multitarget Agents against Alzheimer's Disease: in Vitro and in Vivo Evidence. ACS Chem Neurosci 2019; 10:4741-4756. [PMID: 31639294 DOI: 10.1021/acschemneuro.9b00503] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive neurodegeneration and impaired cognitive functions. Fascaplysin is a β-carboline alkaloid isolated from marine sponge Fascaplysinopsis bergquist in 1988. Previous studies have shown that fascaplysin might act on acetylcholinesterase and β-amyloid (Aβ) to produce anti-AD properties. In this study, a series of fascaplysin derivatives were synthesized. The cholinesterase inhibition activities, the neuronal protective effects, and the toxicities of these compounds were evaluated in vitro. Compounds 2a and 2b, the two most powerful compounds in vitro, were further selected to evaluate their cognitive-enhancing effects in animals. Both 2a and 2b could ameliorate cognitive dysfunction induced by scopolamine or Aβ oligomers without affecting locomotor functions in mice. We also found that 2a and 2b could prevent cholinergic dysfunctions, decrease pro-inflammatory cytokine expression, and inhibit Aβ-induced tau hyperphosphorylation in vivo. Most importantly, pharmacodynamics studies suggested that 2b could penetrate the blood-brain barrier and be retained in the central nervous system. All these results suggested that fascaplysin derivatives are potent multitarget agents against AD and might be clinical useful for AD treatment.
Collapse
Affiliation(s)
- Hanbo Pan
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Hongda Qiu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ke Zhang
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Panpan Zhang
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Weida Liang
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Mengxiang Yang
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Chenye Mou
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Miaoman Lin
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ming He
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Xiao Xiao
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Difan Zhang
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Haixing Wang
- Zhejiang Province Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Fufeng Liu
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yongmei Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Haixiao Jin
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xiaojun Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Hongze Liang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Wei Cui
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
19
|
Li H, Jia J, Wang W, Hou T, Tian Y, Wu Q, Xu L, Wei Y, Wang X. Honokiol Alleviates Cognitive Deficits of Alzheimer's Disease (PS1V97L) Transgenic Mice by Activating Mitochondrial SIRT3. J Alzheimers Dis 2019; 64:291-302. [PMID: 29865070 DOI: 10.3233/jad-180126] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Accumulating evidence has demonstrated that mitochondrial dysfunction is a prominent early event in the progression of Alzheimer's disease (AD). Whether protecting mitochondrial function can reduce amyloid-β oligomer (AβO)-induced neurotoxicity in PS1V97L transgenic mice remains unknown. In this study, we examined the possible protective effects of honokiol (HKL) on mitochondrial dysfunction induced by AβOs in neurons, and cognitive function in AD PS1V97Ltransgenic mice. We determined that HKL increased mitochondrial sirtuin 3 (SIRT3) expression levels and activity, which in turn markedly improved ATP production and weakened mitochondrial reactive oxygen species production. We demonstrated that the enhanced energy metabolism and attenuated oxidative stress of HKL restores AβO-mediated mitochondrial dysfunction in vitro and in vivo. Consequently, memory deficits in the PS1V97L transgenic mice were rescued by HKL in the early stages. These results suggest that HKL has therapeutic potential for delaying the onset of AD symptoms by alleviating mitochondrial impairment and increasing hyperactivation of SIRT3 in the pathogenesis of preclinical AD.
Collapse
Affiliation(s)
- Haitao Li
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China
| | - Jianping Jia
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China.,Clinical Center for Neurodegenerative Disease and MemoryImpairment, Capital Medical University, Beijing, P.R. China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, P.R. China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.,National Clinical Research Center forGeriatric Disorders, Beijing, P.R. China
| | - Wei Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China.,Clinical Center for Neurodegenerative Disease and MemoryImpairment, Capital Medical University, Beijing, P.R. China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, P.R. China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.,National Clinical Research Center forGeriatric Disorders, Beijing, P.R. China
| | - Tingting Hou
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China
| | - Yuanruhua Tian
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China
| | - Qiaoqi Wu
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China.,Clinical Center for Neurodegenerative Disease and MemoryImpairment, Capital Medical University, Beijing, P.R. China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, P.R. China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.,National Clinical Research Center forGeriatric Disorders, Beijing, P.R. China
| | - Lingzhi Xu
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China.,Clinical Center for Neurodegenerative Disease and MemoryImpairment, Capital Medical University, Beijing, P.R. China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, P.R. China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.,National Clinical Research Center forGeriatric Disorders, Beijing, P.R. China
| | - Yiping Wei
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China.,Clinical Center for Neurodegenerative Disease and MemoryImpairment, Capital Medical University, Beijing, P.R. China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, P.R. China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.,National Clinical Research Center forGeriatric Disorders, Beijing, P.R. China
| | - Xiu Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
20
|
Li H, Zhang Q, Li W, Li H, Bao J, Yang C, Wang A, Wei J, Chen S, Jin H. Role of Nrf2 in the antioxidation and oxidative stress induced developmental toxicity of honokiol in zebrafish. Toxicol Appl Pharmacol 2019; 373:48-61. [DOI: 10.1016/j.taap.2019.04.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/14/2019] [Accepted: 04/19/2019] [Indexed: 12/31/2022]
|
21
|
The role of anti-inflammatory cytokines in memory processing in a healthy brain. Behav Brain Res 2019; 367:111-116. [PMID: 30943419 DOI: 10.1016/j.bbr.2019.03.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 11/21/2022]
Abstract
The purpose of the work was to study the role of anti-inflammatory cytokines in memory processing in a healthy brain. Wistar rats were trained to perform a task with positive (food) reinforcement; and then the task performance was tested after intraventricular injection of IL-10 or TGF-β1. A microinjection into the brain of either of the two cytokines did not affect the performance of the task and did not have an anti-amnesic effect when the retrieval was deteriorated with scopolamine. In addition, endogenous levels of IL-10 and TGF-β1 were determine in the prefrontal cortex and in the hippocampus after one and two training sessions, consisting of 10 runs each. The level of IL-10 did not change after training both in the prefrontal cortex and in the hippocampus. Endogenous level of TGF-β1 increased in the neocortex after the first training session, the second session, and recovered to the normal level three days after training. In contrast, in the hippocampus, the level of TGF-β1 was decreased: maximally after the first training session in the right hippocampus and after the second training session in the left one. Given the role of the prefrontal cortex in memory processing, we assume that a specific increase of TGF-β1 in the prefrontal cortex may indicate involvement in memory trace consolidation.
Collapse
|
22
|
Zhu Y, Shi Y, Cao C, Han Z, Liu M, Qi M, Huang R, Zhu Z, Qian D, Duan JA. Jia-Wei-Kai-Xin-San, an Herbal Medicine Formula, Ameliorates Cognitive Deficits via Modulating Metabolism of Beta Amyloid Protein and Neurotrophic Factors in Hippocampus of Aβ 1-42 Induced Cognitive Deficit Mice. Front Pharmacol 2019; 10:258. [PMID: 30941041 PMCID: PMC6433786 DOI: 10.3389/fphar.2019.00258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 02/28/2019] [Indexed: 12/20/2022] Open
Abstract
Jia-Wei-Kai-Xin-San (JWKXS) is a Chinese medicine formula applied for treating morbid forgetfulness in ancient China. Today, this formula is frequently applied for Alzheimer's disease and vascular dementia (VD) in clinic. Here, we developed it as granules and aimed to evaluate its anti-AD effect on β amyloid protein 1-42 (Aβ1-42) induced cognitive deficit mice and reveal the possible molecular mechanisms. Firstly, daily intra-gastric administration of chemically standardized of JWKXS granules for 7 days significantly ameliorated the cognitive deficit symptoms and inhibited cell apoptosis in hippocampus on Aβ1-42 injection mice. JWKXS granules significantly decreased Aβ level, increased superoxide dismutase activity and decreased malondialdehyde level in hippocampus of model mice. It also restored acetylcholine amounts, inhibited acetylcholinesterase activities and increased choline acetyltransferase activities. In addition, JWKXS granules enabled the transformation of precursors of NGF and BDNF into mature forms. Furthermore, JWKXS granules could regulate gene expressions related to Aβ production, transportation, degradation and neurotrophic factor transformation, which led to down-regulation of Aβ and up-regulation of NGF and BDNF. These findings suggested that JWKXS granules ameliorated cognitive deficit via decreasing Aβ levels, protecting neuron from oxidation damages and nourishing neuron, which could serve as alternative medicine for patients suffering from AD.
Collapse
Affiliation(s)
- Yue Zhu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiwei Shi
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng Cao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenxiang Han
- Department of Neurology and Rehabilitation, Shanghai Seventh People’s Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengqiu Liu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingzhu Qi
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Renjie Huang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziqiang Zhu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dawei Qian
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-ao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
23
|
Honokiol-Mediated Mitophagy Ameliorates Postoperative Cognitive Impairment Induced by Surgery/Sevoflurane via Inhibiting the Activation of NLRP3 Inflammasome in the Hippocampus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8639618. [PMID: 30918581 PMCID: PMC6409065 DOI: 10.1155/2019/8639618] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/16/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022]
Abstract
Background The potential mechanism of postoperative cognitive impairment is still largely unclear. The activation of NLRP3 inflammasome had been reported to be involved in neurodegenerative diseases, including postoperative cognitive change, and is closely related to mitochondrial ROS and mitophagy. Honokiol (HNK) owns multiple organic protective effects. This study is aimed at observing the neuroprotective effect of HNK in postoperative cognitive change and examining the role of HNK in the regulation of mitophagy and the relationship between these effects and NLRP3 inflammasome activation in mice induced by surgery/anesthesia. Methods In this study, mice were divided into several groups: control group, surgery group, surgery+HNK group, and surgery+HNK+3-methyladenine (3-MA) group. Hippocampal tissue samples were harvested and used for proinflammatory cytokines, mitochondrial ROS, and malondialdehyde (MDA) assay. The process of mitophagy and the activation of NLRP3 inflammasome were observed by Western blot, immunohistochemistry, and transmission electron microscopy. Results The results showed that HNK treatment obviously recovered the postoperative decline and enhanced the expressions of LC3-II, Beclin-1, Parkin, and PINK1 at protein levels after surgery/sevoflurane treatment, which are both an autophagy marker and a mitophagy marker. In addition, HNK attenuated mitochondrial structure damage and reduced mtROS and MDA generation, which are closely associated with NLRP3 inflammasome activation. Honokiol-mediated mitophagy inhibited the activation of NLRP3 inflammasome and neuroinflammation in the hippocampus. Using 3-MA, an autophagy inhibitor, the neuroprotective effects of HNK on mitophagy and NLRP3 inflammasome activation were eliminated. Conclusion These results indicated that HNK-mediated mitophagy ameliorates postoperative cognitive impairment induced by surgery/sevoflurane. This neuroprotective effect may be involved in inhibiting the activation of NLRP3 inflammasome and suppressing inflammatory responses in the hippocampus.
Collapse
|
24
|
Rauf A, Patel S, Imran M, Maalik A, Arshad MU, Saeed F, Mabkhot YN, Al-Showiman SS, Ahmad N, Elsharkawy E. Honokiol: An anticancer lignan. Biomed Pharmacother 2018; 107:555-562. [DOI: 10.1016/j.biopha.2018.08.054] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/20/2018] [Accepted: 08/10/2018] [Indexed: 01/22/2023] Open
|
25
|
Ye JS, Chen L, Lu YY, Lei SQ, Peng M, Xia ZY. SIRT3 activator honokiol ameliorates surgery/anesthesia-induced cognitive decline in mice through anti-oxidative stress and anti-inflammatory in hippocampus. CNS Neurosci Ther 2018; 25:355-366. [PMID: 30296006 DOI: 10.1111/cns.13053] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023] Open
Abstract
AIMS Increasing evidence indicates that neuroinflammatory and oxidative stress play two pivotal roles in cognitive impairment after surgery. Honokiol (HNK), as an activator of Sirtuin3 (SIRT3), has potential multiple biological functions. The aim of these experiments is to evaluate the effects of HNK on surgery/anesthesia-induced cognitive decline in mice. METHODS Adult C57BL/6 mice received a laparotomy under sevoflurane anesthesia and HNK or SIRT3 inhibitor (3-TYP) treatment. Cognitive function and locomotor activity of mice were evaluated using fear conditioning test and open field test on postoperative 1 and 3 days. Neuronal apoptosis in CA1 and CA3 area of hippocampus was examined using TUNEL assay. And Western blot was applied to measure the expression of pro-inflammatory cytokines and SIRT3/SOD2 signaling-associated proteins in hippocampus. Meanwhile, SIRT3 positive cells were calculated by immunohistochemistry. The mitochondrial membrane potential, malondialdehyde (MDA), and mitochondrial radical oxygen species (mtROS) were detected using standard methods. RESULTS Honokiol attenuated surgery-induced memory loss and neuronal apoptosis, decreased neuroinflammatory response, and ameliorated oxidative damage in hippocampus. Notably, surgery/anesthesia induced an obviously decrease in hippocampal SIRT3 expression, whereas the HNK increased SIRT3 expression and thus decreased the acetylation of superoxide dismutase 2 (SOD2). However, 3-TYP treatment inhibited the HNK's rescuing effects. CONCLUSIONS These results suggested that activation of SIRT3 by honokiol may attenuate surgery/anesthesia-induced cognitive impairment in mice through regulation of oxidative stress and neuroinflammatory in hippocampus.
Collapse
Affiliation(s)
- Ji-Shi Ye
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ya-Yuan Lu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mian Peng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
26
|
Ko YH, Kwon SH, Ma SX, Seo JY, Lee BR, Kim K, Kim SY, Lee SY, Jang CG. The memory-enhancing effects of 7,8,4’-trihydroxyisoflavone, a major metabolite of daidzein, are associated with activation of the cholinergic system and BDNF signaling pathway in mice. Brain Res Bull 2018; 142:197-206. [DOI: 10.1016/j.brainresbull.2018.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022]
|
27
|
Zhu Y, Liu W, Qi S, Wang H, Wang Y, Deng G, Zhang Y, Li S, Ma C, Wang Y, Cheng X, Wang C. Stereoselective glucuronidation metabolism, pharmacokinetics, anti-amnesic pharmacodynamics, and toxic properties of vasicine enantiomers in vitro and in vivo. Eur J Pharm Sci 2018; 123:459-474. [PMID: 30077712 DOI: 10.1016/j.ejps.2018.07.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 01/05/2023]
Abstract
Vasicine (VAS) is a potential natural cholinesterase inhibitor for treatment of Alzheimer's disease. Due to one chiral centre (C-3) presenting in molecule, VAS has two enantiomers, d-vasicine (d-VAS) and l-vasicine (l-VAS). The study was undertaken to investigate the stereoselective glucuronidation metabolism, pharmacokinetics, anti-amnesic effect and acute toxicity of VAS enantiomers. In results, the glucuronidation metabolic rate of l-VAS was faster than d-VAS in human liver microsomes and isoenzymes tests, and it was proved that the UDP-glucuronosyltransferase (UGT) 1A9 and UGT2B15 were the major metabolic enzymes for glucuronidation of l-VAS, while only UGT1A9 for d-VAS, which take responsibility of the significantly less metabolic affinity of d-VAS than l-VAS in HLM and rhUGT1A9. The plasma exposure of d-VAS in rats was 1.3-fold and 1.6-fold higher than that of l-VAS after intravenous and oral administration of d-VAS and l-VAS, respectively. And the plasma exposure of the major glucuronidation metabolite d-VASG was one of tenth of l-VASG or more less, no matter by intravenous or oral administration. Both d-VAS and l-VAS were exhibited promising acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities, and the BChE inhibitory activity of d-VAS with IC50 of 0.03 ± 0.001 μM was significantly stronger than that of l-VAS with IC50 of 0.98 ± 0.19 μM. The molecular docking results indicated that d-VAS and l-VAS could bind to the catalytic active site (CAS position) either of human AChE and BChE, and the BChE combing ability of d-VAS (the score of GBI/WAS dG -7.398) was stronger than that of l-VAS (the score of GBI/WAS dG -7.135). Both d-VAS and l-VAS could improving the learning and memory on scopolamine-induced memory deficits in mice. The content of acetylcholine (ACh) after oral administration d-VAS increased more than that of l-VAS in mice cortex, through inhibiting cholinesterase (ChE) and increasing choline acetyltransferase (ChAT). In addition, the LD50 value of d-VAS (282.51 mg·kg-1) was slight lower than l-VAS (319.75 mg·kg-1). These results indicated that VAS enantiomers displayed significantly stereoselective metabolic, pharmacokinetics, anti-amnesic effect and toxic properties in vitro and in vivo. The d-VAS might be the dominant configuration for treating Alzheimer's disease.
Collapse
Affiliation(s)
- Yudan Zhu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Wei Liu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Shenglan Qi
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Hanxue Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Yuwen Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Gang Deng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Yunpeng Zhang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Shuping Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Chao Ma
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Yongli Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China; Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China; Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China; Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
28
|
Ionita R, Postu PA, Mihasan M, Gorgan DL, Hancianu M, Cioanca O, Hritcu L. Ameliorative effects of Matricaria chamomilla L. hydroalcoholic extract on scopolamine-induced memory impairment in rats: A behavioral and molecular study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 47:113-120. [PMID: 30166095 DOI: 10.1016/j.phymed.2018.04.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/02/2018] [Accepted: 04/29/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Matricaria chamomilla L. is a medicinal herb traditionally used as the anti-inflammatory, antimicrobial, antiviral, anxiolytic and antidepressant agent. Nevertheless, supporting evidence demonstrated its memory enhancing activity and antioxidant properties. PURPOSE To investigate the effects of the hydroalcoholic extract of M. chamomilla L. on memory processes in a scopolamine-induced a rat model of amnesia and to reveal its underlying mechanism of action. METHODS The hydroalcoholic extract (25 and 75 mg/kg) was intraperitoneally administered to rats once daily for 7 days, and scopolamine (0.7 mg/kg) was injected 30 min before the behavioral testing to induce memory impairment. The phytochemical composition of the extract was quantified by HPLC/DAD analysis. Y-maze and radial arm-maze tests were employed for memory assessing. Acetylcholinesterase activity was measured in the rat hippocampus. Superoxide dismutase, glutathione peroxidase, and catalase specific activities along with the total content of reduced glutathione and protein carbonyl and malondialdehyde levels were also measured in the rat hippocampus. qRT-PCR was used to quantify BDNF mRNA and IL1β mRNA expression in the rat hippocampus. RESULTS We first identified the chlorogenic acid, apigenin-7-glucoside, rutin, cynaroside, luteolin, apigenin and derivatives of apigenin-7-glucoside as the extract major components. Furthermore, we showed that the extract reversed the scopolamine-induced decreasing of the spontaneous alternation in the Y-maze test and the scopolamine-induced increasing of the working and reference memory errors in the radial arm maze test. Also, the scopolamine-induced alteration of the acetylcholinesterase activity and the oxidant-antioxidant balance in the rat hippocampus was recovered by the treatment with the extract. Finally, we demonstrated that the extract restored the scopolamine-decreased BDNF expression and increased IL1β expression in the rat hippocampus. CONCLUSION These findings suggest that the extract could be a potent neuropharmacological agent against amnesia via modulating cholinergic activity, neuroinflammation and promoting antioxidant action in the rat hippocampus.
Collapse
Affiliation(s)
- Radu Ionita
- Department of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No.11, Iasi 700506, Romania
| | - Paula Alexandra Postu
- Department of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No.11, Iasi 700506, Romania
| | - Marius Mihasan
- Department of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No.11, Iasi 700506, Romania
| | - Dragos Lucian Gorgan
- Department of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No.11, Iasi 700506, Romania
| | - Monica Hancianu
- Faculty of Pharmacy, University of Medicine and Pharmacy, "Gr. T. Popa", 16 University Str., Iasi 700117, Romania
| | - Oana Cioanca
- Faculty of Pharmacy, University of Medicine and Pharmacy, "Gr. T. Popa", 16 University Str., Iasi 700117, Romania
| | - Lucian Hritcu
- Department of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No.11, Iasi 700506, Romania.
| |
Collapse
|
29
|
Ogunsuyi OB, Ademiluyi AO, Oboh G, Oyeleye SI, Dada AF. Green leafy vegetables from two Solanum spp. ( Solanum nigrum L and Solanum macrocarpon L) ameliorate scopolamine-induced cognitive and neurochemical impairments in rats. Food Sci Nutr 2018; 6:860-870. [PMID: 29983948 PMCID: PMC6021738 DOI: 10.1002/fsn3.628] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/30/2018] [Accepted: 02/11/2018] [Indexed: 12/17/2022] Open
Abstract
This study examined the modulatory effect of Black nightshade (Solanum nigrum L) and African eggplant (Solanum macrocarpon L) leaves on cognitive function, antioxidant status, and activities of critical enzymes of monoaminergic and cholinergic systems of neurotransmission in scopolamine-administered rats. Cognitive impairment was induced in albino rats pretreated with dietary inclusions of Black nightshade (BN) and African eggplant (AE) leaves by single administration (i.p.) of scopolamine (2 mg/kg body weight). Prior to termination of the experiment, the rats were subjected to spontaneous alternation (Y-maze) test to assess their spatial working memory. Thereafter, activities of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), monoamine oxidase (MAO), arginase, and antioxidant enzymes (catalase, SOD, and GST) of rat brain homogenate were determined. Also, the malondialdehyde (MDA), nitrite, and GSH contents of the homogenate were determined. The results showed that pretreatment with dietary inclusions of AE and BN significantly reversed the impairment in the rats' spatial working memory induced by scopolamine. Similarly, elevations in activities of AChE, BChE, and MAO induced by scopolamine were significantly reversed in rats pretreated with dietary inclusions of AE and BN. In addition, impaired antioxidant status induced by scopolamine was reversed by pretreatment with dietary inclusions of AE and BN. This study has shown that dietary inclusions of AE and BN could protect against cognitive and neurochemical impairments induced by scopolamine, and hence, these vegetables could be used as a source of functional foods and nutraceuticals for the prevention and management of cognitive impairments associated diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Opeyemi B. Ogunsuyi
- Department of Biomedical TechnologyFederal University of TechnologyAkureNigeria
- Department of BiochemistryFederal University of TechnologyAkureNigeria
| | | | - Ganiyu Oboh
- Department of BiochemistryFederal University of TechnologyAkureNigeria
| | - Sunday I. Oyeleye
- Department of Biomedical TechnologyFederal University of TechnologyAkureNigeria
- Department of BiochemistryFederal University of TechnologyAkureNigeria
| | - Abayomi F. Dada
- SLT Department (Biochemistry Unit)Federal Polytechnic EdeEdeOsun StateNigeria
| |
Collapse
|
30
|
Oral administration of Pantoea agglomerans-derived lipopolysaccharide prevents metabolic dysfunction and Alzheimer's disease-related memory loss in senescence-accelerated prone 8 (SAMP8) mice fed a high-fat diet. PLoS One 2018; 13:e0198493. [PMID: 29856882 PMCID: PMC5983504 DOI: 10.1371/journal.pone.0198493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/20/2018] [Indexed: 12/30/2022] Open
Abstract
The pathogenesis of Alzheimer’s disease (AD) remains unclear, but an imbalance between the production and clearance of amyloid-β (Aβ) peptides is known to play a critical role in AD progression. A promising preventative approach is to enhance the normal Aβ clearance activity of brain phagocytes such as microglia. In mice, the intraperitoneal injection of Toll-like receptor 4 agonist was shown to enhance Aβ clearance and exhibit a preventative effect on AD-related pathology. Our previous clinical study demonstrated that orally administered Pantoea agglomerans-derived lipopolysaccharide (LPSp) exhibited an LDL (low-density lipoprotein)-lowering effect in human volunteers with hyperlipidemia, a known risk factor for AD. In vitro studies have shown that LPSp treatment increases Aβ phagocytosis by microglial cells; however it is still unclear whether orally administered LPSp exhibits a preventive effect on AD progression. We show here that in senescence-accelerated prone 8 (SAMP8) mice fed a high-fat diet, oral administration of LPSp at 0.3 or 1 mg/kg body weight·day for 18 weeks significantly improved glucose metabolism and lipid profiles. The LPSp treatment also reduced pro-inflammatory cytokine expression and oxidative-burst activity in the peripheral blood. Moreover, LPSp significantly reduced brain Aβ burden and memory impairment as seen in the water maze test, although we could not confirm a significant enhancement of Aβ phagocytosis in microglia isolated from the brains after treatment. Taken together, our results show that LPSp holds promise as a preventative therapy for AD or AD-related diseases induced by impairment of metabolic functions.
Collapse
|
31
|
Zhong X, Liu H. Honokiol attenuates diet-induced non-alcoholic steatohepatitis by regulating macrophage polarization through activating peroxisome proliferator-activated receptor γ. J Gastroenterol Hepatol 2018; 33:524-532. [PMID: 28670854 DOI: 10.1111/jgh.13853] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/17/2017] [Accepted: 06/25/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIM Non-alcoholic steatohepatitis (NASH) may develop into hepatic cirrhosis. This study aimed to investigate whether honokiol could prevent NASH induced by high-cholesterol and high-fat (CL) diet in mice and the possible mechanism involved. METHODS Mice were fed with CL diet for 12 weeks to establish a NASH model; honokiol (0.02% w/w in diet) was added to evaluate its effect on NASH. Murine peritoneal macrophages, RAW264.7 and ANA-1 cells, were used to explore the possible mechanisms of honokiol on macrophage polarization. RESULTS Mice developed NASH after fed with CL diet for 12 weeks. Honokiol supplementation alleviated insulin resistance, hepatic steatosis, inflammation, and fibrosis induced by CL diet. Immunohistochemistry showed that honokiol induced more M2 macrophages in livers compared with CL diet alone. Honokiol decreased M1 marker genes (TNFα and MCP-1) and increased M2 marker gene (YM-1, IL-10, IL-4R and IL-13) expression in mice liver compared with CL diet. Moreover, treatment with honokiol lowered alanine aminotransferase and aspartate aminotransferase in serum and preserved liver from lipid peroxidation, evidenced by lowered hepatic malondialdehyde level. Honokiol has antioxidant function, as honokiol upregulated hepatic glutathione and superoxide dismutase level and downregulated hepatic CYP2E1 protein level. Hepatic peroxisome proliferator-activated receptor γ (PPARγ) and its target genes were upregulated by honokiol. Furthermore, honokiol (10 μM) treatment in mouse peritoneal cells, RAW264.7 cells and ANA-1 cells, led to M2 macrophage polarization, whereas a PPARγ antagonist, GW9662, abolished this effect of honokiol. CONCLUSIONS Honokiol can attenuate CL diet-induced NASH and the mechanism in which possibly is polarizing macrophages to M2 phenotype via PPARγ activation.
Collapse
Affiliation(s)
- Xueqing Zhong
- Department of Gastroenterology, The Ninth People's Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai City, 200011, China
| | - Hailin Liu
- Department of Gastroenterology, The Ninth People's Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai City, 200011, China
| |
Collapse
|
32
|
Lee JE, Song HS, Park MN, Kim SH, Shim BS, Kim B. Ethanol Extract of Oldenlandia diffusa Herba Attenuates Scopolamine-Induced Cognitive Impairments in Mice via Activation of BDNF, P-CREB and Inhibition of Acetylcholinesterase. Int J Mol Sci 2018; 19:ijms19020363. [PMID: 29370115 PMCID: PMC5855585 DOI: 10.3390/ijms19020363] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/16/2018] [Accepted: 01/25/2018] [Indexed: 12/20/2022] Open
Abstract
Though Oldenlandia diffusa Herba (ODH) has been known to exhibit anti-cancer and anti-inflammatory effects, its anti-amnestic effect has never been reported so far. The aim of this present study was to elucidate the anti-amnestic effect of ODH. ODH pretreatment significantly reduced escape latency of scopolamine treated Institute of Cancer Research (ICR) mice compared to untreated control groups in a Morris water maze test. Similarly, the passive avoidance test showed that ODH treatment recovered the scopolamine induced amnesia in the ICR mouse model. Concentration of Ach in brains of ODH treated mice was increased compared to that of scopolamine treated mice. In addition, activity of acetylcholinesterase (AChE) was notably decreased by ODH. The protein expression of brain-derived neurotrophic factor (BDNF) and phospho-cAMP response element-binding protein (p-CREB) (Ser133) was increased in ODH pretreated group compared to control group. Consistently, immunohistochemistry (IHC) revealed the elevated expression of brain-derived neurotrophic factor (BDNF) and p-CREB in brains of ODH treated mice compared to the control group. Overall, these findings suggest that ODH has anti-amnestic potential via activation of BDNF and p-CREB and inhibition of AChE in mice with scopolamine induced amnesia.
Collapse
Affiliation(s)
- Jung Eun Lee
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Hyo-Sook Song
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Sung-Hoon Kim
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Bum-Sang Shim
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| |
Collapse
|
33
|
Talarek S, Listos J, Barreca D, Tellone E, Sureda A, Nabavi SF, Braidy N, Nabavi SM. Neuroprotective effects of honokiol: from chemistry to medicine. Biofactors 2017; 43:760-769. [PMID: 28817221 DOI: 10.1002/biof.1385] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/21/2017] [Accepted: 07/27/2017] [Indexed: 01/15/2023]
Abstract
The incidence of neurological disorders is growing in developed countries together with increased lifespan. Nowadays, there are still no effective treatments for neurodegenerative pathologies, which make necessary to search for new therapeutic agents. Natural products, most of them used in traditional medicine, are considered promising alternatives for the treatment of neurodegenerative diseases. Honokiol is a natural bioactive phenylpropanoid compound, belonging to the class of neolignan, found in notable amounts in the bark of Magnolia tree, and has been reported to exert diverse pharmacological properties including neuroprotective activities. Honokiol can permeate the blood brain barrier and the blood-cerebrospinal fluid to increase its bioavailability in neurological tissues. Diverse studies have provided evidence on the neuroprotective effect of honokiol in the central nervous system, due to its potent antioxidant activity, and amelioration of the excitotoxicity mainly related to the blockade of glutamate receptors and reduction in neuroinflammation. In addition, recent studies suggest that honokiol can attenuate neurotoxicity exerted by abnormally aggregated Aβ in Alzheimer's disease. The present work summarizes what is currently known concerning the neuroprotective effects of honokiol and its potential molecular mechanisms of action, which make it considered as a promising agent in the treatment and management of neurodegenerative diseases. © 2017 BioFactors, 43(6):760-769, 2017.
Collapse
Affiliation(s)
- Sylwia Talarek
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Lublin 20-093, Poland
| | - Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Lublin 20-093, Poland
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), University of Balearic Islands, Balearic Islands, Spain
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Australia
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Puangmalai N, Thangnipon W, Soi-Ampornkul R, Suwanna N, Tuchinda P, Nobsathian S. Neuroprotection of N-benzylcinnamide on scopolamine-induced cholinergic dysfunction in human SH-SY5Y neuroblastoma cells. Neural Regen Res 2017; 12:1492-1498. [PMID: 29089996 PMCID: PMC5649471 DOI: 10.4103/1673-5374.215262] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease, a progressive neurodegenerative disease, affects learning and memory resulting from cholinergic dysfunction. Scopolamine has been employed to induce Alzheimer's disease-like pathology in vivo and in vitro through alteration of cholinergic system. N-benzylcinnamide (PT-3), purified from Piper submultinerve, has been shown to exhibit neuroprotective properties against amyloid-β-induced neuronal toxicity in rat cortical primary cell culture and to improve spatial learning and memory of aged rats through alleviating oxidative stress. We proposed a hypothesis that PT3 has a neuroprotective effect against scopolamine-induced cholinergic dysfunction. PT-3 (125–200 nM) pretreatment was performed in human neuroblastoma SH-SY5Y cell line following scopolamine induction. PT-3 (125–200 nM) inhibited scopolamine (2 mM)-induced generation of reactive oxygen species, cellular apoptosis, upregulation of acetylcholinesterase activity, downregulation of choline acetyltransferase level, and activation of p38 and JNK signalling pathways. These findings revealed the underlying mechanisms of scopolamine-induced Alzheimer's disease-like cellular dysfunctions, which provide evidence for developing drugs for the treatment of this debilitating disease.
Collapse
Affiliation(s)
- Nicha Puangmalai
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, Thailand
| | - Wipawan Thangnipon
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, Thailand
| | - Rungtip Soi-Ampornkul
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nirut Suwanna
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Kampaeng Saen, Nakhonpathom, Thailand
| | | | - Saksit Nobsathian
- Nakhon Sawan Campus, Mahidol University, Phayuhakiri, Nakhon Sawan, Thailand
| |
Collapse
|
35
|
Effect of Chinese Herbal Medicine on Alzheimer's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 135:29-56. [DOI: 10.1016/bs.irn.2017.02.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
Matsuda S, Ichimura M, Ogino M, Nakano N, Minami A, Murai T, Kitagishi Y. Effective PI3K modulators for improved therapy against malignant tumors and for neuroprotection of brain damage after tumor therapy (Review). Int J Oncol 2016; 49:1785-1790. [PMID: 27826621 DOI: 10.3892/ijo.2016.3710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/15/2016] [Indexed: 11/06/2022] Open
Abstract
Due to the key role in various cellular processes including cell proliferation and cell survival on many cell types, dysregulation of the PI3K/AKT pathway represents a crucial step of the pathogenesis in many diseases. Furthermore, the tumor suppressor PTEN negatively regulates the PI3K/AKT pathway through its lipid phosphatase activity, which is recognized as one of the most frequently deleted and/or mutated genes in human cancer. Given the pervasive involvement of this pathway, the development of the molecules that modulate this PI3K/AKT signaling has been initiated in studies which focus on the extensive effective drug discovery. Consequently, the PI3K/AKT pathway appears to be an attractive pharmacological target both for cancer therapy and for neurological protection necessary after the therapy. A better understanding of the molecular relations could reveal new targets for treatment development. We review recent studies on the features of PI3K/AKT and PTEN, and their pleiotropic functions relevant to the signaling pathways involved in cancer progress and in neuronal damage by the therapy.
Collapse
Affiliation(s)
- Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Mayuko Ichimura
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Mako Ogino
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Noriko Nakano
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Akari Minami
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Toshiyuki Murai
- Department of Microbiology and Immunology and Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
37
|
Neuroprotective effects of honokiol against beta-amyloid-induced neurotoxicity via GSK-3β and β-catenin signaling pathway in PC12 cells. Neurochem Int 2016; 97:8-14. [DOI: 10.1016/j.neuint.2016.04.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 11/23/2022]
|
38
|
Kim J, Shim J, Lee S, Cho WH, Hong E, Lee JH, Han JS, Lee HJ, Lee KW. Rg3-enriched ginseng extract ameliorates scopolamine-induced learning deficits in mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:66. [PMID: 26887326 PMCID: PMC4758096 DOI: 10.1186/s12906-016-1050-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 02/12/2016] [Indexed: 01/14/2023]
Abstract
Background Ginseng (Panax ginseng C.A. Meyer) has been used as a traditional herb in the treatment of many medical disorders. Ginsenosides, which are triterpene derivatives that contain sugar moieties, are the main pharmacological ingredients in ginseng. This study was designed to investigate the effect of ginsenoside Rg3-enriched ginseng extract (Rg3GE) on scopolamine-induced memory impairment in mice. Methods Rg3GE (50 and 100 mg/kg) were administered to C57BL/6 mice by oral gavage for 14 days (days 1–14). Memory impairment was induced by scopolamine (1 mg/kg, intraperitoneal injection) for 6 days (days 914). The Morris water maze test was used to assess hippocampus-dependent spatial memory. The effects of scopolamine with or without Rg3GE on acetylcholinesterase and nuclear factor-κB (NF-κB) in the hippocampus were also examined. Results Mice with scopolamine treatment alone showed impairments in the acquisition and retention of spatial memory. Mice that received Rg3GE and scopolamine showed no scopolamine-induced impairment in the acquisition of spatial memory. Oral administration of Rg3GE suppressed the scopolamine-mediated increase in acetylcholinesterase activity and stimulation of the NF-κB pathway (i.e., phosphorylation of p65) in the hippocampus. Conclusion These findings suggest that Rg3GE may stabilize scopolamine-induced memory deficits through the inhibition of acetylcholinesterase activity and NF-κB signaling in the hippocampus.
Collapse
|
39
|
Guo C, Shen J, Meng Z, Yang X, Li F. Neuroprotective effects of polygalacic acid on scopolamine-induced memory deficits in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:149-155. [PMID: 26926176 DOI: 10.1016/j.phymed.2015.12.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/25/2015] [Accepted: 12/18/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Polygala tenuifolia Willd is a Traditional Chinese Medicine used for the treatment of learning and memory deficits. Triterpenoid saponins, the main bioactive compounds of Polygala tenuifolia Willd, are easily hydrolyzed to polygalacic acid (PA). PURPOSE The present study was undertaken to investigate the neuroprotective effects of PA on scopolamine-induced cognitive dysfunction and to elucidate its underlying mechanisms of action. METHODS PA (3, 6, and 12 mg/kg) was administered orally to mice for fourteen days, and scopolamine (1 mg/kg) was injected intraperitoneally for fourteen days to induce memory impairment. Memory-related behaviors were evaluated using the Morris water maze. Cholinergic and neuroinflammatory activities were measured in brain tissue. Superoxide dismutase activities, malondialdehyde and reduced glutathione contents were also measured in the brains. RESULTS Treatment with scopolamine significantly increased the escape latency time, decreased the number of crossings, and shortened the time spent in the target quadrant, while PA reversed these scopolamine-induced effects. PA significantly improved cholinergic system reactivity, as indicated by decreased acetylcholinesterase (AChE) activity, increased choline acetyltransferase (ChAT) activity, and elevated levels of acetylcholine (ACh) in the hippocampus and frontal cortex. PA also significantly ameliorated neuroinflammation and oxidative stress in mice. CONCLUSION These results suggest that PA might exert a significant neuroprotective effect on cognitive impairment, driven in part by the modulation of cholinergic activity and neuroinflammation.
Collapse
Affiliation(s)
- Changrun Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Jinyang Shen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhaoqing Meng
- Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang 222001, PR China
| | - Xiaolin Yang
- Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
40
|
The Ameliorating Effect of Myrrh on Scopolamine-Induced Memory Impairments in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:925432. [PMID: 26635888 PMCID: PMC4655272 DOI: 10.1155/2015/925432] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/11/2015] [Indexed: 12/28/2022]
Abstract
Myrrh has been used since ancient times for the treatment of various diseases such as inflammatory diseases, gynecological diseases, and hemiplegia. In the present study, we investigated the effects of aqueous extracts of myrrh resin (AEM) on scopolamine-induced memory impairments in mice. AEM was estimated with (2E,5E)-6-hydroxy-2,6-dimethylhepta-2,4-dienal as a representative constituent by HPLC. The oral administration of AEM for 7 days significantly reversed scopolamine-induced reduction of spontaneous alternation in the Y-maze test. In the passive avoidance task, AEM also restored the decreased latency time of the retention trial by scopolamine treatment. In addition, Western blot analysis and Immunohistochemistry revealed that AEM reversed scopolamine-decreased phosphorylation of Akt and extracellular signal-regulated kinase (ERK). Our study demonstrates for the first time that AEM ameliorates the scopolamine-induced memory impairments in mice and increases the phosphorylation of Akt and ERK in the hippocampus of mice brain. These results suggest that AEM has the therapeutic potential in memory impairments.
Collapse
|