1
|
Plazas E, Sierra-Marquez L, Olivero-Verbel J. Bioactive Molecules from Tropical American Plants: Potential Anti-Inflammatory Agents for Cytokine Storm Management. Molecules 2025; 30:1486. [PMID: 40286093 PMCID: PMC11990702 DOI: 10.3390/molecules30071486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 04/29/2025] Open
Abstract
The cytokine storm, a hyperinflammatory response characterized by the excessive release of pro-inflammatory mediators such as TNFα, INFγ, IL-1β, IL-6, and GM-CSF, has been identified as a critical factor in the progression and severity of acute inflammatory conditions. Regulating these pathways is essential for mitigating systemic damage and improving outcomes. Natural products from tropical American plants have shown significant potential in modulating these hyperinflammatory responses. Key polyphenols, like quercetin and luteolin, found in plants such as Achyrocline satureioides and Mangifera indica demonstrate the downregulation of NF-κB and inhibition of pro-inflammatory cytokines. Alkaloids, such as berberine and mitraphylline, isolated from Berberis species and Uncaria tomentosa, respectively, have shown potent effects in suppressing nitric oxide production and regulating inflammasomes. Terpenoids, including parthenolide from Tanacetum parthenium and curcumol from Curcuma longa, exhibit multitarget activity, reducing cytokine levels and inhibiting key inflammatory enzymes like COX-2 and iNOS. These findings highlight the immense potential of bioactive compounds from tropical American plants as modulators of immune-inflammatory pathways, providing a foundation for developing effective therapeutic agents to counteract the severe effects of cytokine storms.
Collapse
Affiliation(s)
| | | | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena 130014, Colombia; (E.P.); (L.S.-M.)
| |
Collapse
|
2
|
Sun D, Hoffman A, Askarian F, Bjånes E, Lin EX, Varner J, Nizet V. The Role of PI3k-Gamma Modulation in Bacterial Infection: A Review of the Literature and Selected Experimental Observations. Antibiotics (Basel) 2025; 14:315. [PMID: 40149125 PMCID: PMC11939471 DOI: 10.3390/antibiotics14030315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/06/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Phosphoinositide 3-kinase is a potent target for cancer therapy due to its significant role in the regulation of cellular growth and proliferation. Dysregulation of the PI3k signaling cascade can constitutively activate growth pathways to trigger the progression of cancer, resulting in the development of multiple inhibitors as cancer therapeutics. Objectives: The wide array of cells expressing PI3k also include immune cells, and the inhibition of these receptors has shown promise in combating inflammation and infectious disease, a relationship we sought to examine further. Methods: We infected wild-type and PI3kγ knockout murine macrophages as well as PI3kγ inhibitor-treated THP-1 human macrophage-like cells with Staphylococcus aureus and quantified inflammation through gene expression analysis, protein secretion assays, and immunofluorescence imaging. Results: We observed that knockout of PI3kγ in murine macrophages alongside pharmacological inhibition through IPI549 treatment in THP-1 cells led to an NF-κB-driven suppression in transcription and release of inflammatory cytokines upon infection with methicillin-resistant Staphylococcus aureus. We were also able to confirm that this suppression of NF-κB translocation and subsequent decrease in inflammatory cytokine release did not compromise and even slightly boosted the bacterial killing ability. Conclusion: PI3k is primarily targeted for cancer therapies, but further exploration can also be carried out on its potential roles in treating bacterial infection.
Collapse
Affiliation(s)
- Daniel Sun
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA 92093, USA;
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA; (A.H.); (F.A.); (E.B.); (E.X.L.)
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, CA 92093, USA;
| | - Alexandria Hoffman
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA; (A.H.); (F.A.); (E.B.); (E.X.L.)
| | - Fatemeh Askarian
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA; (A.H.); (F.A.); (E.B.); (E.X.L.)
| | - Elisabet Bjånes
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA; (A.H.); (F.A.); (E.B.); (E.X.L.)
| | - Eric X. Lin
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA; (A.H.); (F.A.); (E.B.); (E.X.L.)
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, CA 92093, USA;
| | - Judith Varner
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, CA 92093, USA;
- Moores Cancer Center, UC San Diego, La Jolla 92093, USA
| | - Victor Nizet
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA 92093, USA;
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA; (A.H.); (F.A.); (E.B.); (E.X.L.)
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, CA 92093, USA;
| |
Collapse
|
3
|
Widyananda MH, Dwijayanti DR, Fujii A, Minamisaka K, Nishidono Y, Nishizawa M, Widodo N. Anti-Obesity Properties of Boesenbergia rotunda Rhizome Extract: Regulation of Inflammation, Lipid Metabolism, and Insulin Signaling in ob/ob Mice. Molecules 2025; 30:501. [PMID: 39942605 PMCID: PMC11820812 DOI: 10.3390/molecules30030501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/31/2024] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Obesity, which is characterized by excessive body fat accumulation and energy imbalance, is a major risk factor for type 2 diabetes mellitus. Boesenbergia rotunda rhizomes (known as fingerroots) exhibit a variety of pharmacological activities and are used in traditional medicine. Pinostrobin was identified as a major constituent of Boesenbergia rotunda rhizome (BR) extract and suppressed nitric oxide production in interleukin 1β-treated hepatocytes. Next, we investigated the anti-obesity effects of BR extract in ob/ob mice, a type 2 diabetes mellitus model. The ob/ob mice were treated with or without 1% BR extract for 14 days and then analyzed for serum insulin and triglyceride levels, liver histology, and liver mRNA expression. The administration of BR extract significantly decreased blood glucose concentrations and increased serum insulin concentrations in ob/ob mice. In addition, this treatment reduced triglyceride levels in both the serum and liver and decreased lipid accumulation in hepatocytes. Microarray analysis revealed that hepatic mRNA affected the expression of genes involved in inflammation, lipid metabolism, lipid synthesis, and insulin signaling, leading to improvements in obesity. Because BR extract has hypoglycemic and antidiabetic effects on ob/ob mice, it might be a promising candidate for addressing obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Muhammad Hermawan Widyananda
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang 65113, East Java, Indonesia; (M.H.W.); (D.R.D.); (M.N.)
| | - Dinia Rizqi Dwijayanti
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang 65113, East Java, Indonesia; (M.H.W.); (D.R.D.); (M.N.)
- Research Center of Complementary Medicine and Functional Food, Universitas Brawijaya, Malang 65113, East Java, Indonesia
- Asia-Japan Research Institute, Ritsumeikan Asia-Japan Research Organization, Ritsumeikan University, Ibaraki 567-8570, Osaka, Japan
| | - Airi Fujii
- College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan; (A.F.)
| | - Keita Minamisaka
- College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan; (A.F.)
| | - Yuto Nishidono
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan;
| | - Mikio Nishizawa
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang 65113, East Java, Indonesia; (M.H.W.); (D.R.D.); (M.N.)
- College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan; (A.F.)
| | - Nashi Widodo
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang 65113, East Java, Indonesia; (M.H.W.); (D.R.D.); (M.N.)
| |
Collapse
|
4
|
Song X, Wang X, Gao Y, Xu G, Yan X, Chen Z, Song G. Exploring the Therapeutic Potential of Glycyrrhiza Compounds in Alzheimer's Disease: A Comprehensive Review. Curr Top Med Chem 2025; 25:286-310. [PMID: 39323338 DOI: 10.2174/0115680266322320240911194626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder. Research shows that the development of AD is linked to neuroinflammation, endoplasmic reticulum stress, mitochondrial dysfunction, cell death, and abnormal cholinergic signaling. Glycyrrhiza compounds contain active ingredients and extracts that offer multiple benefits, including targeting various pathways, high efficacy with low toxicity, and long-lasting therapeutic effects. These benefits highlight the significant potential of Glycyrrhiza compounds for preventing and treating AD. This review summarizes recent advancements in Glycyrrhiza compounds for preventing and treating AD. It focuses on their inhibitory effects on key signaling pathways, such as Toll-like receptor 4 (TLR4), nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), and cholinergic signaling. This study aims to establish a scientific framework for using Glycyrrhiza compounds in the clinical prevention and treatment of AD and to support the development of new therapeutic interventions.
Collapse
Affiliation(s)
- Xiaona Song
- Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd, Taiyuan, 030001, China
- Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd, Taiyuan, 030001, China
| | - Xiaotang Wang
- Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd, Taiyuan, 030001, China
- Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd, Taiyuan, 030001, China
| | - Yao Gao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, No. 85 Jiefang South Rd, Taiyuan, 030001, China
| | - Guoqiang Xu
- Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd, Taiyuan, 030001, China
- Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd, Taiyuan, 030001, China
| | - Xiaoru Yan
- Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd, Taiyuan, 030001, China
- Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd, Taiyuan, 030001, China
| | - Zhaoyang Chen
- Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd, Taiyuan, 030001, China
- Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd, Taiyuan, 030001, China
| | - Guohua Song
- Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd, Taiyuan, 030001, China
- Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd, Taiyuan, 030001, China
| |
Collapse
|
5
|
Liang X, Hu Y, Li X, Xu X, Chen Z, Han Y, Han Y, Lang G. Role of PI3Kγ in the polarization, migration, and phagocytosis of microglia. Neurochem Int 2025; 182:105917. [PMID: 39675432 DOI: 10.1016/j.neuint.2024.105917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Phosphoinositide 3-kinase γ (PI3Kγ) is a signaling protein that is constitutively expressed in immune competent cells and plays a crucial role in cell proliferation, apoptosis, migration, deformation, and immunology. Several studies have shown that high expression of PI3Kγ can inhibit the occurrence of inflammation in microglia while also regulating the polarization of microglia to inhibit inflammation and enhance microglial migration and phagocytosis. It is well known that the regulation of microglial polarization, migration, and phagocytosis is key to the treatment of most neurodegenerative diseases. Therefore, in this article, we review the important regulatory role of PI3Kγ in microglia to provide a basis for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xinghua Liang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, 563000, China.
| | - Yuan Hu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, 563000, China.
| | - Xinyue Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, 563000, China.
| | - Xi Xu
- The Special Key Laboratory of Oral Diseases Research Institution of Higher Education in Guizhou Province, Zunyi Medical University, Zunyi, 563000, China.
| | - Zhonglan Chen
- The Special Key Laboratory of Oral Diseases Research Institution of Higher Education in Guizhou Province, Zunyi Medical University, Zunyi, 563000, China.
| | - Yalin Han
- The Special Key Laboratory of Oral Diseases Research Institution of Higher Education in Guizhou Province, Zunyi Medical University, Zunyi, 563000, China.
| | - Yingying Han
- The Special Key Laboratory of Oral Diseases Research Institution of Higher Education in Guizhou Province, Zunyi Medical University, Zunyi, 563000, China.
| | - Guangping Lang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
6
|
Dingyi L, Libin H, Jifeng P, Ding Z, Yulong L, Zhangyi W, Yunong Y, Qinghua W, Feng L. Silencing CXCL16 alleviate neuroinflammation and M1 microglial polarization in mouse brain hemorrhage model and BV2 cell model through PI3K/AKT pathway. Exp Brain Res 2024; 242:1917-1932. [PMID: 38896294 DOI: 10.1007/s00221-024-06875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Neuroinflammation and microglia polarization play pivotal roles in brain injury induced by intracerebral hemorrhage (ICH). Despite the well-established involvement of CXC motif chemokine ligand 16 (CXCL16) in regulating inflammatory responses across various diseases, its specific functions in the context of neuroinflammation and microglial polarization following ICH remain elusive. In this study, we investigated the impact of CXCL16 on neuroinflammation and microglia polarization using both mouse and cell models. Our findings revealed elevated CXCL16 expression in mice following ICH and in BV2 cells after lipopolysaccharide (LPS) stimulation. Specific silencing of CXCL16 using siRNA led to a reduction in the expression of neuroinflammatory factors, including IL-1β and IL-6, as well as decreased expression of the M1 microglia marker iNOS. Simultaneously, it enhanced the expression of anti-inflammatory factors such as IL-10 and the M2 microglia marker Arg-1. These results were consistent across both mouse and cell models. Intriguingly, co-administration of the PI3K-specific agonist 740 Y-P with siRNA in LPS-stimulated cells reversed the effects of siRNA. In conclusion, silencing CXCL16 can positively alleviate neuroinflammation and M1 microglial polarization in BV2 inflammation models and ICH mice. Furthermore, in BV2 cells, this beneficial effect is mediated through the PI3K/Akt pathway. Inhibition of CXCL16 could be a novel approach for treating and diagnosing cerebral hemorrhage.
Collapse
Affiliation(s)
- Lv Dingyi
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Hu Libin
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Piao Jifeng
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Zhiquan Ding
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Li Yulong
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Wu Zhangyi
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Yin Yunong
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Wang Qinghua
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.
| | - Li Feng
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
7
|
Ding L, Cai XY, Yang RN, Zha LP, Gui SY, Liu JS, Wang JT, Yu Y. Two new N-containing heterocyclic compounds from the roots of Platycodon grandiflorus. Nat Prod Res 2024:1-8. [PMID: 38684028 DOI: 10.1080/14786419.2024.2347453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Two unusual N-containing heterocyclic compounds, Plagranlines B-C, were isolated from the roots of Platycodon grandiflorus. Plagranline B (1) was consisted of neolignane and monomeric quinoline constituent units and plagranline C (2) possessed pyridinone ring that was not commonly discovered in natural product. Their planar structures were elucidated based on analysis of NMR and HRESIMS spectroscopy data, and their absolute configurations were determined by quantum chemical calculations, including GIAO 13C NMR (DP4+) calculation and ECD calculation. In addition, extensive activity screening including glycosidases, oestrogen-like, and NO inhibitory assays were performed, compounds 1 and 2 possessed the weak activities.
Collapse
Affiliation(s)
- Lan Ding
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Xin-Yin Cai
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai
| | - Ren-Nai Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Liang-Ping Zha
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
- Development of Chinese Medicine, Anhui Province Key Laboratory of Research &, Hefei, PR China
| | - Shuang-Ying Gui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
- Development of Chinese Medicine, Anhui Province Key Laboratory of Research &, Hefei, PR China
| | - Jin-Song Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
- Institute of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei, PR China
- Key Laboratory for Functional Substances of Chinese Medicine and Natural Medicine State, Hefei, PR China
| | - Ju-Tao Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
- Development of Chinese Medicine, Anhui Province Key Laboratory of Research &, Hefei, PR China
- Institute of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei, PR China
- Key Laboratory for Functional Substances of Chinese Medicine and Natural Medicine State, Hefei, PR China
| | - Yang Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
- Institute of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei, PR China
- Key Laboratory for Functional Substances of Chinese Medicine and Natural Medicine State, Hefei, PR China
- Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Hefei, PR China
| |
Collapse
|
8
|
Riedel F, Bartolomé MP, Enrico LLT, Fink-Straube C, Duong CN, Gherlone F, Huang Y, Valiante V, Del Campo A, Sankaran S. Engineered living materials for the conversion of a low-cost food-grade precursor to a high-value flavonoid. Front Bioeng Biotechnol 2023; 11:1278062. [PMID: 38090710 PMCID: PMC10715425 DOI: 10.3389/fbioe.2023.1278062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/14/2023] [Indexed: 10/16/2024] Open
Abstract
Microbial biofactories allow the upscaled production of high-value compounds in biotechnological processes. This is particularly advantageous for compounds like flavonoids that promote better health through their antioxidant, anti-bacterial, anti-cancer and other beneficial effects but are produced in small quantities in their natural plant-based hosts. Bacteria like E. coli have been genetically modified with enzyme cascades to produce flavonoids like naringenin and pinocembrin from coumaric or cinnamic acid. Despite advancements in yield optimization, the production of these compounds still involves high costs associated with their biosynthesis, purification, storage and transport. An alternative production strategy could involve the direct delivery of the microbial biofactories to the body. In such a strategy, ensuring biocontainment of the engineered microbes in the body and controlling production rates are major challenges. In this study, these two aspects are addressed by developing engineered living materials (ELMs) consisting of probiotic microbial biofactories encapsulated in biocompatible hydrogels. Engineered probiotic E. coli Nissle 1917 able to efficiently convert cinnamic acid into pinocembrin were encapsulated in poly(vinyl alcohol)-based hydrogels. The biofactories are contained in the hydrogels for a month and remain metabolically active during this time. Control over production levels is achieved by the containment inside the material, which regulates bacteria growth, and by the amount of cinnamic acid in the medium.
Collapse
Affiliation(s)
- Florian Riedel
- INM—Leibniz Institute for New Materials, Saarbrücken, Germany
| | | | - Lara Luana Teruel Enrico
- INM—Leibniz Institute for New Materials, Saarbrücken, Germany
- Chemistry Department, Saarland University, Saarbrücken, Germany
| | | | | | - Fabio Gherlone
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infections Biology—Hans Knöll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Ying Huang
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infections Biology—Hans Knöll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Vito Valiante
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infections Biology—Hans Knöll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Aránzazu Del Campo
- INM—Leibniz Institute for New Materials, Saarbrücken, Germany
- Chemistry Department, Saarland University, Saarbrücken, Germany
| | | |
Collapse
|
9
|
Barbalace MC, Freschi M, Rinaldi I, Mazzara E, Maraldi T, Malaguti M, Prata C, Maggi F, Petrelli R, Hrelia S, Angeloni C. Identification of Anti-Neuroinflammatory Bioactive Compounds in Essential Oils and Aqueous Distillation Residues Obtained from Commercial Varieties of Cannabis sativa L. Int J Mol Sci 2023; 24:16601. [PMID: 38068924 PMCID: PMC10706820 DOI: 10.3390/ijms242316601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Neuroinflammation, which is mainly triggered by microglia, is a key contributor to multiple neurodegenerative diseases. Natural products, and in particular Cannabis sativa L., due to its richness in phytochemical components, represent ideal candidates to counteract neuroinflammation. We previously characterized different C. sativa commercial varieties which showed significantly different chemical profiles. On these bases, the aim of this study was to evaluate essential oils and aqueous distillation residues from the inflorescences of three different hemp varieties for their anti-neuroinflammatory activity in BV-2 microglial cells. Cells were pretreated with aqueous residues or essential oils and then activated with LPS. Unlike essential oils, aqueous residues showed negligible effects in terms of anti-inflammatory activity. Among the essential oils, the one obtained from 'Gorilla Glue' was the most effective in inhibiting pro-inflammatory mediators and in upregulating anti-inflammatory ones through the modulation of the p38 MAPK/NF-κB pathway. Moreover, the sesquiterpenes (E)-caryophyllene, α-humulene, and caryophyllene oxide were identified as the main contributors to the essential oils' anti-inflammatory activity. To our knowledge, the anti-neuroinflammatory activity of α-humulene has not been previously described. In conclusion, our work shows that C. sativa essential oils characterized by high levels of sesquiterpenes can be promising candidates in the prevention/counteraction of neuroinflammation.
Collapse
Affiliation(s)
- Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (M.C.B.); (M.F.); (I.R.)
| | - Michela Freschi
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (M.C.B.); (M.F.); (I.R.)
| | - Irene Rinaldi
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (M.C.B.); (M.F.); (I.R.)
| | - Eugenia Mazzara
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (E.M.); (F.M.); (R.P.)
| | - Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41125 Modena, Italy;
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (M.C.B.); (M.F.); (I.R.)
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio, 48, 40126 Bologna, Italy;
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (E.M.); (F.M.); (R.P.)
| | - Riccardo Petrelli
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (E.M.); (F.M.); (R.P.)
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (M.C.B.); (M.F.); (I.R.)
| | - Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (M.C.B.); (M.F.); (I.R.)
| |
Collapse
|
10
|
Bao M, Bade R, Liu H, Tsambaa B, Shao G, Borjigidai A, Cheng Y. Astragaloside IV against Alzheimer's disease via microglia-mediated neuroinflammation using network pharmacology and experimental validation. Eur J Pharmacol 2023; 957:175992. [PMID: 37598923 DOI: 10.1016/j.ejphar.2023.175992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/11/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases in the world. The effective therapeutic methods and drugs are still not clear. Astragaloside IV (AS-IV), a triterpenoid saponin isolated from the root of Huangqi, has a beneficial effect in the treatment of AD. However, whether AS-IV alters microglia in the inflammation of AD is still ambiguous. In our study, 99 common targets were collected between AS-IV and AD. BCL2 apoptosis regulator (Bcl-2), pro-apoptotic BCL-2 protein BAX, epidermal growth factor receptor (EGFR), and receptor tyrosine phosphatase type C (PTPRC) were screened for inflammation and microglia in the above targets by network pharmacology. Interleukin-1β (IL-1β) and EGFR both interact with signal transducer and activator of transcription 3 (STAT3) by a protein interaction network, and IL-1β had a higher affinity for AS-IV based on molecular docking. Enrichment revealed targets involved in the regulation of neuronal cell bodies, growth factor receptor binding, EGFR tyrosine kinase inhibitor resistance., etc. Besides, AS-IV alleviated the reduced cell proliferation in amyloid-beta (Aβ)-treated microglial BV2 cells. AS-IV affected BV2 cell morphological changes and decreased cluster of differentiation 11b (CD11b) gene, IL-1β, and EGFR mRNA levels increment during lipopolysaccharide (LPS) injury in BV2 cell activation. Therefore, AS-IV may regulate microglial activation and inflammation via EGFR-dependent pathways in AD. EGFR and IL-1β are vital targets that may relate to each other to coregulate downstream molecular functions in the cure of AD. Our study provides a candidate drug and disease target for the treatment of neurodegenerative diseases in the clinic.
Collapse
Affiliation(s)
- MuLan Bao
- Key Laboratory for Ethnomedicine for Ministry of Education, Minzu University of China, Beijing 100081, China; Center on Translational Neuroscience, Minzu University of China, Beijing 100081, China; Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, School of Medical Technology and Anesthesiology, Baotou Medical College, Baotou 014040, China
| | - RenGui Bade
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, School of Medical Technology and Anesthesiology, Baotou Medical College, Baotou 014040, China
| | - Hua Liu
- Key Laboratory for Ethnomedicine for Ministry of Education, Minzu University of China, Beijing 100081, China; Center on Translational Neuroscience, Minzu University of China, Beijing 100081, China
| | - Battseren Tsambaa
- Botanic Garden and Research Institute, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia
| | - Guo Shao
- Center for Translational Medicine, The Third People's Hospital of Longgang District, Shenzhen 518112, China
| | - Almaz Borjigidai
- Key Laboratory for Ethnomedicine for Ministry of Education, Minzu University of China, Beijing 100081, China.
| | - Yong Cheng
- Key Laboratory for Ethnomedicine for Ministry of Education, Minzu University of China, Beijing 100081, China; Center on Translational Neuroscience, Minzu University of China, Beijing 100081, China; Institute of National Security, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
11
|
Qu Y, Qiu L, Qiu H, Shen Y, Tang M, Huang Y, Peng Y, Wang J, Fu Q. Notopterol alleviates the progression of osteoarthritis: An in vitro and in vivo study. Cytokine 2023; 169:156309. [PMID: 37517294 DOI: 10.1016/j.cyto.2023.156309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/05/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Osteoarthritis (OA) is a prevalent degenerative joint disorder caused by the progressive destruction of cartilage and inflammation in the articular cavity. Studies have proved that the inhibition of articular cartilage destruction and generation of inflammatory factors can be effective strategies for treating OA. Notopterol (NOT) is a quality control index of Notopterygium incisum Ting ex H. T. Chang (N. incisum) with anti-inflammatory, antioxidant, and analgesic activities. Moreover, NOT has been used for many years to treat joint diseases. A study using human C28/I2 cells suggested that NOT down-regulated the hypersecretion of inflammatory mediators and alleviated the degradation of the extracellular matrix (ECM). In addition, NOT decreased the overproduction of reactive oxygen species (ROS) and chondrocyte apoptosis through the nuclear factor erythroid-2-related factor 2 (Nrf2) signaling pathway. NOT exerted a chondroprotective effect by partly inhibiting the Janus kinase 2/signal transducers and activators of transcription 3 (JAK2/STAT3) and phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) signaling pathways and regulating the nuclear factor Nrf2/heme oxygenase-1(HO-1) signaling pathway. In vivo, NOT improved the destruction of articular cartilage in a rat OA model, which may be related to the inhibition of tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6, and IL-12 expressions in synovial fluid. In summary, these results showed that NOT alleviated the progression of OA and is expected to become a new therapy for treating OA clinically.
Collapse
Affiliation(s)
- Yuhan Qu
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China; School of Food and Biological engineering, Chengdu University, Chengdu 610106, China
| | - Lu Qiu
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China; School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Hui Qiu
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yue Shen
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Min Tang
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yuehui Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yi Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jun Wang
- Department of Pharmacy, Chengdu Integrated TCM and Western Medicine Hospital, Chengdu 610041, China.
| | - Qiang Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
12
|
Zohar K, Lezmi E, Reichert F, Eliyahu T, Rotshenker S, Weinstock M, Linial M. Coordinated Transcriptional Waves Define the Inflammatory Response of Primary Microglial Culture. Int J Mol Sci 2023; 24:10928. [PMID: 37446105 DOI: 10.3390/ijms241310928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The primary role of microglia is to maintain homeostasis by effectively responding to various disturbances. Activation of transcriptional programs determines the microglia's response to external stimuli. In this study, we stimulated murine neonatal microglial cells with benzoyl ATP (bzATP) and lipopolysaccharide (LPS), and monitored their ability to release pro-inflammatory cytokines. When cells are exposed to bzATP, a purinergic receptor agonist, a short-lived wave of transcriptional changes, occurs. However, only combining bzATP and LPS led to a sustainable and robust response. The transcriptional profile is dominated by induced cytokines (e.g., IL-1α and IL-1β), chemokines, and their membrane receptors. Several abundant long noncoding RNAs (lncRNAs) are induced by bzATP/LPS, including Ptgs2os2, Bc1, and Morrbid, that function in inflammation and cytokine production. Analyzing the observed changes through TNF (Tumor necrosis factor) and NF-κB (nuclear factor kappa light chain enhancer of activated B cells) pathways confirmed that neonatal glial cells exhibit a distinctive expression program in which inflammatory-related genes are upregulated by orders of magnitude. The observed capacity of the microglial culture to activate a robust inflammatory response is useful for studying neurons under stress, brain injury, and aging. We propose the use of a primary neonatal microglia culture as a responsive in vitro model for testing drugs that may interact with inflammatory signaling and the lncRNA regulatory network.
Collapse
Affiliation(s)
- Keren Zohar
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Elyad Lezmi
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Fanny Reichert
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Tsiona Eliyahu
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shlomo Rotshenker
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Marta Weinstock
- Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Michal Linial
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
13
|
Zhang X, Chen F, Sun M, Wu N, Liu B, Yi X, Ge R, Fan X. Microglia in the context of multiple sclerosis. Front Neurol 2023; 14:1157287. [PMID: 37360338 PMCID: PMC10287974 DOI: 10.3389/fneur.2023.1157287] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease that commonly results in nontraumatic disability in young adults. The characteristic pathological hallmark of MS is damage to myelin, oligodendrocytes, and axons. Microglia provide continuous surveillance in the CNS microenvironment and initiate defensive mechanisms to protect CNS tissue. Additionally, microglia participate in neurogenesis, synaptic refinement, and myelin pruning through the expression and release of different signaling factors. Continuous activation of microglia has been implicated in neurodegenerative disorders. We first review the lifetime of microglia, including the origin, differentiation, development, and function of microglia. We then discuss microglia participate in the whole processes of remyelination and demyelination, microglial phenotypes in MS, and the NF-κB/PI3K-AKT signaling pathway in microglia. The damage to regulatory signaling pathways may change the homeostasis of microglia, which would accelerate the progression of MS.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Fang Chen
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Mingyue Sun
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Nan Wu
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Bin Liu
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Xiangming Yi
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Ruli Ge
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Xueli Fan
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
14
|
Qasaymeh RM, Rotondo D, Seidel V. Phytochemical study and immunomodulatory activity of Fraxinus excelsior L. J Pharm Pharmacol 2023; 75:117-128. [PMID: 36332078 DOI: 10.1093/jpp/rgac076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Fraxinus excelsior L. (FE) is traditionally used to treat inflammatory and pain disorders. This study aimed to identify the constituents of FE leaves and evaluate the effects of its n-hexane (FEH), ethyl acetate (FEE), methanol (FEM) extracts and constituents on the viability of THP-1 cells and their ability to release pro-inflammatory cytokines. METHODS THP-1 cell viability was assessed using an MTT assay. The immunomodulatory activity was evaluated by measuring tumour necrosis factor-alpha (TNF-α) and interleukin 12 (IL-12) released by lipopolysaccharide-stimulated THP-1 cells using enzyme-linked immunosorbent assays. KEY FINDINGS Triterpenes, tyrosol esters, alkanes, phytyl and steryl esters, pinocembrin and bis(2-ethylhexyl)phthalate were isolated from FE. The tyrosol esters showed no significant effect on THP-1 cell viability. FEH, FEE, FEM, and pinocembrin, ursolic acid, oleanolic acid had IC50 values of 56.9, 39.9, 124.7 µg/ml and 178.6, 61.5 and 199.8 µM, respectively. FE extracts, ursolic acid, oleanolic acid and pinocembrin significantly reduced TNF-α/IL-12 levels. The tyrosol esters did not significantly affect TNF-α/IL-12 production. CONCLUSIONS FE was able to reduce pro-inflammatory cytokine production indicating a mechanistic focus in its use for inflammation and pain. Further investigations are warranted to unravel the mode of action of the tested constituents and discover other potentially active compounds in FE extracts.
Collapse
Affiliation(s)
- Rana Mohammad Qasaymeh
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.,Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Dino Rotondo
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Veronique Seidel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
15
|
Zheng Y, Li Y, Li S, Hu R, Zhang L. Annexin A1 (Ac2-26)-dependent Fpr2 receptor alleviates sepsis-induced acute kidney injury by inhibiting inflammation and apoptosis in vivo and in vitro. Inflamm Res 2023; 72:347-362. [PMID: 36544058 PMCID: PMC9925514 DOI: 10.1007/s00011-022-01640-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Excessive inflammatory responses and apoptosis are critical pathologies that contribute to sepsis-induced acute kidney injury (SI-AKI). Annexin A1 (ANXA1), a member of the calcium-dependent phospholipid-binding protein family, protects against SI-AKI through its anti-inflammatory and antiapoptotic effects, but the underlying mechanisms are still largely unknown. METHODS In vivo, SI-AKI mouse models were established via caecal ligation and puncture (CLP) and were then treated with the Ac2-26 peptide of ANXA1 (ANXA1 (Ac2-26)), WRW4 (Fpr2 antagonist) or both. In vitro, HK-2 cells were induced by lipopolysaccharide (LPS) and then treated with ANXA1 (Ac2-26), Fpr2-siRNA or both. RESULTS In the present study, we found that the expression levels of ANXA1 were decreased, and the expression levels of TNF-α, IL-1β, IL-6, cleaved caspase-3, cleaved caspase-8 and Bax were significantly increased, accompanied by marked kidney tissue apoptosis in vivo. Moreover, we observed that ANXA1 (Ac2-26) significantly reduced the levels of TNF-α, IL-1β and IL-6 and cleaved caspase-3, cleaved caspase-8, FADD and Bax and inhibited apoptosis in kidney tissue and HK-2 cells, accompanied by pathological damage to kidney tissue. Seven-day survival, kidney function and cell viability were significantly improved in vivo and in vitro, respectively. Furthermore, the administration of ANXA1 (Ac2-26) inhibited the CLP- or LPS-induced phosphorylation of PI3K and AKT and downregulated the level of NF-κB in vivo and in vitro. Moreover, our data demonstrate that blocking the Fpr2 receptor by the administration of WRW4 or Fpr2-siRNA reversed the abovementioned regulatory role of ANXA1, accompanied by enhanced phosphorylation of PI3K and AKT and upregulation of the level of NF-κB in vivo and in vitro. CONCLUSIONS Taken together, this study provides evidence that the protective effect of ANXA1 (Ac2-26) on SI-AKI largely depends on the negative regulation of inflammation and apoptosis via the Fpr2 receptor.
Collapse
Affiliation(s)
- Yanlei Zheng
- Department of Critical Care Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079 China
| | - Yan Li
- Department of Critical Care Medicine, Xiangyang Central Hospital, Xiangyang, 440121 China
| | - Shi Li
- Department of Critical Care Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079 China
| | - Ronghua Hu
- Department of Critical Care Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079 China
| | - Li Zhang
- Department of Critical Care Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China.
| |
Collapse
|
16
|
Xu W, Lu H, Yuan Y, Deng Z, Zheng L, Li H. The Antioxidant and Anti-Inflammatory Effects of Flavonoids from Propolis via Nrf2 and NF-κB Pathways. Foods 2022; 11:foods11162439. [PMID: 36010439 PMCID: PMC9407528 DOI: 10.3390/foods11162439] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Accumulating evidence shows that oxidative stress and inflammation contribute to the development of cardiovascular disease. It has been suggested that propolis possesses antioxidant and anti-inflammatory activities. In this study, the antioxidant and anti-inflammatory effects of the main flavonoids of propolis (chrysin, pinocembrin, galangin, and pinobanksin) and propolis extract were researched. The results showed that the cellular ROS (Reactive oxygen species) levels, antioxidant enzymes, Nrf2 (Nuclear factor erythroid 2-related factor 2) nuclear translocation, and the expression of NQO1 (NAD(P)H:quinone oxidoreductase 1) and HO-1 (heme oxygenase 1) were regulated by different concentrations of individual flavonoids and propolis extract, which showed good antioxidant and pro-oxidant effects. For example, ROS levels were decreased; SOD and CAT activities were increased; and the expression of HO-1 protein was increased by chrysin. The results demonstrated that NO (Nitric Oxide), NOS (Nitric Oxide Synthase), and the activation of the NF-κB signaling pathway were inhibited in a dose-dependent manner by different concentrations of individual flavonoids and propolis extract. Moreover, the results revealed that the phytochemicals presented antioxidant effects at lower concentrations but pro-oxidant effects and stronger anti-inflammatory effects at higher concentrations. To maintain the balance of antioxidant and anti-inflammatory effects, it is possible that phytochemicals activate the Nrf2 pathway and inhibited the NF-κB (Nuclear factor kappa B) pathway.
Collapse
Affiliation(s)
- Wenzhen Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Han Lu
- Guiyang Center for Disease Control and Prevention, Guiyang 550018, China
| | - Yuan Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Correspondence: ; Tel.: +86-15979100756
| |
Collapse
|
17
|
Li JM, Hu T, Jiang CL, Wang W. Pinocembrin ameliorates depressive-like behaviors by regulating P2X7/TRL4 receptors expression in mouse hippocampus. Behav Pharmacol 2022; 33:301-308. [PMID: 35621136 DOI: 10.1097/fbp.0000000000000677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mounting evidence indicates that immune dysfunction may contribute to the neurobiology of major depressive disorder (MDD). Toll-like receptor 4 (TLR4) and P2X7 receptor (P2X7R) were recently reckoned pivotally to regulate NOD-like receptor protein 3 (NLRP3) in microglia. Pinocembrin, one of the primary flavonoids from Pinus heartwood and Eucalyptus, has been studied in various animal models of human disease with anti-inflammatory and antioxidant activities. Herein, we investigated the potential antineuroinflammatory effects of pinocembrin on chronic unpredictable mild stress (CUMS)-induced depressive-like behavior. Male C57BL/6J mice were subjected to CUMS for 4 weeks, treatment group was injected with pinocembrin at a dose of 20 mg/kg. After the stress procedure, behavioral tests, including sucrose preference tests (SPTs) and tail suspension tests (TSTs) were performed to evaluate depressive-like phenotype. Subsequently, the expression of cytokines and microglia-related inflammatory biomarkers were assessed. In the study, we found that pinocembrin significantly blocked the declination of SPT percentage and the extension of TST immobility durations in the depression mouse model. Also, we observed that pinocembrin significantly suppressed microglial activation in the hippocampus. Additionally, pinocembrin downregulated hippocampal NLRP3 through P2X7/TLR4 pathway, and also regulated the CUMS-induced imbalance of pro-inflammatory cytokines, including interleukin-1beta, tumor necrosis factor-alpha and interleukin-6. In conclusion, pinocembrin ameliorates CUMS-induced depressive-like behaviors possibly through downregulating P2X7/TLR4 pathway, providing the mechanism of antidepressant treatment.
Collapse
Affiliation(s)
- Jia-Mei Li
- Department of Stress Medicine, Faculty of Psychology, Navy Medical University, Shanghai, China
| | | | | | | |
Collapse
|
18
|
Bhatt S, Dhiman S, Kumar V, Gour A, Manhas D, Sharma K, Ojha PK, Nandi U. Assessment of the CYP1A2 Inhibition-Mediated Drug Interaction Potential for Pinocembrin Using In Silico, In Vitro, and In Vivo Approaches. ACS OMEGA 2022; 7:20321-20331. [PMID: 35721953 PMCID: PMC9202019 DOI: 10.1021/acsomega.2c02315] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/24/2022] [Indexed: 05/23/2023]
Abstract
Pinocembrin, a bioflavonoid, is extensively used in complementary/alternative medicine. It turns out as a promising candidate against neurodegenerative diseases because of its multifaceted pharmacological action toward neuroprotection. However, literature evidence is still lacking for its inhibitory action on CYP1A2, which is responsible for xenobiotic metabolism leading to the generation of toxic metabolites and bioactivation of procarcinogens. In the present study, our aim was to evaluate the CYP1A2 inhibitory potential of pinocembrin via in silico, in vitro, and in vivo investigations. From the results of in vitro studies, pinocembrin is found to be a potent and competitive inhibitor of CYP1A2. In vitro-in vivo extrapolation results indicate the potential of pinocembrin to interact with CYP1A2 substrate drugs clinically. Molecular docking-based in silico studies demonstrate the strong interaction of pinocembrin with human CYP1A2. In in vivo investigations using a rat model, pinocembrin displayed a marked alteration in the plasma exposure of CYP1A2 substrate drugs, namely, caffeine and tacrine. In conclusion, pinocembrin has a potent CYP1A2 inhibitory action to cause drug interactions, and further confirmatory study is warranted at the clinical level.
Collapse
Affiliation(s)
- Shipra Bhatt
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumit Dhiman
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
| | - Vinay Kumar
- Drug Theoretics
and Chemoinformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Abhishek Gour
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Diksha Manhas
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuhu Sharma
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
| | - Probir Kumar Ojha
- Drug Theoretics
and Chemoinformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Utpal Nandi
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
19
|
Han D, Dong W, Jiang W. Pinocembrin alleviates chronic morphine-induced analgesic tolerance and hyperalgesia by inhibiting microglial activation. Neurol Res 2022; 44:946-955. [PMID: 35574904 DOI: 10.1080/01616412.2022.2075656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Dongfeng Han
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Weiping Dong
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wei Jiang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
20
|
Jiang X, Sun Y, Alahmadi TA, Manikandan V, Rengarajan T, Zhao Y. Copper oxide nanoparticles synthesized from Trichosanthes kirilowii ameliorates the DSS-induced acute colitis in mice through the suppression of inflammatory responses. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:101817. [DOI: 10.1016/j.jksus.2021.101817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
21
|
Yan T, Zhang X, Mao Q, Wu B, He B, Jia Y, Shang L. Alpinae Oxyphyllae Fructus alleviated LPS-induced cognitive impairments via PI3K/AKT/NF-κB signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:489-503. [PMID: 34874107 DOI: 10.1002/tox.23415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 11/07/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Herein, we aim to investigate the effect of Alpinae Oxyphyllae Fructus (AOF) on cognitive impairments and neuroinflammation in a lipopolysaccharide (LPS)-induced models of AD. Mice were injected intracerebroventricularly with LPS, and then administrated AOF using a gavage for 6 weeks. Spatial working memory was assessed using the Y-maze and Morris water maze test, whereas the levels of PI3K, AKT, p-AKT, p-GSK3β, GSK3β, NF-κB, IL-1β, IL-6, and TNF-α were evaluated using western blot and ELISA assay. Our data showed that AOF was able to significantly alleviate the memory decline in LPS-induced AD mice. Moreover, AOF was able to protect neurons through the PI3K/AKT signaling pathway and significantly decrease NF-κB, IL-6, IL-1β, and TNF-α levels in the hippocampal and cortex tissues, which were reversed through the use of LY294002. Additionally, we discovered that AOF could significantly decrease the high expression of cytokines as well as the expression and translocation of NF-κB induced by LPS in PC12 cells. These results demonstrate the anti-neuroinflammatory effect of AOF in both cell and animal models of AD, thereby slowing down the process and development of the disease.
Collapse
Affiliation(s)
- Tingxu Yan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaozhuo Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Qianqian Mao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Bo Wu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Bosai He
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Ying Jia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Lei Shang
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| |
Collapse
|
22
|
Cao P, Chen Q, Shi C, Pei M, Wang L, Gong Z. Pinocembrin ameliorates acute liver failure via activating the Sirt1/PPARα pathway in vitro and in vivo. Eur J Pharmacol 2022; 915:174610. [PMID: 34951978 DOI: 10.1016/j.ejphar.2021.174610] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022]
Abstract
Acute liver failure (ALF) is a life-threatening disease and affects multiple organ systems. Pro-inflammatory factors derived from macrophage plays a key role in septicemia. Pinocembrin is a natural favonoid compound, which can be extracted from honey, propolis and several other plants. Recent investigations demonstrate that Pinocembrin has a variety of pharmacological activities, including anti-inflammatory and antioxidant. To investigate the effects of Pinocembrin on ALF, we explored its possible molecular mechanisms through the experiments in vivo and in vitro. Pre-treatment with Pinocembrin attenuated LPS-induced hepatocyte dysfunction and reduced levels of pro-inflammatory factors and macrophages infiltration. Pinocembrin inhibited the hepatocyte apoptosis and pro-inflammatory reaction of peritoneal macrophages by reducing reactive oxygen species (ROS) via the Sirt1/PPARα signaling pathway. Our study suggests that Pinocembrin might represent a novel therapeutic drug and offers a new method for the treatment of ALF.
Collapse
Affiliation(s)
- Pan Cao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qian Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Maohua Pei
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Luwen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
23
|
You Z, Yang Z, Cao S, Deng S, Chen Y. The novel KLF4/BIG1 regulates LPS-mediated neuro-inflammation and migration in BV2 cells via PI3K/Akt/NF-kB signaling pathway. Neuroscience 2022; 488:102-111. [DOI: 10.1016/j.neuroscience.2022.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/26/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022]
|
24
|
Derseh HB, Goodger JQD, Scheerlinck JPY, Samuel CS, Woodrow IE, Palombo EA, Cumming A, Snibson K. The efficacy and safety of pinocembrin in a sheep model of bleomycin-induced pulmonary fibrosis. PLoS One 2021; 16:e0260719. [PMID: 34855848 PMCID: PMC8638960 DOI: 10.1371/journal.pone.0260719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022] Open
Abstract
The primary flavonoid, pinocembrin, is thought to have a variety of medical uses which relate to its reported anti-oxidant, anti-inflammatory, anti-microbial and anti-cancer properties. Some studies have reported that this flavonoid has anti-fibrotic activities. In this study, we investigated whether pinocembrin would impede fibrosis, dampen inflammation and improve lung function in a large animal model of pulmonary fibrosis. Fibrosis was induced in two localized lung segments in each of the 10 sheep participating in the study. This was achieved via two infusions of bleomycin delivered bronchoscopically at a two-week interval. Another lung segment in the same sheep was left untreated, and was used as a healthy control. The animals were kept for a little over 5 weeks after the final infusion of bleomycin. Pinocembrin, isolated from Eucalyptus leaves, was administered to one of the two bleomycin damaged lung segments at a dose of 7 mg. This dose was given once-weekly over 4-weeks, starting one week after the final bleomycin infusion. Lung compliance (as a measure of stiffness) was significantly improved after four weekly administrations of pinocembrin to bleomycin-damaged lung segments. There were significantly lower numbers of neutrophils and inflammatory cells in the bronchoalveolar lavage of bleomycin-infused lung segments that were treated with pinocembrin. Compared to bleomycin damaged lung segments without drug treatment, pinocembrin administration was associated with significantly lower numbers of immuno-positive CD8+ and CD4+ T cells in the lung parenchyma. Histopathology scoring data showed that pinocembrin treatment was associated with significant improvement in inflammation and overall pathology scores. Hydroxy proline analysis showed that the administration of pinocembrin did not reduce the increased collagen content that was induced by bleomycin in this model. Analyses of Masson’s Trichrome stained sections showed that pinocembrin treatment significantly reduced the connective tissue content in lung segments exposed to bleomycin when compared to bleomycin-infused lungs that did not receive pinocembrin. The striking anti-inflammatory and modest anti-fibrotic remodelling effects of pinocembrin administration were likely linked to the compound’s ability to improve lung pathology and functional compliance in this animal model of pulmonary fibrosis.
Collapse
Affiliation(s)
- Habtamu B. Derseh
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (HBD); (KS)
| | - Jason Q. D. Goodger
- School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| | - Jean-Pierre Y. Scheerlinck
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Chrishan S. Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Ian E. Woodrow
- School of Ecosystem and Forest Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Enzo A. Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | | | - Ken Snibson
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (HBD); (KS)
| |
Collapse
|
25
|
Li C, Wang N, Zheng G, Yang L. Oral Administration of Resveratrol-Selenium-Peptide Nanocomposites Alleviates Alzheimer's Disease-like Pathogenesis by Inhibiting Aβ Aggregation and Regulating Gut Microbiota. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46406-46420. [PMID: 34569225 DOI: 10.1021/acsami.1c14818] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease associated with amyloid-β (Aβ) deposition, leading to neurotoxicity (oxidative stress and neuroinflammation) and gut microbiota imbalance. Resveratrol (Res) has neuroprotective properties, but its bioavailability in vivo is very low. Herein, we developed a small Res-selenium-peptide nanocomposite to enable the application of Res for eliminating Aβ aggregate-induced neurotoxicity and mitigating gut microbiota disorder in aluminum chloride (AlCl3) and d-galactose(d-gal)-induced AD model mice. Res functional selenium nanoparticles (Res@SeNPs) (8 ± 0.34 nm) were prepared first, after which the surface of Res@SeNPs was decorated with a blood-brain barrier transport peptide (TGN peptide) to generate Res-selenium-peptide nanocomposites (TGN-Res@SeNPs) (14 ± 0.12 nm). Oral administration of TGN-Res@SeNPs improves cognitive disorder through (1) interacting with Aβ and decreasing Aβ aggregation, effectively inhibiting Aβ deposition in the hippocampus; (2) decreasing Aβ-induced reactive oxygen species (ROS) and increasing activity of antioxidation enzymes in PC12 cells and in vivo; (3) down-regulating Aβ-induced neuroinflammation via the nuclear factor kappa B/mitogen-activated protein kinase/Akt signal pathway in BV-2 cells and in vivo; and (4) alleviating gut microbiota disorder, particularly with respect to oxidative stress and inflammatory-related bacteria such as Alistipes, Helicobacter, Rikenella, Desulfovibrio, and Faecalibaculum. Thus, we anticipate that Res-selenium-peptide nanocomposites will offer a new potential strategy for the treatment of AD.
Collapse
Affiliation(s)
- Changjiang Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Licong Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
26
|
Sui X, Li N, Shi X, Li X, Han D, Qiu Z, Deng Y, Sun G. Pinocembrin Protects Cardiomyocytes Against Isoproterenol-Induced Hypertrophy. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211033216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cardiac hypertrophy is characterized by an increase in myocardial cell volume and extracellular matrix production. Persistent cardiac hypertrophy can cause dilated cardiomyopathy, heart failure, and even death. Pinocembrin (5,7-dihydroxyflavanone) is a type of flavonoid, extracted from propolis, that has antimicrobial, antioxidant, antiinflammatory, and anticancer properties. The results of the present study showed that pretreatment of isoproterenol (ISO)-treated H9c2 cardiomyocytes with pinocembrin reduced the messenger RNA levels of hypertrophic markers, including atrial natriuretic factor and βeta-myosin heavy chain, and inflammatory cytokines, such as tumor necrosis factor-α, interleukin-6, interleukin-1β, and interferon-γ, and also inhibited p65 phosphorylation and nuclear factor-kappa B (NF-κB) translocation. In addition, the activity of IκBα, an inhibitor of NF-κB, was increased while that of caspase-3 was reduced under these conditions. These results indicate that pinocembrin may inhibit ISO-induced myocardial hypertrophy by attenuating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xin Sui
- Changchun University of Chinese Medicine, Changchun, Jilin, P.R. China
| | - Na Li
- Changchun University of Chinese Medicine, Changchun, Jilin, P.R. China
| | - Xiaozheng Shi
- Changchun University of Chinese Medicine, Changchun, Jilin, P.R. China
| | - Xiaohua Li
- Changchun University of Chinese Medicine, Changchun, Jilin, P.R. China
| | - Dong Han
- Changchun University of Chinese Medicine, Changchun, Jilin, P.R. China
| | - Zhidong Qiu
- Changchun University of Chinese Medicine, Changchun, Jilin, P.R. China
| | - Yue Deng
- Changchun University of Chinese Medicine, Changchun, Jilin, P.R. China
| | - Guangwei Sun
- First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
- Chinese Traditional Medicine Institute of Jilin Province, Changchun, Jilin, P.R. China
| |
Collapse
|
27
|
Zhang L, Jiang X, Zhang J, Gao H, Yang L, Li D, Zhang Q, Wang B, Cui L, Wang X. (-)-Syringaresinol suppressed LPS-induced microglia activation via downregulation of NF-κB p65 signaling and interaction with ERβ. Int Immunopharmacol 2021; 99:107986. [PMID: 34303280 DOI: 10.1016/j.intimp.2021.107986] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Albiziae Cortex (AC) is a well-known traditional Chinese medicine with sedative-hypnotic effects and neuroprotective ability. However, the bioactive components of AC responsible for the neuro-protective actitivity remain unknown. Here, we investigated the anti-neuroinflammatory effects of (-)-syringaresinol (SYR) extracted from AC in microglia cells and wild-type mice. As a result, (-)-SYR significantly reduced lipopolysaccharide (LPS)-induced production of interleukin - 6 (IL-6), tumor necrosis factor α (TNF-α), interleukin -1 beta (IL-1β), cycloxygenase-2 (COX-2), and nitric oxide (NO) in BV2 microglia cells. (-)-SYR also significantly reduced M1 marker CD40 expression and increased M2 marker CD206 expression. Moreover, we found that (-)-SYR inhibited LPS-induced NF-κB activation by suppressing the translocation of NF-κB p65 into the nucleus in a concentration-dependent manner. Meanwhile, estrogen receptor β (ERβ) was found to be implied in the anti-inflammatory activity of (-)-SYR in BV2 microglia. In vivo experiments revealed that administration of (-)-SYR in mice significantly reduced microglia/astrocytes activation and mRNA levels of proinflammatory mediators. Taken together, our data indicated that (-)-SYR exerted the anti-neuroinflammatory effects by inhibiting NF-κB activation and modulation of microglia polarization, and via interaction with ERβ. The anti-neuroinflammatory activity of (-)-SYR may provide a new therapeutic avenue for the treatment of brain diseases associated with inflammation.
Collapse
Affiliation(s)
- Lanqiu Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China.
| | - Xiaolin Jiang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Jinlu Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Hejun Gao
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Dihua Li
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Qi Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Botao Wang
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Lihua Cui
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Ximo Wang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China.
| |
Collapse
|
28
|
Zhu X, Li R, Wang C, Zhou S, Fan Y, Ma S, Gao D, Gai N, Yang J. Pinocembrin Inhibits the Proliferation and Metastasis of Breast Cancer via Suppression of the PI3K/AKT Signaling Pathway. Front Oncol 2021; 11:661184. [PMID: 34336656 PMCID: PMC8322951 DOI: 10.3389/fonc.2021.661184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
The survival rate of breast cancer (BC) patients remains poor, thus the identification of safe and effective new drugs is crucial to improve therapeutic outcomes and overall survival. Pinocembrin (PCB), a pharmacologically active ingredient of Pinus heartwood, Eucalyptus, Euphorbia, Populus, and Sparattosperma leucanthum, has been widely applied for the treatment of various diseases and possesses anticancer activities. In vitro assays were performed to investigate the antiproliferation and antimetastasis activities of PCB in BC cells. A tumorigenesis assay with the use of murine BC models was performed to assess the antiproliferation activities of PCB in vivo. Moreover, the molecular mechanisms underlying the anticancer activities of PCB in BC cells were explored. The results showed that the anti-inhibitory and antiproliferation activities of PCB in BC might involve cell cycle (G2/M phase) arrest and apoptosis. PCB downregulated the expression levels of proteins involved in cell cycle progression and apoptosis, including cyclinB1, Cdc2, PARP1, Bcl-2, and survivin, and upregulated protein levels of cleaved PARP1, cleaved caspase3, cleaved caspase9, and BAX. In a murine subcutaneous tumor model, PCB suppressed the growth of MCF-7 cells in vivo. Low concentrations of PCB also significantly inhibited the migration and invasion abilities of BC cells. Mechanistically, PCB administration was correlated to suppression of the PI3K/AKT signaling pathway. Inhibition of the proliferation of BC cells by PCB involved cell cycle (G2/M phase) arrest and apoptosis in vitro and in vivo. Low concentrations of PCB also significantly inhibited the migration and invasion abilities of BC cells. These findings suggest that PCB might be an effective agent for treatment of BC patients.
Collapse
Affiliation(s)
- Xinbing Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Rongnian Li
- Department of General Surgery, Panjin Liaohe Oilfield Gem Flower Hospital, Panjin, China
| | - Chen Wang
- Department of Breast Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Shuo Zhou
- Department of Breast Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yujia Fan
- Department of Breast Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Shuang Ma
- Department of Breast Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Didi Gao
- Department of Breast Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Nian Gai
- Department of Breast Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang City, China
| |
Collapse
|
29
|
Wang X, Cao Y, Chen S, Lin J, Bian J, Huang D. Anti-Inflammation Activity of Flavones and Their Structure-Activity Relationship. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7285-7302. [PMID: 34160206 DOI: 10.1021/acs.jafc.1c02015] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Flavones are an important class of bioactive constituents in foods, and their structural diversity enables them to interact with different targets. In particular, flavones are known for their anti-inflammatory activity. Herein, we summarized commonly applied in vitro, in vivo, and clinical models in testing anti-inflammatory activity of flavones. The anti-inflammatory structure-activity relationship of flavones was systematically mapped and supported with cross comparisons of that with flavanones, flavanols, and isoflavones. Hydroxyl groups (-OH) are indispensable for the anti-inflammatory function of flavones, and -OH at the C-5 and C-4' positions enhance while -OH at the C-6, C-7, C-8, and C-3' positions attenuate their activity. Moreover, the C2-C3 single bond, -OH at the C-3 and B-ring positions undermine flavone aglycones' activity. Most of the flavone aglycones function through NF-κB, MAPK, and JNK-STAT pathways, and their possible cell binding targets are kinase, aryl hydrocarbon receptor (AhR), G-protein coupled receptors, and estrogen receptors. However, the structure and anti-inflammatory activity relationship of flavones were unclear, and further research shall be conducted to close the gap in order to guide development of evidence-based functional foods.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542
| | - Yujia Cao
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542
| | - Siyu Chen
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542
| | - Jiachen Lin
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542
| | - Jinsong Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, PR China
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, PR China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, PR China
| |
Collapse
|
30
|
Šuran J, Cepanec I, Mašek T, Radić B, Radić S, Tlak Gajger I, Vlainić J. Propolis Extract and Its Bioactive Compounds-From Traditional to Modern Extraction Technologies. Molecules 2021; 26:molecules26102930. [PMID: 34069165 PMCID: PMC8156449 DOI: 10.3390/molecules26102930] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Propolis is a honeybee product known for its antioxidant, anti-inflammatory, anticancer, and antimicrobial effects. It is rich in bioactive molecules whose content varies depending on the botanical and geographical origin of propolis. These bioactive molecules have been studied individually and as a part of propolis extracts, as they can be used as representative markers for propolis standardization. Here, we compare the pharmacological effects of representative polyphenols and whole propolis extracts. Based on the literature data, polyphenols and extracts act by suppressing similar targets, from pro-inflammatory TNF/NF-κB to the pro-proliferative MAPK/ERK pathway. In addition, they activate similar antioxidant mechanisms of action, like Nrf2-ARE intracellular antioxidant pathway, and they all have antimicrobial activity. These similarities do not imply that we should attribute the action of propolis solely to the most representative compounds. Moreover, its pharmacological effects will depend on the efficacy of these compounds’ extraction. Thus, we also give an overview of different propolis extraction technologies, from traditional to modern ones, which are environmentally friendlier. These technologies belong to an open research area that needs further effective solutions in terms of well-standardized liquid and solid extracts, which would be reliable in their pharmacological effects, environmentally friendly, and sustainable for production.
Collapse
Affiliation(s)
- Jelena Šuran
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Ivica Cepanec
- Director of Research & Development and CTO, Amelia Ltd., Zagorska 28, Bunjani, 10314 Kriz, Croatia;
| | - Tomislav Mašek
- Department of Animal Nutrition and Dietetics, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Božo Radić
- Hedera Ltd., 4. Gardijske Brigade 35, 21311 Split, Croatia; (B.R.); (S.R.)
| | - Saša Radić
- Hedera Ltd., 4. Gardijske Brigade 35, 21311 Split, Croatia; (B.R.); (S.R.)
| | - Ivana Tlak Gajger
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Josipa Vlainić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
31
|
Hu TY, Zhang H, Chen YY, Jiao WH, Fan JT, Liu ZQ, Lin HW, Cheng BH. Dysiarenone from Marine Sponge Dysidea arenaria Attenuates ROS and Inflammation via Inhibition of 5-LOX/NF-κB/MAPKs and Upregulation of Nrf-2/OH-1 in RAW 264.7 Macrophages. J Inflamm Res 2021; 14:587-597. [PMID: 33664584 PMCID: PMC7921866 DOI: 10.2147/jir.s283745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/10/2021] [Indexed: 01/15/2023] Open
Abstract
Background Marine natural products harbor a variety of pharmacological activities, and the sea species have been becoming a main source of new drug candidate. In pursuit of safer and more effective anti-inflammation drug, the anti-inflammatory activities, anti-oxygenation effects and underlying molecular mechanisms of compound dysiarenone from Dysidea arenaria were investigated via LPS-induced RAW 264.7 cell model. Methods Firstly, RAW 264.7 cells have been stimulated with LPS and treated with dysiarenone, and the cell viability of the LPS-treated RAW 264.7 cells was examined. One-step method, DCFH-DA fluorescence probe method was used to detect reactive oxygen species (ROS). The modulation of dysiarenone on anti-inflammation was detected by enzyme-linked immunosorbent assay by measuring the release of inflammatory cytokines (TNF-α and IL-6), and inflammatory mediators (LTB4). Further, the underlying anti-inflammatory mechanism of dysiarenone was explored by determining the expression of inducible 5-LOX, MAPKs, p-Akt, and p-NF-κB p65. Oxidative stress is tightly connected with inflammation, which was also evaluated through nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (OH-1) signaling pathway. Results Our study unraveled that dysiarenone between 2 and 8 µM reduces the inflammation responses via suppressing the production of inflammatory cytokines (TNF-α and IL-6) and inflammatory mediators (LTB4). Dysiarenone down-regulated the protein levels of inducible 5-LOX via the inhibition of phosphorylation of MAPKs (including p38, ERK), Akt and NF-κB p65. Additionally, dysiarenone decreases ROS accumulation by upregulating HO-1 expression via nuclear translocation of Nrf2. Conclusion In conclusion, we demonstrated that dysiarenone possesses anti-inflammation and anti-oxidation activity via inhibiting 5-LOX/NF-κB/MAPK and Nrf2/HO-1 signaling pathway. Dysiarenone might be a promising lead compound for inflammatory diseases.
Collapse
Affiliation(s)
- Tian-Yong Hu
- Shenzhen Key Laboratory of ENT, Institute of ENT and Longgang ENT Hospital, Shenzhen, 518172, People's Republic of China
| | - Hua Zhang
- Shenzhen Key Laboratory of ENT, Institute of ENT and Longgang ENT Hospital, Shenzhen, 518172, People's Republic of China
| | - Yan-Yan Chen
- Shenzhen Key Laboratory of ENT, Institute of ENT and Longgang ENT Hospital, Shenzhen, 518172, People's Republic of China
| | - Wei-Hua Jiao
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Jun-Ting Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Zhi-Qiang Liu
- Shenzhen Key Laboratory of ENT, Institute of ENT and Longgang ENT Hospital, Shenzhen, 518172, People's Republic of China
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Bao-Hui Cheng
- Shenzhen Key Laboratory of ENT, Institute of ENT and Longgang ENT Hospital, Shenzhen, 518172, People's Republic of China
| |
Collapse
|
32
|
Hole KL, Williams RJ. Flavonoids as an Intervention for Alzheimer's Disease: Progress and Hurdles Towards Defining a Mechanism of Action. Brain Plast 2021; 6:167-192. [PMID: 33782649 PMCID: PMC7990465 DOI: 10.3233/bpl-200098] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Attempts to develop a disease modifying intervention for Alzheimer's disease (AD) through targeting amyloid β (Aβ) have so far been unsuccessful. There is, therefore, a need for novel therapeutics against alternative targets coupled with approaches which may be suitable for early and sustained use likely required for AD prevention. Numerous in vitro and in vivo studies have shown that flavonoids can act within processes and pathways relevant to AD, such as Aβ and tau pathology, increases in BDNF, inflammation, oxidative stress and neurogenesis. However, the therapeutic development of flavonoids has been hindered by an ongoing lack of clear mechanistic data that fully takes into consideration metabolism and bioavailability of flavonoids in vivo. With a focus on studies that incorporate these considerations into their experimental design, this review will evaluate the evidence for developing specific flavonoids as therapeutics for AD. Given the current lack of success of anti-Aβ targeting therapeutics, particular attention will be given to flavonoid-mediated regulation of tau phosphorylation and aggregation, where there is a comparable lack of study. Reflecting on this evidence, the obstacles that prevent therapeutic development of flavonoids will be examined. Finally, the significance of recent advances in flavonoid metabolomics, modifications and influence of the microbiome on the therapeutic capacity of flavonoids in AD are explored. By highlighting the potential of flavonoids to target multiple aspects of AD pathology, as well as considering the hurdles, this review aims to promote the efficient and effective identification of flavonoid-based approaches that have potential as therapeutic interventions for AD.
Collapse
Affiliation(s)
- Katriona L. Hole
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, UK
| | - Robert J. Williams
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, UK
| |
Collapse
|
33
|
Alzahrani AM, Rajendran P. Pinocembrin attenuates benzo(a)pyrene-induced CYP1A1 expression through multiple pathways: An in vitro and in vivo study. J Biochem Mol Toxicol 2021; 35:e22695. [PMID: 33393179 DOI: 10.1002/jbt.22695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/22/2020] [Accepted: 12/03/2020] [Indexed: 12/30/2022]
Abstract
Benzo(a)pyrene [B(a)P], which is a carcinogen, is a substance most typically known in cigarette smoke and considered as an important intermediary of lung cancer. The enzyme CYP1A1 is crucial for the metabolic conversion of B(a)P into the intermediates that induce carcinogenesis. Stimulation of the aryl hydrocarbon receptor, which is regulated by B(a)P, is thought to induce numerous signaling cascades. Interruption in the mitogen-activated protein kinase (MAPK) pathway causes changes in cellular processes and may alter the AhR pathway. The aim of this investigation is to examine the potential ability of a flavonoid pinocembrin (PCB) to alleviate B(a)P toxicity and analyze the underlying molecular mechanisms. We found that PCB inhibited DNA adduct formation by attenuating CYP1A1 expression through the suppression of the AhR/Src/ERK pathways. PCB mitigated the B(a)P-stimulated DNA damage, inhibited Src and ERK1/2 expression, decreased CYP1A1 expression, and reduced the B(a)P-induced stimulation of NF-κB and MAPK signaling in lung epithelial cells. Finally, the activity of CYP1A1 and Src in lung tissues from mice supplemented with PCB was noticeably decreased and lower than that in lung tissues from mice supplemented with B(a)P alone. Collectively, these data suggest that PCB may alleviate the toxic effects of PAHs, which are important environmental pollutants.
Collapse
Affiliation(s)
- Abdullah M Alzahrani
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| |
Collapse
|
34
|
Ko YH, Kim SK, Lee SY, Jang CG. Flavonoids as therapeutic candidates for emotional disorders such as anxiety and depression. Arch Pharm Res 2020; 43:1128-1143. [DOI: 10.1007/s12272-020-01292-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
|
35
|
Zhong J, Qiu X, Yu Q, Chen H, Yan C. A novel polysaccharide from Acorus tatarinowii protects against LPS-induced neuroinflammation and neurotoxicity by inhibiting TLR4-mediated MyD88/NF-κB and PI3K/Akt signaling pathways. Int J Biol Macromol 2020; 163:464-475. [PMID: 32621930 DOI: 10.1016/j.ijbiomac.2020.06.266] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/02/2020] [Accepted: 06/28/2020] [Indexed: 12/26/2022]
Abstract
Our previous study has indicated that a crude polysaccharide derived from Acorus tatarinowii, AT50, remarkably improves learning and memory in scopolamine-induced amnesic mice and prevents the release of inflammatory mediators. To further explore the bioactive constituents of AT50, a novel polysaccharide (ATP50-3) was purified, and its anti-neuroinflammatory effects and underlying mechanisms were investigated. ATP50-3 significantly reduced abnormal elevation of inflammatory mediators in lipopolysaccharide (LPS)-induced proinflammatory BV2 cells in vitro and inhibited the activation of nuclear factor kappa B (NF-κB). Moreover, ATP50-3 down-regulated LPS-induced protein levels of Toll-like receptor 4 (TLR4), myeloid differentiation primary response protein (MyD88), p-PI3K (phosphoinositide 3-kinase), and p-Akt (protein kinase B). Further experiments demonstrated that TAK242 (a TLR4 inhibitor) and LY294002 (a PI3K inhibitor) remarkably augmented ATP50-3's down-regulation on LPS-induced proinflammatory mediators. Importantly, ATP50-3 provided neuroprotection against neuroinflammation-induced neurotoxicity in primary cortical and hippocampal neurons by mitigating overproduction of reactive oxygen species and damage to the mitochondrial membrane potential (MMP). Taken together, our findings suggest that ATP50-3 exerts anti-neuroinflammatory and neuroprotective effects through modulation of TLR4-mediated MyD88/NF-κB and PI3K/Akt signaling pathways.
Collapse
Affiliation(s)
- Jing Zhong
- Center for Clinical Precision Medication, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xian Qiu
- Center for Clinical Precision Medication, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haiyun Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chunyan Yan
- Center for Clinical Precision Medication, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
36
|
Gong LJ, Wang XY, Gu WY, Wu X. Pinocembrin ameliorates intermittent hypoxia-induced neuroinflammation through BNIP3-dependent mitophagy in a murine model of sleep apnea. J Neuroinflammation 2020; 17:337. [PMID: 33176803 PMCID: PMC7656728 DOI: 10.1186/s12974-020-02014-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Intermittent hypoxia (IH) caused by obstructive sleep apnea (OSA) leads to neuroinflammation. Pinocembrin has been shown to have neuroprotective effects, while the therapeutic functions under IH condition are still unknown. METHODS An OSA model was established by CIH exposure inside custom-made chambers. C57BL/6 mice were intraperitoneally injected with pinocembrin (40 mg/kg, i.p.) or vehicle (PBS containing 5% povidone; i.p.), and the changes of behavior on mice were detected by the Morris water maze test. Immunohistochemical staining, western blotting, immunofluorescence assays, and immunoprecipitation were used to investigate the association between NLRP3 inflammasome and BNIP3-dependent mitophagy. The mitochondrial morphology and mitophagosomes were detected under a transmission electron microscope. The detrimental effects of IH were tested by annexin V-FITC/PI staining, Mito SOX Red staining, and JC-1 mitochondrial membrane potential assay. RESULTS In this study, our observations in vivo indicated that the administration of pinocembrin can restore spatial learning and memory ability and reduce neuronal apoptosis and hippocampal inflammation. Pinocembrin treatment significantly inhibited the formation of NLRP3 inflammasome and infiltration of microglia and enhanced BNIP3-mediated mitophagy in the hippocampus of IH mice. Additionally, our in vitro results show that pinocembrin protects microglial cells against IH-induced cytotoxicity by activating BNIP3-dependent mitophagy through the JNK-ERK signaling pathway. CONCLUSIONS In summary, our findings demonstrated that pinocembrin can act as a potential therapeutic strategy for IH-induced neuroinflammation.
Collapse
Affiliation(s)
- Lin-Jing Gong
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Feng Lin Rd, Shanghai, 200032, China
| | - Xin-Yuan Wang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Feng Lin Rd, Shanghai, 200032, China
| | - Wen-Yu Gu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchang Rd, Shanghai, 200072, China.
| | - Xu Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Feng Lin Rd, Shanghai, 200032, China.
| |
Collapse
|
37
|
Jia G, Liu X, Che N, Xia Y, Wang G, Xiong Z, Zhang H, Ai L. Human-origin Lactobacillus salivarius AR809 protects against immunosuppression in S. aureus-induced pharyngitis via Akt-mediated NF-κB and autophagy signaling pathways. Food Funct 2020; 11:270-284. [PMID: 31957758 DOI: 10.1039/c9fo02476j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lactobacillus salivarius AR809 is a newly discovered probiotic strain from a healthy human pharynx and has potential ability to adhere to the pharyngeal epithelium and inhibit Staphylococcus aureus (S. aureus)-induced inflammatory response. Pharyngeal spray administration of AR809 exhibited protective effects in a S. aureus-induced mouse model of pharyngitis. The inhibitory effect and underlying molecular mechanism of AR809 on S. aureus-stimulated pharyngitis were further investigated. AR809 significantly increased phagocytosis and bactericidal activity, reduced the production of inflammatory mediators (intracellular reactive oxygen species (ROS), prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), nitric oxide (NO), inducible NOS (iNOS)) and the expression of inflammatory cytokines (tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β)), and induced macrophages to adopt the M2 phenotype. AR809 also attenuated S. aureus-induced phosphorylations of protein kinase B (Akt) and rapamycin (mTOR), and elevated the autophagic protein (light chain 3 from II (LC3-II) and Beclin-1) level. Furthermore, AR809 inhibited nuclear transcription factor kappa-B (NF-κB) activation by suppressing the nuclear translocation of NF-κB p65. Likewise, 740Y-P (a PI3K activator) decreased the anti-inflammatory effect of AR809 against S. aureus-induced inflammatory response, while AR809 treatments with wortmannin (a PI3K inhibitor) markedly reversed this inflammatory response. AR809 prevents S. aureus-induced pharyngeal inflammatory response, possibly by regulating TLR/PI3K/Akt/mTOR signalling pathway-related autophagy and TLR/PI3K/Akt/IκB/NF-κB pathway activity, and therefore has potential for use in preventing pharyngitis and other inflammatory diseases.
Collapse
Affiliation(s)
- Guochao Jia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
de Mendonça MAA, Ribeiro ARS, de Lima AK, Bezerra GB, Pinheiro MS, de Albuquerque-Júnior RLC, Gomes MZ, Padilha FF, Thomazzi SM, Novellino E, Santini A, Severino P, B. Souto E, Cardoso JC. Red Propolis and Its Dyslipidemic Regulator Formononetin: Evaluation of Antioxidant Activity and Gastroprotective Effects in Rat Model of Gastric Ulcer. Nutrients 2020; 12:nu12102951. [PMID: 32993069 PMCID: PMC7600383 DOI: 10.3390/nu12102951] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Propolis has various pharmacological properties of clinical interest, and is also considered a functional food. In particular, hydroalcoholic extracts of red propolis (HERP), together with its isoflavonoid formononetin, have recognized antioxidant and anti-inflammatory properties, with known added value against dyslipidemia. In this study, we report the gastroprotective effects of HERP (50–500 mg/kg, p.o.) and formononetin (10 mg/kg, p.o.) in ethanol and non-steroidal anti-inflammatory drug-induced models of rat ulcer. The volume, pH, and total acidity were the evaluated gastric secretion parameters using the pylorus ligature model, together with the assessment of gastric mucus contents. The anti-Helicobacter pylori activities of HERP were evaluated using the agar-well diffusion method. In our experiments, HERP (250 and 500 mg/kg) and formononetin (10 mg/kg) reduced (p < 0.001) total lesion areas in the ethanol-induced rat ulcer model, and reduced (p < 0.05) ulcer indices in the indomethacin-induced rat ulcer model. Administration of HERP and formononetin to pylorus ligature models significantly decreased (p < 0.01) gastric secretion volumes and increased (p < 0.05) mucus production. We have also shown the antioxidant and anti-Helicobacter pylori activities of HERP. The obtained results indicate that HERP and formononetin are gastroprotective in acute ulcer models, suggesting a prominent role of formononetin in the effects of HERP.
Collapse
Affiliation(s)
- Marcio A. A. de Mendonça
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
| | - Ana R. S. Ribeiro
- Departament of Physiology, Federal University of Sergipe, Av. Marechal Rondon, Cidade Universitária, São Cristóvão CEP 49100-000, Sergipe, Brazil; (A.R.S.R.); (S.M.T.)
| | - Adriana K. de Lima
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
| | - Gislaine B. Bezerra
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
| | - Malone S. Pinheiro
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
| | - Ricardo L. C. de Albuquerque-Júnior
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil
| | - Margarete Z. Gomes
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil
| | - Francine F. Padilha
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil
| | - Sara M. Thomazzi
- Departament of Physiology, Federal University of Sergipe, Av. Marechal Rondon, Cidade Universitária, São Cristóvão CEP 49100-000, Sergipe, Brazil; (A.R.S.R.); (S.M.T.)
| | - Ettore Novellino
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
- Correspondence: (A.S.); (E.B.S.); (J.C.C.); Tel.: +39-81-253-9317 (A.S.); +351-239-488-400 (E.B.S.); +55-79-3218-2190 (J.C.C.)
| | - Patricia Severino
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Correspondence: (A.S.); (E.B.S.); (J.C.C.); Tel.: +39-81-253-9317 (A.S.); +351-239-488-400 (E.B.S.); +55-79-3218-2190 (J.C.C.)
| | - Juliana C. Cardoso
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil
- Correspondence: (A.S.); (E.B.S.); (J.C.C.); Tel.: +39-81-253-9317 (A.S.); +351-239-488-400 (E.B.S.); +55-79-3218-2190 (J.C.C.)
| |
Collapse
|
39
|
Wang XY, Gong LJ, Huang JM, Jiang C, Yan ZQ. Pinocembrin alleviates glucocorticoid-induced apoptosis by activating autophagy via suppressing the PI3K/Akt/mTOR pathway in osteocytes. Eur J Pharmacol 2020; 880:173212. [PMID: 32470335 DOI: 10.1016/j.ejphar.2020.173212] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022]
Abstract
Glucocorticoids are widely used in clinical practice, but are associated with potentially severe side effects like glucocorticoid-induced osteoporosis (GIOP) and glucocorticoid-associated osteonecrosis of the femoral head (GA-ONFH). Glucocorticoid-induced osteocyte apoptosis plays critical roles in the pathological processes of both GIOP and GA-ONFH. Pinocembrin is a natural flavonoid that may exert protective effects on osteocytes. The present study investigated the effects of pinocembrin on glucocorticoid-induced apoptosis of murine long bone osteocyte Y4 (MLO-Y4) cells and sought to elucidate the underlying molecular mechanism. We found that pinocembrin attenuated glucocorticoid-induced cell viability injury and apoptosis of MLO-Y4 cells. Moreover, pinocembrin increased Beclin-1 and LC3B-II level, but decreased p62 expression, suggesting that pinocembrin activates autophagy in glucocorticoid-treated MLO-Y4 cells. The protective effects of pinocembrin on glucocorticoid-induced apoptosis of MLO-Y4 cells were mimicked by a known stimulator of autophagy but prevented by a known inhibitor of autophagy. Pinocembrin also suppressed the PI3K/Akt/mTOR signaling pathway, which regulates cell autophagy, in glucocorticoid-treated MLO-Y4 cells. In conclusion, the results indicate that pinocembrin alleviates glucocorticoid-induced osteocyte apoptosis by activating autophagy via suppressing the PI3K/Akt/mTOR pathway. Pinocembrin may represent a potential natural agent for preventing and treating GIOP and GA-ONFH.
Collapse
Affiliation(s)
- Xin-Yuan Wang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Lin-Jing Gong
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Jun-Ming Huang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Chang Jiang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Zuo-Qin Yan
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
40
|
Pharmacological activation of Nrf2 promotes wound healing. Eur J Pharmacol 2020; 886:173395. [PMID: 32710954 DOI: 10.1016/j.ejphar.2020.173395] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
Wound repair and regeneration is a complex orchestrated process, comprising several phases interconnecting various cellular events and triggering multiple intracellular molecular pathways in damaged cells and tissues. In several metabolic disorders including diabetes mellitus, delay in wound healing due to elevated levels of cellular stress poses a key challenge. Several therapeutic wound dressing materials and strategies including hyperbaric oxygen therapy and negative pressure wound therapy have been developed to accelerate repair and restore cellular homeostasis at the wound site. Further, tremendous progress has been made in identification of transcriptional regulators involved in the process of wound healing. Nuclear factor erythroid 2-related factor 2 (Nrf2), a redox sensitive transcription factor, is the key regulator of intracellular redox homeostasis which induces the expression of cytoprotective genes and increases the production of antioxidants that scavenge free radicals. Activators of Nrf2 have been reported to combat oxidative stress and enhance the process of wound healing in several pathophysiological conditions, including diabetes and its complications such as diabetic foot ulcer, and chronic kidney disease, and diabetic nephropathy. Several bioactive compounds have been reported to reduce cellular stress, and thus accelerate cell proliferation, neovascularization results in repairing damaged tissues by the activation of the transcription factor, Nrf2. This review is focused on the strategies for diabetic wound healing and the highlights the role of bioactive compounds that activate the Nrf2 signaling and revitalize the cellular and molecular mechanism in the chronic wound niche, regulate and restore redox homeostasis thereby promoting wound repair and regeneration.
Collapse
|
41
|
Xu X, Liu X, Yang Y, He J, Jiang M, Huang Y, Liu X, Liu L, Gu H. Resveratrol Exerts Anti-Osteoarthritic Effect by Inhibiting TLR4/NF-κB Signaling Pathway via the TLR4/Akt/FoxO1 Axis in IL-1β-Stimulated SW1353 Cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2079-2090. [PMID: 32581510 PMCID: PMC7274521 DOI: 10.2147/dddt.s244059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 05/09/2020] [Indexed: 12/25/2022]
Abstract
Purpose Osteoarthritis (OA) is associated with chronic low-grade inflammation. Resveratrol exerts protective effects on OA through its anti-inflammatory property; however, the mechanism of resveratrol on anti-inflammatory signaling pathways has not been fully elucidated yet. The aim of the present study was to investigate whether resveratrol-mediated PI3K/Akt expression is linked to TLR4/NF-κB pathway and the role of TLR4/Akt/FoxO1 axis in the anti-osteoarthritic effect of resveratrol. Methods SW1353 cells stimulated by IL-1β (10 ng/mL) were cultured in the presence or absence of resveratrol (50 μM) and then treated with TLR4 siRNA, PI3K inhibitor LY294002 or FoxO1 siRNA, respectively. The associated proteins of TLR4 signaling pathways and TLR4/Akt/FoxO1 axis were evaluated by Western blot. The level of IL-6 in the supernatant was detected by ELISA. Results IL-1β treatment increased the expression of TLR4/NF-κB and phosphorylation of PI3K/Akt and FoxO1, while additional resveratrol further upregulated the expression of PI3K/Akt and FoxO1 phosphorylation but downregulated TLR4 signals in SW1353 cells. Further analyses by the inhibition of TLR4, PI3K/Akt and FoxO1 signaling pathways, respectively, showed that the activation of TLR4 can induce PI3K/Akt phosphorylation, which increases the phosphorylation of FoxO1 and inactivates it. Next, inactivated-FoxO1 can reduce the expression of TLR4, which forms a self-limiting mechanism of inflammation. Resveratrol treatment can upregulate PI3K/Akt phosphorylation and inactivate FoxO1, thereby reducing TLR4 and inflammation. Conclusion This study reveals that TLR4/Akt/FoxO1 inflammatory self-limiting mechanism may exist in IL-1β-stimulated SW1353 cells. This study reveals a novel cross-talk mechanism which is between integrated PI3K/Akt/FoxO1 signaling network and TLR4-driven innate responses in IL-1β-stimulated SW1353 cells. Resveratrol may exert anti-OA effect by enhancing the self-limiting mechanism of inflammation through TLR4/Akt/FoxO1 axis.
Collapse
Affiliation(s)
- Xiaolei Xu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, People's Republic of China.,Department of Nutrition and Food Hygiene, School of Public Health, Beihua University, Jilin, People's Republic of China
| | - Xudan Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Yingchun Yang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Jianyi He
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Mengqi Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Yue Huang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Xiaotong Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Li Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Hailun Gu
- Department of Orthopedics, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
42
|
Ye X, Tian W, Wang G, Zhang X, Zhou M, Zeng D, Liu X, Yao X, Zhang Y, Chen H. Phenolic Glycosides from the Roots of Ficus hirta Vahl. and Their Antineuroinflammatory Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4196-4204. [PMID: 32167773 DOI: 10.1021/acs.jafc.9b07876] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ficus hirta Vahl. (Wuzhimaotao) is an edible functional food used for the soup cooking and health products. Seven undescribed phenolic glycosides (1-7), along with 20 analogues, were isolated from the roots of Ficus hirta. Their structures were determined by comprehensive spectroscopic methods (UV, IR, HRESIMS, and NMR), while the absolute configuration of 1 was established by comparison of the experimental and calculated ECD data. The antineuroinflammatory effects of all the compounds were examined by Western blot. Compounds 1 and 11 attenuated the phosphorylation of AKT, JNK, and ERK1/2. In addition, compound 11 inhibited the NF-κB p65 phosphorylation. Our results indicated that compounds 1 and 11 decreased the occurrence of neuroinflammation in BV2 microglia cells, which might be regulated by inhibiting the activity of proteins in NF-κB, MAPK (JNK and ERK1/2), or AKT signaling pathways. Thus, 1 and 11 might exhibit antineuroinflammatory activities and show promise in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiansheng Ye
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Wenjing Tian
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Guanghui Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Xian Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, People's Republic of China
| | - Mi Zhou
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Dequan Zeng
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Xiangzhong Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Xinsheng Yao
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
- Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou 510632, People's Republic of China
| | - Yunwu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, People's Republic of China
| | - Haifeng Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| |
Collapse
|
43
|
Cho H, Kim K, Kim N, Woo M, Kim HY. Effect of propolis phenolic compounds on free fatty acid receptor 4 activation. Food Sci Biotechnol 2020; 29:579-584. [PMID: 32296569 PMCID: PMC7142188 DOI: 10.1007/s10068-019-00688-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/15/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
Propolis is known to have multiple biological and pharmacological properties including the regulation of energy homeostasis. Although phenolic compounds are considered to be the major active components in propolis, there is little information available about their mechanisms underlying the regulation of energy homeostasis. In this study, the effects of five phenolic compounds in propolis, chrysin, pinocembrin, galangin, pinobanksin, and caffeic acid phenethyl ester (CAPE) were evaluated on the activation of free fatty acid receptor 4 (FFA4), which are involved in the control of energy homeostasis by enhancing insulin signaling, increasing glucose uptake, and regulating adipogenesis. The results showed that three phenolic compounds exhibited the activation of FFA4, which were ranked in the order of pinocembrin, CAPE and pinobanksin in FFA4-expressing cells. These results suggest that some phenolic compounds in propolis, particularly pinocembrin, may affect the control of energy homeostasis via the activation of FFA4.
Collapse
Affiliation(s)
- Hyunnho Cho
- Division of Functional Food Research, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Korea
| | - Kyong Kim
- Division of Functional Food Research, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Korea
| | - Nayeon Kim
- Division of Functional Food Research, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Korea
| | - Minji Woo
- Division of Functional Food Research, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Korea
| | - Hye Young Kim
- Division of Functional Food Research, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Korea
| |
Collapse
|
44
|
The Nrf2/HO-1 Axis as Targets for Flavanones: Neuroprotection by Pinocembrin, Naringenin, and Eriodictyol. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4724920. [PMID: 31814878 PMCID: PMC6878820 DOI: 10.1155/2019/4724920] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022]
Abstract
Flavanones are a group of flavonoids that derive from their immediate chalcone precursors through the action of chalcone isomerase enzymes. The Aromatic A and B rings, C4-keto group, and the 15-carbon flavonoid skeleton are all evident in flavanones, but a notable absence of C2-C3 double bond and a lack of oxygenation at C-3 position of the C-ring makes them distinctively different from other groups such as flavonols (e.g., quercetin). On the basis of oxygenation level in the B ring, flavanones can vary from each other as exemplified by pinocembrin (no oxygenation), naringenin (4′-hydroxyl), or eriodictyol (3′,4′-dihydroxyl substitution). These groups are generally weaker free radical scavengers as compared to quercetin and derivatives though eriodictyol has a better free radical scavenging profile within the group due to the presence of the catechol functional moiety. In this communication, their antioxidant potential through the induction of antioxidant defenses is scrutinized. These compounds as exemplified by pinocembrin could induce the nuclear factor erythroid 2-related factor 2- (Nrf2-) heme oxygenase-1 (HO-1) axis leading to amelioration of oxidative stress in cellular and animal models. Their neuroprotective effect through such mechanism is discussed.
Collapse
|
45
|
Anti-inflammatory action of YHQ by regulating 5-LOX/COX-2/NF-κB/MAPKs/Akt signaling pathways in RAW 264.7 macrophage cells. J Herb Med 2019. [DOI: 10.1016/j.hermed.2019.100269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
46
|
Convallatoxin protects against dextran sulfate sodium-induced experimental colitis in mice by inhibiting NF-κB signaling through activation of PPARγ. Pharmacol Res 2019; 147:104355. [DOI: 10.1016/j.phrs.2019.104355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 01/14/2023]
|
47
|
Hu L, Wu C, Zhang Z, Liu M, Maruthi Prasad E, Chen Y, Wang K. Pinocembrin Protects Against Dextran Sulfate Sodium-Induced Rats Colitis by Ameliorating Inflammation, Improving Barrier Function and Modulating Gut Microbiota. Front Physiol 2019; 10:908. [PMID: 31379610 PMCID: PMC6659384 DOI: 10.3389/fphys.2019.00908] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022] Open
Abstract
Pinocembrin (PIN) is a natural flavonoid widely found in bee propolis with potent gastrointestinal protective effects. In consequence, PIN has great potential in preventing inflammatory bowel diseases (IBDs) while scant information is available. In this study, a dextran sulfate sodium (DSS)-induced rats ulcerative colitis model (3.5% DSS in drinking water for 7 days) was applied to explore the protective effects of PIN on macroscopic colitis symptoms, inflammation, intestinal epithelial barrier function, and gut microbiota homeostasis. While DSS-treated rats showed severe colitis clinical symptoms and histological changes (colonic pathological damages and intestinal goblet cells loss), pre-administration of PIN (5 and 10 mg/kg, p.o.) for a week alleviated these symptoms. Pre-administration of PIN also suppressed the pro-inflammatory gene expressions and improved tight junction functions of colonic epithelial cells. Additionally, PIN administration reversed DSS-induced short chain fatty acid loss, and improved the gut microbial diversity assessed by 16S rRNA phylogenetic sequencing. Overall, our results suggest a wide spectrum of protective effects of PIN in preventing IBDs.
Collapse
Affiliation(s)
- Lin Hu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Chao Wu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Zijian Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Mingchang Liu
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - E Maruthi Prasad
- Shenzhen Key Laboratory of Translational Medicine of Tumor, Department of Cell Biology and Genetics, Shenzhen University Health Sciences Center, Shenzhen, China
| | - Yu Chen
- Department of Experimental Animals, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
48
|
Advances in Biosynthesis, Pharmacology, and Pharmacokinetics of Pinocembrin, a Promising Natural Small-Molecule Drug. Molecules 2019; 24:molecules24122323. [PMID: 31238565 PMCID: PMC6631290 DOI: 10.3390/molecules24122323] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/18/2019] [Accepted: 06/23/2019] [Indexed: 12/13/2022] Open
Abstract
Pinocembrin is one of the most abundant flavonoids in propolis, and it may also be widely found in a variety of plants. In addition to natural extraction, pinocembrin can be obtained by biosynthesis. Biosynthesis efficiency can be improved by a metabolic engineering strategy and a two-phase pH fermentation strategy. Pinocembrin poses an interest for its remarkable pharmacological activities, such as neuroprotection, anti-oxidation, and anti-inflammation. Studies have shown that pinocembrin works excellently in treating ischemic stroke. Pinocembrin can reduce nerve damage in the ischemic area and reduce mitochondrial dysfunction and the degree of oxidative stress. Given its significant efficacy in cerebral ischemia, pinocembrin has been approved by China Food and Drug Administration (CFDA) as a new treatment drug for ischemic stroke and is currently in progress in phase II clinical trials. Research has shown that pinocembrin can be absorbed rapidly in the body and easily cross the blood-brain barrier. In addition, the absorption/elimination process of pinocembrin occurs rapidly and shows no serious accumulation in the body. Pinocembrin has also been found to play a role in Parkinson's disease, Alzheimer's disease, and specific solid tumors, but its mechanisms of action require in-depth studies. In this review, we summarized the latest 10 years of studies on the biosynthesis, pharmacological activities, and pharmacokinetics of pinocembrin, focusing on its effects on certain diseases, aiming to explore its targets, explaining possible mechanisms of action, and finding potential therapeutic applications.
Collapse
|
49
|
Pinocembrin Protects from AGE-Induced Cytotoxicity and Inhibits Non-Enzymatic Glycation in Human Insulin. Cells 2019; 8:cells8050385. [PMID: 31035509 PMCID: PMC6562854 DOI: 10.3390/cells8050385] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
Advanced glycation end products (AGEs) are the end products of the glycation reaction and have a great importance in clinical science for their association with oxidative stress and inflammation, which play a major role in most chronic diseases, such as cardiovascular disease, neurodegenerative diseases, and diabetes. Their pathogenic effects are generally induced by the interaction between AGEs and the receptor for advanced glycation end product (RAGE) on the cell surface, which triggers reactive oxygen species production, nuclear factor kB (NF-kB) activation, and inflammation. Pinocembrin, the most abundant flavonoid in propolis, has been recently proven to interfere with RAGE activation in Aβ–RAGE-induced toxicity. In the present study, we investigated the ability of pinocembrin to interfere with RAGE signaling pathways activated by AGEs. Interestingly, pinocembrin was able to inhibit oxidative stress and NF-kB activation in cells exposed to AGEs. In addition, it was able to block caspase 3/7 and 9 activation, thus suggesting an active role of this molecule in counteracting AGE–RAGE-induced toxicity mediated by NF-kB signaling pathways. The ability of pinocembrin to affect the glycation reaction has been also tested. Our data suggest that pinocembrin might be a promising molecule in protecting from AGE-mediated pathogenesis.
Collapse
|
50
|
Kim HN, Park GH, Park SB, Kim JD, Eo HJ, Son HJ, Song JH, Jeong JB. Sageretia thea Inhibits Inflammation through Suppression of NF-κB and MAPK and Activation of Nrf2/HO-1 Signaling Pathways in RAW264.7 Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:385-403. [DOI: 10.1142/s0192415x19500198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sageretia thea (S. thea) commonly known as Chinese sweet plum or Chinese bird plum has been used for treating hepatitis and fevers in Korea and China. S. thea has been reported to exert anti-oxidant, anticancer and anti-human immunodeficiency virus activity. However, there is little study on the anti-inflammatory activity of S. thea. Thus, we evaluated the anti-inflammatory effect of extracts of leaves (ST-L) and branches (ST-B) from Sageretia thea in LPS-stimulated RAW264.7 cells. ST-L and ST-B significantly inhibited the production of the pro-inflammatory mediators such as NO, iNOS, COX-2, IL-1[Formula: see text] and IL-6 in LPS-stimulated RAW264.7 cells. ST-L and ST-B blocked LPS-induced degradation of I[Formula: see text]B-[Formula: see text] and nuclear accumulation of p65, which resulted in the inhibition of NF-[Formula: see text]B activation in RAW264.7 cells. ST-L and ST-B also attenuated the phosphorylation of ERK1/2, p38 and JNK in LPS-stimulated RAW264.7 cells. In addition, ST-L and ST-B increased HO-1 expression in RAW264.7 cells, and the inhibition of HO-1 by ZnPP reduced the inhibitory effect of ST-L and ST-B against LPS-induced NO production in RAW264.7 cells. Inhibition of p38 activation and ROS elimination attenuated HO-1 expression by ST-L and ST-B, and ROS elimination inhibited p38 activation induced by ST-L and ST-B. ST-L and ST-B dramatically induced nuclear accumulation of Nrf2, but this was significantly reversed by the inhibition of p38 activation and ROS elimination. Collectively, our results suggest that ST-L and ST-B exerts potential anti-inflammatory activity by suppressing NF-[Formula: see text]B and MAPK signaling activation, and activating HO-1 expression through the nuclear accumulation of Nrf2 via ROS-dependent p38 activation. These findings suggest that ST-L and ST-B may have great potential for the development of anti-inflammatory drug to treat acute and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Ha Na Kim
- Department of Medicinal Plant Resources, National Institute of Forest Science, Yongju 36040, Republic of Korea
| | - Gwang Hun Park
- Agricultural Science and Technology Research Institute, Andong National University, Andong 36729, Republic of Korea
| | - Su Bin Park
- Department of Medicinal Plant Resources, National Institute of Forest Science, Yongju 36040, Republic of Korea
| | - Jeong Dong Kim
- Department of Medicinal Plant Resources, National Institute of Forest Science, Yongju 36040, Republic of Korea
| | - Hyun Ji Eo
- Agricultural Science and Technology Research Institute, Andong National University, Andong 36729, Republic of Korea
| | - Ho-Jun Son
- Agricultural Science and Technology Research Institute, Andong National University, Andong 36729, Republic of Korea
| | - Jeong Ho Song
- Agricultural Science and Technology Research Institute, Andong National University, Andong 36729, Republic of Korea
| | - Jin Boo Jeong
- Department of Medicinal Plant Resources, National Institute of Forest Science, Yongju 36040, Republic of Korea
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yongju 36040, Republic of Korea
| |
Collapse
|