1
|
Jia H, Chen X, Liang Z, Liang R, Wu J, Hu Y, Cui W, Zhang X. Senegenin regulates the mechanism of insomnia through the Keap1/Nrf2/PINK1/Parkin pathway mediated by GAD67. J Sleep Res 2025; 34:e14354. [PMID: 39380353 PMCID: PMC12069745 DOI: 10.1111/jsr.14354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 10/10/2024]
Abstract
GAD67 impacts insomnia as a key enzyme catalysing the conversion of glutamate (Glu) to gamma-aminobutyric acid (GABA). Senegenin enhances neuroprotection and is used widely to treat insomnia and other neurological diseases. This study aimed to investigate how senegenin regulates insomnia through a GAD67-mediated signalling pathway. We measured GAD67 expression levels in insomnia patients and evaluated the expression levels of GAD67 and Keap1/Nrf2/Parkin/PINK1-related cytokines following GAD67 lentiviral transfection in PC12 cells and in rat models. We also assessed cellular reactive oxygen species (ROS) and mitochondrial membrane potential levels. Additionally, EEG/EMG was used to analyse the sleep phases of rats and to assess memory and exploration functions. Pathological changes and the expression of GAD67 and sleep-related proteins in the hippocampus were examined. The results showed that GAD67 expression was increased in insomnia patients, ROS levels were elevated, and the mitochondrial membrane potential was decreased in the GAD67-KD group. Insomnia rats exhibited changes in sleep rhythm, learning, and exploration dysfunction, pathological changes in the CA1 region of the hippocampus, and differential expression of GAD67 and sleep-related factors. Inhibitory neurofactor expression levels were decreased in insomnia rats, showing a positive correlation in the GAD67-KD group and a negative correlation in the GAD67-OE group. Conversely, excitatory factor expression levels were increased in insomnia rats, showing a positive correlation in the GAD67-KD group and a negative correlation in the GAD67-OE group. Senegenin intervention modulated cytokine expression levels. In conclusion, GAD67 negatively regulates insomnia, and senegenin can regulate insomnia by mediating the expression of cytokines in the GAD67-regulated Keap1/Nrf2/Parkin/PINK1 pathway.
Collapse
Affiliation(s)
- Honglin Jia
- Xinjiang Medical University Fourth Clinical Medical CollegeUrumqiChina
| | - Xu Chen
- Xinjiang Medical University Fourth Clinical Medical CollegeUrumqiChina
- Xinjiang Medical UniversityUrumqiChina
| | | | | | - Jinhong Wu
- Xinjiang Medical University Fourth Clinical Medical CollegeUrumqiChina
| | - Yanling Hu
- Xinjiang Medical University Fourth Clinical Medical CollegeUrumqiChina
| | - Wenjun Cui
- Xinjiang Medical University Fourth Clinical Medical CollegeUrumqiChina
| | - Xingping Zhang
- Xinjiang Medical University Fourth Clinical Medical CollegeUrumqiChina
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical UniversityUrumqiChina
| |
Collapse
|
2
|
Sharma D, Walia S, Kaur S, Kapil L, Singh C, Singh A. Ursolic Acid and Caprylic Acid Cocktail Approach Against Pentylenetetrazole-induced Seizures-like Behavior in Adult Zebrafish: Preclinical Study. J Mol Neurosci 2025; 75:59. [PMID: 40289034 DOI: 10.1007/s12031-024-02289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/14/2024] [Indexed: 04/29/2025]
Abstract
Epilepsy is a neurological disorder characterized by recurrent seizures. Pentylenetetrazole (PTZ) is a chemoconvulsant that impairs GABAergic and glutamatergic neurotransmission, promoting excitotoxicity and seizures. Ursolic acid (UA) and caprylic acid (CA) have anti-inflammatory, anti-oxidant, and neuroprotective properties. The objective of the present study was to investigate the combined effect of UA and CA on seizures, neuronal damage, and inflammation induced by PTZ in adult zebrafish. Adult zebrafish (~6-8 months old; 470-530 mg, n=20) were randomly assigned to 10 different groups namely- I) vehicle: 10% DMSO (20µl/kg, i.p), II) Diazepam 1.25 mg/kg per se (DZP, i.p), III) UA 150 mg/kg per se (i.p), IV) CA 60 mg/kg per se (i.p), V) PTZ 170 mg/kg (i.p), VI) DZP 1.25 + PTZ 170 (30 min after DZP 1.25), VII) UA 50 + PTZ 170 (30 min after UA 50), VIII) UA 150 + PTZ 170 (30 min after UA 150), IX) CA 60 + PTZ 170 (30 min after CA 60), and X) UA 50 and CA 60 + PTZ 170 (30 min after UA 50 and CA 60) administration followed by seizure scoring, neurobehavioral (Novel tank test and open field test), biochemical [lipid peroxidase (LPO), acetylcholinesterase (AChEs), superoxide dismutase catalase (SOD), and glutathione-s-transferase (GSH)], molecular (TNF-α, IL-10, Nrf-2 and IL-1β), mitochondrial (complex I, II, IV), cell viability assay (MTT assay) and histopathological analysis. UA of both doses and CA decreased mean seizure score, and mean seizure time. Importantly, combination of UA 50 mg/kg and CA 60 mg/kg attenuated seizure-like behavioural scores, decreased mean seizure time, mean seizure score and reduced the frequency of clonic-like seizures (score 4) in PTZ-treated zebrafish. A combination of UA 50 mg/kg and CA 60 mg/kg also prevented oxidative stress in PTZ-challenged fish by decreasing lipid peroxidation, AChEs activity and increasing catalase, GSH and SOD levels. Additionally, the combination therapy prevented inflammatory response by declining TNF-α and IL-1β levels and raising IL-10 and Nrf-2 levels. Moreover, combination of UA 50 mg/kg and CA 60 mg/kg significantly improved mitochondrial complex I, II and IV activities as well as increase mitochondrial viability in MTT assay. Furthermore, morphology of neuronal cell was prevented in combination of UA 50 mg/kg and CA 60 mg/kg as seen in H & E staining. The protective effect of UA 50 mg/kg and CA 60 mg/kg cocktail is comparable with standard drug Diazepam. Together, we demonstrate that UA 50 mg/kg and CA 60 mg/kg cocktail significantly attenuated PTZ-induced seizure-like behaviours, brain oxidative stress, mitochondrial dysfunction and morphological damage of neuronal cell in zebrafish, suggesting the involvement of its strong anti-inflammatory and antioxidant mechanisms in neuroprotection.
Collapse
Affiliation(s)
- Deepali Sharma
- Department of Pharmacology, ISF College of Pharmacy, Moga, affiliated to I. K. Gujral Punjab Technical University, Kapurthala Jalandhar, 144603, India
| | - Simranjeet Walia
- Department of Pharmacology, ISF College of Pharmacy, Moga, affiliated to I. K. Gujral Punjab Technical University, Kapurthala Jalandhar, 144603, India
| | - Simranjit Kaur
- Department of Pharmacology, ISF College of Pharmacy, Moga, affiliated to I. K. Gujral Punjab Technical University, Kapurthala Jalandhar, 144603, India
| | - Lakshay Kapil
- Department of Pharmacology, ISF College of Pharmacy, Moga, affiliated to I. K. Gujral Punjab Technical University, Kapurthala Jalandhar, 144603, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, School of Sciences, HNB Garhwal University (A Central University), Chauras Campus, Distt. Tehri Garhwal, Uttarakhand, 246174, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, affiliated to I. K. Gujral Punjab Technical University, Kapurthala Jalandhar, 144603, India.
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, UPES, Dehradun, 248007, Uttarakhand, India.
| |
Collapse
|
3
|
Han SH, Cho E, Jeon J, Moon S, Jeon SJ, Kim DH, Sun SH. Oleanolic acid protects ethanol-induced memory impairments. Behav Brain Res 2025; 480:115368. [PMID: 39626799 DOI: 10.1016/j.bbr.2024.115368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025]
Abstract
A moderate amount of ethanol (EtOH) intake can lower the incidence of various cardiovascular disease but can result in neuropsychiatric issues during adolescence. EtOH acts on GABAA receptor, which can slow down neurotransmission and lead to changes in synaptic functions. These neurological changes due to EtOH can result in transient memory loss and may increase the risk of developing various neurological and psychiatric disorders such as dementia. Therefore, there is a need for strategies to overcome EtOH-induced brain dysfunctions. In this study, we investigated the effects of oleanolic acid (OA) on EtOH-induced memory impairment. OA blocked functional impairment of N-methyl-D-aspartate receptors (NMDAR), which are a key mechanism in EtOH-induced memory impairments. OA inhibited the removal of the major subunit of NMDAR, NR2a, from synapses induced by EtOH. Based on this, OA inhibited the impairment of object recognition memory caused by EtOH. Although OA failed to modulate the blood alcohol and acetaldehyde levels in EtOH-treated mice, OA blocked EtOH-induced increase in brain allopregnalone level with reducing 5α-reductase level. These results indicate that OA inhibits EtOH-induced memory impairment by regulating NMDAR function and passably modulates neurosteroid system.
Collapse
Affiliation(s)
- Seung-Hee Han
- Department of Korean Internal Medicine, College of Korean Medicine, Sang-Ji University, 3 Sangjidae-gil, Wonju-si, Gangwon-do 26339, Republic of Korea.
| | - Eunbi Cho
- Department of Advanced Translational Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Department of Pharmacology, College of Medicine, Konkuk University, 286 Chungwon-daero, Chungju-si, Chungcheongbuk-do 27478, Republic of Korea.
| | - Jieun Jeon
- Department of Advanced Translational Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Department of Pharmacology, College of Medicine, Konkuk University, 286 Chungwon-daero, Chungju-si, Chungcheongbuk-do 27478, Republic of Korea.
| | - Somin Moon
- Department of Advanced Translational Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Department of Pharmacology, College of Medicine, Konkuk University, 286 Chungwon-daero, Chungju-si, Chungcheongbuk-do 27478, Republic of Korea.
| | - Se Jin Jeon
- Department of Pharmacology, College of Medicine, Hallym University, Gangwon, Republic of Korea.
| | - Dong Hyun Kim
- Department of Advanced Translational Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Department of Pharmacology, College of Medicine, Konkuk University, 286 Chungwon-daero, Chungju-si, Chungcheongbuk-do 27478, Republic of Korea.
| | - Seung-Ho Sun
- Department of Korean Internal Medicine, College of Korean Medicine, Sang-Ji University, 3 Sangjidae-gil, Wonju-si, Gangwon-do 26339, Republic of Korea.
| |
Collapse
|
4
|
Kim JY, Kong CH, Kim DY, Min JW, Park K, Jeon M, Kang WC, Jung SY, Ryu JH. Effect of D-pinitol on MK-801-induced schizophrenia-like behaviors in mice. Phytother Res 2023; 37:5904-5915. [PMID: 37654104 DOI: 10.1002/ptr.8002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/13/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023]
Abstract
Schizophrenia is a chronic brain disorder characterized by positive symptoms (delusions or hallucinations), negative symptoms (impaired motivation or social withdrawal), and cognitive impairment. In the present study, we explored whether D-pinitol could ameliorate schizophrenia-like behaviors induced by MK-801, an N-methyl-D-aspartate receptor antagonist. Acoustic startle response test was conducted to evaluate the effects of D-pinitol on sensorimotor gating function. Social interaction and novel object recognition tests were employed to measure the impact of D-pinitol on social behavior and cognitive function, respectively. Additionally, we examined whether D-pinitol affects motor coordination. Western blotting was conducted to investigate the mechanism of action of D-pinitol. Single administration of D-pinitol at 30, 100, or 300 mg/kg improved the sensorimotor gating deficit induced by MK801 in the acoustic startle response test. D-Pinitol also reversed social behavior deficits and cognitive impairments induced by MK-801 without causing any motor coordination deficits. Furthermore, D-pinitol reversed increased expression levels of pNF-kB induced by MK-801 treatment and consequently increased expression levels of TNF-α and IL-6 in the prefrontal cortex. These results suggest that D-pinitol could be a potential candidate for treating sensorimotor gating deficits and cognitive impairment observed in schizophrenia by down-regulating transcription factor NF-κB and pro-inflammatory cytokines in the prefrontal cortex.
Collapse
Affiliation(s)
- Jae Youn Kim
- Department of Integrated Drug Development and Natural Products, Kyung Hee University, Seoul, Republic of Korea
| | - Chang Hyeon Kong
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Do Yeon Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Ji Won Min
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Keontae Park
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Mijin Jeon
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Woo Chang Kang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Seo Yun Jung
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Jong Hoon Ryu
- Department of Integrated Drug Development and Natural Products, Kyung Hee University, Seoul, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
- Department of Oriental Pharmaceutical Science College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Liu WL, Wu BF, Shang JH, Wang XF, Zhao YL, Huang AX. Moringa oleifera seed ethanol extract and its active component kaempferol potentiate pentobarbital-induced sleeping behaviours in mice via a GABAergic mechanism. PHARMACEUTICAL BIOLOGY 2022; 60:810-824. [PMID: 35587996 PMCID: PMC9122383 DOI: 10.1080/13880209.2022.2056207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/25/2022] [Accepted: 03/16/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Moringa oleifera Lam. (Moringaceae) (MO) is an important food plant that has high nutritional and medical value. However, there is limited information on whether its seeds can improve sleep. OBJECTIVE This study investigated the effects of MO seed ethanol extracts (EEMOS) on sleep activity improvement and examined the underlying mechanisms. MATERIALS AND METHODS Male ICR mice were placed into six groups (n = 12) and treated as follows: Control (sodium carboxymethyl cellulose, 20 mL/kg), estazolam tablets (2 mg/kg), EEMOS (1, 2 g/kg) and kaempferol (1, 2 mg/kg). These samples were successively given intragastric for 14 d. Locomotor activity assay, pentobarbital-induced sleeping and pentetrazol-induced seizures tests were utilized to examine the sedative-hypnotic effects (SHE) of EEMOS. RESULTS Compared with the control group, the results revealed that EEMOS (2 g/kg) and KA (2 mg/kg) possessed good SHE and could significantly elevate the levels of γ-aminobutyric acid and reduce the levels of glutamic acid in the mouse hypothalamus (p < 0.05). Moreover, SHE was blocked by picrotoxin, flumazenil and bicuculline (p < 0.05). EEMOS (2 g/kg) and KA (2 mg/kg) significantly upregulated the protein expression levels of glutamic acid decarboxylase-65 (GAD65) and α1-subunit of GABAA receptors in the hypothalamus of mice (p < 0.05), not affecting glutamic acid decarboxylase-67 (GAD67) and γ2-subunit expression levels (p > 0.05). Additionally, they cause a significant increase in Cl- influx in human cerebellar granule cells at a concentration of 8 µg/mL (p < 0.05). DISCUSSION AND CONCLUSIONS These findings demonstrated that EEMOS could improve sleep by regulating GABAA-ergic systems, and encourage further clinical trials to treat insomnia.
Collapse
Affiliation(s)
- Wei-Liang Liu
- Yunnan Engineering Research Center of Fruit Wine, QuJing Normal University, QuJing, People’s Republic of China
| | - Bai-Fen Wu
- Yunnan University of Business Management, Kunming, People’s Republic of China
| | - Jian-Hua Shang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People’s Republic of China
| | - Xue-Feng Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yun-Li Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People’s Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, People’s Republic of China
| | - Ai-Xiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
6
|
Mak WCK. Time Depletion Effects on the Volatile Compounds from the Distillation Extracts of Prunella vulgaris and the Dynamics of their Extraction. Curr Drug Res Rev 2022; 14:148-156. [PMID: 35754326 DOI: 10.2174/2589977514666220429104009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/23/2022] [Accepted: 03/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Prunella vulgaris (PV) is a low-growing perennial herb, which can be found in different parts of the world as Asia, Europe and North America. It is traditionally used for medicinal treatment in various cultures in India, China, Japan, Korea, Russia, and Eastern Europe for treating different ailments, such as fever, and healing wounds. In our previous article, we showed the anti-tumorous effect of the volatile organic compounds (VOCs) of PV and characterized the steam distillation process in the extraction of VOCs from PV. This has never been done before as we are aware of. To use the VOCs as drugs, there is a question of how much of the VOCs are lost before the prepared drugs reach the patients. Thus, the first aim of the present article is to try to explore the time depletion effect on the VOCs in the PV extracts. Then, the second aim is to extend the work in the previous paper and further understand the dynamics of the distillation process of PV by changing the steam flow rate in the extraction process. METHODS To achieve the first aim to explore the aging effect of how much VOCs are depleted after they are extracted, the VOCs were first extracted by the same method as before, i.e., using steam distillation. Then, tubes of the aqueous solution containing the VOCs were then stored in a 5°C refrigerator. They were then taken out for GC-MS analysis according to a preplanned schedule up to 8 weeks after the VOCs were extracted. The chemical composition of the distillate could then be evaluated. This revealed the changes in the abundance of VOCs with aging. At the same time, the cell viability of SCC154 oral squamous cells treated by these herbal solutions, which were at different aging stages, was evaluated using a tetrazolium-based colorimetric reagent, Cell Counting Kit-8. To achieve the second aim of exploring the dynamics of the steam distillation process, the steam flow rate was adjusted by changing the temperature setting of the hot plate. GC-MS was again used to quantify the chemical constituents of the distillates. RESULTS By using GC-MS to measure the abundance of volatile compounds at different time points after the distillation process, it was found that the volatile compounds persist for a very long time, or over 8 weeks, which was the longest period of our experiment. The aging of the distillates also did not depreciate much the cell cytotoxicity of the PV distillate on the cancer cells. With respect to the dynamics of the steam distillation process, it was found that, at a low steam flow rate, volatile compounds of lower molecular weight are more efficient to be extracted, while at a high steam flow rate, volatile compounds of higher molecular weight are more efficiently extracted. CONCLUSION Our findings demonstrate that the VOC compounds extracted and present in aqueous form do not deplete much for at least 2 months after the extraction process, neither they exhibit cell cytotoxicity. The experiments on the dynamics of the steam distillation process demonstrate that the mass of herb present in the flow path of the steam has significant effects on the relative amounts of VOCs extracted.
Collapse
Affiliation(s)
- William Chi Keung Mak
- Department of Traditional Chinese Medicine, School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| |
Collapse
|
7
|
Lin TF, Qiu JN, Zhang S, Zhang Y, Zhang Y, Sun M, Zhang JH, Liu B, Cheng FF, Jiang YY. Screening out the anti-insomnia components from Prunella vulgaris L. based on plasma pharmacochemistry combined with pharmacodynamic experiments and UPLC-MS/MS analysis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114373. [PMID: 34181959 DOI: 10.1016/j.jep.2021.114373] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Prunella vulgaris L. (P. vulgaris) is a medicinal plant belonging to the Labiatae family, and its dried spikes is called as Xiakucao in China, which is a common traditional Chinese medicine with the activities of clearing the liver and expelling fire, improving eyesight, dispersing nodules and detumescence. Modern pharmacological studies have proved that P. vulgaris has various pharmacological activities such as immunomodulatory, antiviral, antibacterial and anti-insomnia activities. AIMS OF THIS REVIEW P. vulgaris have been reported to have anti-insomnia effects. Nevertheless, the pharmacodynamic substance basis of this anti-insomnia effect is still unclear. The aim of this study was to identify the active components responsible for evoking the anti-insomnia effect of P. vulgaris and to evaluate its anti-insomnia effect. MATERIALS AND METHODS In this study, we proposed a method combined with pharmacodynamic experiments, extraction and enrichment of chemical components, and the plasma pharmacochemistry to screen out the anti-insomnia components of P. vulgaris. Firstly, the active eluted fraction of the ethanol extract was screened out based on pharmacodynamic tracing method, and then the chemical composition was analyzed systematically by UPLC-MS/MS. Thirdly, pharmacodynamic tracing method and silica gel column chromatography were employed to screen out the active fraction of 70% ethanol eluted fraction, and its bioactive components in vitro and in vivo were identified by UPLC-MS/MS. Finally, screening out the anti-insomnia components of P. vulgaris by comparing the difference between in vivo and in vitro components, and three potentially bioactive ingredients were validated experimentally. RESULTS It was confirmed that the fraction eluted with 70% ethanol from macroporous adsorption resin column was responsible for the anti-insomnia efficacy, and 55 compounds were identified or preliminarily identified. Then totally 9 compounds in vitro and 12 compounds in vivo from the active fraction of 70% ethanol eluted fraction were tentatively identified. Among them, mangiferin, rosmarinic acid and salviaflaside were the prototype components of P. vulgaris, which indicated that the three compounds might play the key role in the anti-insomnia activities. In vivo, compared to blank control group, the three compounds significantly shortened the sleeping latency and prolonged the sleeping time produced by pentobarbital sodium. CONCLUSIONS This study clarified that mangiferin, rosmarinic acid and salviaflaside were considered as the anti-insomnia components of P. vulgaris. This is the first study on screening out the active ingredients responsible for evoking the anti-insomnia effect of P. vulgaris. The three compounds of P. vulgaris may help develop one or more drugs to prevent or treat insomnia. Further investigations are recommended to define the mechanism of the anti-insomnia activity of P. vulgaris.
Collapse
Affiliation(s)
- Tian-Feng Lin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, PR China
| | - Jun-Na Qiu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, PR China
| | - Shuang Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, PR China
| | - Yan Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, PR China
| | - Yu Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, PR China
| | - Meng Sun
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, PR China
| | - Jin-Hua Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, PR China
| | - Bin Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, PR China
| | - Fa-Feng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Yan-Yan Jiang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, PR China.
| |
Collapse
|
8
|
Ye H, Huang S, Song Y, Liu H, Zhao X, Zhao D, Mi F, Wang X, Zhang X, Du J, Zhu N, Zhang L, Zhao Y. Gene co-expression analysis identifies modules related to insufficient sleep in humans. Sleep Med 2021; 86:68-74. [PMID: 34464880 DOI: 10.1016/j.sleep.2021.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/12/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Insufficient sleep and circadian rhythm disruption may cause cancer, obesity, cardiovascular disease, and cognitive impairment. The underlying mechanisms need to be elucidated. METHOD Weighted gene co-expression network analysis (WGCNA) was used to identify co-expressed modules. Connectivity Map tool was used to identify candidate drugs based on top connected genes. R ptestg package was utilized to detected module rhythmicity alteration. A hypergeometric test was used to test the enrichment of insomnia SNP signals in modules. Google Scholar was used to validate the modules and hub genes by literature. RESULTS We identified a total of 45 co-expressed modules. These modules were stable and preserved. Eight modules were correlated with sleep restriction duration. Module rhythmicity was disrupted in sleep restriction subjects. Hub genes that involve in insufficient sleep also play important roles in sleep disorders. Insomnia GWAS signals were enriched in six modules. Finally, eight drugs associated with sleep disorders were identified. CONCLUSION Systems biology method was used to identify sleep-related modules, hub genes, and candidate drugs. Module rhythmicity was altered in sleep insufficient subjects. Thiamphenicol, lisuride, timolol, and piretanide are novel candidates for sleep disorders.
Collapse
Affiliation(s)
- Hua Ye
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Shiliang Huang
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Yufei Song
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Huiwei Liu
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Xiaosu Zhao
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Dan Zhao
- Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Fangxia Mi
- Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Xinxue Wang
- Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Xuesong Zhang
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Jinman Du
- Physical Examination Center, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Na Zhu
- Physical Examination Center, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Liangshun Zhang
- Physical Examination Center, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Yibin Zhao
- Department of Anus & Intestine Surgery, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China.
| |
Collapse
|
9
|
Taiwe GS, Ndieudieu Kouamou AL, Dabole B, Ambassa ARM, Mambou HMAY, Bila RB, Tchoya TB, Menanga JR, Djomeni Dzeufiet PD, Ngo Bum E. Protective Effects of Anthocleista djalonensis Extracts against Pentylenetetrazole-Induced Epileptic Seizures and Neuronal Cell Loss: Role of Antioxidant Defense System. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5523705. [PMID: 34504535 PMCID: PMC8423543 DOI: 10.1155/2021/5523705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022]
Abstract
Oxidative stress and neurodegeneration are involved in the initiation of epileptogenesis and progression of epileptic seizures. This study was aimed at investigating the anticonvulsant, antioxidant, and neuroprotective properties of active fractions isolated from Anthocleista djalonensis root barks in pentylenetetrazole mouse models of epileptic seizures. Bioactive-guided fractionation of Anthocleista djalonensis (AFAD) extracts using acute pentylenetetrazole (90 mg/kg) induced generalised tonic-clonic seizures, which afforded a potent anticonvulsant fraction (FPool 5). Further fractionation of AFAD was performed by high-performance liquid chromatography, which yielded fifteen subfractions, which were chemically characterised. In addition, AFAD was tested against convulsions or spontaneous kindled seizures induced, respectively, by acute (50 mg/kg) or subchronic (30 mg/kg) injection of pentylenetetrazole. Finally, oxidative stress markers, brain GABA content, and neuronal cell loss were evaluated in AFAD-treated pentylenetetrazole-kindled mice. Administration of AFAD significantly protected mice against acute pentylenetetrazole (90 mg/kg)-induced convulsions. In acute pentylenetetrazole (50 mg/kg)-induced hippocampal and cortical paroxysmal discharges, AFAD significantly decreased the number of crisis, the cumulative duration of crisis, and the mean duration of crisis. Additionally, AFAD significantly decreased the number of myoclonic jerks and improved the seizure score in subchronic pentylenetetrazole-induced kindled seizures. The pentylenetetrazole-induced alteration of oxidant-antioxidant balance, GABA concentration, and neuronal cells in the brain were attenuated by AFAD treatment. This study showed that AFAD protected mice against pentylenetetrazole-induced epileptic seizures possibly through the enhancement of antioxidant defence and GABAergic signalling. These events might be correlated with the amelioration of neuronal cell loss; hence, AFAD could be a potential candidate for the treatment of epilepsy.
Collapse
Affiliation(s)
- Germain Sotoing Taiwe
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Buea, Cameroon
| | | | - Bernard Dabole
- Department of Chemistry, Faculty of Science, University of Maroua, Maroua, Cameroon
| | | | | | - Raymond Bess Bila
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Thierry Bang Tchoya
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
| | - Joseph Renaud Menanga
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
| | | | - Elisabeth Ngo Bum
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua, Cameroon
| |
Collapse
|
10
|
Dai N, Li Y, Sun J, Li F, Xiong H. Self-Designed Ningxin Anshen Formula for Treatment of Post-ischemic Stroke Insomnia: A Randomized Controlled Trial. Front Neurol 2020; 11:537402. [PMID: 33240190 PMCID: PMC7680871 DOI: 10.3389/fneur.2020.537402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
This study aimed to assess the efficacy and safety of self-designed Ningxin Anshen (NXAS) Formula for post-ischemic stroke insomnia of blood-deficient and liver-heat syndrome. Ninety patients were randomized into NXAS group, Placebo group and Zopiclone group. Patients in the NXAS group, Placebo group and Zopiclone group were treated with Ningxin Anshen Formula, placebo and zopiclone for 4 weeks, respectively. The scores of the Pittsburgh Sleep Quality Index (PSQI), Insomnia Severity Index (ISI) and traditional Chinese Medicine (TCM) Syndromes of self-designed scale and the number of adverse events (AEs) were determined. Results showed that the overall effective rate in the NXAS group and Placebo group was 76.67 and 30.00%, respectively, showing significant difference (P < 0.01). There was no marked difference between Zopiclone group (80.00%) and NXAS group. In both NXAS group and Zopiclone group, the scores of PSQI, ISI, and TCM Syndromes of self-designed scale after 4-week treatment were significantly different from those before treatment (P < 0.01). After 4-week treatment, the scores of PSQI, ISI, and TCM Syndromes of self-designed score were comparable between NXAS group and Zopiclone group (P > 0.05). Only one patient in the NXAS group developed gastrointestinal discomfort, which resolved without treatment discontinuation. In conclusion, self-designed NXAS Formula is effective and safe and has little adverse effect in treating post-stroke insomnia of blood-deficient and liver-heat syndrome.
Collapse
Affiliation(s)
- Ning Dai
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine (TCM), Beijing, China
| | - Yuanyuan Li
- Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Traditional Chinese Medicine (TCM), Beijing, China
| | - Jing Sun
- Department of Medical Neurology, Tongzhou District of Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine (TCM), Beijing, China
| | - Feng Li
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine (TCM), Beijing, China
| | - Hang Xiong
- Department of Medical Neurology, Tongzhou District of Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine (TCM), Beijing, China
| |
Collapse
|
11
|
Sun Q, He M, Zhang M, Zeng S, Chen L, Zhou L, Xu H. Ursolic acid: A systematic review of its pharmacology, toxicity and rethink on its pharmacokinetics based on PK-PD model. Fitoterapia 2020; 147:104735. [PMID: 33010369 DOI: 10.1016/j.fitote.2020.104735] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/29/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Ursolic acid (UA) is a natural pentacyclic triterpenoid compound existing in various traditional Chinese medicinal herbs, and it possesses diverse pharmacological actions and some undesirable adverse effects, even toxicological activities. Due to UA's low solubility and poor bioavailability, and its interaction with gut microbiota after oral administration, the pharmacokinetics of UA remain elusive, leading to obscurity in the pharmacokinetics-pharmacodynamics (PK-PD) profile and relationship for UA. Based on literatures from PubMed, Google Scholar, ResearchGate, Web of Science and Wiley Online Library, with keywords of "pharmacology", "toxicology", "pharmacokinetics", "PK-PD" and "ursolic acid", herein we systematically review the pharmacology and toxicity of UA, and rethink on its pharmacokinetics on the basis of PK-PD model, and seek to delineate the underlying mechanisms for the characteristics of pharmacology and toxicology of UA, and for the pharmacokinetic features of UA particularly from the organ tropism and the interactions between UA and gut microbiota, and lay a solid foundation for development of UA-derived therapeutic agents in clinical settings.
Collapse
Affiliation(s)
- Qiang Sun
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Man He
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Meng Zhang
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sha Zeng
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lijuan Zhou
- Sichuan Academy of Chinese Medical Sciences, Chengdu 610041, China
| | - Haibo Xu
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
12
|
Design, synthesis, and pharmacological evaluation of novel 1,2,4-triazol-3-amine derivatives as potential agonists of GABAA subtype receptors with anticonvulsant and hypnotic effects. Bioorg Chem 2020; 104:104212. [DOI: 10.1016/j.bioorg.2020.104212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/24/2020] [Indexed: 01/10/2023]
|
13
|
Wang YY, Ma WW, Peng IF. Screening of sleep assisting drug candidates with a Drosophila model. PLoS One 2020; 15:e0236318. [PMID: 32726319 PMCID: PMC7390450 DOI: 10.1371/journal.pone.0236318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/08/2020] [Indexed: 12/30/2022] Open
Abstract
Lately, Drosophila has been favored as a model in sleep and circadian rhythm research due to its conserved mechanism and easily manageable operation. These studies have revealed the sophisticated parameters in whole-day sleep profiles of Drosophila, drawing connections between Drosophila sleep and human sleep. In this study, we tested several sleep deprivation protocols (mechanical shakes and light interruptions) on Drosophila and delineated their influences on Drosophila sleep. We applied a daytime light-deprivation protocol (DD) mimicking jet-lag to screen drugs that alleviate sleep deprivation. Characteristically, classical sleep-aid compounds exhibited different forms of influence: phenobarbital and pentobarbital modified total sleep time, while melatonin only shortened the latency to sleep. Such results construct the basis for further research on sleep benefits in other treatments in Drosophila. We screened seven herb extracts, and found very diverse results regarding their effect on sleep regulation. For instance, Panax notoginseng and Withania somnifera extracts displayed potent influence on total sleep time, while Melissa officinalis increased the number of sleep episodes. By comparing these treatments, we were able to rank drug potency in different aspects of sleep regulation. Notably, we also confirmed the presence of sleep difficulties in a Drosophila Alzheimer’s disease (AD) model with an overexpression of human Abeta, and recognized clear differences between the portfolios of drug screening effects in AD flies and in the control group. Overall, potential drug candidates and receipts for sleep problems can be identified separately for normal and AD Drosophila populations, outlining Drosophila’s potential in drug screening tests in other populations if combined with the use of other genetic disease tools.
Collapse
Affiliation(s)
- Yan-Ying Wang
- Research Department, Suzhou Joekai Biotech LLC, Kunshan City, Jiangsu, China
| | - Wei-Wei Ma
- Research Department, Suzhou Joekai Biotech LLC, Kunshan City, Jiangsu, China
- School of Life Science, Tsinghua University, Beijing, China
| | - I-Feng Peng
- Research Department, Suzhou Joekai Biotech LLC, Kunshan City, Jiangsu, China
- * E-mail:
| |
Collapse
|
14
|
Sun Y, Zhang N, Qu Y, Cao Y, Li J, Yang Y, Yang T, Sun Y. Shuangxia decoction alleviates p-chlorophenylalanine induced insomnia through the modification of serotonergic and immune system. Metab Brain Dis 2020; 35:315-325. [PMID: 31786727 DOI: 10.1007/s11011-019-00499-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 09/20/2019] [Indexed: 10/25/2022]
Abstract
As a Traditional Chinese Medicine (TCM), Shuangxia Decoction (SXD) has been used to treat insomnia in oriental countries for more than thousands of years and it presents remarkable clinical effects. However, its active pharmacological fraction and the mechanism of sedative-hypnotic effects have not been explored. In this paper, we investigated active pharmacological fraction and revealed the detailed mechanisms underlying the sedative-hypnotic effects of SXD. It showed that SXD water extract compared to ethanol extract possessed better sedative effects on locomotion activity in normal mice and increased sleep duration in subhypnotic dose of sodium pentobarbital-treated mice. SXD alleviated p-chlorophenylalanine (PCPA) -induced insomnia by increasing the content of 5-HT in cortex [F (4, 55) = 12.67], decreasing the content of dopamine (DA) and norepinephrine (NE). Furthermore, SXD enhanced the expression of 5-HT1A and 5-HT2A receptors in hypothalamic and reduced serum levels of IL-1,TNF-α [F (5, 36) = 15.58]. In conclusion, these results indicated that SXD produced beneficial sedative and hypnotic bioactivities mediated by regulating the serotonergic and immune system.
Collapse
Affiliation(s)
- Yujie Sun
- School of Chinese Material Medica, Beijing University of Chinese Medicine, The Yangguang South Street and Baiyang East Road, Fangshan district, Beijing, 102488, China
| | - Na Zhang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, The Yangguang South Street and Baiyang East Road, Fangshan district, Beijing, 102488, China
| | - Yuxia Qu
- School of Chinese Material Medica, Beijing University of Chinese Medicine, The Yangguang South Street and Baiyang East Road, Fangshan district, Beijing, 102488, China
| | - Yijia Cao
- School of Chinese Material Medica, Beijing University of Chinese Medicine, The Yangguang South Street and Baiyang East Road, Fangshan district, Beijing, 102488, China
| | - Jianhao Li
- School of Chinese Material Medica, Beijing University of Chinese Medicine, The Yangguang South Street and Baiyang East Road, Fangshan district, Beijing, 102488, China
| | - Yuwei Yang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, The Yangguang South Street and Baiyang East Road, Fangshan district, Beijing, 102488, China
| | - Tiange Yang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, The Yangguang South Street and Baiyang East Road, Fangshan district, Beijing, 102488, China
| | - Yikun Sun
- School of Chinese Material Medica, Beijing University of Chinese Medicine, The Yangguang South Street and Baiyang East Road, Fangshan district, Beijing, 102488, China.
| |
Collapse
|
15
|
Kim S, Jo K, Hong KB, Han SH, Suh HJ. GABA and l-theanine mixture decreases sleep latency and improves NREM sleep. PHARMACEUTICAL BIOLOGY 2019; 57:65-73. [PMID: 30707852 PMCID: PMC6366437 DOI: 10.1080/13880209.2018.1557698] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/21/2018] [Accepted: 12/05/2018] [Indexed: 05/24/2023]
Abstract
CONTEXT γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter and it is well established that activation of GABAA receptors favours sleep. l-Theanine, a naturally occurring amino acid first discovered in green tea, is a well-known anti-anxiety supplement with proven relaxation benefits. OBJECTIVE This study investigated the potential synergistic sleep enhancement effect of GABA/l-theanine mixture. MATERIALS AND METHODS Pentobarbital-induced sleep test was applied to find proper concentration for sleep-promoting effect in ICR mice. Electroencephalogram (EEG) analysis was performed to investigate total sleeping time and sleep quality in normal SD rats and caffeine-induced awareness model. Real-time polymerase chain reaction (RT-PCR) was applied to investigate whether the sleep-promoting mechanism of GABA/l-theanine mixture involved transcriptional processes. RESULTS GABA/l-theanine mixture (100/20 mg/kg) showed a decrease in sleep latency (20.7 and 14.9%) and an increase in sleep duration (87.3 and 26.8%) compared to GABA or theanine alone. GABA/l-theanine mixture led to a significant increase in rapid eye movement (REM) (99.6%) and non-REM (NREM) (20.6%) compared to controls. The use of GABA/l-theanine mixture rather than GABA or l-theanine alone restored to normal levels sleep time and quality in the arousal animal model. The administration of GABA/l-theanine led to increased expression of GABA and the glutamate GluN1 receptor subunit. CONCLUSIONS GABA/l-theanine mixture has a positive synergistic effect on sleep quality and duration as compared to the GABA or l-theanine alone. The increase in GABA receptor and GluN1 expression is attributed to the potential neuromodulatory properties of GABA/l-theanine combination, which seems to affect sleep behaviour.
Collapse
Affiliation(s)
- Suhyeon Kim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Kyungae Jo
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Ki-Bae Hong
- Department of Biological Sciences and Environmental Sciences Program, Southern Illinois University-Edwardsville, Edwardsville, IL, USA
| | - Sung Hee Han
- BK21 Plus, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Hyung Joo Suh
- Department of Public Health Sciences, Graduate School, Seoul, Republic of Korea
| |
Collapse
|
16
|
Ramos-Hryb AB, Platt N, Freitas AE, Heinrich IA, López MG, Leal RB, Kaster MP, Rodrigues ALS. Protective Effects of Ursolic Acid Against Cytotoxicity Induced by Corticosterone: Role of Protein Kinases. Neurochem Res 2019; 44:10.1007/s11064-019-02906-1. [PMID: 31713091 DOI: 10.1007/s11064-019-02906-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/09/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Abstract
Neuronal hippocampal death can be induced by exacerbated levels of cortisol, a condition usually observed in patients with Major depressive disorder (MDD). Previous in vitro and in vivo studies showed that ursolic acid (UA) elicits antidepressant and neuroprotective properties. However, the protective effects of UA against glucocorticoid-induced cytotoxicity have never been addressed. Using an in vitro model of hippocampal cellular death induced by elevated levels of corticosterone, we investigated if UA prevents corticosterone-induced cytotoxicity in HT22 mouse hippocampal derived cells. Concentrations lower than 25 µM UA did not alter cell viability. Co-incubation with UA for 48 h was able to protect HT22 cells from the reduction on cell viability and from the increase in apoptotic cells induced by corticosterone. Inhibition of protein kinase A (PKA), protein kinase C (PKC) and, Ca2+/calmodulin-dependent protein kinase II (CaMKII), but not phosphoinositide 3-kinase(PI3K), by using the pharmacological the inhibitors: H-89, chelerythrine, KN-62, and LY294002, respectively totally abolished the cytoprotective effects of UA. Finally, UA abrogated the reduction in phospho-extracellular signal-regulated kinases 1 and 2 (ERK1/2) but not in phospho-c-Jun kinases induced by corticosterone. These results indicate that the protective effect of UA against the cytotoxicity induced by corticosterone in HT22 cells may involve PKA, PKC, CaMKII, and ERK1/2 activation. The cytoprotective potential of UA against corticosterone-induced cytotoxicity and its ability to modulate intracellular signaling pathways involved in cell proliferation and survival suggest that UA may be a relevant strategy to manage stress-related disorders such as MDD.
Collapse
Affiliation(s)
- Ana B Ramos-Hryb
- Department of Biochemistry, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Brazil
- Department of Pharmacology, Faculty of Medicine, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| | - Nicolle Platt
- Department of Biochemistry, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Brazil
| | - Andiara E Freitas
- Department of Biochemistry, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Brazil
| | - Isabella A Heinrich
- Department of Biochemistry, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Brazil
| | - Manuela G López
- Department of Pharmacology, Faculty of Medicine, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rodrigo B Leal
- Department of Biochemistry, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Brazil
| | - Manuella P Kaster
- Department of Biochemistry, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Brazil.
| |
Collapse
|
17
|
Habtemariam S. Antioxidant and Anti-inflammatory Mechanisms of Neuroprotection by Ursolic Acid: Addressing Brain Injury, Cerebral Ischemia, Cognition Deficit, Anxiety, and Depression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8512048. [PMID: 31223427 PMCID: PMC6541953 DOI: 10.1155/2019/8512048] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/27/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022]
Abstract
Ursolic acid (UA) is a pentacyclic triterpene which is found in common herbs and medicinal plants that are reputed for a variety of pharmacological effects. Both as an active principle of these plants and as a nutraceutical ingredient, the pharmacology of UA in the CNS and other organs and systems has been extensively reported in recent years. In this communication, the antioxidant and anti-inflammatory axis of UA's pharmacology is appraised for its therapeutic potential in some common CNS disorders. Classic examples include the traumatic brain injury (TBI), cerebral ischemia, cognition deficit, anxiety, and depression. The pharmacological efficacy for UA is demonstrated through the therapeutic principle of one drug → multitargets → one/many disease(s). Both specific enzymes and receptor targets along with diverse pharmacological effects associated with oxidative stress and inflammatory signalling are scrutinised.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
18
|
Cheng B, Liu Y, Tian J, Gao R, Liu Y. Complementary and Alternative Medicine for the Treatment of Insomnia: An Overview of Scientific Evidence from 2008 to 2018. Curr Vasc Pharmacol 2019; 18:307-321. [PMID: 31057109 DOI: 10.2174/1570161117666190506111239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 11/22/2022]
Abstract
Insomnia is a widespread sleep disorder in the general population, and it is a risk factor for impaired function, the development of other medical and mental disorders, and causes an increase in health care costs. In view of the health hazards of insomnia and the shortcomings of western medicine, Complementary and Alternative Medicine (CAM) should be considered in the management of insomnia. The present overview reports the potential role of herbal medicine and non-pharmacological therapies in the treatment of insomnia and summarizes the scientific evidence reported from 2008 to 2018. PubMed and Web of Science databases were searched for studies published from 2008 to 2018. 17 randomized controlled trials and 22 non-pharmacological therapies were included in this review, and the results showed that CAM had certain advantages in the treatment of insomnia. The safety of CAM for insomnia was acceptable. Meanwhile, based on pre-clinical trial, the possible mechanisms of CAM for insomnia were modulation of circadian rhythm, GABA receptor activation, antagonisms of 5-HT receptors, inhibition of glutamate-mediated pathways, and attenuation of inflammation. CAM for insomnia has made some progress, but high quality evidence-based medical evidence is still needed to provide guidance for clinical application.
Collapse
Affiliation(s)
- Bingli Cheng
- Beijing Handian Pharmaceutical Co, Ltd, Beijing 100020, China.,West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yanfei Liu
- Graduate School of Beijing, University of Chinese Medicine, Beijing 100029, China.,Institute of Clinical Pharmacology of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Jinfan Tian
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Rui Gao
- Institute of Clinical Pharmacology of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yue Liu
- Cardiovascular Diseases Center, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
19
|
Salort G, Álvaro-Bartolomé M, García-Sevilla JA. Pentobarbital and other anesthetic agents induce opposite regulations of MAP kinases p-MEK and p-ERK, and upregulate p-FADD/FADD neuroplastic index in brain during hypnotic states in mice. Neurochem Int 2018; 122:59-72. [PMID: 30423425 DOI: 10.1016/j.neuint.2018.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/30/2018] [Accepted: 11/09/2018] [Indexed: 01/07/2023]
Abstract
Midazolam and ketamine-induced anesthesia were recently shown to induce a disruption of MEK/ERK sequential phosphorylation with parallel upregulation of p-FADD in the mouse brain. The present study was designed to assess whether other structurally diverse anesthetic agents (pentobarbital, ethanol, chloral hydrate, isoflurane) also impair brain p-MEK to p-ERK signal and increase p-FADD during the particular time course of 'sleep' in mice. Pentobarbital (50 mg/kg)-, ethanol (4000 mg/kg)-, chloral hydrate (400 mg/kg)-, and isoflurane (2% in O2)-induced anesthesia (range: 24-60 min) were associated with unaltered or increased p-MEK1/2 (up to +155%) and decreased p-ERK1/2 (up to -60%) contents, revealing disruption of MEK to ERK activation in mouse brain cortex. These anesthetic agents also upregulated cortical p-FADD (up to +110%), but not total FADD (moderately decreased), which resulted in increased neuroplastic/survival p-FADD/FADD ratios (up to +2.8 fold). The inhibition of pentobarbital metabolism with SKF525-A (a cytochrome P450 inhibitor) augmented barbiturate anesthesia (2.6 times) and induced a greater and sustained upregulation of p-MEK with p-ERK downregulation, as well as prolonged increases of p-FADD content and p-FADD/FADD ratio (effects lasting for more than 240 min). Pentobarbital also upregulated significantly the cortical contents of other markers of neuroplasticity such as the ERK inhibitor p-PEA-15 (up to +46%), the transcription factor NF-κB (up to +27%) and the synaptic density protein PSD-95 (up to +20%) during 'sleep'. The results reveal a paradoxical stimulation of p-MEK without the concomitant (canonical) activation of p-ERK (e.g. with pentobarbital and isoflurane), for which various molecular mechanisms are discussed. The downregulation of brain p-ERK may participate in the manifestations of adverse effects displayed by most hypnotic/anesthetic agents in clinical use (e.g. amnesia).
Collapse
Affiliation(s)
- Glòria Salort
- Laboratory of Neuropharmacology, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), University of the Balearic Islands (UIB), Institut d'investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - María Álvaro-Bartolomé
- Laboratory of Neuropharmacology, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), University of the Balearic Islands (UIB), Institut d'investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Jesús A García-Sevilla
- Laboratory of Neuropharmacology, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), University of the Balearic Islands (UIB), Institut d'investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain.
| |
Collapse
|
20
|
Jo K, Choi HS, Jeon S, Ahn CW, Suh HJ. Nelumbo nucifera Seed Extract Promotes Sleep in Drosophila melanogaster. Biol Pharm Bull 2018; 41:399-408. [PMID: 29491217 DOI: 10.1248/bpb.b17-00763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sleep-promoting effects of the water extract of Nelumbo nucifera seeds (NNE) were investigated in an invertebrate model. The effects of NNE on the subjective nighttime activity, sleep episodes, and sleep time were determined using Drosophila melanogaster and locomotor activity monitoring systems in basal and caffeine-induced arousal conditions. The movements of fruit flies were analyzed using the Noldus EthoVision-XT system, and the levels of neuromodulators were analyzed using HPLC. Expression of neuromodulator receptors was analyzed using real-time PCR. NNE was shown to contain neurotransmission-related components; γ-aminobutyric acid (GABA) (2.33±0.22 mg/g), tryptophan (2.00±0.06 mg/g), quinidine (0.55±0.33 mg/g), and neferine (0.16±0.01 mg/g). The total activity of flies during nighttime was decreased by 52% with 1.0% NNE treatment. In the individual and collective conditions, the subjective nighttime activities (45/38%) and sleep bouts (20/14%) of flies was significantly decreased with NNE treatment, while total sleep times (10/27%) were significantly increased. This sleep-promoting effect is more pronounced in caffeine-treated conditions; the nighttime activity of flies was reduced by 53%, but total sleep time was increased by 60%. Our video-tracking analysis showed a significant decrease of the moving distance and velocity of flies by NNE. This NNE-mediated sleep-promoting effect was associated with up-regulation of GABAA/GABAB and serotonin receptors. The NNE-mediated increase of GABA content was identified in flies. These results demonstrate that NNE effectively promotes sleep in flies by regulating the GABAergic/serotonergic neuromodulators, and could be an alternative agent for sleep promotion.
Collapse
Affiliation(s)
- Kyungae Jo
- Department of Public Health Science, Korea University
| | - Hyeon-Son Choi
- Department of Food Science and Technology, Seoul Women's University
| | | | | | - Hyung Joo Suh
- Department of Public Health Science, Korea University
| |
Collapse
|
21
|
Baradaran Rahimi V, Askari VR, Tajani AS, Hosseini A, Rakhshandeh H. Evaluation of the Sleep-Prolonging Effect of Lagenaria vulgaris and Cucurbita pepo Extracts on Pentobarbital-Induced Sleep and Possible Mechanisms of Action. MEDICINA (KAUNAS, LITHUANIA) 2018; 54:E55. [PMID: 30344286 PMCID: PMC6174352 DOI: 10.3390/medicina54040055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/22/2018] [Accepted: 07/26/2018] [Indexed: 02/01/2023]
Abstract
Introduction: Sleeplessness is the most common sleep disorder. In this study, the hypnotic effect of macerated (HAME) and soxhlet (HASE) extract of Lagenaria vulgaris (fruit and seed) and Cucurbita pepo (fruit) were studied in mice. Methods: Extracts and fractions were administered intra-peritoneally (i.p.) in mice 30 min before the sodium pentobarbital (30 mg/kg, i.p.). Moreover, the influence of flumazenil or naloxone on the hypnotic effects of the extract and its toxic effects were evaluated. Results: The HAME and HASE of C. pepo prolonged the pentobarbital-induced sleep duration at dose of 200 mg/kg. The HAME of L. vulgaris (fruit) at dose of 200 mg/kg increased the sleeping time. The HAME and HASE of L. vulgaris (seed) increased sleep duration at doses of 50 and 100 mg/kg. Besides, flumazenil (2 mg/kg) reversed the effects of both diazepam (P < 0.001 vs. diazepam group), 200 mg/kg of HAME of C. pepo and 50 mg/kg of HAME and HASE of L. vulgaris (seed). All fractions especially ethyl-acetate fraction (EAF) of L. vulgaris (seed) increased the sleep duration. Naloxone reversed the hypnotic effect of HAME and HASE of L. vulgaris (seed). The extracts showed no neurotoxic effects on PC12 and L929 cell lines. Conclusion: The results showed that L. vulgaris (seed and fruit) and C. pepo potentiated pentobarbital hypnosis without toxic influence. The hypnotic effects of L. vulgaris seed was greater than its fruit and C. pepo. The GABA and opioid receptors may play role in the sleep-induction of L. vulgaris seed.
Collapse
Affiliation(s)
- Vafa Baradaran Rahimi
- Student Research Committee, Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran.
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran.
| | - Vahid Reza Askari
- Student Research Committee, Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran.
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran.
| | - Amineh Sadat Tajani
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran.
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran.
| | - Hassan Rakhshandeh
- Student Research Committee, Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran.
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran.
| |
Collapse
|
22
|
Nieoczym D, Socała K, Wlaź P. Assessment of the Anticonvulsant Potency of Ursolic Acid in Seizure Threshold Tests in Mice. Neurochem Res 2018; 43:995-1002. [PMID: 29541930 PMCID: PMC5949134 DOI: 10.1007/s11064-018-2505-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/23/2018] [Accepted: 02/27/2018] [Indexed: 12/20/2022]
Abstract
Ursolic acid (UA) is a plant derived compound which is also a component of the standard human diet. It possesses a wide range of pharmacological properties, i.e., antioxidant, anti-inflammatory, antimicrobial and antitumor, which have been used in folk medicine for centuries. Moreover, influence of UA on central nervous system-related processes, i.e., pain, anxiety and depression, was proved in experimental studies. UA also revealed anticonvulsant properties in animal models of epilepsy and seizures. The aim of the present study was to investigate the influence of UA on seizure thresholds in three acute seizure models in mice, i.e., the 6 Hz-induced psychomotor seizure threshold test, the maximal electroshock threshold (MEST) test and the timed intravenous pentylenetetrazole (iv PTZ) infusion test. We also examined its effect on the muscular strength (assessed in the grip strength test) and motor coordination (estimated in the chimney test) in mice. UA at doses of 50 and 100 mg/kg significantly increased the seizure thresholds in the 6 Hz and MEST tests. The studied compound did not influence the seizure thresholds in the iv PTZ test. Moreover, UA did not affect the motor coordination and muscular strength in mice. UA displays only a weak anticonvulsant potential which is dependent on the used seizure model.
Collapse
Affiliation(s)
- Dorota Nieoczym
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Katarzyna Socała
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|
23
|
Ramos-Hryb AB, Pazini FL, Kaster MP, Rodrigues ALS. Therapeutic Potential of Ursolic Acid to Manage Neurodegenerative and Psychiatric Diseases. CNS Drugs 2017; 31:1029-1041. [PMID: 29098660 DOI: 10.1007/s40263-017-0474-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ursolic acid is a pentacyclic triterpenoid found in several plants. Despite its initial use as a pharmacologically inactive emulsifier in pharmaceutical, cosmetic and food industries, several biological activities have been reported for this compound so far, including anti-tumoural, anti-diabetic, cardioprotective and hepatoprotective properties. The biological effects of ursolic acid have been evaluated in vitro, in different cell types and against several toxic insults (i.e. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, amyloid-β peptides, kainic acid and others); in animal models of brain-related disorders (Alzheimer disease, Parkinson disease, depression, traumatic brain injury) and ageing; and in clinical studies with cancer patients and for muscle atrophy. Most of the protective effects of ursolic acid are related to its ability to prevent oxidative damage and excessive inflammation, common mechanisms associated with multiple brain disorders. Additionally, ursolic acid is capable of modulating the monoaminergic system, an effect that might be involved in its ability to prevent mood and cognitive dysfunctions associated with neurodegenerative and psychiatric conditions. This review presents and discusses the available evidence of the possible beneficial effects of ursolic acid for the management of neurodegenerative and psychiatric disorders. We also discuss the chemical features, major sources and potential limitations of the use of ursolic acid as a pharmacological treatment for brain-related diseases.
Collapse
Affiliation(s)
- Ana B Ramos-Hryb
- Department of Biochemistry, Center for Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Francis L Pazini
- Department of Biochemistry, Center for Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Manuella P Kaster
- Department of Biochemistry, Center for Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center for Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
24
|
Tang FR, Loke WK, Wong P, Khoo BC. Radioprotective effect of ursolic acid in radiation-induced impairment of neurogenesis, learning and memory in adolescent BALB/c mouse. Physiol Behav 2017; 175:37-46. [PMID: 28341234 DOI: 10.1016/j.physbeh.2017.03.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/13/2017] [Accepted: 03/20/2017] [Indexed: 10/19/2022]
Abstract
The effect of acute irradiation with 5Gy or fractionated exposure with 0.5Gy continuously for 10days (a total dose of 5Gy) was evaluated in an immature BALB/c mouse model. Radioprotective effect of ursolic acid (at 25mg/kg/daily administered 1h after acute or each of fractionated irradiations, and continuously for 30days) was also investigated. We found that both acute and fractionated irradiation at a total dose of 5Gy did not induce any mortality within 30days after exposure to postnatal day 26 (P26) BALB/c mice, but reduced animal weigh gain in the first few weeks. At 90days after irradiation, the weight of animals with acute irradiation was still significantly lower than the control group; no significant difference though was observed for those fractionatedly exposed mice compared to the control group. Behavioral tests indicated that acute irradiation at 5Gy induced deficits in learning and memory in the contextual fear conditioning test. The memory for novel object recognition was also impaired. Similar changes were not observed in mice with fractionated irradiation. Immunohistochemical study demonstrated clearly that acute and fractionated irradiations induced impairment of neurogenesis in the subgranular zone (SGZ) of the dentate gyrus although fractionated exposure induced much lesser loss of newly generated neurons. Ursolic acid administered at 25mg/kg/daily for 30days after irradiation greatly improved acute irradiation-induced deficits in contextual learning and memory and in novel object recognition memory although it exacerbated radiation-induced reduction of neurogenesis in SGZ.
Collapse
Affiliation(s)
- Feng Ru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety initiative, National University of Singapore, 1 CREATE Way #04-01, CREATE Tower, 138602, Singapore.
| | - Weng Keong Loke
- Defence Medical and Environmental Research Institute, DSO National Laboratories, 11 Stockport Road, 11760, Singapore
| | - Peiyan Wong
- Neuroscience Phenotyping Core, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
| | - Boo Cheong Khoo
- Temasek Laboratories, National University of Singapore, 5A, Engineering Drive 1, 117411, Singapore
| |
Collapse
|
25
|
Lee SY, Kim YJ, Chung SO, Park SU. Recent studies on ursolic acid and its biological and pharmacological activity. EXCLI JOURNAL 2016; 15:221-8. [PMID: 27231476 PMCID: PMC4874314 DOI: 10.17179/excli2016-159] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/17/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Sook Young Lee
- Regional Innovation Center for Dental Science and Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 501-759, Korea
| | - Yong Joo Kim
- Department of Biosystems Machinery Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, Korea
| | - Sun Ok Chung
- Department of Biosystems Machinery Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, Korea
| |
Collapse
|
26
|
Kashyap D, Tuli HS, Sharma AK. Ursolic acid (UA): A metabolite with promising therapeutic potential. Life Sci 2016; 146:201-13. [PMID: 26775565 DOI: 10.1016/j.lfs.2016.01.017] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/12/2022]
Abstract
Plants are known to produce a variety of bioactive metabolites which are being used to cure various life threatening and chronic diseases. The molecular mechanism of action of such bioactive molecules, may open up new avenues for the scientific community to develop or improve novel therapeutic approaches to tackle dreadful diseases such as cancer and cardiovascular and neurodegenerative disorders. Ursolic acid (UA) is one among the categories of such plant-based therapeutic metabolites having multiple intracellular and extracellular targets that play role in apoptosis, metastasis, angiogenesis and inflammatory processes. Moreover, the synthetic derivatives of UA have also been seen to be involved in a range of pharmacological applications, which are associated with prevention of diseases. Evidences suggest that UA could be used as a potential candidate to develop a comprehensive competent strategy towards the treatment and prevention of health disorders. The review article herein describes the possible therapeutic effects of UA along with putative mechanism of action.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab 160012, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, Haryana 133207, India.
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, Haryana 133207, India
| |
Collapse
|