1
|
Long D, Mao C, Zhang W, Zhu Y, Xu Y. Natural products for the treatment of ulcerative colitis: focus on the JAK/STAT pathway. Front Immunol 2025; 16:1538302. [PMID: 40078988 PMCID: PMC11897526 DOI: 10.3389/fimmu.2025.1538302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Ulcerative colitis (UC) is an autoimmune disease with an incompletely understood pathogenesis. The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway plays a key role in immune response and inflammation. More and more studies demonstrated that JAK/STAT signaling pathway is associated with the pathogenesis of UC. The JAK/STAT pathway affects UC in multiple ways by regulating intestinal inflammatory response, affecting intestinal mucosal barrier, modulating T cell homeostasis, and regulating macrophages. Encouragingly, natural products are promising candidates for the treatment of UC. Natural products have the advantage of being multi-targeted and rich in therapeutic modalities. This review summarized the research progress of JAK/STAT pathway-mediated UC. Furthermore, the latest studies on natural products targeting the JAK/STAT pathway for the treatment of UC were systematically summarized, including active ingredients such as arbutin, aloe polysaccharide, berberine, matrine, curcumin, Ginsenoside Rh2, and so on. The aim of this paper is to provide new ideas for drug development to regulate JAK/STAT signaling for treating UC.
Collapse
Affiliation(s)
- Dan Long
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chenhan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei Zhang
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Zhu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
2
|
Mun Y, Kim W, Shin D. Melanocortin 1 Receptor (MC1R): Pharmacological and Therapeutic Aspects. Int J Mol Sci 2023; 24:12152. [PMID: 37569558 PMCID: PMC10418475 DOI: 10.3390/ijms241512152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Melanocortins play crucial roles in regulating the stress response, inflammation, and skin pigmentation. In this review, we focus on the melanocortin 1 receptor (MC1R), a G protein-coupled receptor primarily known for regulating skin pigmentation and exhibiting anti-inflammatory effects. First, we provide an overview of the structure, signaling pathways, and related diseases of MC1R. Next, we discuss the potential therapeutic use of synthetic peptides and small molecule modulators of MC1R, highlighting the development of various drugs that enhance stability through amino acid sequence modifications and small molecule drugs to overcome limitations associated with peptide characteristics. Notably, MC1R-targeted drugs have applications beyond skin pigmentation-related diseases, which predominantly affect MC1R in melanocytes. These drugs can also be useful in treating inflammatory diseases with MC1R expression present in various cells. Our review underscores the potential of MC1R-targeted drugs to treat a wide range of diseases and encourages further research in this area.
Collapse
Affiliation(s)
- Yoonwoo Mun
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea; (Y.M.); (W.K.)
| | - Woohyun Kim
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea; (Y.M.); (W.K.)
| | - Dongyun Shin
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea; (Y.M.); (W.K.)
- Gachon Pharmaceutical Research Institute, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| |
Collapse
|
3
|
Jiang Y, Yabluchanskiy A, Deng J, Amil FA, Po SS, Dasari TW. The role of age-associated autonomic dysfunction in inflammation and endothelial dysfunction. GeroScience 2022; 44:2655-2670. [PMID: 35773441 PMCID: PMC9768093 DOI: 10.1007/s11357-022-00616-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/22/2022] [Indexed: 01/23/2023] Open
Abstract
Aging of the cardiovascular regulatory function manifests as an imbalance between the sympathetic and parasympathetic (vagal) components of the autonomic nervous system (ANS). The most characteristic change is sympathetic overdrive, which is manifested by an increase in the muscle sympathetic nerve activity (MSNA) burst frequency with age. Age-related changes that occur in vagal nerve activity is less clear. The resting tonic parasympathetic activity can be estimated noninvasively by measuring the increase in heart rate occurring in response to muscarinic cholinergic receptor blockade; animal study models have shown this to diminish with age. Humoral, cellular, and neural mechanisms work together to prevent non-resolving inflammation. This review focuses on the mechanisms underlying age-related alternations in the ANS and how an imbalance in the ANS, evaluated by MSNA and heart rate variability (HRV), potentially facilitates inflammation when the homeostatic mechanisms between reflex neural circuits and the immune system are compromised, particularly the dysfunction of the cholinergic anti-inflammatory reflex. Physiologically, the efferent arm of this reflex acts via the [Formula: see text] 7 nicotinic acetylcholine receptors expressed in macrophages, monocytes, dendritic cells, T cells, and endothelial cells to curb the release of inflammatory cytokines, in which inhibition of NF‑κB nuclear translocation and activation of a JAK/STAT-mediated signaling cascade in macrophages and other immune cells are implicated. This reflex is likely to become less adequate with advanced age. Consequently, a pro-inflammatory state induced by reduced vagus output with age is associated with endothelial dysfunction and may significantly contribute to the development and propagation of atherosclerosis, heart failure, and hypertension. The aim of this review is to summarize the relationship between ANS dysfunction, inflammation, and endothelial dysfunction in the context of aging. Meanwhile, this review also attempts to describe the role of HRV measures as a predictor of the level of inflammation and endothelial dysfunction in the aged population and explore the possible therapeutical effects of vagus nerve stimulation.
Collapse
Affiliation(s)
- Yunqiu Jiang
- Cardiovascular Section, Department of Internal Medicine, University of Oklahoma Health Sciences Center, 800 SL Young Blvd, COM 5400, Oklahoma City, OK, 73104, USA
| | - Andriy Yabluchanskiy
- Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jielin Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Faris A Amil
- Cardiovascular Section, Department of Internal Medicine, University of Oklahoma Health Sciences Center, 800 SL Young Blvd, COM 5400, Oklahoma City, OK, 73104, USA
| | - Sunny S Po
- Cardiovascular Section, Department of Internal Medicine, University of Oklahoma Health Sciences Center, 800 SL Young Blvd, COM 5400, Oklahoma City, OK, 73104, USA
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tarun W Dasari
- Cardiovascular Section, Department of Internal Medicine, University of Oklahoma Health Sciences Center, 800 SL Young Blvd, COM 5400, Oklahoma City, OK, 73104, USA.
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
4
|
Lei W, Zhao C, Sun J, Jin Y, Duan Z. Activation of α7nAChR preserves intestinal barrier integrity by enhancing the HO-1 / STAT3 signaling to inhibit NF-κB activation in mice. Biomed Pharmacother 2022; 149:112733. [DOI: 10.1016/j.biopha.2022.112733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 11/02/2022] Open
|
5
|
Lei W, Zhao C, Sun J, Jin Y, Duan Z. Electroacupuncture Ameliorates Intestinal Barrier Destruction in Mice With Bile Duct Ligation-Induced Liver Injury by Activating the Cholinergic Anti-Inflammatory Pathway. Neuromodulation 2022; 25:1122-1133. [PMID: 35300921 DOI: 10.1016/j.neurom.2022.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Electroacupuncture (EA) at Zusanli (ST36) can attenuate inflammation in different rodent models. However, the therapeutic mechanisms underlying its action in inhibiting intestinal barrier destruction and liver injury in cholestasis mice have not been clarified. This study aimed at investigating whether EA at ST36 could activate the cholinergic anti-inflammatory pathway to inhibit intestinal barrier destruction and liver injury in cholestasis mice. MATERIALS AND METHODS Male Hmox1floxp/floxp C57BL/6 mice were randomized and subjected to a sham or bile duct ligation (BDL) surgery. The BDL mice were randomized and treated with, or without (BDL group), sham EA at ST36 (BDL+sham-ST36) or EA at ST36 (BDL+ST36), or received α-bungarotoxin (α-BGT), a specific inhibitor of nicotinic acetylcholine receptor α7 subunit (α7nAChR), before stimulation (BDL+ST36+α-BGT). These mice, together with a group of intestine-specific heme oxygenase-1 (HO-1) knockout (KO) Villin-Cre-HO-1-/- mice, were monitored for their body weights before and 14 days after BDL. The levels of plasma cytokines and liver injury-related alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured by enzyme-linked immunoassay, and pathological changes in the intestinal mucosa and liver fibrosis as well as intestinal barrier permeability in individual mice were examined by histology and immunohistochemistry. The levels of α7nAChR, HO-1, ZO-1, Occludin, Claudin-1, and NF-κBp65 expression and NF-κBp65 phosphorylation in intestinal tissues were quantified. RESULTS Compared with the sham group, BDL significantly increased the levels of plasma interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor α, ALT, and AST and caused intestinal mucosal damages, high permeability, and liver fibrosis in mice, which were remarkably mitigated, except for further increased levels of plasma IL-10 in the BDL+ST36 group of mice. Similarly, EA at ST36 significantly up-regulated α7nAChR and HO-1 expression; mitigated the BDL-decreased ZO-1, Occludin, and Claudin-1 expression; and attenuated the BDL-increased NF-κBp65 phosphorylation in intestinal tissues of mice. The therapeutic effects of EA at ST36 were significantly abrogated by pretreatment with α-BGT or HO-1 KO. CONCLUSION EA at ST36 inhibits the BDL-induced intestinal mucosal damage and liver fibrosis by activating the HO-1 cholinergic anti-inflammatory pathway in intestinal tissues of mice.
Collapse
Affiliation(s)
- Wei Lei
- Second Department of Gastroenterology, the First Affiliated Hospital of Dalian Medical University, Dalian, China; Laboratory of Integrated Chinese and Western Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Changcheng Zhao
- Second Department of Gastroenterology, the First Affiliated Hospital of Dalian Medical University, Dalian, China; Laboratory of Integrated Chinese and Western Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiasen Sun
- Second Department of Gastroenterology, the First Affiliated Hospital of Dalian Medical University, Dalian, China; Laboratory of Integrated Chinese and Western Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanling Jin
- Pathology Department, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhijun Duan
- Second Department of Gastroenterology, the First Affiliated Hospital of Dalian Medical University, Dalian, China; Laboratory of Integrated Chinese and Western Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
6
|
Vidojevic D, Seman S, Lasica R, Tesic M, Matutinovic MS, Jovicic S, Ignjatovic S, Arena R, Damjanovic S, Popovic D. Alpha-melanocyte-stimulating hormone during exercise recovery has prognostic value for coronary artery disease. Hormones (Athens) 2021; 20:381-387. [PMID: 33523420 DOI: 10.1007/s42000-020-00270-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/22/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE Alpha-melanocyte-stimulating hormone (alpha-MSH) has proven cardiovascular effects and plays a significant role as an endogenous countermeasure to ischemia-reperfusion injury. The aim of the current study was to examine the response of alpha-MSH during exercise in patients diagnosed with coronary artery disease (CAD) and evaluate its value in the assessment of severity and prognosis. METHODS Forty subjects with documented CAD (i.e., lesions on coronary angiography ≥ 50%) were included. Cardiopulmonary exercise testing (CPET) on a treadmill (TM) and recumbent ergometer (RE) were performed on two visits, 2-4 days apart, during 2 months of coronary angiography; subsequently, the subjects were followed up for 32 ± 10 months. At rest, at peak CPET, and after 3 min of recovery, plasma levels of alpha-MSH were measured by enzyme-linked immunosorbent assay technique. RESULTS Mean ejection fraction was 56.7 ± 9.6%. Alpha-MSH similarly increased from rest to peak CPET on both modalities. There were no significant differences in alpha-MSH values during testing in patients with 1,2- and 3-vesel CAD, nor in patients with a SYNTAX score </≥ 23 (p > 0.05). Among CPET and hormonal parameters, ∆alpha-MSH recovery/peak during RE CPET was the best predictor of cardiac event occurrence (chi-square 6.67, HR = 0.51, CI = 0.25-1.02, p = 0.010). CONCLUSION ∆alpha-MSH recovery/peak during RE CPET has predictive value for CAD prognosis, demonstrating involvement of alpha-MSH in CAD and a link between stress hormones and cardiac events.
Collapse
Affiliation(s)
- Dejana Vidojevic
- Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, 11000, Serbia
| | - Stefan Seman
- Faculty of Sport and Physical Education, Balgoja Parovica 156, Belgrade, 11000, Serbia
| | - Ratko Lasica
- Division of Cardiology, University of Belgrade, Visegradska 26, Belgrade, 11000, Serbia
| | - Milorad Tesic
- Division of Cardiology, University of Belgrade, Visegradska 26, Belgrade, 11000, Serbia
| | | | - Snezana Jovicic
- Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, 11000, Serbia
| | - Svetlana Ignjatovic
- Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, 11000, Serbia
| | - Ross Arena
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, 1919 W. Taylor St, Chicago, IL, 60612, USA
| | - Svetozar Damjanovic
- Division of Endocrinology, Clinical Center of Serbia, University of Belgrade, Dr Subotica 13, Belgrade, 11000, Serbia
| | - Dejana Popovic
- Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, 11000, Serbia.
- Division of Cardiology, University of Belgrade, Visegradska 26, Belgrade, 11000, Serbia.
| |
Collapse
|
7
|
Dinparastisaleh R, Mirsaeidi M. Antifibrotic and Anti-Inflammatory Actions of α-Melanocytic Hormone: New Roles for an Old Player. Pharmaceuticals (Basel) 2021; 14:ph14010045. [PMID: 33430064 PMCID: PMC7827684 DOI: 10.3390/ph14010045] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/16/2022] Open
Abstract
The melanocortin system encompasses melanocortin peptides, five receptors, and two endogenous antagonists. Besides pigmentary effects generated by α-Melanocytic Hormone (α-MSH), new physiologic roles in sexual activity, exocrine secretion, energy homeostasis, as well as immunomodulatory actions, exerted by melanocortins, have been described recently. Among the most common and burdensome consequences of chronic inflammation is the development of fibrosis. Depending on the regenerative capacity of the affected tissue and the quality of the inflammatory response, the outcome is not always perfect, with the development of some fibrosis. Despite the heterogeneous etiology and clinical presentations, fibrosis in many pathological states follows the same path of activation or migration of fibroblasts, and the differentiation of fibroblasts to myofibroblasts, which produce collagen and α-SMA in fibrosing tissue. The melanocortin agonists might have favorable effects on the trajectories leading from tissue injury to inflammation, from inflammation to fibrosis, and from fibrosis to organ dysfunction. In this review we briefly summarized the data on structure, receptor signaling, and anti-inflammatory and anti-fibrotic properties of α-MSH and proposed that α-MSH analogues might be promising future therapeutic candidates for inflammatory and fibrotic diseases, regarding their favorable safety profile.
Collapse
Affiliation(s)
- Roshan Dinparastisaleh
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Mehdi Mirsaeidi
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL 33146, USA
- Correspondence: ; Tel.: +1-305-243-1377
| |
Collapse
|
8
|
Rani N, Arya DS. Chrysin rescues rat myocardium from ischemia-reperfusion injury via PPAR-γ/Nrf2 activation. Eur J Pharmacol 2020; 883:173389. [PMID: 32707190 DOI: 10.1016/j.ejphar.2020.173389] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
Pharmacological strategies aimed at co-activating peroxisome proliferator-activated receptor-gamma (PPAR-γ)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway have shown promising results in alleviating myocardial injury. The aim of the study was to evaluate the role of chrysin, a PPAR-γ agonist, in ischemia-reperfusion (IR)-induced myocardial infarction (MI) in rats and to explore the molecular mechanism driving this activity. To evaluate this hypothesis, chrysin (60 mg/kg, orally), PPAR-γ antagonist (GW9662, 1 mg/kg, intraperitoneally), or both were administered to rats for 28 days. On the 29th day, one-stage ligation of left anterior descending coronary artery for 45 min followed by 60 min of reperfusion was performed. Chrysin significantly decreased infarct size and improved cardiac functions following IR-induced MI. This improvement was corroborated by augmented PPAR-γ/Nrf2 expression as confirmed by immunohistochemistry and western blotting analysis. Chrysin exhibited strong anti-oxidant property as demonstrated by increased GSH and CAT levels and decreased 8-OHdG and TBARS levels. Our findings also imply that chrysin significantly inhibited inflammatory response as validated by decreased NF-κB, IKK-β, CRP, TNF-α and MPO levels. In addition, chrysin decreased TUNEL/DAPI positivity, a marker of apoptotic response and normalized cardiac injury markers. The histopathological and ultrastructural analysis further supported the functional and biochemical outcomes, showing preserved myocardial architecture. Intriguingly, co-administration with GW9662 significantly diminished the cardioprotective effect of chrysin as demonstrated by depressed myocardial function, decreased PPAR-γ/Nrf2 expression and increased oxidative stress. In conclusion, the present study demonstrates that co-activation of PPAR-γ/Nrf2 by chrysin may be crucial for its cardioprotective effect.
Collapse
Affiliation(s)
- Neha Rani
- Department of Pharmacology, Kalpana Chawla Government Medical College, Karnal, Haryana, 132001, India; Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Dharamvir Singh Arya
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
9
|
Abstract
This review is focusing on the understanding of various factors and components governing and controlling the occurrence of ventricular arrhythmias including (i) the role of various ion channel-related changes in the action potential (AP), (ii) electrocardiograms (ECGs), (iii) some important arrhythmogenic mediators of reperfusion, and pharmacological approaches to their attenuation. The transmembrane potential in myocardial cells is depending on the cellular concentrations of several ions including sodium, calcium, and potassium on both sides of the cell membrane and active or inactive stages of ion channels. The movements of Na+, K+, and Ca2+ via cell membranes produce various currents that provoke AP, determining the cardiac cycle and heart function. A specific channel has its own type of gate, and it is opening and closing under specific transmembrane voltage, ionic, or metabolic conditions. APs of sinoatrial (SA) node, atrioventricular (AV) node, and Purkinje cells determine the pacemaker activity (depolarization phase 4) of the heart, leading to the surface manifestation, registration, and evaluation of ECG waves in both animal models and humans. AP and ECG changes are key factors in arrhythmogenesis, and the analysis of these changes serve for the clarification of the mechanisms of antiarrhythmic drugs. The classification of antiarrhythmic drugs may be based on their electrophysiological properties emphasizing the connection between basic electrophysiological activities and antiarrhythmic properties. The review also summarizes some important mechanisms of ventricular arrhythmias in the ischemic/reperfused myocardium and permits an assessment of antiarrhythmic potential of drugs used for pharmacotherapy under experimental and clinical conditions.
Collapse
Affiliation(s)
- Arpad Tosaki
- Department of Pharmacology, School of Pharmacy, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
10
|
Montero-Melendez T, Nagano A, Chelala C, Filer A, Buckley CD, Perretti M. Therapeutic senescence via GPCR activation in synovial fibroblasts facilitates resolution of arthritis. Nat Commun 2020; 11:745. [PMID: 32029712 PMCID: PMC7005314 DOI: 10.1038/s41467-020-14421-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 12/16/2019] [Indexed: 02/08/2023] Open
Abstract
Rheumatoid arthritis affects individuals commonly during the most productive years of adulthood. Poor response rates and high costs associated with treatment mandate the search for new therapies. Here we show that targeting a specific G-protein coupled receptor promotes senescence in synovial fibroblasts, enabling amelioration of joint inflammation. Following activation of the melanocortin type 1 receptor (MC1), synovial fibroblasts acquire a senescence phenotype characterized by arrested proliferation, metabolic re-programming and marked gene alteration resembling the remodeling phase of wound healing, with increased matrix metalloproteinase expression and reduced collagen production. This biological response is attained by selective agonism of MC1, not shared by non-selective ligands, and dependent on downstream ERK1/2 phosphorylation. In vivo, activation of MC1 leads to anti-arthritic effects associated with induction of senescence in the synovial tissue and cartilage protection. Altogether, selective activation of MC1 is a viable strategy to induce cellular senescence, affording a distinct way to control joint inflammation and arthritis.
Collapse
Affiliation(s)
- Trinidad Montero-Melendez
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK. .,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK.
| | - Ai Nagano
- Barts Cancer Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Claude Chelala
- Barts Cancer Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.,Life Sciences Initiative, Queen Mary University of London, London, UK
| | - Andrew Filer
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Institute of Inflammation and Ageing, Birmingham, UK
| | - Christopher D Buckley
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Institute of Inflammation and Ageing, Birmingham, UK.,Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Mauro Perretti
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK. .,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK.
| |
Collapse
|
11
|
Tong L, Qi G. Crocin prevents platelet‑derived growth factor BB‑induced vascular smooth muscle cells proliferation and phenotypic switch. Mol Med Rep 2018; 17:7595-7602. [PMID: 29620234 PMCID: PMC5983945 DOI: 10.3892/mmr.2018.8854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/29/2018] [Indexed: 12/18/2022] Open
Abstract
The phenotypic switch of vascular smooth muscle cells (VSMCs) is a major initiating factor for atherosclerotic cardiovascular diseases. Platelet-derived growth factor-BB (PDGF-BB) initiates a number of biological processes that contribute to VSMC proliferation and phenotypic switch. Crocin, a component of saffron, has been reported to inhibit atheromatous plaque formation. However, the effects of crocin on PDGF-BB-induced VSMC proliferation and phenotypic switch remain unclear. The aim of the present study was to investigate the role of crocin on PDGF-BB-induced VSMCs proliferation and phenotypic switch and its underlying mechanisms. Cell proliferation and markers of VSMCs phenotypic switch were measured using a Cell Counting Kit-8 assay and western blot analysis, respectively. The signaling pathways involved in the effects of crocin on VSMCs were validated by western blot analysis with or without the use of specific pathway inhibitors. Crocin significantly inhibited PDGF-BB-induced VSMCs proliferation compared with the PDGF-BB only group (P<0.05). In addition, crocin significantly abrogated the PDGF-BB-induced increase in contractile protein α-smooth muscle actin, calponin and decrease in synthetic proteins osteopontin (OPN) in a concentration dependent manner (P<0.05). In addition, crocin slowed PDGF-BB-induced Janus kinase (JAK)-signal transducer and activator of transcription 3 (STAT3) and extracellular signal-regulated kinase (ERK)/Kruppel-like factor 4 (KLF4) signaling activation in VSMCs. By applying the JAK inhibitor (AG490) and ERK1/2 inhibitor (U0126), the results suggested that the crocin inhibited PDGF-BB-induced VSMCs phenotypic switch through the JAK/STAT3 and ERK/KLF4 signaling pathways. These results suggested that crocin may effectively prevent PDGF-BB-induced VSMCs proliferation and phenotypic switch and may be a promising candidate for the therapy of atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Lijian Tong
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guoxian Qi
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
12
|
Alpha-Melanocyte-stimulating Hormone Induces Vasodilation and Exerts Cardioprotection Through the Heme-Oxygenase Pathway in Rat Hearts. J Cardiovasc Pharmacol 2018; 69:286-297. [PMID: 28195947 PMCID: PMC5426697 DOI: 10.1097/fjc.0000000000000472] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Alpha–melanocyte-stimulating hormone (α-MSH) is a protein with known capacity for protection against cardiovascular ischemia–reperfusion (I/R) injury. This investigation evaluates the capacity of α-MSH to mitigate I/R effects in an isolated working rat heart model and determine the dependency of these alterations on the activity of heme oxygenase-1 (HO-1, hsp-32), a heat shock protein that functions as a major antioxidant defense molecule. Healthy male Sprague Dawley rats were used for all experiments. After treatment with selected doses of α-MSH, echocardiographic examinations were performed on live, anesthetized animals. Hearts were harvested from anesthetized rats pretreated with α-MSH and/or the HO-1 inhibitor SnPP, followed by cardiac function assessment on isolated working hearts, which were prepared using the Langendorff protocol. Induction of global ischemia was performed, followed by during reperfusion assessment of cardiac functions. Determination of incidence of cardiac arrhythmias was made by electrocardiogram. Major outcomes include echocardiographic data, suggesting that α-MSH has mild effects on systolic parameters, along with potent antiarrhythmic effects. Of particular significance was the specificity of dilatative effects on coronary vasculature, and similar outcomes of aortic ring experiments, which potentially allow different doses of the compound to be used to selectively target various portions of the vasculature for dilation.
Collapse
|
13
|
STAT3 Suppression Is Involved in the Protective Effect of SIRT6 Against Cardiomyocyte Hypertrophy. J Cardiovasc Pharmacol 2017; 68:204-14. [PMID: 27124607 DOI: 10.1097/fjc.0000000000000404] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The activation of signal transducer and activator of transcription 3 (STAT3) is critical for the development of cardiac hypertrophy and heart failure. Sirtuin 6 (SIRT6) protects cardiomyocytes from hypertrophy. This study focused on the association between SIRT6 and STAT3 in the regulation of cardiomyocyte hypertrophy. In the phenylephrine (PE)-induced hypertrophic cardiomyocyte model and in the hearts of isoprenaline-induced cardiac hypertrophic rat model, the mRNA and protein expressions of STAT3 and its phosphorylated level at tyrosine 705 (P-STAT3) were significantly increased. By contrast, the deacetylation activity of SIRT6 was weakened without altering its protein expression. In addition, the nuclear localization of STAT3 and P-STAT3 was enhanced by PE, suggesting that STAT3 was activated in cardiomyocyte hypertrophy. Adenovirus infection-induced SIRT6 overexpression repressed the activation of STAT3 by decreasing its mRNA and protein levels, by suppressing its transcriptional activity, and by hindering the expressions of its target genes. Moreover, the effect of SIRT6 overexpression on eliminating PE-induced expressions of hypertrophic biomarkers, such as atrial natriuretic factor and brain natriuretic peptide, was reversed by STAT3 overexpression. Likewise, SIRT6 knockdown-induced upregulation of atrial natriuretic factor and brain natriuretic peptide was reversed by STAT3 silencing. These observations suggest that the antihypertrophic effect of SIRT6 involves STAT3 suppression. In conclusion, SIRT6 prevents PE-induced activation of STAT3 in cardiomyocyte hypertrophy; the inhibitory effect of SIRT6 on STAT3 contributes to cardiac protection.
Collapse
|
14
|
Szokol M, Priksz D, Bombicz M, Varga B, Kovacs A, Fulop GA, Csipo T, Posa A, Toth A, Papp Z, Szilvassy Z, Juhasz B. Long Term Osmotic Mini Pump Treatment with Alpha-MSH Improves Myocardial Function in Zucker Diabetic Fatty Rats. Molecules 2017; 22:molecules22101702. [PMID: 29023410 PMCID: PMC6151765 DOI: 10.3390/molecules22101702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/03/2017] [Indexed: 01/20/2023] Open
Abstract
The present investigation evaluates the cardiovascular effects of the anorexigenic mediator alpha-melanocyte stimulating hormone (MSH), in a rat model of type 2 diabetes. Osmotic mini pumps delivering MSH or vehicle, for 6 weeks, were surgically implanted in Zucker Diabetic Fatty (ZDF) rats. Serum parameters, blood pressure, and weight gain were monitored along with oral glucose tolerance (OGTT). Echocardiography was conducted and, following sacrifice, the effects of treatment on ischemia/reperfusion cardiac injury were assessed using the isolated working heart method. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity was measured to evaluate levels of oxidative stress, and force measurements were performed on isolated cardiomyocytes to determine calcium sensitivity, active tension and myofilament co-operation. Vascular status was also evaluated on isolated arterioles using a contractile force measurement setup. The echocardiographic parameters ejection fraction (EF), fractional shortening (FS), isovolumetric relaxation time (IVRT), mitral annular plane systolic excursion (MAPSE), and Tei-index were significantly better in the MSH-treated group compared to ZDF controls. Isolated working heart aortic and coronary flow was increased in treated rats, and higher Hill coefficient indicated better myofilament co-operation in the MSH-treated group. We conclude that MSH improves global heart functions in ZDF rats, but these effects are not related to the vascular status.
Collapse
Affiliation(s)
- Miklos Szokol
- Department of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Daniel Priksz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Mariann Bombicz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Balazs Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Arpad Kovacs
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Gabor Aron Fulop
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Tamas Csipo
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Aniko Posa
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Hungary.
| | - Attila Toth
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Zoltan Papp
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Zoltan Szilvassy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Bela Juhasz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| |
Collapse
|
15
|
Wu J, Hu Y, Xiang L, Li S, Yuan Y, Chen X, Zhang Y, Huang W, Meng X, Wang P. San-Huang-Xie-Xin-Tang Constituents Exert Drug-Drug Interaction of Mutual Reinforcement at Both Pharmacodynamics and Pharmacokinetic Level: A Review. Front Pharmacol 2016; 7:448. [PMID: 27965575 PMCID: PMC5124576 DOI: 10.3389/fphar.2016.00448] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/09/2016] [Indexed: 12/29/2022] Open
Abstract
Inflammatory disorders underlie varieties of human diseases. San-Huang-Xie-xin-Tang (SHXXT), composed with Rhizoma Rhei (Rheum palmatum L.), Rhizoma Coptidis (Coptis chinensis Franch), and Radix Scutellaria (Scutellaria baicalensis Georgi), is a famous formula which has been widely used in the fight against inflammatory abnormalities. Mutual reinforcement is one of the basic theories of traditional Chinese medicine. Here this article reviewed and analyzed the recent research on (1) How the main constituents of SHXXT impact on inflammation-associated signaling pathway molecules. (2) The interaction between the main constituents and efflux pumps or intestinal transporters. The goal of this work was to, (1) Provide evidence to support the theory of mutual reinforcement. (2) Clarify the key targets of SHXXT and suggest which targets need further investigation. (3) Give advice for the clinical use of SHXXT to elevated the absorption of main constituents and eventually promote oral bioavailability. We search literatures in scientific databases with key words of “each main SHXXT constituent,” in combination with “each main inflammatory pathway target molecule” or each main intestinal transporter, respectively. We report the effect of five main constituents on target molecules which lies in three main inflammatory signaling pathways, we as well investigate the interaction between constituents and intestinal transporter. We conclude, (1) The synergistic effect of constituents at both levels confirm the mutual reinforcement theory of TCM as it is proven in this work. (2) The effect of main constituents on downstream targets in nuclear need more further investigation. (3) Drug elevating the absorption of rhein, berberine and baicalein can be employed to promote oral bioavailability of SHXXT.
Collapse
Affiliation(s)
- Jiasi Wu
- Chengdu University of Traditional Chinese Medicine Chengdu, China
| | - Yingfan Hu
- Chengdu University of Traditional Chinese Medicine Chengdu, China
| | - Li Xiang
- Chengdu University of Traditional Chinese Medicine Chengdu, China
| | - Sheng Li
- Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu, China
| | - Yi Yuan
- Chengdu University of Traditional Chinese MedicineChengdu, China; Chengdu Institute of Biology, Chinese Academy of SciencesChengdu, China
| | | | - Yan Zhang
- Chengdu University of Traditional Chinese Medicine Chengdu, China
| | - Wenge Huang
- Chengdu University of Traditional Chinese Medicine Chengdu, China
| | - Xianli Meng
- Chengdu University of Traditional Chinese Medicine Chengdu, China
| | - Ping Wang
- Chengdu University of Traditional Chinese Medicine Chengdu, China
| |
Collapse
|