1
|
Ogunro OB. An updated and comprehensive review of the health benefits and pharmacological activities of hesperidin. Biochem Biophys Res Commun 2025; 772:151974. [PMID: 40414011 DOI: 10.1016/j.bbrc.2025.151974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/27/2025]
Abstract
OBJECTIVES This review aims to comprehensively assess the health benefits and pharmacological activities of hesperidin, a flavonoid commonly found in citrus fruits. It consolidates recent research findings to provide insights into hesperidin's diverse health-promoting effects. KEY FINDINGS Hesperidin has gained significant attention recently for its notable pharmacological activities and potential health benefits. Studies reveal its antioxidant properties, protecting cells from oxidative damage, and its anti-inflammatory effects, inhibiting pro-inflammatory cytokines and enzymes. Also, hesperidin shows promise in cardiovascular health by reducing blood pressure and cholesterol levels and enhancing endothelial function. It also exhibits anticancer potential by hindering cell proliferation, inducing apoptosis, and suppressing tumour growth. Moreover, hesperidin demonstrates neuroprotective effects, potentially mitigating neuroinflammation and oxidative stress associated with neurodegenerative diseases. Furthermore, it displays beneficial effects in metabolic disorders such as diabetes, obesity, and fatty liver disease by influencing glucose metabolism, lipid profile, and insulin sensitivity. SUMMARY Hesperidin exhibits a wide range of health benefits and pharmacological activities, making it a promising candidate for therapeutic interventions in various diseases. Its antioxidant, anti-inflammatory, cardiovascular, anticancer, neuroprotective, and metabolic effects underscore its potential as a valuable natural compound for promoting health and preventing chronic diseases.
Collapse
Affiliation(s)
- Olalekan Bukunmi Ogunro
- Drug Discovery, Toxicology, and Pharmacology Research Laboratory, Department of Biological Sciences, KolaDaisi University, Ibadan, Nigeria.
| |
Collapse
|
2
|
Ahmed AS, Mathew LS, Mady MM, Docmac OK, Ibrahim HA, Sengupta P, A Eldeeb R, Hantash EM. Hesperidin protects the cerebral cortex of albino Wistar rats from the toxic effects of palmitic acid and preserves neurotransmitters-associated enzymes. Biotech Histochem 2025; 100:229-239. [PMID: 40145477 DOI: 10.1080/10520295.2025.2482944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025] Open
Abstract
Palmitic acid (PMA) is abundantly present in substantial quantities within palm oil and manifests neurodegenerative propensities. Conversely, the ingestion of Hesperidin (HSD) is correlated with a reduction in inflammatory markers and mediators. This investigation was meticulously devised to scrutinize the protective potential of HSD against the deleterious repercussions of PMA administration on the cerebral cortex. A cohort comprising forty albino Wistar rats was stratified into four groups, each receiving supplements of HSD and PMA. Remarkably, HSD was observed to fortify the histological framework of the cerebral cortex subsequent to PMA exposure, concurrently diminishing the percentage of apoptotic cells. Furthermore, HSD upregulated the levels of antioxidant markers, preserved the levels of neurotransmitter-associated enzymes, and downregulated the expression of inflammation-regulating genes. In conclusion, PMA exerts toxic effects on the cerebral cortex of albino Wistar rats, leading to increased apoptosis and neuroinflammation, thereby reducing brain cholinergic activity. HSD was found to attenuate the cerebral cortex content of MPO, 5-NTD, ROS, MDA, and NF-κB. Additionally, it elevated the cerebral cortex content of antioxidants and anti-inflammatory markers, thereby shielding it from the deleterious effects of PMA.
Collapse
Affiliation(s)
- Ahmed S Ahmed
- Anatomy and Embryology Department, College of Medicine Tanta University, Tanta, Egypt
- Biomedical Sciences Department, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Liju S Mathew
- Biomedical Sciences Department, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Marwa Mahmoud Mady
- Biomedical Sciences Department, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
- Anatomy and Embryology Department, College of Medicine, Alexandria University, Alexandria, Egypt
| | - Omaima K Docmac
- Anatomy and Embryology Department, College of Medicine Tanta University, Tanta, Egypt
| | - Hoda A Ibrahim
- Medical Biochemistry and Molecular Biology Department, College of Medicine Tanta University, Tanta, Egypt
| | - Pallav Sengupta
- Biomedical Sciences Department, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Rasha A Eldeeb
- Biomedical Sciences Department, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Ehab M Hantash
- Anatomy and Embryology Department, College of Medicine Tanta University, Tanta, Egypt
- Neonatal Intensive Care Unit, Dr. Suliman Al Habib Medical Group, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Kim SH, Hong SM, Ko EJ, Park MJ, Kim JY, Kim SY. Neuroprotective Effects of a Combination of Dietary Trans-Resveratrol and Hesperidin Against Methylglyoxal-Induced Neurotoxicity in a Depressive Amnesia Mouse Model. Nutrients 2025; 17:1548. [PMID: 40362855 PMCID: PMC12074085 DOI: 10.3390/nu17091548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/20/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Methylglyoxal (MGO), a reactive dicarbonyl compound, has been implicated in the formation of advanced glycation end-products (AGEs) and neuronal dysfunction. This study investigated the neuroprotective effects of the combination of trans-resveratrol and hesperidin (tRES-HESP) against MGO-induced neurotoxicity, focusing on memory dysfunction and depression-like behavior. METHODS Neuroblastoma 2a (N2a) cells were treated with MGO to induce neurotoxicity. The effects of tRES-HESP on cell viability, reactive oxygen species (ROS) production, apoptotic markers (BAX/Bcl 2 ratio, caspase 3 activity, and poly [ADP ribose] polymerase cleavage), and components of the glyoxalase system (glyoxalase-1, glyoxalase- 2, and receptors for AGEs) were assessed. The activation of the Kelch-like ECH-associated protein 1/Nuclear factor erythroid-2-related factor 2/Heme oxygenase-1 (Keap1/Nrf2/HO-1) pathway was also evaluated. In vivo, mice with MGO-induced depressive amnesia were treated with tRES-HESP (200 mg/kg) for eight weeks, and behavioral, biochemical, and histological assessments were performed. RESULTS tRES-HESP significantly reduced MGO-induced cytotoxicity, ROS production, and apoptosis in N2a cells. In addition, it restored the glyoxalase system and activated the Keap1/Nrf2/HO-1 pathway. In an in vivo model, tRES-HESP improved memory and depression-like behaviors, reduced cortisol and interleukin (IL)-6 levels, increased IL-10 levels, and lowered the expression of amyloid precursor protein and amyloid beta. Furthermore, tRES-HESP protected CA2/3 hippocampal subregions from MGO-induced damage. tRES-HESP exhibited neuroprotective effects through antioxidant, anti-apoptotic, and anti-inflammatory mechanisms. CONCLUSIONS Our results suggest that tRES-HESP is a potential dietary supplement for preventing cognitive decline and depression, particularly in neurodegenerative conditions such as Alzheimer's disease. Further studies are required to assess its clinical relevance and efficacy in the human population.
Collapse
Affiliation(s)
- Seon-Hyeok Kim
- College of Pharmacy and Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Republic of Korea; (S.-H.K.); (S.-M.H.); (E.-J.K.); (M.-J.P.)
| | - Seong-Min Hong
- College of Pharmacy and Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Republic of Korea; (S.-H.K.); (S.-M.H.); (E.-J.K.); (M.-J.P.)
| | - Eun-Ji Ko
- College of Pharmacy and Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Republic of Korea; (S.-H.K.); (S.-M.H.); (E.-J.K.); (M.-J.P.)
| | - Min-Jeong Park
- College of Pharmacy and Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Republic of Korea; (S.-H.K.); (S.-M.H.); (E.-J.K.); (M.-J.P.)
| | - Ji-Youn Kim
- Department of Exercise Rehabilitation, Gachon University, Incheon 21936, Republic of Korea
| | - Sun-Yeou Kim
- College of Pharmacy and Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Republic of Korea; (S.-H.K.); (S.-M.H.); (E.-J.K.); (M.-J.P.)
| |
Collapse
|
4
|
Tian X, Russo SJ, Li L. Behavioral Animal Models and Neural-Circuit Framework of Depressive Disorder. Neurosci Bull 2025; 41:272-288. [PMID: 39120643 PMCID: PMC11794861 DOI: 10.1007/s12264-024-01270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/26/2024] [Indexed: 08/10/2024] Open
Abstract
Depressive disorder is a chronic, recurring, and potentially life-endangering neuropsychiatric disease. According to a report by the World Health Organization, the global population suffering from depression is experiencing a significant annual increase. Despite its prevalence and considerable impact on people, little is known about its pathogenesis. One major reason is the scarcity of reliable animal models due to the absence of consensus on the pathology and etiology of depression. Furthermore, the neural circuit mechanism of depression induced by various factors is particularly complex. Considering the variability in depressive behavior patterns and neurobiological mechanisms among different animal models of depression, a comparison between the neural circuits of depression induced by various factors is essential for its treatment. In this review, we mainly summarize the most widely used behavioral animal models and neural circuits under different triggers of depression, aiming to provide a theoretical basis for depression prevention.
Collapse
Affiliation(s)
- Xiangyun Tian
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Scott J Russo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Long Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Farhan M, Faisal M. The Potential Role of Polyphenol Supplementation in Preventing and Managing Depression: A Review of Current Research. Life (Basel) 2024; 14:1342. [PMID: 39459643 PMCID: PMC11509552 DOI: 10.3390/life14101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Depression is a common mental illness that affects 5% of the adult population globally. The most common symptoms of depression are low mood, lack of pleasure from different activities, poor concentration, and reduced energy levels for an extended period, and it affects the emotions, behaviors, and overall well-being of an individual. The complex pathophysiology of depression presents challenges for current therapeutic options involving a biopsychosocial treatment plan. These treatments may have a delayed onset, low remission and response rates, and undesirable side effects. Researchers in nutrition and food science are increasingly addressing depression, which is a significant public health concern due to the association of depression with the increased incidence of cardiovascular diseases and premature mortality. Polyphenols present in our diet may significantly impact the prevention and treatment of depression. The primary mechanisms include reducing inflammation and oxidative stress, regulating monoamine neurotransmitter levels, and modulating the microbiota-gut-brain axis and hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. This review summarizes recent advances in understanding the effects of dietary polyphenols on depression and explores the underlying mechanisms of these effects for the benefit of human health. It also highlights studies that are looking at clinical trials to help future researchers incorporate these substances into functional diets, nutritional supplements, or adjunctive therapy to prevent and treat depression.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Mohd Faisal
- St. Michael’s Unit, Department of Psychiatry, Mercy University Hospital, Grenville Place, T12WE28 Cork, Ireland
- Tosnú Mental Health Centre, West Village, Ballincollig, P31N400 Cork, Ireland
| |
Collapse
|
6
|
Alizadeh A, Pourfallah-Taft Y, Khoshnazar M, Safdari A, Komari SV, Zanganeh M, Sami N, Valizadeh M, Faridzadeh A, Alijanzadeh D, Mazhari SA, Khademi R, Kheirandish A, Naziri M. Flavonoids against depression: a comprehensive review of literature. Front Pharmacol 2024; 15:1411168. [PMID: 39478958 PMCID: PMC11521854 DOI: 10.3389/fphar.2024.1411168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/20/2024] [Indexed: 11/02/2024] Open
Abstract
Background Depression is a state of low mood and aversion to activity, which affects a person's thoughts, behavior, motivation, feelings, and sense of wellbeing. Pharmacologic therapies are still the best effective treatment of depression. Still, most antidepressant drugs have low efficacy and delayed onset of therapeutic action, have different side effects, and even exacerbate depression. Such conditions make it possible to look for alternatives. Consequently, we decided to summarize the impact of flavonoids on depression in this review. Methods We searched scientific databases such as SCOPUS, PubMed, and Google Scholar to find relevant studies until July 2022. Results A wide variety of natural components have been shown to alleviate depression, one of which is flavonoids. Due to the growing tendency to use natural antidepressant drugs, scientific studies are increasingly being conducted on flavonoids. This study aims to review the latest scientific researches that indicate the antidepressant potential of flavonoids. Various mechanisms include neurotransmitter system modulation and dopaminergic, noradrenergic, and serotonergic pathways regulation in the central nervous system. Different compounds of flavonoids have antidepressant properties in vivo or in vitro experiments or clinical trials and can be used as alternative and complementary treatments for depression. In general, it was observed that there were no severe side effects. Conclusion Our study proves the antidepressant potential of flavonoids, and considering the limited side effects, they can be used as complementary medicine for depressed patients.
Collapse
Affiliation(s)
- Alaleh Alizadeh
- Student Research Committee, Faculty of Medicine, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Yeganeh Pourfallah-Taft
- Student’s Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Khoshnazar
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Aysan Safdari
- Student Research Committee, Faculty of Nursing and Midwifery, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Saba Vafadar Komari
- Student Research Committee, Faculty of Nursing and Midwifery, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mehrnaz Zanganeh
- Student Research Committee, Faculty of Medicine, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Nafiseh Sami
- Student Research Committee, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Valizadeh
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dorsa Alijanzadeh
- Student’s Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reza Khademi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Kheirandish
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdyieh Naziri
- Students Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Shahraki J, Tabrizian K, Rezaee R, Tashakori B, Dadrezaei S, Ghorani V, Bagheri G, Jahantigh H, Hashemzaei M. Hesperidin neuroprotective effects against carbon monoxide-induced toxicity in male rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7673-7681. [PMID: 38700797 DOI: 10.1007/s00210-024-03132-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/29/2024] [Indexed: 08/04/2024]
Abstract
Carbon monoxide (CO) is produced via incomplete combustion of fossil fuels and it may cause long-term neurological sequel upon exposure. Hesperidin (HES), a flavanone glycoside found in citrus plants, exerts diverse beneficial health effects. The present study mechanistically examined the neuroprotective effects of HES in CO-poisoned rats. Thirty male Wistar rats (five groups of six animals) were exposed to 3000 ppm CO for 1 h. Immediately after the exposure and on the next 4 consecutive days (totally five doses), rats intraperitoneally received either normal saline (the control group) or different doses of HES (25, 50, and 100 mg/kg). A sham group that was not exposed to CO was also considered. After evaluation of spatial learning and memory using a Morris water maze (MWM), animals were sacrificed and oxidative stress status in blood samples, and Akt, Bax, Bcl2, and brain-derived neurotrophic factor (BDNF) expression in brain samples were assessed. Western blot analysis indicated increased Akt but decreased Bax/Bcl2 levels in the HES 100 mg/kg, and induced BDNF levels in all HES-treated groups. MWM results showed that HES significantly decreased memory loss. The current findings indicate that HES could alleviate neurological impairments induced by CO in rats.
Collapse
Affiliation(s)
- Jafar Shahraki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Kaveh Tabrizian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Ramin Rezaee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Behnam Tashakori
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Seyedehzahra Dadrezaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Vahideh Ghorani
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Development Unit, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hosseinali Jahantigh
- Department of Pathology, Amiralmomenin Hospital, Zabol University of Medical Sciences, Zabol, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran.
| |
Collapse
|
8
|
Olasehinde TA, Ekundayo TC, Ijabadeniyi OA, Olaniran AO. The Impact of Hesperidin on Cognitive Deficit and Neurobehavioural Disorders: A Systematic Review and Meta-Analysis of Preclinical Individual Studies. Curr Behav Neurosci Rep 2024; 11:246-259. [DOI: 10.1007/s40473-024-00284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 01/03/2025]
Abstract
AbstractPurpose of Review Experimental evidence suggests that flavonoids prevent neurodegeneration and improves cognitive function. In this study, we systematically reviewed the effect of hesperidin on cognitive deficits and neurobehavioural outcomes in in vivo studies.Recent Findings: A systematic search of PubMed, EBSCOhost, Web of Science, Scopus and ProQuest was conducted. Meta-analysis was performed on the effect of hesperidin on cognitive and neurobehavioural parameters (Morris Water Maze, Y-Maze, elevated plus maze, rotarod test, locomotion activity, passive avoidance test, open field test and forced swimming test). The mixed effect model was used to compute the standard mean difference (SMD). A total of 1069 documents were retrieved. However, 46 studies were included in the systematic review and meta-analysis. Our findings revealed that hesperidin did not significantly affect cognitive performance in normal rats compared with placebo. Moreover, hesperidin improved memory and learning, sensorimotor function and locomotion activity in cognitive impaired rats. Hesperidin did not show any significant effect on anxiety-related outcomes in the diseased model.Summary: Hesperidin improved cognitive function and neurocognitive effects could be associated with its neuroprotective effects against neuroinflammation, oxidative stress-induced neuronal damage, inhibition of cholinergic deficit and mitochondrial dysfunction. These results correlate with available scientific evidence on the effect of hesperidin on cognitive dysfunction and neurobehavioural deficits in cognitive-impaired rats.
Collapse
|
9
|
Khorasanian AS, Jazayeri S, Omidi N, Booyani Z, Morvaridi M, Tehrani‐Doost M, Hoseini AF, Nejatian M, Aryaeian N. Hesperidin reduces depressive symptoms in post-coronary artery bypass graft patients with mild depression. Food Sci Nutr 2023; 11:7742-7750. [PMID: 38107143 PMCID: PMC10724602 DOI: 10.1002/fsn3.3692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 12/19/2023] Open
Abstract
Previous studies have shown that hesperidin may have beneficial effects on depression; however, to the best of our knowledge, no clinical trial has yet been conducted in this area. The aim of the present study was, therefore, to determine the effects of hesperidin on depression, serum brain-derived neurotrophic factor (BDNF), and serum cortisol levels in post-coronary artery bypass graft (CABG) patients. Toward this goal, 73 post-CABG patients with depression symptoms were enrolled. The participants were randomly divided into two groups to receive either 200 mg/day hesperidin (n = 38) or placebo (n = 35) for 12 weeks. Depressive symptoms, serum BDNF, and cortisol levels were then assessed at the baseline and after intervention. Beck Depression Inventory-II (BDI-II) was also used to determine the severity of depression. Sixty-six patients completed the trial. Hesperidin decreased depression severity after 12 weeks, as compared to placebo (p = .004), but serum BDNF and cortisol were not statistically significantly different in the two groups after the intervention. Subgroup analyses also showed that, while in the patients with mild depression, the score of BDI-II was significantly different in the hesperidin and placebo groups after intervention; there was no difference in the severity of depression between the two groups in patients with moderate-to-severe depression. To conclude, a dose of 200 mg/day hesperidin may reduce depressive symptoms after 12 weeks in post-CABG patients with mild depression.
Collapse
Affiliation(s)
- Atie Sadat Khorasanian
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
| | - Shima Jazayeri
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
- Research Center for Prevention of Cardiovascular DiseaseInstitute of Endocrinology & Metabolism, Iran University of Medical SciencesTehranIran
| | - Negar Omidi
- Department of Cardiology, Tehran Heart CenterTehran University of Medical SciencesTehranIran
| | - Zahra Booyani
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
| | - Mehrnaz Morvaridi
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
| | - Mehdi Tehrani‐Doost
- Department of Research Center for Cognitive and Behavioral SciencesTehran University of Medical SciencesTehranIran
| | - Agha Fateme Hoseini
- Department of Biostatistics, School of HealthIran University of Medical SciencesTehranIran
| | - Mostafa Nejatian
- Department of Cardiac Rehabilitation, Tehran Heart CenterTehran University of Medical SciencesTehranIran
| | - Naheed Aryaeian
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
| |
Collapse
|
10
|
Cao H, Yang D, Nie K, Lin R, Peng L, Zhou X, Zhang M, Zeng Y, Liu L, Huang W. Hesperidin may improve depressive symptoms by binding NLRP3 and influencing the pyroptosis pathway in a rat model. Eur J Pharmacol 2023:175670. [PMID: 37169143 DOI: 10.1016/j.ejphar.2023.175670] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/13/2023]
Abstract
OBJECTIVE Major depressive disorder (MDD) is a debilitating psychiatric disorder which is common and endangers human physical and mental health. Studies have shown that hesperidin could improve the symptoms of depression with unclear mechanisms. METHOD In this study, hesperidin was administered to chronic unpredictable mild stress (CUMS) depressed mice before behavioral test, network pharmacology analysis, RNA expression microarray analysis, pathway validation and molecular docking experiments. RESULTS we found that hesperidin intervention could significantly improve the depressive symptoms and downregulate the expression level of pyroptosis pathway including caspase 1 (Casp1), interleukin 18 (IL18), interleukin-1β (IL-1β) and NOD-like receptor thermal protein domain associated protein 3 (NLRP3). In addition, we found that hesperidin could possibly bind to NLRP3. CONCLUSIONS Our study demonstrated that hesperidin had huge potential as anti-depressive neuroprotectant, and may play a role in treating MDD by regulating NLRP3-mediated pyroptosis.
Collapse
Affiliation(s)
- Hui Cao
- Department of Psychiatry, Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province, Changsha, China
| | - Dong Yang
- Department of Psychiatry, Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province, Changsha, China
| | - Kechao Nie
- Department of Integrated Traditional Chinese & Western Internal Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ruoheng Lin
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Luqi Peng
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xuhui Zhou
- Department of Psychiatry, Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province, Changsha, China
| | - Mei Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Zeng
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Lini Liu
- Department of Psychiatry, Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province, Changsha, China
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
11
|
Sałaciak K, Koszałka A, Lustyk K, Żmudzka E, Jagielska A, Pytka K. Memory impairments in rodent depression models: A link with depression theories. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110774. [PMID: 37088171 DOI: 10.1016/j.pnpbp.2023.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
More than 80% of depressed patients struggle with learning new tasks, remembering positive events, or concentrating on a single topic. These neurocognitive deficits accompanying depression may be linked to functional and structural changes in the prefrontal cortex and hippocampus. However, their mechanisms are not yet completely understood. We conducted a narrative review of articles regarding animal studies to assess the state of knowledge. First, we argue the contribution of changes in neurotransmitters and hormone levels in the pathomechanism of cognitive dysfunction in animal depression models. Then, we used numerous neuroinflammation studies to explore its possible implication in cognitive decline. Encouragingly, we also observed a positive correlation between increased oxidative stress and a depressive-like state with concomitant memory deficits. Finally, we discuss the undeniable role of neurotrophin deficits in developing cognitive decline in animal models of depression. This review reveals the complexity of depression-related memory impairments and highlights the potential clinical importance of gathered findings for developing more reliable animal models and designing novel antidepressants with procognitive properties.
Collapse
Affiliation(s)
- Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Aleksandra Koszałka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Elżbieta Żmudzka
- Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College Medyczna, 9 Street, Kraków 30-688, Poland
| | - Angelika Jagielska
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland.
| |
Collapse
|
12
|
Behl T, Rana T, Sehgal A, Sharma N, Albarrati A, Albratty M, Makeen HA, Najmi A, Verma R, Bungau SG. Exploring the multifocal role of phytoconstituents as antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110693. [PMID: 36509251 DOI: 10.1016/j.pnpbp.2022.110693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Depression is the most prevalent and devastating neuropsychiatric disorder. There are several conventional antidepressants used for the treatment of depression. But due to their undesired adverse effects, patient compliance is very poor. Thus, developing novel medications for the treatment of depression is a critical strategic priority for meeting therapeutic demands. Current research is looking for alternatives to traditional antidepressants to reduce undesired side effects and increase efficacy. Phytoconstituents provide a wide research range in antidepressant treatments. In the present article, we have conducted a comprehensive assessment of neurological evidence, which supports the usefulness of phytoconstituents in the treatment of the depressive disorder. Secondary plant metabolites including alkaloids, polyphenols, glycosides, saponins, and terpenoids were found to exhibit antidepressant action. Most of the phytoconstituents were found to mediate their antidepressant effect through the upregulation of brain-derived neurotrophic factor (BDNF), serotonin, noradrenaline, and dopamine. Some were also found to exert antidepressant effects by inhibiting the monoamine oxidase (MAO) activity and hypothalamic-pituitary-adrenal (HPA) axis overactivity.
Collapse
Affiliation(s)
- Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Uttarakhand, India.
| | - Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Ali Albarrati
- Rehabilitation Health Sciences, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Raman Verma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| |
Collapse
|
13
|
Khatoon S, Samim M, Dahalia M. Fisetin provides neuroprotection in pentylenetetrazole-induced cognition impairment by upregulating CREB/BDNF. Eur J Pharmacol 2023; 944:175583. [PMID: 36764352 DOI: 10.1016/j.ejphar.2023.175583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
OBJECTIVES Fisetin is a flavonoid molecule known to be neuroprotective by its multiple mechanisms. The present study was designed to explore the effect of fisetin in the pentylenetetrazole (PTZ) kindling-induced cognitive dysfunction in mice. METHODS Kindling was established by the intraperitoneal administration of PTZ in a subconvulsive dose (25 mg/kg). Mice were administered fisetin (5, 10, and 20 mg/kg, p.o.) to study its probable cognition-enhancing effect. The kindled mice were evaluated for cognition using behavioral tests-elevated plus maze and passive avoidance response. Then, the oxidative stress markers, gene expressions and neurotransmitters levels were estimated in the hippocampus and cortex of mice. RESULTS Passive avoidance response and elevated plus maze paradigms showed that fisetin administration improved the cognitive function in kindled mice. The increased levels of lipid peroxidation and protein carbonyl were modulated upon fisetin administration through increasing the levels of antioxidants (reduced glutathione, glutathione reductase, glutathione peroxidase, superoxide dismutase, and catalase) in the hippocampus and cortex of kindled mice. Upregulated gene expressions of cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) were observed in the hippocampus and cortex of fisetin-administered mice which play a crucial role in cognitive function. Furthermore, alterations of neurotransmitter levels (dopamine, GABA, and glutamate) and acetylcholinesterase (AchE) were ameliorated by fisetin administration in the hippocampus and cortex of kindled mice. CONCLUSION Our findings suggest a therapeutic potential of fisetin against cognitive dysfunction associated with PTZ-induced kindling.
Collapse
Affiliation(s)
- Saima Khatoon
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammed Samim
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Mansi Dahalia
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
14
|
Asejeje FO, Ogunro OB, Asejeje GI, Adewumi OS, Abolaji AO. An assessment of the ameliorative role of hesperidin in Drosophila melanogaster model of cadmium chloride-induced toxicity. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109500. [PMID: 36347494 DOI: 10.1016/j.cbpc.2022.109500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Accepted: 10/30/2022] [Indexed: 11/08/2022]
Abstract
Cadmium chloride (CdCl2) is an important heavy metal widely regarded as an environmental contaminant. Hesperidin, a flavanone glycoside found in citrus fruits, has an established properties against free radicals, apoptosis, and inflammation. The present study investigated the protective actions of hesperidin on CdCl2-induced oxidative damage and inflammation in Drosophila melanogaster. For 7 consecutive days via their diet regimen, the flies were exposed to CdCl2 alone (0.05 mM) or in combination with hesperidin (50 and 100 μM). Exposure to CdCl2 significantly (p < 0.05) increased mortality rate of flies, whereas the survived flies demonstrated significant oxidative toxicity from decreased activities of catalase and Glutathione S-transferase (GST) and Total Thiol (T-SH) and Non-Protein Thiols (NPSH) levels as well as accumulation of Nitric Oxide (NO (nitrite/nitrate)), protein carbonyl and Hydrogen Peroxide (H2O2). However, hesperidin-supplemented diet improved Acetylcholinesterase (AChE) activity, mitochondrial metabolic rate (cell viability), locomotor activity, and amelioration of oxidative damage and lipid peroxidation induced by CdCl2. The hesperidin diet supplement boosted the antioxidant milieu and ameliorated the oxidative damage in the treated flies. Overall, the findings revealed that hesperidin improved antioxidative protective capacity in Drosophila melanogaster model of CdCl2-induced toxicity. This suggests hesperidin as a potential therapeutic agent against oxidative stress disorders due to exposure to CdCl2 and or related toxicants.
Collapse
Affiliation(s)
| | | | - Gbolahan Iyiola Asejeje
- Department of Chemistry, University of Ibadan, Ibadan, Oyo State, Nigeria; Drosophila Research and Training Centre, A2 Ajao Dental Street, Salami Somade Estate, Off Iyaniwura Bus Stop, Basorun, Ibadan, Oyo State, Nigeria
| | | | - Amos Olalekan Abolaji
- Drosophila Research and Training Centre, A2 Ajao Dental Street, Salami Somade Estate, Off Iyaniwura Bus Stop, Basorun, Ibadan, Oyo State, Nigeria; Drosophila Laboratory, Drug Metabolism and Toxicology Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| |
Collapse
|
15
|
Lu P, Fang M, Yao L, Zhang N, Xu K, He P. Massage of Bladder Meridian Relieved Anxiety Induced by Chronic Stress in Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5639716. [PMID: 36531656 PMCID: PMC9754834 DOI: 10.1155/2022/5639716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 09/24/2022] [Accepted: 11/08/2022] [Indexed: 08/02/2024]
Abstract
The aim of this paper was to explore the mechanism of bladder meridian massage (BMM) on anxiety in rats with chronic stress. Chronic stress induced rats to establish rat anxiety model. The sugar water preference (SPF), tail suspension time (TST), and forced swimming time (FST) of rats were measured. The levels of superoxide dismutase (SOD), malondialdehyde (MDA), and inflammatory cytokines in serum and hippocampus of rats were detected. Brain neurotransmitters (dopamine (DA), 5- hydroxytryptamine (5-HT), and norepinephrine (NE)) were detected by enzyme-linked immunosorbent assay (ELISA) kits. Immunohistochemistry and western blotting were used to detect autophagy protein expression in hippocampus of rats. BMM significantly increased SPF, decreased TST and FST, increased SOD level in serum and hippocampus, and decreased MDA level and cytokine level. BMM reversed the changes of neurotransmitters. At the same time, BMM significantly decreased autophagy protein expression in hippocampus of rats. The above results show that BMM significantly relieve anxiety induced by chronic stress in rats.
Collapse
Affiliation(s)
- Ping Lu
- College of Acupuncture and Massage, Shanghai University of Chinese Medicine, China
| | - Min Fang
- College of Acupuncture and Massage, Shanghai University of Chinese Medicine, China
| | - Lei Yao
- College of Acupuncture and Massage, Shanghai University of Chinese Medicine, China
| | - Nan Zhang
- College of Acupuncture and Massage, Shanghai University of Chinese Medicine, China
| | - Ke Xu
- College of Acupuncture and Massage, Shanghai University of Chinese Medicine, China
| | - Pei He
- College of Acupuncture and Massage, Shanghai University of Chinese Medicine, China
| |
Collapse
|
16
|
Xu D, Zhao M. Theragra chalcogramma Hydrolysates, Rich of Fragment Gly-Leu-Pro-Ser-Tyr-Thr, Ameliorate Alcohol-Induced Cognitive Impairment via Attenuating Neuroinflammation and Enhancing Neuronal Plasticity in Sprague-Dawley Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12513-12524. [PMID: 36162996 DOI: 10.1021/acs.jafc.2c05163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chronic alcohol abuse induces the cognitive deficits and is associated with low-grade inflammation and neurodegeneration. Currently, by virtue of the immunomodulatory and neuroprotective properties, nutrients represent a promising strategy to attenuate cognitive impairments. We previously prepared the hydrolysates from Theragra chalcogramma skin (TCH), and this study aims to evaluate the neuroprotection of TCH on alcohol-induced cognitive impairment (AICI) and to elucidate the associated mechanism. Behavioral results showed that TCH effectively ameliorated AICI and this amelioration was highly associated with the decrease of IL-1β and the increase of BDNF, CREB, and PSD95 in AICI rats (P < 0.05). Furthermore, TCH restored the histopathological impairment in hippocampus by reactivating extracellular signal-regulated kinase and suppressing Caspase-3 apoptosis signal pathways and modulating the abnormality of neurotransmitters acetylcholine and γ-aminobutyric acid(P < 0.05 or 0.01). Therefore, TCH exhibits potent attenuation of neuroinflammation and represents a potential ingredient for prevention of AICI.
Collapse
Affiliation(s)
- Defeng Xu
- College of Food Science and Technology, Guangdong Ocean University; Guangdong Provincial Key Labora-tory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang, Guangdong Province 524088, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
17
|
Luduvico KP, Spohr L, de Aguiar MSS, Teixeira FC, Bona NP, de Mello JE, Spanevello RM, Stefanello FM. LPS-induced impairment of Na +/K +-ATPase activity: ameliorative effect of tannic acid in mice. Metab Brain Dis 2022; 37:2133-2140. [PMID: 35759073 DOI: 10.1007/s11011-022-01036-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
Acetylcholine is an excitatory neurotransmitter that modulates synaptic plasticity and communication, and it is essential for learning and memory processes. This neurotransmitter is hydrolyzed by acetylcholinesterase (AChE), which plays other cellular roles in processes such as inflammation and oxidative stress. Ion pumps, such as Na+/K+-ATPase and Ca2+-ATPase, are highly expressed channels that derive energy for their functions from ATP hydrolysis. Impairment of the cholinergic system and ion pumps is associated with neuropsychiatric diseases. Major depressive disorder (MDD) is an example of a complex disease with high morbidity and a heterogenous etiology. Polyphenols have been investigated for their therapeutic effects, and tannic acid (TA) has been reported to show neuroprotective and antidepressant-like activities. Animal models of depression-like behavior, such as lipopolysaccharide (LPS)-induced models of depression, are useful for investigating the pathophysiology of MDD. In this context, effects of TA were evaluated in an LPS-induced mouse model of depression-like behavior. Animals received TA for 7 days, and on the last day of treatment, LPS (830 μg/kg) was administered intraperitoneally. In vitro exposure of healthy brain to TA decreased the AChE activity. Additionally, this enzyme activity was decreased in cerebral cortex of LPS-treated mice. LPS injection increased the activity of Ca2+-ATPase in the cerebral cortex but decreased the enzyme activity in the hippocampus. LPS administration decreased Na+/K+-ATPase activity in the cerebral cortex, hippocampus, and striatum; however, TA administration prevented these changes. In conclusion, tannins may affect Na+/K+-ATPase and Ca2+-ATPase activities, which is interesting in the context of MDD.
Collapse
Affiliation(s)
- Karina Pereira Luduvico
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP: 96010-900, Brazil.
| | - Luiza Spohr
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP: 96010-900, Brazil
| | - Mayara Sandrielly Soares de Aguiar
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP: 96010-900, Brazil
| | - Fernanda Cardoso Teixeira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP: 96010-900, Brazil
| | - Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP: 96010-900, Brazil
| | - Julia Eisenhardt de Mello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP: 96010-900, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP: 96010-900, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP: 96010-900, Brazil.
| |
Collapse
|
18
|
Bansal Y, Singh R, Sodhi RK, Khare P, Dhingra R, Dhingra N, Bishnoi M, Kondepudi KK, Kuhad A. Kynurenine monooxygenase inhibition and associated reduced quinolinic acid reverses depression-like behaviour by upregulating Nrf2/ARE pathway in mouse model of depression: In-vivo and In-silico studies. Neuropharmacology 2022; 215:109169. [PMID: 35753430 DOI: 10.1016/j.neuropharm.2022.109169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/28/2022] [Accepted: 06/18/2022] [Indexed: 10/17/2022]
Abstract
Kynurenine pathway, a neuroimmunological pathway plays a substantial role in depression. Consistently, increased levels of neurotoxic metabolite of kynurenine pathway; quinolinic acid (QA) found in the suicidal patients and remitted major depressive patients. QA, an endogenous modulator of N-methyl-d-aspartate receptor is produced by microglial cells, may serve as a potential candidate for a link between antioxidant defence system and immune changes in depression. Further, nuclear factor (erythroid-derived 2) like 2 (Nrf2), an endogenous antioxidant transcription factor plays a significant role in maintaining antioxidant homeostasis during basal and stress conditions. The present study was designed to explore the effects of KMO-inhibition (Kynurenine monooxygenase) and association of reduced QA on Keap1/Nrf2/ARE pathway activity in olfactory bulbectomized mice (OBX-mice). KMO catalysis the neurotoxic branch of kynurenine pathway directing the synthesis of QA. KMO inhibitionshowed significant reversal of depressive-like behaviour, restored Keap-1 and Nrf2 mRNA expression, and associated antioxidant levels in cortex and hippocampus of OBX-mice. KMO inhibition also increased PI3K/AKT mRNA expression in OBX-mice. KMO inhibition and associated reduced QA significantly decreased inflammatory markers, kynurenine and increased the 5-HT, 5-HIAA and tryptophan levels in OBX-mice. Furthermore, molecular docking studies has shown good binding affinity of QA towards ubiquitin proteasome complex and PI3K protein involved in Keap-1 dependent and independent proteasome degradation of Nrf2 respectively supporting our in-vivo findings. Hence, QA might act as pro-oxidant through downregulating Nrf2/ARE pathway along with modulating other pathways and KMO inhibition could be a potential therapeutic target for depression treatment.
Collapse
Affiliation(s)
- Yashika Bansal
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Raghunath Singh
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Rupinder Kaur Sodhi
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Pragyanshu Khare
- Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Richa Dhingra
- Pharmachemistry Research Lab, University Institute of Pharmaceutical Sciences UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Neelima Dhingra
- Pharmachemistry Research Lab, University Institute of Pharmaceutical Sciences UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Mahendra Bishnoi
- Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Kanthi Kiran Kondepudi
- Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Anurag Kuhad
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences UGC-Centre of Advanced Study, Panjab University, Chandigarh, India.
| |
Collapse
|
19
|
Tayab MA, Islam MN, Chowdhury KAA, Tasnim FM. Targeting neuroinflammation by polyphenols: A promising therapeutic approach against inflammation-associated depression. Pharmacotherapy 2022; 147:112668. [DOI: 10.1016/j.biopha.2022.112668] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/12/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023]
|
20
|
Xu D, Zhao M. Walnut protein hydrolysates ameliorate alcohol-induced cognitive impairment (AICI) by alleviating oxidative stress and inflammation in the brain and improving hippocampal synaptic plasticity in Sprague–Dawley rats. Food Funct 2022; 13:11615-11626. [DOI: 10.1039/d2fo01709a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Walnut protein hydrolysate (WPH) ameliorates Alcohol-induced cognitive impairment (AICI) via alleviating oxidative stress and inflammation in brain tissue and improving the hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Defeng Xu
- College of Food Science and Technology, Guangdong Ocean University; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang, Guangdong Province 524088, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
21
|
Dietary Intake of Flavonoids and Carotenoids Is Associated with Anti-Depressive Symptoms: Epidemiological Study and In Silico-Mechanism Analysis. Antioxidants (Basel) 2021; 11:antiox11010053. [PMID: 35052561 PMCID: PMC8773076 DOI: 10.3390/antiox11010053] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Flavonoids and carotenoids are bioactive compounds that have protective effects against depressive symptoms. Flavonoids and carotenoids are the two main types of antioxidant phytochemicals. This study investigated the association between flavonoid and carotenoid intake and depressive symptoms in middle-aged Korean females. We analyzed the mechanism of these associations using an in silico method. Depressive symptoms were screened using the Beck Depression Inventory-II (BDI-II), and flavonoid and carotenoid intake were assessed using a semi-quantitative food frequency questionnaire. Using a multivariate logistic regression model, we found that flavones, anthocyanins, individual phenolic compounds, lycopene, and zeaxanthin were negatively associated with depressive symptoms. In silico analysis showed that most flavonoids have high docking scores for monoamine oxidase A (MAOA) and monoamine oxidase B (MAOB), which are two important drug targets in depression. The results of the docking of brain-derived neurotrophic factor (BDNF) and carotenoids suggested the possibility of allosteric activation of BDNF by carotenoids. These results suggest that dietary flavonoids and carotenoids can be utilized in the treatment of depressive symptoms.
Collapse
|
22
|
Aranarochana A, Kaewngam S, Anosri T, Sirichoat A, Pannangrong W, Wigmore P, Welbat JU. Hesperidin Reduces Memory Impairment Associated with Adult Rat Hippocampal Neurogenesis Triggered by Valproic Acid. Nutrients 2021; 13:4364. [PMID: 34959916 PMCID: PMC8708262 DOI: 10.3390/nu13124364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Treatment with valproic acid (VPA) deteriorates hippocampal neurogenesis, which leads to memory impairment. Hesperidin (Hsd) is a plant-based bioflavonoid that can augment learning and memory. This study aimed to understand the effect of Hsd on the impairment of hippocampal neurogenesis and memory caused by VPA. The VPA (300 mg/kg) was administered by intraperitoneal injection twice daily for 14 days, and Hsd (100 mg/kg/day) was administered by oral gavage once a day for 21 days. All rats underwent memory evaluation using the novel object location (NOL) and novel object recognition (NOR) tests. Immunofluorescent staining of Ki-67, BrdU/NeuN, and doublecortin (DCX) was applied to determine hippocampal neurogenesis in cell proliferation, neuronal survival, and population of the immature neurons, respectively. VPA-treated rats showed memory impairments in both memory tests. These impairments resulted from VPA-induced decreases in the number of Ki-67-, BrdU/NeuN-, and DCX-positive cells in the hippocampus, leading to memory loss. Nevertheless, the behavioral expression in the co-administration group was improved. After receiving co-administration with VPA and Hsd, the numbers of Ki-67-, BrdU/NeuN-, and DCX-positive cells were improved to the normal levels. These findings suggest that Hsd can reduce the VPA-induced hippocampal neurogenesis down-regulation that results in memory impairments.
Collapse
Affiliation(s)
- Anusara Aranarochana
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (A.A.); (S.K.); (T.A.); (A.S.); (W.P.)
- Neuroscience Research Group, Department of Anatomy, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Soraya Kaewngam
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (A.A.); (S.K.); (T.A.); (A.S.); (W.P.)
- Neuroscience Research Group, Department of Anatomy, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tanaporn Anosri
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (A.A.); (S.K.); (T.A.); (A.S.); (W.P.)
- Neuroscience Research Group, Department of Anatomy, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Apiwat Sirichoat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (A.A.); (S.K.); (T.A.); (A.S.); (W.P.)
- Neuroscience Research Group, Department of Anatomy, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wanassanun Pannangrong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (A.A.); (S.K.); (T.A.); (A.S.); (W.P.)
| | - Peter Wigmore
- School of Life Sciences, Queen’s Medical Centre, Nottingham University, Nottingham NG7 2QL, UK;
| | - Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (A.A.); (S.K.); (T.A.); (A.S.); (W.P.)
- Neuroscience Research Group, Department of Anatomy, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
23
|
Pannu A, Sharma PC, Thakur VK, Goyal RK. Emerging Role of Flavonoids as the Treatment of Depression. Biomolecules 2021; 11:biom11121825. [PMID: 34944471 PMCID: PMC8698856 DOI: 10.3390/biom11121825] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/21/2021] [Accepted: 11/26/2021] [Indexed: 12/28/2022] Open
Abstract
Depression is one of the most frequently observed psychological disorders, affecting thoughts, feelings, behavior and a sense of well-being in person. As per the WHO, it is projected to be the primitive cause of various other diseases by 2030. Clinically, depression is treated by various types of synthetic medicines that have several limitations such as side-effects, slow-onset action, poor remission and response rates due to complicated pathophysiology involved with depression. Further, clinically, patients cannot be given the treatment unless it affects adversely the job or family. In addition, synthetic drugs are usually single targeted drugs. Unlike synthetic medicaments, there are many plants that have flavonoids and producing action on multiple molecular targets and exhibit anti-depressant action by affecting multiple neuronal transmissions or pathways such as noradrenergic, serotonergic, GABAnergic and dopaminergic; inhibition of monoamine oxidase and tropomyosin receptor kinase B; simultaneous increase in nerve growth and brain-derived neurotrophic factors. Such herbal drugs with flavonoids are likely to be useful in patients with sub-clinical depression. This review is an attempt to analyze pre-clinical studies, structural activity relationship and characteristics of reported isolated flavonoids, which may be considered for clinical trials for the development of therapeutically useful antidepressant.
Collapse
Affiliation(s)
- Arzoo Pannu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India;
| | - Prabodh Chander Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India;
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Edinburgh EH9 3JG, UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India
- Correspondence: (V.K.T.); (R.K.G.); Tel.: +91-9825719111 (V.K.T.)
| | - Ramesh K. Goyal
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India;
- Correspondence: (V.K.T.); (R.K.G.); Tel.: +91-9825719111 (V.K.T.)
| |
Collapse
|
24
|
Abd Al Haleem EN, Ahmed HI, El-Naga RN. Lycopene and Chrysin through Mitigation of Neuroinflammation and Oxidative Stress Exerted Antidepressant Effects in Clonidine-Induced Depression-like Behavior in Rats. J Diet Suppl 2021; 20:391-410. [PMID: 34633271 DOI: 10.1080/19390211.2021.1988797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Depression is a severely debilitating psychiatric disorder that influences more than 15% of the population worldwide. It has been demonstrated that it is associated with a high risk of developing other diseases such as cardiovascular diseases, diabetes, stroke, epilepsy, and cancer. The current study examines the possibility of chrysin and lycopene having an antidepressant effect in a rat model of depression induced by clonidine, as well as the mechanisms underlying this effect, including the role of neuroinflammation and oxidative stress. Rats were allotted into seven groups. The rats in group 1 served as a control. Group 2 received lycopene only. Group 3 was provided chrysin only. Group 4 was administered clonidine and served as the model. Group 5 was offered lycopene and clonidine. Group 6 was administered chrysin and clonidine. Group 7 was given FLX and clonidine and represented the standard. The experiment lasted two weeks, during which behavioral, biochemical, histopathological, and immunohistochemical measurements were performed. Lycopene and chrysin were used to correct the concentrations of noradrenaline and serotonin hippocampal tissue concentrations. These findings were also improved by immunohistochemical analysis of GFAP, VEGF, caspase3, and histopathological examinations, in which pretreatment of rats with lycopene and chrysin reversed all clonidine-induced alterations. The current research demonstrates that lycopene and chrysin have an auspicious antidepressant effect against clonidine that provoked behavioral hopelessness in rats. Manipulating oxidative stress, inflammation, and apoptosis may partially represent the corrective mechanism for the neuroprotective actions against the depressive effect of clonidine.
Collapse
Affiliation(s)
- Ekram Nemr Abd Al Haleem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hebatalla I Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Reem N El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
25
|
Walczak-Nowicka ŁJ, Herbet M. Acetylcholinesterase Inhibitors in the Treatment of Neurodegenerative Diseases and the Role of Acetylcholinesterase in their Pathogenesis. Int J Mol Sci 2021; 22:9290. [PMID: 34502198 PMCID: PMC8430571 DOI: 10.3390/ijms22179290] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022] Open
Abstract
Acetylcholinesterase (AChE) plays an important role in the pathogenesis of neurodegenerative diseases by influencing the inflammatory response, apoptosis, oxidative stress and aggregation of pathological proteins. There is a search for new compounds that can prevent the occurrence of neurodegenerative diseases and slow down their course. The aim of this review is to present the role of AChE in the pathomechanism of neurodegenerative diseases. In addition, this review aims to reveal the benefits of using AChE inhibitors to treat these diseases. The selected new AChE inhibitors were also assessed in terms of their potential use in the described disease entities. Designing and searching for new drugs targeting AChE may in the future allow the discovery of therapies that will be effective in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8bStreet, 20-090 Lublin, Poland;
| |
Collapse
|
26
|
5-HT Receptors and the Development of New Antidepressants. Int J Mol Sci 2021; 22:ijms22169015. [PMID: 34445721 PMCID: PMC8396477 DOI: 10.3390/ijms22169015] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023] Open
Abstract
Serotonin modulates several physiological and cognitive pathways throughout the human body that affect emotions, memory, sleep, and thermal regulation. The complex nature of the serotonergic system and interactions with other neurochemical systems indicate that the development of depression may be mediated by various pathomechanisms, the common denominator of which is undoubtedly the disturbed transmission in central 5-HT synapses. Therefore, the deliberate pharmacological modulation of serotonergic transmission in the brain seems to be one of the most appropriate strategies for the search for new antidepressants. As discussed in this review, the serotonergic system offers great potential for the development of new antidepressant therapies based on the combination of SERT inhibition with different pharmacological activity towards the 5-HT system. The aim of this article is to summarize the search for new antidepressants in recent years, focusing primarily on the possibility of benefiting from interactions with various 5-HT receptors in the pharmacotherapy of depression.
Collapse
|
27
|
Pontifex MG, Malik MMAH, Connell E, Müller M, Vauzour D. Citrus Polyphenols in Brain Health and Disease: Current Perspectives. Front Neurosci 2021; 15:640648. [PMID: 33679318 PMCID: PMC7933480 DOI: 10.3389/fnins.2021.640648] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
In addition to essential micronutrients such as vitamin C, citrus fruits represent a considerably rich source of non-essential bioactive compounds, in particular flavanones which form a sub-set of the flavonoid group. Preclinical studies have demonstrated the neuroprotective potential of citrus flavonoids and have highlighted both the well-established (anti-inflammatory and anti-oxidative properties), and newly emerging (influence upon blood-brain barrier function/integrity) mechanistic actions by which these neurological effects are mediated. Encouragingly, results from human studies, although limited in number, appear to support this preclinical basis, with improvements in cognitive performance and disease risk observed across healthy and disease states. Therefore, citrus fruits - both as whole fruit and 100% juices - should be encouraged within the diet for their potential neurological benefit. In addition, there should be further exploration of citrus polyphenols to establish therapeutic efficacy, particularly in the context of well-designed human interventions.
Collapse
Affiliation(s)
- Matthew G Pontifex
- Norwich Medical School, Biomedical Research Centre, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom
| | - Mohammad M A H Malik
- Norwich Medical School, Biomedical Research Centre, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom
| | - Emily Connell
- Norwich Medical School, Biomedical Research Centre, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom
| | - Michael Müller
- Norwich Medical School, Biomedical Research Centre, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom
| | - David Vauzour
- Norwich Medical School, Biomedical Research Centre, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
28
|
Sharma P, Kumari S, Sharma J, Purohit R, Singh D. Hesperidin Interacts With CREB-BDNF Signaling Pathway to Suppress Pentylenetetrazole-Induced Convulsions in Zebrafish. Front Pharmacol 2021; 11:607797. [PMID: 33505312 PMCID: PMC7832091 DOI: 10.3389/fphar.2020.607797] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/25/2020] [Indexed: 01/06/2023] Open
Abstract
Hesperidin (3,5,7-trihydroxyflavanone 7-rhamnoglucoside) is a β-7-rutinoside of hesperetin (4'-methoxy-3',5,7-trihydroxyflavanone), abundantly found in citrus fruits and known to interact with various cellular pathways to show a variety of pharmacological effects. The present study was envisaged to understand the anticonvulsant effect of hesperidin in a zebrafish model of pentylenetetrazole (PTZ)-induced convulsions, with the support of in silico docking. Healthy zebrafish larvae were preincubated with hesperidin (1, 5, and 10 µM) for 1 h, before PTZ exposure. Hesperidin treatment significantly increased the seizure latency and minimized PTZ-induced hyperactive responses. A significant reduction in c-fos expression further supported the suppression of neuronal excitation following hesperidin incubation in the larvae exposed to PTZ. The treatment also modulated larval bdnf expression and reduced the expression of il-10. The results of in vivo studies were further supported by in silico docking analysis, which showed the affinity of hesperidin for the N-methyl-d-aspartate receptor, the gamma-aminobutyric acid receptor, Interleukin 10 and the TrkB receptor of brain-derived neurotrophic factor. The results concluded that hesperidin suppresses PTZ-mediated seizure in zebrafish larvae through interaction with the central CREB-BDNF pathway.
Collapse
Affiliation(s)
- Pallavi Sharma
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Savita Kumari
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Jatin Sharma
- Structural Bioinformatics Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
| | - Rituraj Purohit
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Structural Bioinformatics Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|
29
|
Athanassi A, Dorado Doncel R, Bath KG, Mandairon N. Relationship between depression and olfactory sensory function: a review. Chem Senses 2021; 46:6383453. [PMID: 34618883 PMCID: PMC8542994 DOI: 10.1093/chemse/bjab044] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Links between olfactory sensory function and effect have been well established. A robust literature exists in both humans and animals showing that disrupting olfaction sensory function can elicit disordered mood state, including serve as a model of depression. Despite this, considerably less is known regarding the directionality and neural basis of this relationship, e.g. whether disruptions in sensory function precede and contribute to altered mood or if altered mood state precipitates changes in olfactory perception. Further, the neural basis of altered olfactory function in depression remains unclear. In conjunction with clinical studies, animal models represent a valuable tool to understand the relationship between altered mood and olfactory sensory function. Here, we review the relevant literature assessing olfactory performance in depression in humans and in rodent models of depressive-like behavioral states. Rodents allow for detailed characterization of alterations in olfactory perception, manipulation of experiential events that elicit depressive-like phenotypes, and allow for interrogation of potential predictive markers of disease and the cellular basis of olfactory impairments associated with depressive-like phenotypes. We synthesize these findings to identify paths forward to investigate and understand the complex interplay between depression and olfactory sensory function.
Collapse
Affiliation(s)
- Anna Athanassi
- INSERM, U1028; Centre National de la Recherche Scientific, UMR5292; Lyon Neuroscience Research Centre, Neuroplasticity and Neuropathology of Olfactory Perception Team, University Lyon, University Lyon 1, F-69000, France
| | - Romane Dorado Doncel
- INSERM, U1028; Centre National de la Recherche Scientific, UMR5292; Lyon Neuroscience Research Centre, Neuroplasticity and Neuropathology of Olfactory Perception Team, University Lyon, University Lyon 1, F-69000, France
| | - Kevin G Bath
- Division of Developmental Neuroscience, New York State Psychiatric Institute/Research Foundation for Mental Hygiene, 1051 Riverside Drive, New York, NY, 10032, USA.,Department of Psychiatry, Columbia University Medical College, New York, NY, 10032, USA
| | - Nathalie Mandairon
- INSERM, U1028; Centre National de la Recherche Scientific, UMR5292; Lyon Neuroscience Research Centre, Neuroplasticity and Neuropathology of Olfactory Perception Team, University Lyon, University Lyon 1, F-69000, France
| |
Collapse
|
30
|
Antunes MS, Ladd FVL, Ladd AABL, Moreira AL, Boeira SP, Cattelan Souza L. Hesperidin protects against behavioral alterations and loss of dopaminergic neurons in 6-OHDA-lesioned mice: the role of mitochondrial dysfunction and apoptosis. Metab Brain Dis 2021; 36:153-167. [PMID: 33057922 DOI: 10.1007/s11011-020-00618-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/14/2020] [Indexed: 01/01/2023]
Abstract
Hesperidin is a flavonoid glycoside that is frequently found in citrus fruits. Our group have demonstrated that hesperidin has neuroprotective effect in 6-hydroxydopamine (6-OHDA) model of Parkinson's disease (PD), mainly by antioxidant mechanisms. Although the pathophysiology of PD remains uncertain, a large body of evidence has demonstrated that mitochondrial dysfunction and apoptosis play a critical role in dopaminergic nigrostriatal degeneration. However, the ability of hesperidin in modulating these mechanisms has not yet been investigated. In the present study, we examined the potential of a 28-day hesperidin treatment (50 mg/kg/day, p.o.) in preventing behavioral alterations induced by 6-OHDA injection via regulating mitochondrial dysfunction, apoptosis and dopaminergic neurons in the substantia nigra pars compacta (SNpc) in C57BL/6 mice. Our results demonstrated that hesperidin treatment improved motor, olfactory and spatial memory impairments elicited by 6-OHDA injection. Moreover, hesperidin treatment attenuated the loss of dopaminergic neurons (TH+ cells) in the SNpc and the depletion of dopamine (DA) and its metabolities 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the striatum of 6-OHDA-lesioned mice. Hesperidin also protected against the inhibition of mitochondrial respiratory chain complex-I, -IV and V, the decrease of Na + -K + -ATPase activity and the increase of caspase-3 and -9 activity in the striatum. Taken together, our findings indicate that hesperidin mitigates the degeneration of dopaminergic neurons in the SNpc by preventing mitochondrial dysfunction and modulating apoptotic pathways in the striatum of 6-OHDA-treated mice, thus improving behavioral alterations. These results provide new insights on neuroprotective mechanisms of hesperidin in a relevant preclinical model of PD.
Collapse
Affiliation(s)
- Michelle S Antunes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Fernando Vagner Lobo Ladd
- Department of Morphology/Laboratory of Neuroanatom, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Aliny Antunes Barbosa Lobo Ladd
- Laboratory of Stochastic Stereology and Chemical Anatomy, Department of Surgery, College of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Amanda Lopez Moreira
- Laboratory of Stochastic Stereology and Chemical Anatomy, Department of Surgery, College of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Silvana Peterini Boeira
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Leandro Cattelan Souza
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil.
| |
Collapse
|
31
|
Almeida RF, Nonose Y, Ganzella M, Loureiro SO, Rocha A, Machado DG, Bellaver B, Fontella FU, Leffa DT, Pettenuzzo LF, Venturin GT, Greggio S, da Costa JC, Zimmer ER, Elisabetsky E, Souza DO. Antidepressant-Like Effects of Chronic Guanosine in the Olfactory Bulbectomy Mouse Model. Front Psychiatry 2021; 12:701408. [PMID: 34421682 PMCID: PMC8371253 DOI: 10.3389/fpsyt.2021.701408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/01/2021] [Indexed: 12/27/2022] Open
Abstract
Major depressive disorder (MDD) leads to pervasive changes in the health of afflicted patients. Despite advances in the understanding of MDD and its treatment, profound innovation is needed to develop fast-onset antidepressants with higher effectiveness. When acutely administered, the endogenous nucleoside guanosine (GUO) shows fast-onset antidepressant-like effects in several mouse models, including the olfactory bulbectomy (OBX) rodent model. OBX is advocated to possess translational value and be suitable to assess the time course of depressive-like behavior in rodents. This study aimed at investigating the long-term behavioral and neurochemical effects of GUO in a mouse model of depression induced by bilateral bulbectomy (OBX). Mice were submitted to OBX and, after 14 days of recovery, received daily (ip) administration of 7.5 mg/kg GUO or 40 mg/kg imipramine (IMI) for 45 days. GUO and IMI reversed the OBX-induced hyperlocomotion and recognition memory impairment, hippocampal BDNF increase, and redox imbalance (ROS, NO, and GSH levels). GUO also mitigated the OBX-induced hippocampal neuroinflammation (IL-1, IL-6, TNF-α, INF-γ, and IL-10). Brain microPET imaging ([18F]FDG) shows that GUO also prevented the OBX-induced increase in hippocampal FDG metabolism. These results provide additional evidence for GUO antidepressant-like effects, associated with beneficial neurochemical outcomes relevant to counteract depression.
Collapse
Affiliation(s)
- Roberto Farina Almeida
- Programa de Pós-Graduação em Ciências Biológicas, Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Yasmine Nonose
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcelo Ganzella
- Neurobiology Department, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Samanta Oliveira Loureiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andréia Rocha
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Daniele Guilhermano Machado
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruna Bellaver
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Urruth Fontella
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Douglas T Leffa
- Attention Deficit Hyperactivity Disorder Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Letícia Ferreira Pettenuzzo
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gianina Teribele Venturin
- Preclinical Imaging Center, Brain Institute (Brains) of Rio Grande do Sul, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Samuel Greggio
- Preclinical Imaging Center, Brain Institute (Brains) of Rio Grande do Sul, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jaderson Costa da Costa
- Preclinical Imaging Center, Brain Institute (Brains) of Rio Grande do Sul, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo R Zimmer
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departament of Pharmacology, UFRGS, Porto Alegre, Brazil
| | - Elaine Elisabetsky
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diogo O Souza
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
32
|
Xie L, Gu Z, Liu H, Jia B, Wang Y, Cao M, Song R, Zhang Z, Bian Y. The Anti-Depressive Effects of Hesperidin and the Relative Mechanisms Based on the NLRP3 Inflammatory Signaling Pathway. Front Pharmacol 2020; 11:1251. [PMID: 32922291 PMCID: PMC7456860 DOI: 10.3389/fphar.2020.01251] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/30/2020] [Indexed: 11/24/2022] Open
Abstract
There is increasing evidence showing that inflammation is associated with depression in humans. Hesperidin, a natural bioflavonoid, has performed excellent effects on depression. The aim of this research was to investigate the therapeutic effect of hesperidin on chronic unpredictable mild stress (CUMS)-induced rats. The sucrose preference test (SPT), forced swimming test (FST), and open field test (OFT) were performed to measure the depression-related symptoms. The enzyme-linked immunosorbent assay (ELISA) was used to determine the concentrations of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in the prefrontal cortex (PFC) of rats and cellular supernatant. PCR and Western blot were used to monitor the differences of NLRP3, caspase-1, ASC activation in the levels of genes and proteins in the PFC of rats and microglia. The activation of microglia was determined using immunofluorescence staining and flow cytometry assay. Our results show that hesperidin treatment significantly relieved depressive like behaviors in CUMS rats. In addition, hesperidin decreased the expression levels of IL-1β, IL-6, TNF-α, NLRP3, caspase-1, and ASC in the PFC and microglia. This study investigated that hesperidin treatment ameliorated CUMS-induced depression by suppressing microglia and inflammation.
Collapse
Affiliation(s)
- Lulu Xie
- School of Intergrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhimin Gu
- School of Intergrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haizhao Liu
- School of Intergrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Beitian Jia
- School of Intergrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiyang Wang
- School of Intergrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Min Cao
- School of Intergrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruiwen Song
- School of Management, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhaiyi Zhang
- School of Intergrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhong Bian
- School of Intergrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
33
|
Ribaudo G, Bortoli M, Pavan C, Zagotto G, Orian L. Antioxidant Potential of Psychotropic Drugs: From Clinical Evidence to In Vitro and In Vivo Assessment and toward a New Challenge for in Silico Molecular Design. Antioxidants (Basel) 2020; 9:E714. [PMID: 32781750 PMCID: PMC7465375 DOI: 10.3390/antiox9080714] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Due to high oxygen consumption, the brain is particularly vulnerable to oxidative stress, which is considered an important element in the etiopathogenesis of several mental disorders, including schizophrenia, depression and dependencies. Despite the fact that it is not established yet whether oxidative stress is a cause or a consequence of clinic manifestations, the intake of antioxidant supplements in combination with the psychotropic therapy constitutes a valuable solution in patients' treatment. Anyway, some drugs possess antioxidant capacity themselves and this aspect is discussed in this review, focusing on antipsychotics and antidepressants. In the context of a collection of clinical observations, in vitro and in vivo results are critically reported, often highlighting controversial aspects. Finally, a new challenge is discussed, i.e., the possibility of assessing in silico the antioxidant potential of these drugs, exploiting computational chemistry methodologies and machine learning. Despite the physiological environment being incredibly complex and the detection of meaningful oxidative stress biomarkers being all but an easy task, a rigorous and systematic analysis of the structural and reactivity properties of antioxidant drugs seems to be a promising route to better interpret therapeutic outcomes and provide elements for the rational design of novel drugs.
Collapse
Affiliation(s)
- Giovanni Ribaudo
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy;
| | - Marco Bortoli
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy;
| | - Chiara Pavan
- Dipartimento di Medicina, Università degli Studi di Padova, Via Giustiniani 2, 35128 Padova, Italy;
| | - Giuseppe Zagotto
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy;
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy;
| |
Collapse
|
34
|
Welbat JU, Naewla S, Pannangrong W, Sirichoat A, Aranarochana A, Wigmore P. Neuroprotective effects of hesperidin against methotrexate-induced changes in neurogenesis and oxidative stress in the adult rat. Biochem Pharmacol 2020; 178:114083. [PMID: 32522593 DOI: 10.1016/j.bcp.2020.114083] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023]
Abstract
Methotrexate (MTX) induces the formation of reactive oxygen species (ROS) and leads to neurotoxicity. The drug also negatively impacts neurogenesis and memory. Hesperidin (Hsd) is a major flavanoid with multiple beneficial pharmacological effects such as anti-oxidation, anti-inflammation, and neuroprotective effects. The aim of our study was to investigate the neuroprotective effects of Hsd against MTX-induced alterations in oxidative stress and neurogenesis. Sprague Dawley rats were divided into four groups: 1) a vehicle group, which received saline and propylene glycol, 2) an Hsd group, which was orally administered with Hsd (100 mg/kg) for 21 days, 3) an MTX group, which received MTX (75 mg/kg) by intravenous injection on days 8 and 15, and 4) an MTX + Hsd group, which received both MTX and Hsd. After treatment with MTX, p21-positive cells had increased significantly and doublecortin (DCX) expression in the hippocampus had decreased significantly. Treatment with MTX also increased malondialdehyde (MDA) in both the hippocampus and prefrontal cortex and decreased levels of brain-derived neurotropic factor (BDNF) and nuclear factor erythroid 2-related factor 2 (Nrf2) in the hippocampus and prefrontal cortex. Additionally, there were significant decreases in superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) in the hippocampus and prefrontal cortex in the MTX group. However, co-treatment with Hsd ameliorated the negative effects of MTX on neurogenesis, oxidative stress, and antioxidant enzymes. These findings suggest that Hsd may be able to prevent neurotoxic effects of MTX by reducing oxidative stress and enhancing hippocampal neurogenesis.
Collapse
Affiliation(s)
- Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neuroscience Research and Development Group, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Salinee Naewla
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wanassanan Pannangrong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Apiwat Sirichoat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anusara Aranarochana
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Peter Wigmore
- School of Life Sciences, Medical School, Queen's Medical Centre, Nottingham University, Nottingham, United Kingdom
| |
Collapse
|
35
|
Neuroprotective effect of red quinoa seeds extract on scopolamine-induced declarative memory deficits in mice: The role of acetylcholinesterase and oxidative stress. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
36
|
Antunes MS, Cattelan Souza L, Ladd FVL, Ladd AABL, Moreira AL, Bortolotto VC, Silva MRP, Araújo SM, Prigol M, Nogueira CW, Boeira SP. Hesperidin Ameliorates Anxiety-Depressive-Like Behavior in 6-OHDA Model of Parkinson's Disease by Regulating Striatal Cytokine and Neurotrophic Factors Levels and Dopaminergic Innervation Loss in the Striatum of Mice. Mol Neurobiol 2020; 57:3027-3041. [PMID: 32458386 DOI: 10.1007/s12035-020-01940-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022]
Abstract
The mechanisms underlying the neuroprotective effects of hesperidin in a murine model of PD are not fully elucidated. The current study was carried out to investigate the ability of hesperidin in modulating proinflammatory cytokines, neurotrophic factors, and neuronal recovery in 6-hydroxydopamine (6-OHDA)-induced nigral dopaminergic neuronal loss. Adult male C57BL/6 mice were randomly assigned into four groups: (I) sham/vehicle, (II) sham/hesperidin, (III) 6-OHDA/vehicle, and (IV) 6-OHDA/hesperidin. Mice received a unilateral intrastriatal injection of 6-OHDA and treated with hesperidin (50 mg/kg; per oral) for 28 days. After hesperidin treatment, mice were submitted to behavioral tests and had the striatum removed for neurochemical assays. Our results demonstrated that oral treatment with hesperidin ameliorated the anxiety-related and depressive-like behaviors in 6-OHDA-lesioned mice (p < 0.05). It also attenuated the striatal levels of proinflammatory cytokines tumor necrosis factor-α, interferon-gamma, interleukin-1β, interleukin-2, and interleukin-6 and increased the levels of neurotrophic factors, including neurotrophin-3, brain-derived neurotrophic factor, and nerve growth factor in the striatum of 6-OHDA mice (p < 0.05). Hesperidin treatment was also capable to increase striatal levels of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid and protects against the impairment of dopaminergic neurons in the substantia nigra pars compacta (SNpc) (p < 0.05). In conclusion, this study indicated that hesperidin exerts anxiolytic-like and antidepressant-like effect against 6-OHDA-induced neurotoxicity through the modulation of cytokine production, neurotrophic factors levels, and dopaminergic innervation in the striatum.
Collapse
Affiliation(s)
- Michelle S Antunes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, 97650-000, Brazil
| | - Leandro Cattelan Souza
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, 97650-000, Brazil. .,Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Fernando Vagner Lobo Ladd
- Department of Morphology/Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Aliny Antunes Barbosa Lobo Ladd
- Laboratory of Stochastic Stereology and Chemical Anatomy, Department of Surgery, College of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Amanda Lopez Moreira
- Laboratory of Stochastic Stereology and Chemical Anatomy, Department of Surgery, College of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Vandreza Cardoso Bortolotto
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, 97650-000, Brazil
| | - Márcia Rósula Poetini Silva
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, 97650-000, Brazil
| | - Stífani Machado Araújo
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, 97650-000, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, 97650-000, Brazil
| | - Cristina Wayne Nogueira
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Silvana Peterini Boeira
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, 97650-000, Brazil
| |
Collapse
|
37
|
de Almeida RF, Pocharski CB, Rodrigues ALS, Elisabetsky E, Souza DO. Guanosine fast onset antidepressant-like effects in the olfactory bulbectomy mice model. Sci Rep 2020; 10:8429. [PMID: 32439951 PMCID: PMC7242421 DOI: 10.1038/s41598-020-65300-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/28/2020] [Indexed: 12/14/2022] Open
Abstract
The treatment of major depressive disorder (MDD) is still a challenge. In the search for novel antidepressants, glutamatergic neuromodulators have been investigated as possible fast-acting antidepressants. Innovative studies suggest that the purine cycle and/or the purinergic signaling can be dysregulated in MDD, and the endogenous nucleoside guanosine has gained attention due to its extracellular effects. This study aimed to verify if guanosine produces fast-onset effects in the well-validated, reliable and sensitive olfactory bulbectomy (OBX) model of depression. The involvement of the mTOR pathway, a key target for the fast-onset effect of ketamine, was also investigated. Results show that a single i.p. injection of guanosine, or ketamine, completely reversed the OBX-induced anhedonic-like behavior 24 or 48 h post treatment, as well as the short-term recognition memory impairment 48 h post treatment. The antidepressant-like effects of guanosine and ketamine were completely abolished by rapamycin. This study shows, for the first time, that guanosine, in a way similar to ketamine, is able to elicit a fast antidepressant response in the OBX model in mice. The results support the notion that guanosine represents a new road for therapeutic improvement in MDD.
Collapse
Affiliation(s)
- Roberto Farina de Almeida
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - Camila Barbosa Pocharski
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Ana Lúcia S Rodrigues
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Elaine Elisabetsky
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Diogo O Souza
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
38
|
Wang F, Wu X, Gao J, Li Y, Zhu Y, Fang Y. The relationship of olfactory function and clinical traits in major depressive disorder. Behav Brain Res 2020; 386:112594. [PMID: 32194189 DOI: 10.1016/j.bbr.2020.112594] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/12/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
Abstract
People who have developed a good sense of smell could experience much more happiness and pleasure, which would trigger a discussion that olfactory disorder might correlate with the pathogenesis of major depressive disorder (MDD). Similar experiments conducted on rats have confirmed that nerve damage of olfactory pathway can induce a series of depression-like changes, including behavior, neurobiochemistry, and neuroimmunity. These changes will recover progressively with anti-depression treatment. While in similar studies on human beings, olfactory dysfunction has been found in people suffering from depression. This review briefly discusses the correlation between olfactory deficits and clinical traits of depression in different dimensions, such as the severity, duration and cognitive impairment of depression. Improving olfactory function may be expected to be a potential antidepressant therapy.
Collapse
Affiliation(s)
- Fang Wang
- Shanghai Yangpu Mental Health Center, Shanghai, 200093, China; Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xiaohui Wu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jerry Gao
- Yennora Public School, NSW, 2161, Australia
| | - Yongchao Li
- Shanghai Yangpu Mental Health Center, Shanghai, 200093, China
| | - Yuncheng Zhu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Yiru Fang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; CAS Center for Excellence in Brain Science and Intelligence Technology, 200031, China; Shanghai Key Laboratory of Psychotic disorders, Shanghai, 201108, China.
| |
Collapse
|
39
|
Kim J, Wie MB, Ahn M, Tanaka A, Matsuda H, Shin T. Benefits of hesperidin in central nervous system disorders: a review. Anat Cell Biol 2019; 52:369-377. [PMID: 31949974 PMCID: PMC6952680 DOI: 10.5115/acb.19.119] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 02/08/2023] Open
Abstract
Citrus species contain significant amounts of flavonoids that possess antioxidant activities; furthermore, dietary citrus is not associated with adverse effects or cytotoxicity in healthy individuals. Hesperidin, which is an abundant flavanone glycoside in the peel of citrus fruits, possesses a variety of biological capabilities that include antioxidant and anti-inflammatory actions. Over the last few decades, many studies have been investigated the biological actions of hesperidin and its aglycone, hesperetin, as well as their underlying mechanisms. Due to the antioxidant effects of hesperidin and its derivatives, the cardioprotective and anti-cancer effects of these compounds have been widely reviewed. Although the biological activities of hesperidin in neurodegenerative diseases have been evaluated, its potential involvement in a variety of central nervous system (CNS) disorders, including autoimmune demyelinating disease, requires further investigation in terms of the underlying mechanisms. Thus, the present review will focus on the potential role of hesperidin in diverse models of CNS neuroinflammation, including experimental autoimmune encephalomyelitis, with special consideration given to its antioxidant and anti-inflammatory effects in neurodegenerative disease models. Additionally, current evidence provides information regarding the nutraceutical use of hesperidin to prevent various CNS disorders.
Collapse
Affiliation(s)
- Jeongtae Kim
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Korea
| | - Myung-Bok Wie
- Department of Veterinary Toxicology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Korea
| | - Meejung Ahn
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Korea
| | - Akane Tanaka
- Laboratory of Comparative Animal Medicine, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiroshi Matsuda
- Laboratory of Veterinary Molecular Pathology and Therapeutics, Division of Animal Life Science, Graduate School, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Korea
| |
Collapse
|
40
|
Hesperidin improves motor disability in rat spinal cord injury through anti-inflammatory and antioxidant mechanism via Nrf-2/HO-1 pathway. Neurosci Lett 2019; 715:134619. [PMID: 31715292 DOI: 10.1016/j.neulet.2019.134619] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/06/2019] [Accepted: 11/06/2019] [Indexed: 11/21/2022]
Abstract
Spinal cord injury (SCI) is associated with inflammation with concurrent oxidative stress and glial activation. The aim of this study was to evaluate whether hesperidin, a representative flavonoid in citrus fruits, ameliorates SCI-induced motor dysfunction and neuro-pathologic degeneration in rat model. Rats received hesperidin (100 mg/kg body weight/daily, oral administration) from 7 days prior to SCI to 7 days post SCI. Behavioral test was done on rats with SCI until 6 weeks. For the study of inflammatory molecules in SCI rats with hesperidin treatment, rats were sacrificed at day 4 post SCI, and spinal cords were collected and studied histopathologically. Behavioral tests on hind-limbs of rats with SCI revealed that treatment of hesperidin in rats with SCI significantly ameliorate the hind-limb paralysis beginning at day 21 post SCI. Hesperidin treatment in rats with SCI reduced the neuropathological changes (e.g., hemorrhage, inflammatory cell infiltration, and tissue loss) and pro-inflammatory cytokines including tumor necrotic factor-α and interleukin-1β. In addition, oxidative stress related molecules including superoxide dismutase, catalase, nuclear factor erythroid 2-related factor-2 and heme oxygenase-1 were also increased by hesperidin treatment. Furthermore, Fe2+, bilirubin and p38 mitogen activated protein kinase, these by-product of heme catabolism in serum and spinal cord of rats with hesperidin-treatment groups were significantly increased compared with those of vehicle-treatment group. Collectively, this study implies that hesperidin accelerates recovery of locomotor function and tissue repair of damaged spinal cord, with concurrent upregulation of heme oxygenase-1 as far as rat SCI model is concerned.
Collapse
|
41
|
Bai Y, Song L, Zhang Y, Dai G, Zhang W, Song S, Sun H, Jing W, Xu M, Ju W. Comparative pharmacokinetic study of four major bioactive components after oral administration of Zhi‐Zi‐Hou‐Po decoction in normal and corticosterone‐induced depressive rats. Biomed Chromatogr 2019; 33:e4542. [PMID: 30947404 DOI: 10.1002/bmc.4542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yongtao Bai
- Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing China
- The First Affiliated Hospital of Xinxiang Medical University Weihui China
| | - Lihua Song
- The First Affiliated Hospital of Xinxiang Medical University Weihui China
| | - Yongheng Zhang
- The First Affiliated Hospital of Xinxiang Medical University Weihui China
| | - Guoliang Dai
- Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing China
| | - Weidong Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing China
| | - Shanshan Song
- Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing China
| | - Hong Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing China
| | - Wen Jing
- Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing China
| | - Meijuan Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing China
| | - Wenzheng Ju
- Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing China
| |
Collapse
|
42
|
Thakare VN, Patil RR, Suralkar AA, Dhakane VD, Patel BM. Protocatechuic acid attenuate depressive-like behavior in olfactory bulbectomized rat model: behavioral and neurobiochemical investigations. Metab Brain Dis 2019; 34:775-787. [PMID: 30848471 DOI: 10.1007/s11011-019-00401-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 02/25/2019] [Indexed: 12/13/2022]
Abstract
The main objective of the present study is to investigate potential effects of PCA in OBX induced depressive-like behavior in rat model. PCA was administered at a dose of 100 mg/kg and 200 mg/kg, by per oral in OBX and sham operated rats. Behavioral (ambulatory and rearing activity and immobility time), neurochemical [serotonin (5-HT), dopamine (DA), norepinephrine (NE) and brain derived neurotrophic factor (BDNF) expression], biochemical (MDA formation, IL-6, TNF-α and antioxidants) changes in hippocampus and cerebral cortex along with serum corticosterone were investigated. Experimental findings reveals that OBX subjected rats showed alteration in behaviors like, increase in immobility time, ambulatory and rearing behaviors significantly, reduced BDNF level, 5-HT, DA,NE and antioxidant parameters along with increased serum corticosterone, MDA formation, IL-6, and TNF-α in hippocampus and cerebral cortex compared to sham operated rats. Administration of PCA significantly attenuated behavioral and neurobiochemical alterations, thus, its antidepressant-like activity is largely mediated through modulation of neurotransmitter, endocrine and immunologic systems, mainly by improvements of BDNF, 5-HT, DA, NE, reduced MDA, IL-6, and TNF-α in hippocampus and cerebral cortex.
Collapse
Affiliation(s)
- Vishnu N Thakare
- Department of Pharmacology, Sinhgad Institute of Pharmaceutical Sciences, Lonavala, Maharashtra, 410401, India
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India
| | - Rajesh R Patil
- Department of Pharmacology, Sinhgad Institute of Pharmaceutical Sciences, Lonavala, Maharashtra, 410401, India
| | - Anupama A Suralkar
- Department of Pharmacology, Smt. Kashibai Navale College of Pharmacy, Kondhawa, Pune, Maharashtra, 411048, India
| | - Valmik D Dhakane
- Research and Development, Astec Life Sciences, Mumbai, Maharashtra, India
| | - Bhoomika M Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
43
|
The citrus flavonoids hesperidin and naringin alleviate alcohol-induced behavioural alterations and developmental defects in zebrafish larvae. Neurotoxicol Teratol 2019; 73:22-30. [DOI: 10.1016/j.ntt.2019.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 02/05/2023]
|
44
|
Naewla S, Sirichoat A, Pannangrong W, Chaisawang P, Wigmore P, Welbat JU. Hesperidin Alleviates Methotrexate-Induced Memory Deficits via Hippocampal Neurogenesis in Adult Rats. Nutrients 2019; 11:nu11040936. [PMID: 31027240 PMCID: PMC6521088 DOI: 10.3390/nu11040936] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 01/25/2023] Open
Abstract
Methotrexate (MTX), a folic acid antagonist, is widely used in cancer treatment. However, treatment with MTX reduces hippocampal neurogenesis, leading to memory deficits. Hesperidin (Hsd) is a flavonoid glycoside that promotes anti-inflammation, acts as an antioxidant, and has neuroprotective properties. Consumption of Hsd enhances learning and memory. In the present study, we investigated the protective effects of Hsd against MTX-induced impairments of memory and neurogenesis; male Sprague Dawley rats were administered with a single dose of MTX (75 mg/kg) by intravenous (i.v.) injection on days 8 and 15 or Hsd (100 mg/kg) by oral gavage for 21 days. Memory was tested using novel object location (NOL) and novel object recognition (NOR) tasks. Immunofluorescence staining of Ki-67, bromodeoxyuridine (BrdU), and doublecortin (DCX) was performed to assess cell proliferation, survival, and immature neurons. The data showed that Hsd and MTX did not disable locomotor ability. The MTX animals exhibited memory deficits in both memory tests. There were significant decreases in the numbers of cell proliferation, survival, and immature neurons in the MTX animals. However, co-administration with MTX and Hsd alleviated memory loss and neurogenesis decline. These results revealed that Hsd could protect against MTX side effects in the animals in this study.
Collapse
Affiliation(s)
- Salinee Naewla
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Apiwat Sirichoat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Wanassanan Pannangrong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Pornthip Chaisawang
- Faculty of Medical Science, Nakhonratchasima College, Nakhon Ratchasima 30000, Thailand.
| | - Peter Wigmore
- School of Life Sciences, Medical School, Queen's Medical Centre, Nottingham University, Nottingham NG7 2RD, UK.
| | - Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
- Neuroscience Research and Development Group, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
45
|
The antidepressant effects of hesperidin on chronic unpredictable mild stress-induced mice. Eur J Pharmacol 2019; 853:236-246. [PMID: 30928632 DOI: 10.1016/j.ejphar.2019.03.035] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 03/14/2019] [Accepted: 03/22/2019] [Indexed: 12/22/2022]
Abstract
Hesperidin, a kind of citrus bioflavonoid distributed in foods including grapefruits, oranges and lemons, has many pharmacological activities. This study was aimed to evaluate the anti-depressant-like effect of hesperidin on chronic unpredictable mild stress (CUMS)-induced mice. Depressive-like behavior was detected by the sucrose preference test (SPT), tail suspension test (TST) and forced swimming test (FST). A 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay was performed to assess the cell viability of corticosterone-induced PC12 cells. The serum, hippocampal and cell supernatant concentrations of interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α were determined using enzyme-linked immunosorbent assay (ELISA) commercial kits. Furthermore, the protein expression levels of high-mobility group box 1 protein (HMGB1), receptor for advanced glycation end-products (RAGE)/NF-κB and brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) pathway in the hippocampus and corticosterone-induced PC12 cells were detected by Western blot. Our results showed that hesperidin (100, 200 mg/kg) significantly relieved depressive-like behaviors, including decreased sucrose consumption in sucrose preference test (SPT), immobility in the forced swimming test (FST), tail suspension test, and locomotor activity in the open field test (OFT). Hesperidin reduced inflammatory cytokine levels by attenuating the HMGB1/RAGE/NF-κB signaling pathway and BDNF/TrkB pathway both in vivo and in vitro. In conclusion, hesperidin possessed efficient neuroprotective effects on depression, which was associated with neuroinflammation mediated by the HMGB1/RAGE/NF-κB and BDNF/TrkB pathways.
Collapse
|
46
|
Estruel-Amades S, Massot-Cladera M, Pérez-Cano FJ, Franch À, Castell M, Camps-Bossacoma M. Hesperidin Effects on Gut Microbiota and Gut-Associated Lymphoid Tissue in Healthy Rats. Nutrients 2019; 11:nu11020324. [PMID: 30717392 PMCID: PMC6412496 DOI: 10.3390/nu11020324] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/11/2022] Open
Abstract
Hesperidin, found in citrus fruits, has shown a wide range of biological properties. Nonetheless, a more in-depth investigation is required on the effects on the immune system, and in particular, on the gut-associated lymphoid tissue, together with its relationship with the gut microbiota. Therefore, we aimed to establish the influence of oral hesperidin administration on the intestinal lymphoid tissue and on the gut microbiota composition in healthy animals. Lewis rats were orally administrated 100 or 200 mg/kg hesperidin three times per week for four weeks. Microbiota composition and IgA-coated bacteria were determined in caecal content. Mesenteric lymph node lymphocyte (MLNL) composition and functionality were assessed. IgA, cytokines, and gene expression in the small intestine were quantified. Hesperidin administration resulted in a higher number of bacteria and IgA-coated bacteria, with changes in microbiota composition such as higher Lactobacillus proportion. Hesperidin was also able to increase the small intestine IgA content. These changes in the small intestine were accompanied by a decrease in interferon-γ and monocyte chemotactic protein-1 concentration. In addition, hesperidin increased the relative proportion of TCRαβ+ lymphocytes in MLNL. These results show the immunomodulatory actions of hesperidin on the gut-associated lymphoid tissue and reinforce its role as a prebiotic.
Collapse
Affiliation(s)
- Sheila Estruel-Amades
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB); Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08007 Barcelona, Spain.
| | - Malén Massot-Cladera
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB); Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08007 Barcelona, Spain.
| | - Francisco J Pérez-Cano
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB); Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08007 Barcelona, Spain.
| | - Àngels Franch
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB); Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08007 Barcelona, Spain.
| | - Margarida Castell
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB); Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08007 Barcelona, Spain.
| | - Mariona Camps-Bossacoma
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB); Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08007 Barcelona, Spain.
| |
Collapse
|
47
|
Hesperidin attenuates depression-related symptoms in mice with mild traumatic brain injury. Life Sci 2018; 213:198-205. [DOI: 10.1016/j.lfs.2018.10.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/12/2018] [Accepted: 10/19/2018] [Indexed: 11/20/2022]
|
48
|
Mahomoodally MF, Atalay A, Nancy Picot MC, Bender O, Celebi E, Mollica A, Zengin G. Chemical, biological and molecular modelling analyses to probe into the pharmacological potential of Antidesma madagascariense Lam.: A multifunctional agent for developing novel therapeutic formulations. J Pharm Biomed Anal 2018; 161:425-435. [PMID: 30216791 DOI: 10.1016/j.jpba.2018.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/28/2018] [Accepted: 09/01/2018] [Indexed: 12/01/2022]
Abstract
Antidesma madagascariense Lam. (AM), an indigenous medicinal plant to the Mascarene Islands, is used for the treatment of several diseases. We endeavoured to validate its use via evaluating the kinetics of inhibition of crude aqueous extract (CAE) and crude methanol extract (CME) of AM against key metabolic enzymes (pancreatic lipase, cholesterol esterase [CEase], acetylcholinesterase [AChE], and urease). In vitro antiglycation, antioxidant, cytotoxicity using iCELLigence real time cell analysis system and WST-1 methods, were used. LC-ESI-MS/MS was employed to determine the phenolic composition of the extracts and interaction of selected compounds to the studied enzymes was determined using in silico docking. AChE was inhibited by the CME of AM and CEase by the CAE. Both extracts were active inhibitors of urease and pancreatic lipase. Hyperoside (271.97 μg/g extract), present in large amount in the CME, docked to the enzymatic pocket of urease and CEase. The extracts showed competitive and mixed inhibition of urease and pancreatic lipase, respectively. The antioxidant capacity of the CME (6.61 μg GAE/mg crude extract) was higher compared to CAE (2.20 μg GAE/mg crude extract). AM extracts were significantly (p < 0.05) less potent than aminoguanidine in preventing advanced glycation end products formation. Toxicological screening revealed that both extracts were non-toxic on HEK-293 cells. AM crude extracts at concentrations ranging from 78 to 312 μg/ml did not cause a visible change in cell morphology compared to control. This study supports the safe use of AM as a biomedicine for the management and/or treatment of common non-communicable diseases.
Collapse
Affiliation(s)
| | - Arzu Atalay
- Biotechnology Institute, Ankara University, 06100, Ankara, Turkey
| | - Marie Carene Nancy Picot
- Department of Health Sciences, Faculty of Science, University of Mauritius, 230 Réduit, Mauritius
| | - Onur Bender
- Biotechnology Institute, Ankara University, 06100, Ankara, Turkey
| | - Evrim Celebi
- Biotechnology Institute, Ankara University, 06100, Ankara, Turkey
| | - Adriano Mollica
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, 42250, Konya, Turkey.
| |
Collapse
|
49
|
Żmudzka E, Sałaciak K, Sapa J, Pytka K. Serotonin receptors in depression and anxiety: Insights from animal studies. Life Sci 2018; 210:106-124. [PMID: 30144453 DOI: 10.1016/j.lfs.2018.08.050] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/13/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
Abstract
Serotonin regulates many physiological processes including sleep, appetite, and mood. Thus, serotonergic system is an important target in the treatment of psychiatric disorders, such as major depression and anxiety. This natural neurotransmitter interacts with 7 families of its receptors (5-HT1-7), which cause a variety of pharmacological effects. Using genetically modified animals and selective or preferential agonists and antagonist, numerous studies demonstrated the involvement of almost all serotonin receptor subtypes in antidepressant- or anxiolytic-like effects. In this review, based on animal studies, we discuss the possible involvement of serotonin receptor subtypes in depression and anxiety.
Collapse
Affiliation(s)
- Elżbieta Żmudzka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Jacek Sapa
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
50
|
Bortolotto VC, Pinheiro FC, Araujo SM, Poetini MR, Bertolazi BS, de Paula MT, Meichtry LB, de Almeida FP, de Freitas Couto S, Jesse CR, Prigol M. Chrysin reverses the depressive-like behavior induced by hypothyroidism in female mice by regulating hippocampal serotonin and dopamine. Eur J Pharmacol 2018; 822:78-84. [DOI: 10.1016/j.ejphar.2018.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 12/29/2022]
|