1
|
Gündem E, Stehling S, Borchert A, Kuhn H. The reaction specificity of mammalian ALOX15B orthologs does not depend on the evolutionary ranking of the animals. J Lipid Res 2025; 66:100768. [PMID: 40044044 PMCID: PMC11999201 DOI: 10.1016/j.jlr.2025.100768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Arachidonic acid lipoxygenases (ALOXs) play important roles in cell differentiation and in the pathogenesis of cardiovascular, hyperproliferative, neurodegenerative, and metabolic diseases. The human genome involves six intact ALOX genes and knockout studies of the corresponding mouse orthologs indicated that the coding multiplicity of ALOX isoforms is not an indication for functional redundancy. Despite their evolutionary relatedness human and mouse ALOX15 and ALOX15B orthologs exhibit different catalytic properties. Human ALOX15 oxygenates arachidonic acid mainly to 15S-hydroperoxy-5Z,8Z,11Z,13E-eicosatetraenoic acid but 12S-hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid is the dominant oxygenation product of mouse Alox15. This functional difference is the results of a targeted enzyme evolution but the driving forces for this process have not been well defined. For human and mouse ALOX15B orthologs similar functional differences have been reported but for the time being it was unclear whether these differences might also be a consequence of targeted enzyme evolution. To address this question, we systematically searched the public databases for ALOX15B genes, expressed selected enzymes, and characterized their functional properties. We found that functional ALOX15B genes frequently occur in Prototheria and Eutheria but orthologous genes are rare in Metatheria. The vast majority of mammalian ALOX15B orthologs constitute arachidonic acid 15-lipoxygenating enzymes and this property did not depend on the evolutionary ranking of the animals. Only several Muridae species including M. musculus, M. pahari, M. caroli, M. coucha, and A. niloticus express arachidonic acid 8-lipoxygenating ALOX15B orthologs. Consequently, the difference in the reaction specificity of mouse and human ALOX15B orthologs may not be considered a functional consequence of targeted enzyme evolution.
Collapse
Affiliation(s)
- Eda Gündem
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Biochemistry, Berlin, Germany
| | - Sabine Stehling
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Biochemistry, Berlin, Germany
| | - Astrid Borchert
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Biochemistry, Berlin, Germany
| | - Hartmut Kuhn
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Biochemistry, Berlin, Germany.
| |
Collapse
|
2
|
Kurogi K, Sakakibara Y, Hashiguchi T, Kakuta Y, Kanekiyo M, Teramoto T, Fukushima T, Bamba T, Matsumoto J, Fukusaki E, Kataoka H, Suiko M. A new type of sulfation reaction: C-sulfonation for α,β-unsaturated carbonyl groups by a novel sulfotransferase SULT7A1. PNAS NEXUS 2024; 3:pgae097. [PMID: 38487162 PMCID: PMC10939482 DOI: 10.1093/pnasnexus/pgae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/20/2024] [Indexed: 03/17/2024]
Abstract
Cytosolic sulfotransferases (SULTs) are cytosolic enzymes that catalyze the transfer of sulfonate group to key endogenous compounds, altering the physiological functions of their substrates. SULT enzymes catalyze the O-sulfonation of hydroxy groups or N-sulfonation of amino groups of substrate compounds. In this study, we report the discovery of C-sulfonation of α,β-unsaturated carbonyl groups mediated by a new SULT enzyme, SULT7A1, and human SULT1C4. Enzymatic assays revealed that SULT7A1 is capable of transferring the sulfonate group from 3'-phosphoadenosine 5'-phosphosulfate to the α-carbon of α,β-unsaturated carbonyl-containing compounds, including cyclopentenone prostaglandins as representative endogenous substrates. Structural analyses of SULT7A1 suggest that the C-sulfonation reaction is catalyzed by a novel mechanism mediated by His and Cys residues in the active site. Ligand-activity assays demonstrated that sulfonated 15-deoxy prostaglandin J2 exhibits antagonist activity against the prostaglandin receptor EP2 and the prostacyclin receptor IP. Modification of α,β-unsaturated carbonyl groups via the new prostaglandin-sulfonating enzyme, SULT7A1, may regulate the physiological function of prostaglandins in the gut. Discovery of C-sulfonation of α,β-unsaturated carbonyl groups will broaden the spectrum of potential substrates and physiological functions of SULTs.
Collapse
Affiliation(s)
- Katsuhisa Kurogi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yoichi Sakakibara
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Takuyu Hashiguchi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yoshimitsu Kakuta
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Miho Kanekiyo
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Takamasa Teramoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Tsuyoshi Fukushima
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Jin Matsumoto
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Hiroaki Kataoka
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Masahito Suiko
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| |
Collapse
|
3
|
Xiong S, Liu Q, Zhou S, Xiao Y. Identification of key genes and regulatory networks involved in the Comorbidity of atrial fibrillation and chronic obstructive pulmonary disease. Heliyon 2023; 9:e22430. [PMID: 39811093 PMCID: PMC11731475 DOI: 10.1016/j.heliyon.2023.e22430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 01/16/2025] Open
Abstract
Background The underlying molecular processes of atrial fibrillation (AF) and chronic obstructive pulmonary disease (COPD) are frequently linked to increased morbidity and mortality when they co-occur. However, their underlying molecular mechanisms are questioned due to their incomplete analysis. Objective This study aimed to identify common differentially expressed genes (DEGs) in AF and COPD patients and investigate their potential biological functions and pathways. We hope to complement and update previous research through clearer figure presentation and different bioinformatic analysis methods with different datasets. Methods We used statistical analysis to identify DEGs in the expression profiles of AF and COPD patients using datasets from the Gene Expression Omnibus database. To ascertain whether the common DEGs were functionally enriched, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were used. In addition, we generated protein‒protein interaction networks and identified significant hub genes. Furthermore, the hub genes were used to analyze transcription factor (TF)-gene interactions and TF-miRNA coregulatory networks, and their expression levels were validated in additional datasets. Results We identified a total of 15 DEGs that were upregulated, whereas 36 were downregulated in AF and COPD patients. The DEGs were commonly expressed in both AF and COPD patients, with functional enrichment analysis revealing their involvement in metabolic processes and neuron-to-neuron synapses. We identified significant hub genes, including TGM2, ITPR1, CHL1, ALDOC, RPS3, FBLN2, NDUFS2, ITGA5, CTNNB1, RBP1, CLSTN2, FABP5, EPHA4, LDHA, and HNRNPL, and analyzed their coexpression and biological functions. TF-gene interaction and TF-miRNA coregulatory network analyses revealed the regulatory relationships of the hub genes. Additional datasets were analyzed to validate hub gene expression, and ALDOC, HNRNPL, and NDUFS2 displayed similar processes in AF and COPD patients. Conclusions In our study, we demonstrate that metabolic processes and neuron-to-neuron synaptic connections may contribute to the cooccurrence of AF and COPD. The identified hub genes and regulatory networks may act as potential biomarkers and therapeutic targets for these diseases.
Collapse
Affiliation(s)
- Shan Xiong
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Qiming Liu
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yichao Xiao
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Tsuji T, Tseng YH. Adipose tissue-derived lipokines in metabolism. Curr Opin Genet Dev 2023; 81:102089. [PMID: 37473635 PMCID: PMC10528474 DOI: 10.1016/j.gde.2023.102089] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023]
Abstract
Adipose tissue is a crucial regulator of metabolism with functions that include energy storage and dissipation as well as the secretion of bioactive molecules. As the largest endocrine organ in the body, the adipose tissue produces diverse bioactive molecules, including peptides, metabolites, and extracellular vesicles, which communicate with and modulate the function of other organs. In recent years, lipid metabolites, also known as lipokines, have emerged as key signaling molecules that actively participate in multiple metabolic processes. This review highlights the latest advances in adipose tissue-derived lipokines and their underlying cellular and molecular functions. Furthermore, we offer our perspective on the future directions for adipose-derived bioactive lipids and potential therapeutic implications for obesity and its associated complications.
Collapse
Affiliation(s)
- Tadataka Tsuji
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
5
|
Sato R. Mechanisms and roles of the first stage of nodule formation in lepidopteran insects. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:3. [PMID: 37405874 DOI: 10.1093/jisesa/iead049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/27/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023]
Abstract
Nodule formation is a process of cellular immunity in insects and other arthropods with open circulatory systems. Based on histological observations, nodule formation occurs in 2 stages. The first stage occurs immediately after microbial inoculation and includes aggregate formation by granulocytes. The second stage occurs approximately 2-6 h later and involves the attachment of plasmatocytes to melanized aggregates produced during the first stage. The first stage response is thought to play a major role in the rapid capture of invading microorganisms. However, little is known regarding how granulocytes in the hemolymph form aggregates, or how the first stage of the immunological response protects against invading microorganisms. Since the late 1990s, our understanding of the molecules and immune pathways that contribute to nodule formation has improved. The first stage of nodule formation involves a hemocyte-induced response that is triggered by pathogen-associated molecular pattern (PAMP) recognition proteins in the hemolymph regulated by a serine proteinase cascade and cytokine (Spätzle) and Toll signaling pathways. Hemocyte agglutination proceeds through stepwise release of biogenic amine, 5-HT, and eicosanoids that act downstream of the Toll pathway. The first stage of nodule formation is closely linked to melanization and antimicrobial peptide (AMP) production, which is critical for insect humoral immunity. Nodule formation in response to artificial inoculation with millions of microorganisms has long been studied. It has recently been suggested that this system is the original natural immune system, and enables insects to respond to a single invading microorganism in the hemocoel.
Collapse
Affiliation(s)
- Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
6
|
Wang X, Cooper S, Broxmeyer HE, Kapur R. Transient regulation of RNA methylation in human hematopoietic stem cells promotes their homing and engraftment. Leukemia 2023; 37:453-464. [PMID: 36460765 PMCID: PMC9898034 DOI: 10.1038/s41375-022-01761-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022]
Abstract
Enhancing the efficiency of hematopoietic stem cell (HSC) homing and engraftment is critical for cord blood (CB) hematopoietic cell transplantation (HCT). Recent studies indicate that N6-methyladenosine (m6A) modulates the expression of mRNAs that are critical for stem cell function by influencing their stability. Here, we demonstrate that inhibition of RNA decay by regulation of RNA methylation, enhances the expression of the homing receptor chemokine C-X-C receptor-4 (CXCR4) in HSCs. We show that YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), a m6A reader and FTO α-ketoglutarate dependent dioxygenase (FTO), a m6A eraser play an opposite role in this process. Through screening, we identified several FDA-approved compounds that regulate the expression of YTHDF2 and FTO in CB CD34+ cells. We show that transient downregulation of YTHDF2 or activation of FTO by using these compounds inhibits CXCR4 decay in CB HSCs and promotes their homing and engraftment. Our results demonstrate a novel regulation strategy to enhance the function of CB HSCs and provide a translational approach to enhance the clinical efficacy of HCT.
Collapse
Affiliation(s)
- Xuepeng Wang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Scott Cooper
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Reuben Kapur
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
7
|
Storniolo CE, Pequera M, Vilariño A, Moreno JJ. Specialized pro-resolvin mediators induce cell growth and improve wound repair in intestinal epithelial Caco-2 cell cultures. Prostaglandins Leukot Essent Fatty Acids 2022; 187:102520. [PMID: 36427427 DOI: 10.1016/j.plefa.2022.102520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Specialized pro-resolvin mediators (SPMs) are a superfamily of bioactive molecules synthesized from polyunsaturated fatty acids (arachidonic, eicosapentaenoic and docosahexaenoic acids) that include resolvins, protectins and maresins. These metabolites are important to control the resolution phase of inflammation and the epithelial repair, which is essential in restoring the mucosal barriers. Unfortunately, the effects of SPMs on intestinal epithelial cell growth remain poorly understood. Caco-2 cell were used as intestinal epithelial cell model. Cell growth/DNA synthesis, cell signalling pathways, western blot and wound repair assay were performed. Our data demonstrated that SPMs such as lipoxin LxA4, resolvin (Rv) E1, RvD1, protectin D 1 and maresin 1 were able to enhance intestinal epithelial Caco-2 cell growth and DNA synthesis. Furthermore, our results provide evidence that these effects of RvE1 and RvD1 were associated with a pertussis toxin-sensitive G protein-coupled receptor, and that leukotriene B4 receptor 2 could be involved, at least in part, in these effects of RvE1/RvD1. Moreover, these mitogenic effects induced by SPMs were dependent on the ERK 1/2 and p38 MAPK pathways as well as phospholipase C and protein kinase C activation. Thus, these mitogenic effects of RvE1/RvD1 on intestinal epithelial cells could be involved in this signalling circuit involved in wounded epithelium and the catabasis process.
Collapse
Affiliation(s)
- C E Storniolo
- Department of Nutrition, Food Sciences and Gastronomy, Institute of Nutrition and Food Safety, University of Barcelona, Campus Torribera, Barcelona, Spain
| | - M Pequera
- Department of Nutrition, Food Sciences and Gastronomy, Institute of Nutrition and Food Safety, University of Barcelona, Campus Torribera, Barcelona, Spain
| | - A Vilariño
- Department of Nutrition, Food Sciences and Gastronomy, Institute of Nutrition and Food Safety, University of Barcelona, Campus Torribera, Barcelona, Spain
| | - J J Moreno
- Department of Nutrition, Food Sciences and Gastronomy, Institute of Nutrition and Food Safety, University of Barcelona, Campus Torribera, Barcelona, Spain; CIBEROBN Fisiopatologia de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
8
|
Petricca S, Celenza G, Costagliola C, Tranfa F, Iorio R. Cytotoxicity, Mitochondrial Functionality, and Redox Status of Human Conjunctival Cells after Short and Chronic Exposure to Preservative-Free Bimatoprost 0.03% and 0.01%: An In Vitro Comparative Study. Int J Mol Sci 2022; 23:ijms232214113. [PMID: 36430590 PMCID: PMC9695990 DOI: 10.3390/ijms232214113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Prostaglandin analogues (PGAs), including bimatoprost (BIM), are generally the first-line therapy for glaucoma due to their greater efficacy, safety, and convenience of use. Commercial solutions of preservative-free BIM (BIM 0.03% and 0.01%) are already available, although their topical application may result in ocular discomfort. This study aimed to evaluate the in vitro effects of preservative-free BIM 0.03% vs. 0.01% in the human conjunctival epithelial (HCE) cell line. Our results showed that long-term exposure to BIM 0.03% ensues a significant decrease in cell proliferation and viability. Furthermore, these events were associated with cell cycle arrest, apoptosis, and alterations of ΔΨm. BIM 0.01% does not exhibit cytotoxicity, and no negative influence on conjunctival cell growth and viability or mitochondrial activity has been observed. Short-time exposure also demonstrates the ability of BIM 0.03% to trigger reactive oxygen species (ROS) production and mitochondrial hyperpolarisation. An in silico drug network interaction was also performed to explore known and predicted interactions of BIM with proteins potentially involved in mitochondrial membrane potential dissipation. Our findings overall strongly reveal better cellular tolerability of BIM 0.01% vs. BIM 0.03% in HCE cells.
Collapse
Affiliation(s)
- Sabrina Petricca
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Giuseppe Celenza
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Correspondence:
| | - Ciro Costagliola
- Department of Neurosciences, Reproductive and Dentistry Sciences, University of Federico II, 80131 Naples, Italy
| | - Fausto Tranfa
- Department of Neurosciences, Reproductive and Dentistry Sciences, University of Federico II, 80131 Naples, Italy
| | - Roberto Iorio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
9
|
Suzuki T, Tang S, Otuka H, Ito K, Sato R. Nodule formation in Bombyx mori larvae is regulated by BmToll10-3. JOURNAL OF INSECT PHYSIOLOGY 2022; 142:104441. [PMID: 36116535 DOI: 10.1016/j.jinsphys.2022.104441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Nodule formation is a two-step cell-mediated immune response that is elicited by the cytokine spätzle1. Spätzle1 is activated within 30 s of invasion by microorganisms via an extracellular signaling pathway that consists of pathogen-associated molecular pattern recognition receptors, C-type lectins, and serine proteases. Here, we investigated a hemocyte molecule that is involved in eliciting the first step of nodule formation. BmToll10-3 was one of 14 Toll homologs identified in the silkworm Bombyx mori; it is an ortholog of Spodoptera exigua Toll. Previous research suggested that SeToll elicits nodule formation, but no evidence was presented to indicate whether SeToll elicited the first or second step of nodule formation. Reverse transcription-polymerase chain reaction and immunostaining confirmed that BmToll10-3 is expressed in granulocytes. To determine whether BmToll10-3 is involved in eliciting the first step of nodule formation, we tested an antiserum raised against BmToll10-3 in a nodule formation assay. The antiserum strongly inhibited the first step of nodule formation in B. mori larvae. Next, we tried to knock out BmToll10-3 using genome editing. Strains that were heterozygous for a truncated BmToll10-3 allele were generated, but no strain that was homozygous for truncated BmToll10-3 was generated. Nonetheless, several healthy homozygous larvae were identified before pupation, and we used these larvae in a nodule formation assay. The larvae that were homozygous for truncated BmToll10-3 did not form nodules. These results suggest that BmToll10-3 is involved in a cellular immunity, nodule formation.
Collapse
Affiliation(s)
- Takuro Suzuki
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Shuyi Tang
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Hinata Otuka
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Katsuhiko Ito
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu, Tokyo 183-8509, Japan
| | - Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
10
|
Oak AA, Chu T, Yottasan P, Chhetri PD, Zhu J, Du Bois J, Cil O. Lubiprostone is non-selective activator of cAMP-gated ion channels and Clc-2 has a minor role in its prosecretory effect in intestinal epithelial cells. Mol Pharmacol 2022; 102:MOLPHARM-AR-2022-000542. [PMID: 35680165 PMCID: PMC9341254 DOI: 10.1124/molpharm.122.000542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022] Open
Abstract
Loss of prosecretory Cl- channel CFTR activity is considered as the key cause of gastrointestinal disorders in cystic fibrosis including constipation and meconium ileus. Clc-2 is proposed as an alternative Cl- channel in intestinal epithelia that can compensate for CFTR loss-of-function. Lubiprostone is an FDA-approved drug with Clc-2 activation as its presumed mechanism of action. However, relative contribution of Clc-2 in intestinal Cl- secretion and the mechanism of action of lubiprostone remain controversial due to lack of selective Clc-2 inhibitors. Using recently identified selective Clc-2 inhibitor AK-42, we characterized the roles of Clc-2 in Cl- secretion in human intestinal epithelial T84 cells. Clc-2 inhibitor AK-42 had minimal (15%) inhibitory effect on secretory short-circuit current (Isc) induced by cAMP agonists, where subsequently applied CFTR inhibitor (CFTRinh-172) caused 2-3 fold greater inhibition. Similarly, AK-42 inhibited lubiprostone-induced secretory Isc by 20%, whereas CFTRinh-172 caused 2-3 fold greater inhibition. In addition to increasing CFTR and Clc-2-mediated apical Cl- conductance, lubiprostone increased basolateral membrane K+ conductance, which was completely reversed by cAMP-activated K+ channel inhibitor BaCl2 All components of lubiprostone-induced secretion (Clc-2, CFTR and K+ channels) were inhibited by ~65% with the extracellular Ca2+-sensing receptor (CaSR) activator cinacalcet that stimulates cAMP hydrolysis. Lastly, EP4 prostaglandin receptor inhibitor GW627368 pretreatment inhibited lubiprostone-induced secretion by 40% without any effect on forskolin response. Our findings suggest that Clc-2 has minor role in cAMP-induced intestinal Cl- secretion; and lubiprostone is not a selective Clc-2 activator, but general activator of cAMP-gated ion channels in human intestinal epithelial cells. Significance Statement Cl- channel Clc-2 activation is the proposed mechanism of action of the FDA-approved constipation drug lubiprostone. Using first-in-class selective Clc-2 inhibitor AK-42, we showed that Clc-2 has minor contribution in intestinal Cl- secretion induced by lubiprostone and cAMP agonists. We also found that lubiprostone is a general activator of cAMP-gated ion channels in human intestinal epithelial cells (via EP4 receptors). Our findings clarify the roles of Clc-2 in intestinal Cl- secretion and elucidate the mechanism of action of approved-drug lubiprostone.
Collapse
Affiliation(s)
| | | | | | | | - Jie Zhu
- Stanford University, United States
| | | | | |
Collapse
|
11
|
Taniguchi T, Ida N, Kitahara T, Agbo DO, Monde K. Stereostructural analysis of flexible oxidized fatty acids by VCD spectroscopy. Chem Commun (Camb) 2022; 58:6116-6119. [PMID: 35506441 DOI: 10.1039/d2cc01337a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidation of polyunsaturated fatty acids produces various oxidized lipids whose absolute configuration (AC) and conformations are difficult to analyze due to their flexibility. Through studies on hydroxy fatty acids, lipid hydroperoxides, and lipid epoxides, this work demonstrates the effectiveness of VCD spectroscopy to elucidate their AC and conformational preferences.
Collapse
Affiliation(s)
- Tohru Taniguchi
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan.
| | - Naka Ida
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan
| | - Takuya Kitahara
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan
| | - Davidson Obinna Agbo
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan
| | - Kenji Monde
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan.
| |
Collapse
|
12
|
Kwon H, Hall DR, Smith RC. Prostaglandin E2 Signaling Mediates Oenocytoid Immune Cell Function and Lysis, Limiting Bacteria and Plasmodium Oocyst Survival in Anopheles gambiae. Front Immunol 2021; 12:680020. [PMID: 34484178 PMCID: PMC8415482 DOI: 10.3389/fimmu.2021.680020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022] Open
Abstract
Lipid-derived signaling molecules known as eicosanoids have integral roles in mediating immune and inflammatory processes across metazoans. This includes the function of prostaglandins and their cognate G protein-coupled receptors (GPCRs) to employ their immunological actions. In insects, prostaglandins have been implicated in the regulation of both cellular and humoral immune responses, yet in arthropods of medical importance, studies have been limited. Here, we describe a prostaglandin E2 receptor (AgPGE2R) in the mosquito Anopheles gambiae and demonstrate that its expression is most abundant in oenocytoid immune cell populations. Through the administration of prostaglandin E2 (PGE2) and AgPGE2R-silencing, we demonstrate that prostaglandin E2 signaling regulates a subset of prophenoloxidases (PPOs) and antimicrobial peptides (AMPs) that are strongly expressed in populations of oenocytoids. We demonstrate that PGE2 signaling via the AgPGE2R significantly limits both bacterial replication and Plasmodium oocyst survival. Additional experiments establish that PGE2 treatment increases phenoloxidase (PO) activity through the increased expression of PPO1 and PPO3, genes essential to anti-Plasmodium immune responses that promote oocyst killing. We also provide evidence that the mechanisms of PGE2 signaling are concentration-dependent, where high concentrations of PGE2 promote oenocytoid lysis, negating the protective effects of lower concentrations of PGE2 on anti-Plasmodium immunity. Taken together, our results provide new insights into the role of PGE2 signaling on immune cell function and its contributions to mosquito innate immunity that promote pathogen killing.
Collapse
Affiliation(s)
- Hyeogsun Kwon
- Department of Entomology, Iowa State University, Ames, IA, United States
| | - David R Hall
- Department of Entomology, Iowa State University, Ames, IA, United States
| | - Ryan C Smith
- Department of Entomology, Iowa State University, Ames, IA, United States
| |
Collapse
|
13
|
Tamvapee P, Watanapokasin R. Apoptosis Induction through MAPK Signaling Pathway in LoVo Cells by Fatty Acid Fraction from Rice Bran Oil. Nutr Cancer 2021; 74:2122-2132. [PMID: 34459332 DOI: 10.1080/01635581.2021.1969418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Colorectal cancer is one of the five leading cancer incidents and mortality in Thailand and worldwide. Fatty acids (FA) are bioactive molecules which have potential as adjunctive chemotherapeutic agents. To study the effect of fatty acid fraction (FAs) extracted from organic rice bran oil on apoptosis induction and growth inhibition in human colorectal cancer cell line, LoVo cells. The results demonstrated that FAs inhibited cell viability and induced cell death via apoptosis associated with MAPKs pathway. The EC50 of FAs in LoVo was 172.80 ± 1.05 µg/ml. FAs treatment significantly increased nuclear condensation and decreased mitochondrial membrane potential. Moreover, FAs activated Bax, Caspase-9, -7 and PARP cleavage, while inhibited Bcl-2 expression. Furthermore, FAs increased p53 expression and phosphorylation of ERK and p38. FAs extracted from organic rice bran oil inhibited LoVo cell viability and induced apoptosis via MAPKs pathway. These data suggest the potential use of FAs extracted from organic rice bran oil to prevent or treat colon cancer in the future.
Collapse
Affiliation(s)
- Patamapan Tamvapee
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Ramida Watanapokasin
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| |
Collapse
|
14
|
Abstract
High levels of PGE2 have been implicated in the pathogenesis of intestinal inflammatory disorders such as necrotizing enterocolitis (NEC) and peritonitis. However, PGE2 has a paradoxical effect: its low levels promote intestinal homeostasis, whereas high levels may contribute to pathology. These concentration-dependent effects are mediated by four receptors, EP1-EP4. In this study, we evaluate the effect of blockade of the low affinity pro-inflammatory receptors EP1 and EP2 on expression of COX-2, the rate-limiting enzyme in PGE2 biosynthesis, and on gut barrier permeability using cultured enterocytes and three different models of intestinal injury. PGE2 upregulated COX-2 in IEC-6 enterocytes, and this response was blocked by the EP2 antagonist PF-04418948, but not by the EP1 antagonist ONO-8711 or EP4 antagonist E7046. In the neonatal rat model of NEC, EP2 antagonist and low dose of COX-2 inhibitor Celecoxib, but not EP1 antagonist, reduced NEC pathology as well as COX-2 mRNA and protein expression. In the adult mouse endotoxemia and cecal ligation/puncture models, EP2, but not EP1 genetic deficiency decreased COX-2 expression in the intestine. Our results indicate that the EP2 receptor plays a critical role in the positive feedback regulation of intestinal COX-2 by its end-product PGE2 during inflammation and may be a novel therapeutic target in the treatment of NEC.
Collapse
|
15
|
Tokunaga K, Tezuka M, Tang S, Shu M, Yamagishi T, Sato R. A humoral factor, hemolymph proteinase 8, elicits a cellular defense response of nodule formation in Bombyx mori larvae in association with recognition by C-type lectins. JOURNAL OF INSECT PHYSIOLOGY 2021; 132:104252. [PMID: 34022191 DOI: 10.1016/j.jinsphys.2021.104252] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Previously, we found that nodule formation, a cellular defense response in insects, is regulated by humoral factors called C-type lectins in the hemolymph. To elucidate the factors that elicit nodule formation following the recognition of microorganisms by C-type lectins, a reproducible quantitative in vitro assay system was constructed. Then, using this system, the inhibitory activities of antisera raised against hemolymph proteases (HPs), serine protease homologues (SPHs), and pathogen-associated molecular pattern (PAMP)-recognition proteins were assessed. Among the antisera raised against HP and SPH, only that against HP8, a terminal proteinase that activates Spätzle, consistently inhibited in-vitro nodule-like aggregate formation in all three tested microorganisms, Micrococcus luteus, Escherichia coli, and Saccharomyces cerevisiae. Antisera raised against C-type lectins, BmLBP, and BmMBP also inhibited nodule-like aggregate formation, while those against β-glucan recognition proteins and peptidoglycan recognition protein-S1 did not. Microorganisms pretreated with hemolymph, which contains HP8 and C-type lectins, also induced nodule-like aggregate formation, indicating that nodulation factors are present on microbial cells. Furthermore, antisera raised against HP8, BmLBP, and BmMBP showed inhibitory activities in the in vivo nodule formation system using Bombyx mori larvae. Thus, two humoral factors in the hemolymph of B. mori larvae, BmHP8 and C-type lectins, were found to play significant roles in eliciting the cellular defense response of nodule formation.
Collapse
Affiliation(s)
- Kotomi Tokunaga
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Moeko Tezuka
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Shuyi Tang
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Min Shu
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Takayuki Yamagishi
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
16
|
Jara-Gutiérrez Á, Baladrón V. The Role of Prostaglandins in Different Types of Cancer. Cells 2021; 10:cells10061487. [PMID: 34199169 PMCID: PMC8231512 DOI: 10.3390/cells10061487] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
The prostaglandins constitute a family of lipids of 20 carbon atoms that derive from polyunsaturated fatty acids such as arachidonic acid. Traditionally, prostaglandins have been linked to inflammation, female reproductive cycle, vasodilation, or bronchodilator/bronchoconstriction. Recent studies have highlighted the involvement of these lipids in cancer. In this review, existing information on the prostaglandins associated with different types of cancer and the advances related to the potential use of them in neoplasm therapies have been analyzed. We can conclude that the effect of prostaglandins depends on multiple factors, such as the target tissue, their plasma concentration, and the prostaglandin subtype, among others. Prostaglandin D2 (PGD2) seems to hinder tumor progression, while prostaglandin E2 (PGE2) and prostaglandin F2 alpha (PGF2α) seem to provide greater tumor progression and aggressiveness. However, more studies are needed to determine the role of prostaglandin I2 (PGI2) and prostaglandin J2 (PGJ2) in cancer due to the conflicting data obtained. On the other hand, the use of different NSAIDs (non-steroidal anti-inflammatory drugs), especially those selective of COX-2 (cyclooxygenase 2), could have a crucial role in the fight against different neoplasms, either as prophylaxis or as an adjuvant treatment. In addition, multiple targets, related to the action of prostaglandins on the intracellular signaling pathways that are involved in cancer, have been discovered. Thus, in depth research about the prostaglandins involved in different cancer and the different targets modulated by them, as well as their role in the tumor microenvironment and the immune response, is necessary to obtain better therapeutic tools to fight cancer.
Collapse
|
17
|
Zhong W, Shahbaz O, Teskey G, Beever A, Kachour N, Venketaraman V, Darmani NA. Mechanisms of Nausea and Vomiting: Current Knowledge and Recent Advances in Intracellular Emetic Signaling Systems. Int J Mol Sci 2021; 22:5797. [PMID: 34071460 PMCID: PMC8198651 DOI: 10.3390/ijms22115797] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Nausea and vomiting are common gastrointestinal complaints that can be triggered by diverse emetic stimuli through central and/or peripheral nervous systems. Both nausea and vomiting are considered as defense mechanisms when threatening toxins/drugs/bacteria/viruses/fungi enter the body either via the enteral (e.g., the gastrointestinal tract) or parenteral routes, including the blood, skin, and respiratory systems. While vomiting is the act of forceful removal of gastrointestinal contents, nausea is believed to be a subjective sensation that is more difficult to study in nonhuman species. In this review, the authors discuss the anatomical structures, neurotransmitters/mediators, and corresponding receptors, as well as intracellular emetic signaling pathways involved in the processes of nausea and vomiting in diverse animal models as well as humans. While blockade of emetic receptors in the prevention of vomiting is fairly well understood, the potential of new classes of antiemetics altering postreceptor signal transduction mechanisms is currently evolving, which is also reviewed. Finally, future directions within the field will be discussed in terms of important questions that remain to be resolved and advances in technology that may help provide potential answers.
Collapse
Affiliation(s)
- Weixia Zhong
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; (W.Z.); (G.T.); (V.V.)
| | - Omar Shahbaz
- School of Medicine, Universidad Iberoamericana, Av. Francia 129, Santo Domingo 10203, Dominican Republic;
| | - Garrett Teskey
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; (W.Z.); (G.T.); (V.V.)
| | - Abrianna Beever
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (A.B.); (N.K.)
| | - Nala Kachour
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (A.B.); (N.K.)
| | - Vishwanath Venketaraman
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; (W.Z.); (G.T.); (V.V.)
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (A.B.); (N.K.)
| | - Nissar A. Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; (W.Z.); (G.T.); (V.V.)
| |
Collapse
|
18
|
Pochard C, Gonzales J, Bessard A, Mahe MM, Bourreille A, Cenac N, Jarry A, Coron E, Podevin J, Meurette G, Neunlist M, Rolli-Derkinderen M. PGI 2 Inhibits Intestinal Epithelial Permeability and Apoptosis to Alleviate Colitis. Cell Mol Gastroenterol Hepatol 2021; 12:1037-1060. [PMID: 33971327 PMCID: PMC8342971 DOI: 10.1016/j.jcmgh.2021.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Inflammatory bowel diseases (IBDs) that encompass both ulcerative colitis and Crohn's disease are a major public health problem with an etiology that has not been fully elucidated. There is a need to improve disease outcomes and preventive measures by developing new effective and lasting treatments. Although polyunsaturated fatty acid metabolites play an important role in the pathogenesis of several disorders, their contribution to IBD is yet to be understood. METHODS Polyunsaturated fatty acids metabolite profiles were established from biopsy samples obtained from Crohn's disease, ulcerative colitis, or control patients. The impact of a prostaglandin I2 (PGI2) analog on intestinal epithelial permeability was tested in vitro using Caco-2 cells and ex vivo using human or mouse explants. In addition, mice were treated with PGI2 to observe dextran sulfate sodium (DSS)-induced colitis. Tight junction protein expression, subcellular location, and apoptosis were measured in the different models by immunohistochemistry and Western blotting. RESULTS A significant reduction of PGI2 in IBD patient biopsies was identified. PGI2 treatment reduced colonic inflammation, increased occludin expression, decreased caspase-3 cleavage and intestinal permeability, and prevented colitis development in DSS-induced mice. Using colonic explants from mouse and human control subjects, the staurosporine-induced increase in paracellular permeability was prevented by PGI2. PGI2 also induced the membrane location of occludin and reduced the permeability observed in colonic biopsies from IBD patients. CONCLUSIONS The present study identified a PGI2 defect in the intestinal mucosa of IBD patients and demonstrated its protective role during colitis.
Collapse
Affiliation(s)
- Camille Pochard
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Jacques Gonzales
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Anne Bessard
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Maxime M Mahe
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes, France; Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Arnaud Bourreille
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes, France; CHU de Nantes, Hôpital Hôtel-Dieu, Nantes, France; CIC 1413, Nantes, France
| | - Nicolas Cenac
- UMR1220, IRSD, INSERM, INRA, INP-ENVT, Université de Toulouse, Toulouse, France
| | - Anne Jarry
- Université de Nantes, Inserm, CRCINA, Nantes, France
| | - Emmanuel Coron
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes, France; CHU de Nantes, Hôpital Hôtel-Dieu, Nantes, France
| | | | - Guillaume Meurette
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes, France; CHU de Nantes, Hôpital Hôtel-Dieu, Nantes, France
| | - Michel Neunlist
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Malvyne Rolli-Derkinderen
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes, France.
| |
Collapse
|
19
|
Chhonker YS, Kanvinde S, Ahmad R, Singh AB, Oupický D, Murry DJ. Simultaneous Quantitation of Lipid Biomarkers for Inflammatory Bowel Disease Using LC-MS/MS. Metabolites 2021; 11:106. [PMID: 33673198 PMCID: PMC7918109 DOI: 10.3390/metabo11020106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/30/2022] Open
Abstract
Eicosanoids are key mediators and regulators of inflammation and oxidative stress that are often used as biomarkers for severity and therapeutic responses in various diseases. We here report a highly sensitive LC-MS/MS method for the simultaneous quantification of at least 66 key eicosanoids in a widely used murine model of colitis. Chromatographic separation was achieved with Shim-Pack XR-ODSIII, 150 × 2.00 mm, 2.2 µm. The mobile phase was operated in gradient conditions and consisted of acetonitrile and 0.1% acetic acid in water with a total flow of 0.37 mL/min. This method is sensitive, with a limit of quantification ranging from 0.01 to 1 ng/mL for the various analytes, has a large dynamic range (200 ng/mL), and a total run time of 25 min. The inter- and intraday accuracy (85-115%), precision (≥85%), and recovery (40-90%) met the acceptance criteria per the US Food and Drug Administration guidelines. This method was successfully applied to evaluate eicosanoid metabolites in mice subjected to colitis versus untreated, healthy control mice. In summary, we developed a highly sensitive and fast LC-MS/MS method that can be used to identify biomarkers for inflammation and potentially help in prognosis of the disease in inflammatory bowel disease (IBD) patients, including the response to therapy.
Collapse
Affiliation(s)
- Yashpal S. Chhonker
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Shrey Kanvinde
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.K.); (D.O.)
| | - Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.A.); (A.B.S.)
| | - Amar B. Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.A.); (A.B.S.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.K.); (D.O.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Daryl J. Murry
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
20
|
Li WJ, Lu JW, Zhang CY, Wang WS, Ying H, Myatt L, Sun K. PGE2 vs PGF2α in human parturition. Placenta 2021; 104:208-219. [PMID: 33429118 DOI: 10.1016/j.placenta.2020.12.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022]
Abstract
Prostaglandin E2 (PGE2) and F2α (PGF2α) are the two most prominent prostanoids in parturition. They are involved in cervical ripening, membrane rupture, myometrial contraction and inflammation in gestational tissues. Because multiple receptor subtypes for PGE2 and PGF2α exist, coupled with diverse signaling pathways, the effects of PGE2 and PGF2α depend largely on the spatial and temporal expression of these receptors in intrauterine tissues. It appears that PGE2 and PGF2α play different roles in parturition. PGE2 is probably more important for labor onset, while PGF2α may play a more important role in labor accomplishment, which may be attributed to the differential effects of PGE2 and PGF2α in gestational tissues. PGE2 is more powerful than PGF2α in the induction of cervical ripening. In terms of myometrial contraction, PGE2 produces a biphasic effect with an initial contraction and a following relaxation, while PGF2α consistently stimulates myometrial contraction. In the fetal membranes, both PGE2 and PGF2α appear to be involved in the process of membrane rupture. In addition, PGE2 and PGF2α may also participate in the inflammatory process of intrauterine tissues at parturition by stimulating not only neutrophil influx and cytokine production but also cyclooxygenase-2 expression thereby intensifying their own production. This review summarizes the differential roles of PGE2 and PGF2α in parturition with respect to their production and expression of receptor subtypes in gestational tissues. Dissecting the specific mechanisms underlying the effects of PGE2 and PGF2α in parturition may assist in developing specific therapeutic targets for preterm and post-term birth.
Collapse
Affiliation(s)
- Wen-Jiao Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Chu-Yue Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Hao Ying
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China.
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China.
| |
Collapse
|
21
|
Storniolo CE, Cabral M, Busquets MA, Martín-Venegas R, Moreno JJ. Dual Behavior of Long-Chain Fatty Acids and Their Cyclooxygenase/Lipoxygenase Metabolites on Human Intestinal Caco-2 Cell Growth. Front Pharmacol 2020; 11:529976. [PMID: 33013380 PMCID: PMC7500452 DOI: 10.3389/fphar.2020.529976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Etiology of colorectal cancer (CRC) is related, at least in part, with nutritional profile and epidemiological data indicating a key role of dietary fat on CRC pathogenesis. Moreover, inflammation and eicosanoids produced from arachidonic acid might have a pivotal role in CRC development. However, the effect of specific fatty acids (FAs) on intestinal epithelial cell growth is not completely studied now. By this reason, the aim of this work is to unravel the effect of different saturated and unsaturated long-chain fatty acids (LCFA) and some LCFA metabolites on CRC cell line growth and their possible mechanisms of action. Our results demonstrated that oleic acid is a potent mitogenic factor to Caco-2 cells, at least in part, through 10-hydroxy-8-octadecenoic synthesized by lipoxigenase pathway, whereas polyunsaturated FAs such as eicosapentaenoic (EPA) acid has a dual behavior effect depending on its concentration. A high concentration, EPA induced apoptosis through intrinsic pathway, whereas at low concentration induced cell proliferation that could be related to the synthesis of eicosanoids such as prostaglandin E3 and 12-hydroxyeicosapentaenoic acid and the subsequent induction of mitogenic cell signaling pathways (ERK 1/2, CREB, p38α). Thus, this study contributes to understand the complicated relationship between fat ingest and CRC.
Collapse
Affiliation(s)
- Carolina E Storniolo
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
| | - Marisol Cabral
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
| | - Maria A Busquets
- Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanosciences and Nanotechnology, University of Barcelona, Barcelona, Spain
| | - Raquel Martín-Venegas
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain.,Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Juan J Moreno
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain.,CIBEROBN Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
22
|
Febrile temperature change modulates CD4 T cell differentiation via a TRPV channel-regulated Notch-dependent pathway. Proc Natl Acad Sci U S A 2020; 117:22357-22366. [PMID: 32839313 DOI: 10.1073/pnas.1922683117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Fever is a conserved and prominent response to infection. Yet, the issue of how CD4 T cell responses are modulated if they occur at fever temperatures remains poorly addressed. We have examined the priming of naive CD4 T cells in vitro at fever temperatures, and we report notable fever-mediated modulation of their cytokine commitment. When naive CD4 T cells were primed by plate-bound anti-CD3 and anti-CD28 monoclonal antibodies at moderate fever temperature (39 °C), they enhanced commitment to IL4/5/13 (Th2) and away from IFNg (Th1). This was accompanied by up-regulation of the Th2-relevant transcription factor GATA3 and reduction in the Th1-relevant transcription factor Tbet. Fever sensing by CD4 T cells involved transient receptor potential vanilloid cation channels (TRPVs) since TRPV1/TRPV4 antagonism blocked the febrile Th2 switch, while TRPV1 agonists mediated a Th2 switch at 37 °C. The febrile Th2 switch was IL4 independent, but a γ-secretase inhibitor abrogated it, and it was not found in Notch1-null CD4 T cells, identifying the Notch pathway as a major mediator. However, when naive CD4 T cells were primed via antigen and dendritic cells (DCs) at fever temperatures, the Th2 switch was abrogated via increased production of IL12 from DCs at fever temperatures. Thus, immune cells directly sense fever temperatures with likely complex physiological consequences.
Collapse
|
23
|
Özbolat SN, Ayna A. Chrysin Suppresses HT-29 Cell Death Induced by Diclofenac through Apoptosis and Oxidative Damage. Nutr Cancer 2020; 73:1419-1428. [PMID: 32757685 DOI: 10.1080/01635581.2020.1801775] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Diclofenac (Dic) was shown to increase in reactive oxygen species (ROS) levels thereby resulting oxidative stress and apoptotic cell death in colon cancer. The antioxidants can prevent and repair oxidative damage caused by ROS. The aim of this study was to assess the effect of chrysin (Chr) on Dic-induced toxicity in HT-29 and molecular mechanisms underlying its effect. METHODS Cell proliferation and cytotoxicity assays were carried out by WST-1 and LDH leakage assay, apoptotic index was calculated by TUNEL Assay, antioxidant parameters were studied by measurement of ROS, LPO and TAS levels and catalase activity, expression of caspase-3 protein levels were analyzed by immunohistochemical staining, mRNA levels of apoptotic and anti-apoptotic genes were studied by qRT-PCR. RESULTS The cellular processes of Dic-triggered cell death was associated with increase in ROS, malondialdehyde levels and lactate dehydrogenase release, decrease in total antioxidant and catalase activity while pretreatment with Chr reversed these effects. The expression level of p53, cas-3, cas-8, Bax and cytochrome c increased in Dic-exposed group while they were reduced by Chr. CONCLUSION The use of antioxidant nutritional supplements, and in particular of Chr, may reduce the efficacy of Dic in inducing apoptosis of colon cancer cells.
Collapse
Affiliation(s)
- Seda Nur Özbolat
- Department of Chemistry, Faculty of Arts and Sciences, Bingol University, Bingol, Turkey
| | - Adnan Ayna
- Department of Chemistry, Faculty of Arts and Sciences, Bingol University, Bingol, Turkey
| |
Collapse
|
24
|
Huang N, Wang M, Peng J, Wei H. Role of arachidonic acid-derived eicosanoids in intestinal innate immunity. Crit Rev Food Sci Nutr 2020; 61:2399-2410. [PMID: 32662287 DOI: 10.1080/10408398.2020.1777932] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Arachidonic acid (ARA), an n-6 essential fatty acid, plays an important role in human and animal growth and development. The ARA presents in the membrane phospholipids can be released by phospholipase A2. These free arachidonic acid molecules are then used to produce eicosanoids through three different pathways. Previous studies have demonstrated that eicosanoids have a wide range of physiological functions. Although they are generally considered to be pro-inflammatory molecules, recent advances have elucidated they have an effect on innate immunity via regulating the development, and differentiation of innate immune cells and the function of the intestinal epithelial barrier. Here, we review eicosanoids generation in intestine and their role in intestinal innate immunity, focusing on intestinal epithelial barrier, innate immune cell in lamina propria (LP) and their crosstalk.
Collapse
Affiliation(s)
- Ningning Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Miaomiao Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
25
|
Honda T, Kabashima K. Prostanoids and leukotrienes in the pathophysiology of atopic dermatitis and psoriasis. Int Immunol 2020; 31:589-595. [PMID: 30715370 DOI: 10.1093/intimm/dxy087] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/15/2019] [Indexed: 12/25/2022] Open
Abstract
Lipid mediators, such as prostanoids and leukotrienes (LTs), exert a range of actions through their own receptors on cell surfaces in various pathophysiological conditions. It has been reported that the production of prostanoids and LTs is significantly elevated in the skin lesions of some chronic inflammatory skin diseases, such as atopic dermatitis (AD) and psoriasis, showing the possible involvement of these lipid mediators in the development of those diseases. Although the actual significance of these lipid mediators in humans is still unclear, the findings from studies in mice suggest diverse roles of the lipid mediators in the progression or regulation of these diseases. For example, in a mouse AD model, prostaglandin D2 inhibits the induction of Th2 cells through DP receptor on Langerhans cells, while it promotes infiltration of Th2 cells through chemoattractant receptor-homologous molecule expressed on Th2 cells. In a psoriasis model, thromboxane A2-TP signaling promotes psoriatic dermatitis by facilitating IL-17 production from γδ T cells. In this short review, we summarize the current findings on the roles of prostanoids and LTs in AD and psoriasis as revealed by studies in mice, and discuss the potential of these lipid mediators as therapeutic targets in humans.
Collapse
Affiliation(s)
- Tetsuya Honda
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan.,Singapore Immunology Network (SIgN) and Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| |
Collapse
|
26
|
Inhibitors of Eicosanoid Biosynthesis Reveal that Multiple Lipid Signaling Pathways Influence Malaria Parasite Survival in Anopheles gambiae. INSECTS 2019; 10:insects10100307. [PMID: 31547026 PMCID: PMC6835628 DOI: 10.3390/insects10100307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022]
Abstract
Eicosanoids are bioactive signaling lipids derived from the oxidation of fatty acids that act as important regulators of immune homeostasis and inflammation. As a result, effective anti-inflammatory drugs have been widely used to reduce pain and inflammation which target key eicosanoid biosynthesis enzymes. Conserved from vertebrates to insects, the use of these eicosanoid pathway inhibitors offer opportunities to evaluate the roles of eicosanoids in less-characterized insect systems. In this study, we examine the potential roles of eicosanoids on malaria parasite survival in the mosquito Anopheles gambiae. Using Plasmodium oocyst numbers to evaluate parasite infection, general or specific inhibitors of eicosanoid biosynthesis pathways were evaluated. Following the administration of dexamethasone and indomethacin, respective inhibitors of phospholipid A2 (PLA2) and cyclooxygenase (COX), oocyst numbers were unaffected. However, inhibition of lipoxygenase (LOX) activity through the use of esculetin significantly increased oocyst survival. In contrast, 12-[[(tricyclo[3.3.1.13,7]dec-1-ylamino)carbonyl]amino]-dodecanoic acid (AUDA), an inhibitor of epoxide hydroxylase (EH), decreased oocyst numbers. These experiments were further validated through RNAi experiments to silence candidate genes homologous to EH in An. gambiae to confirm their contributions to Plasmodium development. Similar to the results of AUDA treatment, the silencing of EH significantly reduced oocyst numbers. These results imply that specific eicosanoids in An. gambiae can have either agonist or antagonistic roles on malaria parasite survival in the mosquito host.
Collapse
|
27
|
Elwakeel E, Brüne B, Weigert A. PGE 2 in fibrosis and cancer: Insights into fibroblast activation. Prostaglandins Other Lipid Mediat 2019; 143:106339. [PMID: 31100473 DOI: 10.1016/j.prostaglandins.2019.106339] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/18/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
Fibroblasts are the essential cellular architects of connective tissue and as such are crucial cells in contributing to organ homeostasis. While fulfilling important repair functions during tissue regeneration upon wounding, chronic fibroblast activation provokes pathological organ fibrosis and promotes neoplastic disease progression. Identifying targets that may serve to therapeutically terminate fibroblast activation is therefore desirable. Among the mediators that may be relevant in this context is the prostanoid prostaglandin E2 (PGE2) that is produced during inflammatory settings, where pathological fibrosis occurs. Here, we summarize current, in part controversial, concepts on the impact of PGE2 on fibroblast activation in fibrotic diseases including cancer, and discuss these findings in the context of the evolving concept of fibroblast heterogeneity.
Collapse
Affiliation(s)
- Eiman Elwakeel
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany.
| |
Collapse
|
28
|
Kaya Z, Yayla M, Bilen A, Atilla NE, Ozmen S, Cinar I, Bayraktutan Z, Mutlu V, Un H, Toktay E. Effect of Prostaglandin E1 Analog Misoprostol in An Ovalbumin-Induced Allergic Rhinitis Model. Eurasian J Med 2019; 51:75-79. [PMID: 30911262 PMCID: PMC6422614 DOI: 10.5152/eurasianjmed.2019.19025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/11/2019] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE The aim of the present study was to demonstrate the effects of misoprostol in ovalbumin-induced allergic rhinitis (AR). The second purpose was to compare the effect profile of the combination of an antihistamine with misoprostol during treatment of AR. MATERIALS AND METHODS Twenty-five adult male rats were used and were randomly classified into five groups (n=5): healthy+saline, AR, AR and desloratadine (D)-treated group, AR and misoprostol (M)-treated group, and AR and combined-treated group. RESULTS Desloratadine administration had significantly lower nasal symptoms than the AR group, but nasal symptoms in the AR+M group were better than those in the AR+D group. The best improvement in serum IgE levels was seen in the misoprostol alone and combination treatment groups. CONCLUSION We suggest that prostaglandins should be considered in the treatment of AR, and that the effects of these types of drugs should be tested clinically in patients.
Collapse
Affiliation(s)
- Zulkuf Kaya
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Ataturk University, Erzurum, Turkey
| | - Muhammed Yayla
- Department of Pharmacology, Kafkas University School of Medicine, Kars, Turkey
| | - Arzu Bilen
- Department of Internal Medicine, Ataturk University School of Medicine, Erzurum/Turkey
| | - Nihal Efe Atilla
- Department of Otorhinolaryngology, Head and Neck Surgery, Erzurum Training and Research Hospital, Erzurum, Turkey
| | - Sevilay Ozmen
- Department of Pathology, Ataturk University School of Medicine, Erzurum, Turkey
| | - Irfan Cinar
- Department of Pharmacology, Kafkas University School of Medicine, Kars, Turkey
| | - Zafer Bayraktutan
- Department of Biochemistry, Ataturk University School of Medicine Erzurum, Turkey
| | - Vahit Mutlu
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Ataturk University, Erzurum, Turkey
| | - Harun Un
- Department of Biochemistry, Agri Ibrahim Cecen University School of Pharmacy, Ağrı, Turkey
| | - Erdem Toktay
- Department of Histology and Embriology, Ataturk University School of Medicine, Erzurum, Turkey
| |
Collapse
|
29
|
Caiazzo E, Ialenti A, Cicala C. The relatively selective cyclooxygenase-2 inhibitor nimesulide: What's going on? Eur J Pharmacol 2019; 848:105-111. [PMID: 30689999 DOI: 10.1016/j.ejphar.2019.01.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 12/17/2022]
Abstract
Nimesulide is a relatively selective cyclooxygenase (COX)-2 inhibitor, non-steroidal anti-inflammatory drug; it has been discovered in 1971 and firstly commercialized in Italy in 1985. There is much evidence that the pharmacological profile of nimesulide is peculiar and not shared with the other COX-2 selective inhibitors, suggesting that other molecular mechanisms besides inhibition of COX-2 derived prostaglandins are involved. Similarly, experimental data suggest that the gastrointestinal safety of nimesulide cannot be ascribed only to a COX-1 sparing effect. On the inflammatory process, the efficacy of nimesulide is dependent upon a wide spectrum of actions, due to the combination of effects on immune and non-immune cells. Early data demonstrated a central role for cyclic AMP (cAMP) in the anti-inflammatory effect of nimesulide; more recently, we have shown the involvement of the pathway ecto-5'-nucleotidase/adenosine A2A receptor. To date, the molecular mechanism(s) that confers uniqueness to nimesulide have not yet been defined. To go inside the mechanism of action of an existing drug, such as nimesulide, would be helpful to refine its therapeutic use but also to identify new targets for novel therapeutic anti-inflammatory approach. Here, we focus on accumulated evidence for a peculiar pharmacological profile of nimesulide.
Collapse
Affiliation(s)
- Elisabetta Caiazzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy
| | - Armando Ialenti
- Department of Pharmacy, School of Medicine, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy
| | - Carla Cicala
- Department of Pharmacy, School of Medicine, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| |
Collapse
|
30
|
Storniolo CE, Moreno JJ. Resveratrol Analogs with Antioxidant Activity Inhibit Intestinal Epithelial Cancer Caco-2 Cell Growth by Modulating Arachidonic Acid Cascade. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:819-828. [PMID: 30575383 DOI: 10.1021/acs.jafc.8b05982] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
trans-Resveratrol has beneficial effects on colorectal cancer, through its antioxidant capacity, and its roles in regulating eicosanoid synthesis. This study determines how changes in resveratrol structure affected its biological activities. Our results showed that trans- and cis-resveratrol and hydroxylated analogs (piceatannol) (10-25 μM) displayed similar antioxidant activities (2-3 fold higher than trolox) and inhibit eicosanoid synthesis and Caco-2 growth (76.5 ± 2.7%, 48.2 ± 3.1% and 41.1 ± 2.3%, p ≤ 0.05). These effects can be related with an increase of the percentage of cells in the S phase (156.3 ± 5.6, 91.2 ± 3.3 and 64.1 ± 2.8, p ≤ 0.05) as a consequence of the impairment of the cells in G0/G1. Furthermore, we observed that these molecules induce apoptosis at 100 μM (48.2 ± 6.6%, p ≤ 0.05; 4.3 ± 2.5% and 21.2 ± 3.3%, p ≤ 0.05). These actions were related with changes of the mitochondrial membrane potential involved in the intrinsic pathway of apoptosis. However, methoxylated (pterostilbene, pinostilbene, trans-trimethoxy-resveratrol, and CAY10616) (0.1-10 μM) and halogenated (PDM11, CAY10464, PDM2, and CAY465) (1-10 μM) stilbenes inhibited Caco-2 cell growth, with a higher potency than resveratrol (50% inhibition at 0.1-1 μM) but without effects on oxidative stress and arachidonic acid cascade. Thus, our results show that the antioxidant effect of hydroxyl stilbenes is related to eicosanoid synthesis regulation and the basic stilbene structure of two benzene rings bonded through a central ethylene, is responsible for its effects on Caco-2 cell growth/DNA synthesis/cell cycle independently of redox state/eicosanoid synthesis modulation.
Collapse
Affiliation(s)
- Carolina E Storniolo
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences , University of Barcelona , Barcelona 08007 , Spain
- Institute of Nutrition and Food Safety (INSA-UB) , University of Barcelona , Barcelona 08921 , Spain
| | - Juan J Moreno
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences , University of Barcelona , Barcelona 08007 , Spain
- Institute of Nutrition and Food Safety (INSA-UB) , University of Barcelona , Barcelona 08921 , Spain
- CIBEROBN Fisiopatología de la Obesidad y Nutrición , Instituto de Salud Carlos III , Madrid 28029 , Spain
| |
Collapse
|
31
|
|
32
|
Ortea I, González-Fernández MJ, Ramos-Bueno RP, Guil-Guerrero JL. Proteomics Study Reveals That Docosahexaenoic and Arachidonic Acids Exert Different In Vitro Anticancer Activities in Colorectal Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6003-6012. [PMID: 29804451 DOI: 10.1021/acs.jafc.8b00915] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two polyunsaturated fatty acids, docosahexaenoic acid (DHA) and arachidonic acid (ARA), as well as derivatives, such as eicosanoids, regulate different activities, affecting transcription factors and, therefore, DNA transcription, being a critical step for the functioning of fatty-acid-derived signaling. This work has attempted to determine the in vitro anticancer activities of these molecules linked to the gene transcription regulation of HT-29 colorectal cancer cells. We applied the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test along with lactate dehydrogenase and caspase-3 assays; proteome changes were assessed by "sequential windowed acquisition of all theoretical mass spectra" quantitative proteomics, followed by pathway analysis, to determine the affected molecular mechanisms. In all assays, DHA inhibited cell proliferation of HT-29 cells to a higher extent than ARA and acted primarily by downregulating proteasome particles, while ARA presented a dramatic effect on all six DNA replication helicase particles. The results indicated that both DHA and ARA are potential chemopreventive agent candidates.
Collapse
Affiliation(s)
- Ignacio Ortea
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía , Universidad de Córdoba , E14004 Córdoba , Spain
| | - María José González-Fernández
- Food Technology Division, Agrifood Campus of International Excellence (ceiA3) , University of Almería , E40120 Almería , Spain
| | - Rebeca P Ramos-Bueno
- Food Technology Division, Agrifood Campus of International Excellence (ceiA3) , University of Almería , E40120 Almería , Spain
| | - José Luis Guil-Guerrero
- Food Technology Division, Agrifood Campus of International Excellence (ceiA3) , University of Almería , E40120 Almería , Spain
| |
Collapse
|
33
|
Abstract
The body is exposed to foreign pathogens every day, but remarkably, most pathogens are effectively cleared by the innate immune system without the need to invoke the adaptive immune response. Key cellular components of the innate immune system include macrophages and neutrophils and the recruitment and function of these cells are tightly regulated by chemokines and cytokines in the tissue space. Innate immune responses are also known to regulate development of adaptive immune responses often via the secretion of various cytokines. In addition to these protein regulators, numerous lipid mediators can also influence innate and adaptive immune functions. In this review, we cover one particular lipid regulator, prostaglandin E2 (PGE2) and describe its synthesis and signaling and what is known about the ability of this lipid to regulate immunity and host defense against viral, fungal and bacterial pathogens.
Collapse
Affiliation(s)
| | - Bethany B Moore
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
34
|
Besson JCF, de Carvalho Picoli C, Matioli G, Natali MRM. Methyl jasmonate: a phytohormone with potential for the treatment of inflammatory bowel diseases. ACTA ACUST UNITED AC 2017; 70:178-190. [PMID: 29072315 DOI: 10.1111/jphp.12839] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/21/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVES The phytohormone methyl jasmonate (MeJA) has been identified as a vital cell regulator in plants. This substance is analogous to eicosanoids and similar to that of anti-inflammatory prostaglandins. In animals and in animal cells, it displayed an efficient neuroprotective, anti-inflammatory and antioxidant action; while in tumoral strains, it demonstrates a potentially highly attractive mechanism of apoptosis induction through various cellular and molecular mechanisms. The aim of the present review was to explore two new hypotheses that explain the action of MeJA, a lipid phytohormone and its potentially anti-apoptotic mechanism for use as a therapeutic target for future treatment of Inflammatory bowel diseases (IBDs). KEY FINDINGS Methyl jasmonate is a new candidate for the treatment of IBDs, modulating the expression of the major classes of caspase-type protease families that selectively act on the extrinsic and intrinsic pathways of the apoptotic process. Its action is based on the reduction of the expression in tumour necrosis factor tissue levels and the modulating action of reactive oxygen species production, acting only on the destruction of cells that express the diseased phenotype, and preserving cells that are not transformed. CONCLUSIONS Methyl jasmonate may represent an alternative for the transduction processes of important signals in the cellular renewal of the intestinal mucosa.
Collapse
Affiliation(s)
| | | | - Graciette Matioli
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, PR, Brazil
| | | |
Collapse
|
35
|
Angamuthu V, Chang WJ, Hou DR. Anti-addition of Dimethylsulfoxonium Methylide to Acyclic α,β-Unsaturated Ketones and Its Application in Formal Synthesis of an Eicosanoid. ACS OMEGA 2017; 2:4088-4099. [PMID: 31457710 PMCID: PMC6641733 DOI: 10.1021/acsomega.7b00663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/07/2017] [Indexed: 06/10/2023]
Abstract
Cyclopropanation using dimethylsulfoxonium methylide (Corey-Chaykovsky reaction) was examined with a series of linear α,β-unsaturated ketones, and the results showed that the major trajectory for the addition of the sulfur ylide to the enones is anti, related to the γ-substituent. The stereochemical assignment for the generated cyclopropanes was achieved by X-ray crystallography or comparing with the reported spectroscopic data. We found that the diastereoselectivity was influenced by several factors, including the protecting groups, solvents, and temperatures, and good anti/syn ratios (>10:1) were often obtained using the tert-butyldimethylsilyl and tert-butyldiphenylsilyl-protected substrates. The method was applied to a formal synthesis of a natural eicosanoid with good efficiency.
Collapse
|
36
|
Effects of coconut oil on glycemia, inflammation, and urogenital microbial parameters in female Ossabaw mini-pigs. PLoS One 2017; 12:e0179542. [PMID: 28704429 PMCID: PMC5509134 DOI: 10.1371/journal.pone.0179542] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/31/2017] [Indexed: 02/07/2023] Open
Abstract
Forty percent of American women are obese and at risk for type II diabetes, impaired immune function, and altered microbiome diversity, thus impacting overall health. We investigated whether obesity induced by an excess calorie, high fat diet containing hydrogenated fats, fructose, and coconut oil (HFD) altered glucose homeostasis, peripheral immunity, and urogenital microbial dynamics. We hypothesized that HFD would cause hyperglycemia, increase peripheral inflammation, and alter urogenital microbiota to favor bacterial taxonomy associated with inflammation. We utilized female Ossabaw mini-pigs to model a ‘thrifty’ metabolic phenotype associated with increased white adipose tissue mass. Pigs were fed HFD (~4570 kcal/pig/day) or lean (~2000 kcal/pig/day) diet for a total of 9 estrous cycles (~6 months). To determine the effect of cycle stage on cytokines and the microbiome, animals had samples collected during cycles 7 and 9 on certain days of the cycle: D1, 4, 8, 12, 16, 18. Vaginal swabs or cervical flushes assessed urogenital microbiota. Systemic fatty acids, insulin, glucose, and cytokines were analyzed. Pig weights and morphometric measurements were taken weekly. Obese pigs had increased body weight, length, heart and belly girth but similar glucose concentrations. Obese pigs had decreased cytokine levels (IL-1β, TNF-α, IL-4, IL-10), arachidonic acid and plasma insulin, but increased levels of vaccenic acid. Obese pigs had greater urogenital bacterial diversity, including several taxa known for anti-inflammatory properties. Overall, induction of obesity did not induce inflammation but shifted the microbial communities within the urogenital tract to an anti-inflammatory phenotype. We postulate that the coconut oil in the HFD oil may have supported normal glucose homeostasis and modulated the immune response, possibly through regulation of microbial community dynamics and fatty acid metabolism. This animal model holds promise for the study of how different types of obesity and high fat diets may affect metabolism, immune phenotype, and microbial dynamics.
Collapse
|
37
|
Prostaglandin D 2 enhances lipid accumulation through suppression of lipolysis via DP2 (CRTH2) receptors in adipocytes. Biochem Biophys Res Commun 2017. [PMID: 28623133 DOI: 10.1016/j.bbrc.2017.06.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Prostaglandin (PG) D2 enhanced lipid accumulation in adipocytes. However, its molecular mechanism remains unclear. In this study, we investigated the regulatory mechanisms of PGD2-elevated lipid accumulation in mouse adipocytic 3T3-L1 cells. The Gi-coupled DP2 (CRTH2) receptors (DP2R), one of the two-types of PGD2 receptors were dominantly expressed in adipocytes. A DP2R antagonist, CAY10595, but not DP1 receptor antagonist, BWA868C cleared the PGD2-elevated intracellular triglyceride level. While, a DP2R agonist, 15R-15-methyl PGD2 (15R) increased the mRNA levels of the adipogenic and lipogenic genes, and decreased the glycerol release level. In addition, the forskolin-mediated increase of cAMP-dependent protein kinase A (PKA) activity and phosphorylation of hormone-sensitive lipase (HSL) was repressed by the co-treatment with 15R. Moreover, the lipolysis was enhanced in the adipocyte-differentiated DP2R gene-knockout mouse embryonic fibroblasts. These results indicate that PGD2 suppressed the lipolysis by repression of the cAMP-PKA-HSL axis through DP2R in adipocytes.
Collapse
|
38
|
Elshenawy OH, Shoieb SM, Mohamed A, El-Kadi AOS. Clinical Implications of 20-Hydroxyeicosatetraenoic Acid in the Kidney, Liver, Lung and Brain: An Emerging Therapeutic Target. Pharmaceutics 2017; 9:pharmaceutics9010009. [PMID: 28230738 PMCID: PMC5374375 DOI: 10.3390/pharmaceutics9010009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/15/2017] [Indexed: 12/30/2022] Open
Abstract
Cytochrome P450-mediated metabolism of arachidonic acid (AA) is an important pathway for the formation of eicosanoids. The ω-hydroxylation of AA generates significant levels of 20-hydroxyeicosatetraenoic acid (20-HETE) in various tissues. In the current review, we discussed the role of 20-HETE in the kidney, liver, lung, and brain during physiological and pathophysiological states. Moreover, we discussed the role of 20-HETE in tumor formation, metabolic syndrome and diabetes. In the kidney, 20-HETE is involved in modulation of preglomerular vascular tone and tubular ion transport. Furthermore, 20-HETE is involved in renal ischemia/reperfusion (I/R) injury and polycystic kidney diseases. The role of 20-HETE in the liver is not clearly understood although it represents 50%-75% of liver CYP-dependent AA metabolism, and it is associated with liver cirrhotic ascites. In the respiratory system, 20-HETE plays a role in pulmonary cell survival, pulmonary vascular tone and tone of the airways. As for the brain, 20-HETE is involved in cerebral I/R injury. Moreover, 20-HETE has angiogenic and mitogenic properties and thus helps in tumor promotion. Several inhibitors and inducers of the synthesis of 20-HETE as well as 20-HETE analogues and antagonists are recently available and could be promising therapeutic options for the treatment of many disease states in the future.
Collapse
Affiliation(s)
- Osama H Elshenawy
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| | - Sherif M Shoieb
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| | - Anwar Mohamed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada.
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| |
Collapse
|