1
|
Payant MA, Shankhatheertha A, Chee MJ. Melanin-concentrating hormone promotes feeding through the lateral septum. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111163. [PMID: 39389251 DOI: 10.1016/j.pnpbp.2024.111163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Feeding is necessary for survival but can be hindered by anxiety or fear, thus neural systems that can regulate anxiety states are key to elucidating the expression of food-related behaviors. Melanin-concentrating hormone (MCH) is a neuropeptide produced in the lateral hypothalamus and zona incerta that promotes feeding and anxiogenesis. The orexigenic actions of MCH that prolong ongoing homeostatic or hedonic feeding are context-dependent and more prominent in male than female rodents, but it is not clear where MCH acts to initiate feeding. The lateral septum (LS) promotes feeding and suppresses anxiogenesis when inhibited, and it comprises the densest projections from MCH neurons. However, it is not known whether the LS is a major contributor to MCH-mediated feeding. As MCH inhibits LS cells by MCH receptor (MCHR1) activation, MCH may promote feeding via the LS. We bilaterally infused MCH into the LS and found that MCH elicited a rapid and long-lasting increase in the consumption of standard chow and a palatable, high sugar diet in male and female mice; these MCH effects were blocked by the co-administration of a MCHR1 antagonist TC- MCH 7c. Interestingly, the orexigenic effect of MCH was abolished in a novel, anxiogenic environment even when presented with a food reward, but MCH did not induce anxiety-like behaviors. These findings indicated the LS as a novel region underlying orexigenic MCH actions, which stimulated and enhanced feeding in both sexes in a context -dependent manner that was most prominent in the homecage.
Collapse
Affiliation(s)
- Mikayla A Payant
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | | | - Melissa J Chee
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
2
|
Tarantino G, Cataldi M, Citro V. Could chronic opioid use be an additional risk of hepatic damage in patients with previous liver diseases, and what is the role of microbiome? Front Microbiol 2024; 15:1319897. [PMID: 39687876 PMCID: PMC11646994 DOI: 10.3389/fmicb.2024.1319897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Among illicit drugs, addiction from opioids and synthetic opioids is soaring in an unparalleled manner with its unacceptable amount of deaths. Apart from these extreme consequences, the liver toxicity is another important aspect that should be highlighted. Accordingly, the chronic use of these substances, of which fentanyl is the most frequently consumed, represents an additional risk of liver damage in patients with underlying chronic liver disease. These observations are drawn from various preclinical and clinical studies present in literature. Several downstream molecular events have been proposed, but recent pieces of research strengthen the hypothesis that dysbiosis of the gut microbiota is a solid mechanism inducing and worsening liver damage by both alcohol and illicit drugs. In this scenario, the gut flora modification ascribed to non-alcoholic fatty liver disease performs an additive role. Interestingly enough, HBV and HCV infections impact gut-liver axis. In the end, the authors tried to solicit the attention of operators on this major healthcare problem.
Collapse
Affiliation(s)
- Giovanni Tarantino
- Department of Clinical Medicine and Surgery, “Federico II” University Medical School of Naples, Naples, Italy
| | - Mauro Cataldi
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, Naples, Italy
| | - Vincenzo Citro
- Department of General Medicine, “Umberto I” Hospital, Nocera Inferiore, Italy
| |
Collapse
|
3
|
A M Subbaiah M, Mandal U, Patankar V, Bhaskaran S, Nutakki R, Rami B, Shah DP, Mahammad S, Murphy BJ, Huang C, Robl JA, Washburn WN. Exploring monocyclic core: Discovery of pyrrol-2-one derivatives as a new series of potent MCHR1 antagonists with in vivo efficacy. Eur J Med Chem 2024; 276:116686. [PMID: 39053192 DOI: 10.1016/j.ejmech.2024.116686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
With an objective to improve the profiles of the 1st generation non-basic MCHR1 antagonists, a lean design approach of replacing the bicyclic thienopyrimidine core with a monocyclic pyrrol-2-one chemotype was examined in the context of reducing aromatic ring count, while also contemplating enhanced flexibility as a means of decreasing flat character. The new compounds exhibited potent antagonism up to the sub-nanomolar range, thereby implying that the monocyclic ring could effectively serve as an effective bioisostere of the bicyclic system. The prototype compound 2m offered benefits like improved potency, reduced half-life, and enhanced solubility, while also demonstrating >5% reduction in weight gain in rats, thereby providing proof-of-concept for this new class of compounds as anti-obesity agents.
Collapse
Affiliation(s)
- Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, PIN 560099, Karnataka, India.
| | - Umasankar Mandal
- Department of Medicinal Chemistry, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, PIN 560099, Karnataka, India
| | - Vidya Patankar
- Department of Medicinal Chemistry, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, PIN 560099, Karnataka, India
| | - Selvakumar Bhaskaran
- Department of Medicinal Chemistry, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, PIN 560099, Karnataka, India
| | - Ravikumar Nutakki
- Department of Biology, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, PIN 560099, Karnataka, India
| | - Bhadresh Rami
- Department of Biology, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, PIN 560099, Karnataka, India
| | - Devang Praful Shah
- Department of Pharmaceutical Candidate Optimization, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, PIN 560099, Karnataka, India
| | - Shahe Mahammad
- Department of Biopharmaceutics, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, PIN 560099, Karnataka, India
| | - Brian J Murphy
- Department of Metabolic Diseases Biology, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, NJ, 08543-4000, USA
| | - Christine Huang
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, NJ, 08543-4000, USA
| | - Jeffrey A Robl
- Department of Metabolic Diseases Chemistry, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, NJ, 08543-4000, USA
| | - William N Washburn
- Department of Metabolic Diseases Chemistry, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, NJ, 08543-4000, USA
| |
Collapse
|
4
|
Mei Y, Sun X, Huang SY, Wu X, Ho KT, Lu L, Chen C, Li J, Liu J, Li G. Curcumin Prevents Free Fatty Acid-Induced Lipid Accumulation <i>via</i> Targeting the miR-22-3p/<i>CRLS1</i> Pathway in HepG2 Cells. POL J FOOD NUTR SCI 2024:59-68. [DOI: 10.31883/pjfns/182927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
5
|
López-Méndez I, Maldonado-Rojas ADC, Uribe M, Juárez-Hernández E. Hunger & satiety signals: another key mechanism involved in the NAFLD pathway. Front Endocrinol (Lausanne) 2023; 14:1213372. [PMID: 37753211 PMCID: PMC10518611 DOI: 10.3389/fendo.2023.1213372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent metabolic disease, although prevalence could change according to region, nowadays is considered a public health problem whose real impact on the health system is unknown. NAFLD has a multifactorial and complex pathophysiology, due to this, developing a unique and effective pharmacological treatment has not been successful in reverting or avoiding the progression of this liver disease. Even though NAFLD pathophysiology is known, all actual treatments are focused on modifying or regulating the metabolic pathways, some of which interplay with obesity. It has been known that impairments in hunger and satiety signals are associated with obesity, however, abnormalities in these signals in patients with NAFLD and obesity are not fully elucidated. To describe these mechanisms opens an additional option as a therapeutic target sharing metabolic pathways with NAFLD, therefore, this review aims to describe the hormones and peptides implicated in both hunger-satiety in NAFLD. It has been established that NAFLD pharmacological treatment cannot be focused on a single purpose; hence, identifying interplays that lead to adding or modifying current treatment options could also have an impact on another related outcome such as hunger or satiety signals.
Collapse
Affiliation(s)
- Iván López-Méndez
- Hepatology and Transplants Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | | | - Misael Uribe
- Gastroenterology and Obesity Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Eva Juárez-Hernández
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| |
Collapse
|
6
|
Noonan T, Denzinger K, Talagayev V, Chen Y, Puls K, Wolf CA, Liu S, Nguyen TN, Wolber G. Mind the Gap-Deciphering GPCR Pharmacology Using 3D Pharmacophores and Artificial Intelligence. Pharmaceuticals (Basel) 2022; 15:1304. [PMID: 36355476 PMCID: PMC9695541 DOI: 10.3390/ph15111304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 01/08/2025] Open
Abstract
G protein-coupled receptors (GPCRs) are amongst the most pharmaceutically relevant and well-studied protein targets, yet unanswered questions in the field leave significant gaps in our understanding of their nuanced structure and function. Three-dimensional pharmacophore models are powerful computational tools in in silico drug discovery, presenting myriad opportunities for the integration of GPCR structural biology and cheminformatics. This review highlights success stories in the application of 3D pharmacophore modeling to de novo drug design, the discovery of biased and allosteric ligands, scaffold hopping, QSAR analysis, hit-to-lead optimization, GPCR de-orphanization, mechanistic understanding of GPCR pharmacology and the elucidation of ligand-receptor interactions. Furthermore, advances in the incorporation of dynamics and machine learning are highlighted. The review will analyze challenges in the field of GPCR drug discovery, detailing how 3D pharmacophore modeling can be used to address them. Finally, we will present opportunities afforded by 3D pharmacophore modeling in the advancement of our understanding and targeting of GPCRs.
Collapse
Affiliation(s)
- Theresa Noonan
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2-4, D-14195 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Takamura N, Renaud L, da Silveira WA, Feghali-Bostwick C. PDGF Promotes Dermal Fibroblast Activation via a Novel Mechanism Mediated by Signaling Through MCHR1. Front Immunol 2021; 12:745308. [PMID: 34912333 PMCID: PMC8667318 DOI: 10.3389/fimmu.2021.745308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by vasculopathy and excessive fibrosis of the skin and internal organs. To this day, no effective treatments to prevent the progression of fibrosis exist, and SSc patients have disabilities and reduced life expectancy. The need to better understand pathways that drive SSc and to find therapeutic targets is urgent. RNA sequencing data from SSc dermal fibroblasts suggested that melanin-concentrating hormone receptor 1 (MCHR1), one of the G protein-coupled receptors regulating emotion and energy metabolism, is abnormally deregulated in SSc. Platelet-derived growth factor (PDGF)-BB stimulation upregulated MCHR1 mRNA and protein levels in normal human dermal fibroblasts (NHDF), and MCHR1 silencing prevented the PDGF-BB-induced expression of the profibrotic factors transforming growth factor beta 1 (TGFβ1) and connective tissue growth factor (CTGF). PDGF-BB bound MCHR1 in membrane fractions of NHDF, and the binding was confirmed using surface plasmon resonance (SPR). MCHR1 inhibition blocked PDGF-BB modulation of intracellular cyclic adenosine monophosphate (cAMP). MCHR1 silencing in NHDF reduced PDGF-BB signaling. In summary, MCHR1 promoted the fibrotic response in NHDF through modulation of TGFβ1 and CTGF production, intracellular cAMP levels, and PDGF-BB-induced signaling pathways, suggesting that MCHR1 plays an important role in mediating the response to PDGF-BB and in the pathogenesis of SSc. Inhibition of MCHR1 should be considered as a novel therapeutic strategy in SSc-associated fibrosis.
Collapse
Affiliation(s)
- Naoko Takamura
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Ludivine Renaud
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Willian Abraham da Silveira
- Department of Biological Sciences, School of Life Sciences and Education, Staffordshire University, Stoke-on-Trent, United Kingdom
| | - Carol Feghali-Bostwick
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
8
|
Al-Massadi O, Dieguez C, Schneeberger M, López M, Schwaninger M, Prevot V, Nogueiras R. Multifaceted actions of melanin-concentrating hormone on mammalian energy homeostasis. Nat Rev Endocrinol 2021; 17:745-755. [PMID: 34608277 DOI: 10.1038/s41574-021-00559-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
Melanin-concentrating hormone (MCH) is a small cyclic peptide expressed in all mammals, mainly in the hypothalamus. MCH acts as a robust integrator of several physiological functions and has crucial roles in the regulation of sleep-wake rhythms, feeding behaviour and metabolism. MCH signalling has a very broad endocrine context and is involved in physiological functions and emotional states associated with metabolism, such as reproduction, anxiety, depression, sleep and circadian rhythms. MCH mediates its functions through two receptors (MCHR1 and MCHR2), of which only MCHR1 is common to all mammals. Owing to the wide variety of MCH downstream signalling pathways, MCHR1 agonists and antagonists have great potential as tools for the directed management of energy balance disorders and associated metabolic complications, and translational strategies using these compounds hold promise for the development of novel treatments for obesity. This Review provides an overview of the numerous roles of MCH in energy and glucose homeostasis, as well as in regulation of the mesolimbic dopaminergic circuits that encode the hedonic component of food intake.
Collapse
Affiliation(s)
- Omar Al-Massadi
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain.
| | - Carlos Dieguez
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Marc Schneeberger
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Miguel López
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Laboratory of Development and Plasticity of the Neuroendocrine Brain, UMR-S1172, EGID, Lille, France
| | - Ruben Nogueiras
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain.
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.
- Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain.
| |
Collapse
|
9
|
Neural Contributions of the Hypothalamus to Parental Behaviour. Int J Mol Sci 2021; 22:ijms22136998. [PMID: 34209728 PMCID: PMC8268030 DOI: 10.3390/ijms22136998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
Parental behaviour is a comprehensive set of neural responses to social cues. The neural circuits that govern parental behaviour reside in several putative nuclei in the brain. Melanin concentrating hormone (MCH), a neuromodulator that integrates physiological functions, has been confirmed to be involved in parental behaviour, particularly in crouching behaviour during nursing. Abolishing MCH neurons in innate MCH knockout males promotes infanticide in virgin male mice. To understand the mechanism and function of neural networks underlying parental care and aggression against pups, it is essential to understand the basic organisation and function of the involved nuclei. This review presents newly discovered aspects of neural circuits within the hypothalamus that regulate parental behaviours.
Collapse
|
10
|
Quante M, Iske J, Heinbokel T, Desai BN, Cetina Biefer HR, Nian Y, Krenzien F, Matsunaga T, Uehara H, Maenosono R, Azuma H, Pratschke J, Falk CS, Lo T, Sheu E, Tavakkoli A, Abdi R, Perkins D, Alegre ML, Banks AS, Zhou H, Elkhal A, Tullius SG. Restored TDCA and valine levels imitate the effects of bariatric surgery. eLife 2021; 10:e62928. [PMID: 34155969 PMCID: PMC8257250 DOI: 10.7554/elife.62928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background Obesity is widespread and linked to various co-morbidities. Bariatric surgery has been identified as the only effective treatment, promoting sustained weight loss and the remission of co-morbidities. Methods Metabolic profiling was performed on diet-induced obese (DIO) mice, lean mice, and DIO mice that underwent sleeve gastrectomies (SGx). In addition, mice were subjected to intraperitoneal (i.p.) injections with taurodeoxycholic acid (TDCA) and valine. Indirect calorimetry was performed to assess food intake and energy expenditure. Expression of appetite-regulating hormones was assessed through quantification of isolated RNA from dissected hypothalamus tissue. Subsequently, i.p. injections with a melanin-concentrating hormone (MCH) antagonist and intrathecal administration of MCH were performed and weight loss was monitored. Results Mass spectrometric metabolomic profiling revealed significantly reduced systemic levels of TDCA and L-valine in DIO mice. TDCA and L-valine levels were restored after SGx in both human and mice to levels comparable with lean controls. Systemic treatment with TDCA and valine induced a profound weight loss analogous to effects observed after SGx. Utilizing indirect calorimetry, we confirmed reduced food intake as causal for TDCA/valine-mediated weight loss via a central inhibition of the MCH. Conclusions In summary, we identified restored TDCA/valine levels as an underlying mechanism of SGx-derived effects on weight loss. Of translational relevance, TDCA and L-valine are presented as novel agents promoting weight loss while reversing obesity-associated metabolic disorders. Funding This work has been supported in part by a grant from NIH (UO-1 A1 132898 to S.G.T., DP and MA). M.Q. was supported by the IFB Integrated Research and Treatment Centre Adiposity Diseases (Leipzig, Germany) and the German Research Foundation (QU 420/1-1). J.I. was supported by the Biomedical Education Program (BMEP) of the German Academic Exchange Service (DAAD). T.H. (HE 7457/1-1) and F.K. (KR 4362/1-1) were supported by the German Research Foundation (DFG). H.R.C.B. was supported the Swiss Society of Cardiac Surgery. Y.N. was supported by the Chinese Scholarship Council (201606370196) and Central South University. H.U., T.M. and R.M. were supported by the Osaka Medical Foundation. C.S.F. was supported by the German Research Foundation (DFG, SFB738, B3).
Collapse
Affiliation(s)
- Markus Quante
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
- Department of General, Visceral and Transplant Surgery, University Hospital TübingenTübingenGermany
| | - Jasper Iske
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
- Institute of Transplant Immunology, Hannover Medical SchoolHannover, Lower SaxonyGermany
| | - Timm Heinbokel
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
- Department of Pathology, Charité Universitätsmedizin BerlinBerlinGermany
| | - Bhavna N Desai
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical CenterBostonUnited States
| | - Hector Rodriguez Cetina Biefer
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
- Department of Cardiovascular Surgery, Charité Universitätsmedizin BerlinBerlinGermany
| | - Yeqi Nian
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
- Department of Urology, The Second Xiangya Hospital, Central South UniversityChangshaChina
| | - Felix Krenzien
- Department of Visceral, Abdominal and Transplantation Surgery, Charité Universitätsmedizin BerlinBerlinGermany
| | - Tomohisa Matsunaga
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
- Department of Urology, Faculty of Medicine, Osaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Hirofumi Uehara
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
- Department of Urology, Faculty of Medicine, Osaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Ryoichi Maenosono
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
- Department of Urology, Faculty of Medicine, Osaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Haruhito Azuma
- Department of Urology, Faculty of Medicine, Osaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Johann Pratschke
- Department of Visceral, Abdominal and Transplantation Surgery, Charité Universitätsmedizin BerlinBerlinGermany
| | - Christine S Falk
- Institute of Transplant Immunology, Hannover Medical SchoolHannover, Lower SaxonyGermany
| | - Tammy Lo
- Division of Gastrointestinal and General Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Eric Sheu
- Division of Gastrointestinal and General Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Ali Tavakkoli
- Division of Gastrointestinal and General Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Reza Abdi
- Renal Division, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - David Perkins
- Division of Nephrology, Department of Medicine, University of Illinois at ChicagoChicagoUnited States
| | - Maria-Luisa Alegre
- Department of Medicine, Section of Rheumatology, The University of ChicagoChicagoUnited States
| | - Alexander S Banks
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical CenterBostonUnited States
| | - Hao Zhou
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Abdallah Elkhal
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Stefan G Tullius
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
11
|
Izawa S, Yoneshiro T, Kondoh K, Nakagiri S, Okamatsu-Ogura Y, Terao A, Minokoshi Y, Yamanaka A, Kimura K. Melanin-concentrating hormone-producing neurons in the hypothalamus regulate brown adipose tissue and thus contribute to energy expenditure. J Physiol 2021; 600:815-827. [PMID: 33899241 DOI: 10.1113/jp281241] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/20/2021] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Melanin-concentrating hormone (MCH) neuron-ablated mice exhibit increased energy expenditure and reduced fat weight. Increased brown adipose tissue (BAT) activity and locomotor activity-independent energy expenditure contributed to body weight reduction in MCH neuron-ablated mice. MCH neurons send inhibitory input to the medullary raphe nucleus to modulate BAT activity. ABSTRACT Hypothalamic melanin-concentrating hormone (MCH) peptide robustly affects energy homeostasis. However, it is unclear whether and how MCH-producing neurons, which contain and release a variety of neuropeptides/transmitters, regulate energy expenditure in the central nervous system and peripheral tissues. We thus examined the regulation of energy expenditure by MCH neurons, focusing on interscapular brown adipose tissue (BAT) activity. MCH neuron-ablated mice exhibited reduced body weight, increased oxygen consumption, and increased BAT activity, which improved locomotor activity-independent energy expenditure. Trans-neuronal retrograde tracing with the recombinant pseudorabies virus revealed that MCH neurons innervate BAT via the sympathetic premotor region in the medullary raphe nucleus (MRN). MRN neurons were activated by MCH neuron ablation. Therefore, endogenous MCH neuron activity negatively modulates energy expenditure via BAT inhibition. MRN neurons might receive inhibitory input from MCH neurons to suppress BAT activity.
Collapse
Affiliation(s)
- Shuntaro Izawa
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.,Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.,JSPS Research Fellowship for Young Scientists, Tokyo, 102-0083, Japan
| | - Takeshi Yoneshiro
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.,Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Kunio Kondoh
- Division of Endocrinology and Metabolism, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Shohei Nakagiri
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Akira Terao
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.,Department of Biology, School of Biological Sciences, Tokai University, Sapporo, 005-8601, Japan
| | - Yasuhiko Minokoshi
- Division of Endocrinology and Metabolism, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Kazuhiro Kimura
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| |
Collapse
|
12
|
Libowitz MR, Nurmi EL. The Burden of Antipsychotic-Induced Weight Gain and Metabolic Syndrome in Children. Front Psychiatry 2021; 12:623681. [PMID: 33776816 PMCID: PMC7994286 DOI: 10.3389/fpsyt.2021.623681] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Antipsychotic medications are critical to child and adolescent psychiatry, from the stabilization of psychotic disorders like schizophrenia, bipolar disorder, and psychotic depression to behavioral treatment of autism spectrum disorder, tic disorders, and pediatric aggression. While effective, these medications carry serious risk of adverse events-most commonly, weight gain and cardiometabolic abnormalities. Negative metabolic consequences affect up to 60% of patients and present a major obstacle to long-term treatment. Since antipsychotics are often chronically prescribed beginning in childhood, cardiometabolic risk accumulates. An increased susceptibility to antipsychotic-induced weight gain (AIWG) has been repeatedly documented in children, particularly rapid weight gain. Associated cardiometabolic abnormalities include central obesity, insulin resistance, dyslipidemia, and systemic inflammation. Lifestyle interventions and medications such as metformin have been proposed to reduce risk but remain limited in efficacy. Furthermore, antipsychotic medications touted to be weight-neutral in adults can cause substantial weight gain in children. A better understanding of the biological underpinnings of AIWG could inform targeted and potentially more fruitful treatments; however, little is known about the underlying mechanism. As yet, modest genetic studies have nominated a few risk genes that explain only a small percentage of the risk. Recent investigations have begun to explore novel potential mechanisms of AIWG, including a role for gut microbiota and microbial metabolites. This article reviews the problem of AIWG and AP metabolic side effects in pediatric populations, proposed mechanisms underlying this serious side effect, and strategies to mitigate adverse impact. We suggest future directions for research efforts that may advance the field and lead to improved clinical interventions.
Collapse
Affiliation(s)
| | - Erika L. Nurmi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
13
|
Lord MN, Subramanian K, Kanoski SE, Noble EE. Melanin-concentrating hormone and food intake control: Sites of action, peptide interactions, and appetition. Peptides 2021; 137:170476. [PMID: 33370567 PMCID: PMC8025943 DOI: 10.1016/j.peptides.2020.170476] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
Given the increased prevalence of obesity and its associated comorbidities, understanding the mechanisms through which the brain regulates energy balance is of critical importance. The neuropeptide melanin-concentrating hormone (MCH) is produced in the lateral hypothalamic area and the adjacent incerto-hypothalamic area and promotes both food intake and energy conservation, overall contributing to body weight gain. Decades of research into this system has provided insight into the neural pathways and mechanisms (behavioral and neurobiological) through which MCH stimulates food intake. Recent technological advancements that allow for selective manipulation of MCH neuron activity have elucidated novel mechanisms of action for the hyperphagic effects of MCH, implicating neural "volume" transmission in the cerebrospinal fluid and sex-specific effects of MCH on food intake control as understudied areas for future investigation. Highlighted here are historical and recent findings that illuminate the neurobiological mechanisms through which MCH promotes food intake, including the identification of various specific neural signaling pathways and interactions with other peptide systems. We conclude with a framework that the hyperphagic effects of MCH signaling are predominantly mediated through enhancement of an "appetition" process in which early postoral prandial signals promote further caloric consumption.
Collapse
Affiliation(s)
- Magen N Lord
- Department of Foods and Nutrition, University of Georgia, Athens, GA 30606, USA
| | - Keshav Subramanian
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Scott E Kanoski
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA; Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Emily E Noble
- Department of Foods and Nutrition, University of Georgia, Athens, GA 30606, USA.
| |
Collapse
|
14
|
Li X, Wang H. Multiple organs involved in the pathogenesis of non-alcoholic fatty liver disease. Cell Biosci 2020; 10:140. [PMID: 33372630 PMCID: PMC7720519 DOI: 10.1186/s13578-020-00507-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/27/2020] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents the leading cause of chronic liver disease worldwide and the anticipated health burden is huge. There are limited therapeutic approaches for NAFLD now. It’s imperative to get a better understanding of the disease pathogenesis if new treatments are to be discovered. As the hepatic manifestation of metabolic syndrome, this disease involves complex interactions between different organs and regulatory pathways. It’s increasingly clear that brain, gut and adipose tissue all contribute to NAFLD pathogenesis and development, in view of their roles in energy homeostasis. In the present review, we try to summarize currently available data regarding NAFLD pathogenesis and to lay a particular emphasis on the inter-organ crosstalk evidence.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China. .,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, China.
| |
Collapse
|
15
|
Neuschwander-Tetri BA. Therapeutic Landscape for NAFLD in 2020. Gastroenterology 2020; 158:1984-1998.e3. [PMID: 32061596 DOI: 10.1053/j.gastro.2020.01.051] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Lifestyle modifications focused on healthy eating and regular exercise are the primary recommendations for patients with nonalcoholic steatohepatitis (NASH). However, for multiple societal, psychological, physical, genetic, and epigenetic reasons, the ability of people to adopt and sustain such changes is challenging and typically not successful. To end the epidemic of NASH and prevent its complications, including cirrhosis and hepatocellular carcinoma, pharmacological interventions are now being evaluated in clinical trials. Treatments include drugs targeting energy intake, energy disposal, lipotoxic liver injury, and the resulting inflammation and fibrogenesis that lead to cirrhosis. It is likely that patients develop the phenotype of NASH by multiple mechanisms, and thus the optimal treatments of NASH will likely evolve to personalized therapy once we understand the mechanistic underpinnings of NASH in each patient. Reviewed here is the treatment landscape in this rapidly evolving field with an emphasis on drugs in Phase 2 and Phase 3 trials.
Collapse
|
16
|
Helal MA, Chittiboyina AG, Avery MA. Identification of a new small molecule chemotype of Melanin Concentrating Hormone Receptor-1 antagonists using pharmacophore-based virtual screening. Bioorg Med Chem Lett 2019; 29:126741. [PMID: 31678007 DOI: 10.1016/j.bmcl.2019.126741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 10/25/2022]
Abstract
MCH receptor is a G protein-coupled receptor with two subtypes R1 and R2. Many studies have demonstrated the role of MCH-R1 in feeding and energy homeostasis. It has been proven that oral administration of small molecule MCH-R1 antagonists significantly reduces food intake and causes a dose-dependent weight loss. In this study, two ligand-based pharmacophores were developed and validated based on recently published MCH-R1 antagonists with diverse structures. Successful pharmacophores had one hydrogen bond acceptor, one positive ionizable, one ring aromatic and two or three hydrophobic groups. These 3D-QSAR models were used for virtual screening of the ZINC chemical database resulting in the identification of nine compounds with more than 50% displacement of radiolabeled MCH at a 20 μM concentration. Moreover, four of these compounds showed antagonistic activities in Aequorin functional assay, including MH-3 which is the first MCH-R1 antagonist based on a diazaspiro[4.5]decane scaffold. The most active compounds were also docked into our previously published MCH-R1 homology model to gain insights into their binding determinants. These compounds could represent a viable starting scaffold for the design of potent MCH-R1 antagonists with improved pharmacokinetic properties as an effective treatment for obesity.
Collapse
Affiliation(s)
- Mohamed A Helal
- University of Science and Technology, Biomedical Sciences Program, Zewail City of Science and Technology, October Gardens, 6th of October, Giza 12578, Egypt; Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| | - Amar G Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, United States
| | - Mitchell A Avery
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States
| |
Collapse
|
17
|
Philippe C, Zeilinger M, Dumanic M, Pichler F, Fetty L, Vraka C, Balber T, Wadsak W, Pallitsch K, Spreitzer H, Lanzenberger R, Hacker M, Mitterhauser M. SNAPshots of the MCHR1: a Comparison Between the PET-Tracers [ 18F]FE@SNAP and [ 11C]SNAP-7941. Mol Imaging Biol 2019; 21:257-268. [PMID: 29948643 PMCID: PMC6449294 DOI: 10.1007/s11307-018-1212-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE The melanin-concentrating hormone receptor 1 (MCHR1) has become an important pharmacological target, since it may be involved in various diseases, such as diabetes, insulin resistance, and obesity. Hence, a suitable positron emission tomography radiotracer for the in vivo assessment of the MCHR1 pharmacology is imperative. The current paper contrasts the extensive in vitro, in vivo, and ex vivo assessments of the radiotracers [18F]FE@SNAP and [11C]SNAP-7941 and provides comprehensive information about their biological and physicochemical properties. Furthermore, it examines their suitability for first-in-man imaging studies. PROCEDURES Kinetic real-time cell-binding studies with [18F]FE@SNAP and [11C]SNAP-7941 were conducted on adherent Chines hamster ovary (CHO-K1) cells stably expressing the human MCHR1 and MCHR2. Small animal imaging studies on mice and rats were performed under displacement and baseline conditions, as well as after pretreatment with the P-glycoprotein/breast cancer resistant protein inhibitor tariquidar. After the imaging studies, detailed analyses of the ex vivo biodistribution were performed. Ex vivo metabolism was determined in rat blood and brain and analyzed at various time points using a quantitative radio-HPLC assay. RESULTS [11C]SNAP-7941 demonstrates high uptake on CHO-K1-hMCHR1 cells, whereas no uptake was detected for the CHO-K1-hMCHR2 cells. In contrast, [18F]FE@SNAP evinced binding to CHO-K1-hMCHR1 and CHO-K1-hMCHR2 cells. Imaging studies with [18F]FE@SNAP and [11C]SNAP-7941 showed an increased brain uptake after tariquidar pretreatment in mice, as well as in rats, and exhibited a significant difference between the time-activity curves of the baseline and blocking groups. Biodistribution of both tracers demonstrated a decreased uptake after displacement. [11C]SNAP-7941 revealed a high metabolic stability in rats, whereas [18F]FE@SNAP was rapidly metabolized. CONCLUSIONS Both radiotracers demonstrate appropriate imaging properties for the MCHR1. However, the pronounced metabolic stability as well as superior selectivity and affinity of [11C]SNAP-7941 underlines the decisive superiority over [18F]FE@SNAP.
Collapse
Affiliation(s)
- Cécile Philippe
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Markus Zeilinger
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Faculty of Engineering, University of Applied Sciences Wiener Neustadt, Neustadt, Austria
| | - Monika Dumanic
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Florian Pichler
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Faculty of Engineering, University of Applied Sciences Wiener Neustadt, Neustadt, Austria
| | - Lukas Fetty
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Radiotherapy, Division of Medical Physics, Medical University of Vienna, Vienna, Austria
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Theresa Balber
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Inorganic Chemistry, University of Vienna, Vienna, Austria
- CBmed, Graz, Austria
| | | | - Helmut Spreitzer
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.
| |
Collapse
|
18
|
Insulin-Sensitizer Effects of Fenugreek Seeds in Parallel with Changes in Plasma MCH Levels in Healthy Volunteers. Int J Mol Sci 2018. [PMID: 29518003 PMCID: PMC5877632 DOI: 10.3390/ijms19030771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In developed, developing and low-income countries alike, type 2 diabetes mellitus (T2DM) is one of the most common chronic diseases, the severity of which is substantially a consequence of multiple organ complications that occur due to long-term progression of the disease before diagnosis and treatment. Despite enormous investment into the characterization of the disease, its long-term management remains problematic, with those afflicted enduring significant degradation in quality-of-life. Current research efforts into the etiology and pathogenesis of T2DM, are focused on defining aberrations in cellular physiology that result in development of insulin resistance and strategies for increasing insulin sensitivity, along with downstream effects on T2DM pathogenesis. Ongoing use of plant-derived naturally occurring materials to delay the onset of the disease or alleviate symptoms is viewed by clinicians as particularly desirable due to well-established efficacy and minimal toxicity of such preparations, along with generally lower per-patient costs, in comparison to many modern pharmaceuticals. A particularly attractive candidate in this respect, is fenugreek, a plant that has been used as a flavouring in human diet through recorded history. The present study assessed the insulin-sensitizing effect of fenugreek seeds in a cohort of human volunteers, and tested a hypothesis that melanin-concentrating hormone (MCH) acts as a critical determinant of this effect. A test of the hypothesis was undertaken using a hyperinsulinemic euglycemic glucose clamp approach to assess insulin sensitivity in response to oral administration of a fenugreek seed preparation to healthy subjects. Outcomes of these evaluations demonstrated significant improvement in glucose tolerance, especially in patients with impaired glucose responses. Outcome data further suggested that fenugreek seed intake-mediated improvement in insulin sensitivity correlated with reduction in MCH levels.
Collapse
|
19
|
Equihua-Benítez AC, Guzmán-Vásquez K, Drucker-Colín R. Understanding sleep-wake mechanisms and drug discovery. Expert Opin Drug Discov 2017; 12:643-657. [PMID: 28511597 DOI: 10.1080/17460441.2017.1329818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Although not discernible at first glance, sleep is a highly active and regulated brain state. Although we spend practically one third of our lifetimes in this stage, its importance is often taken for granted. Sleep loss can lead to disease, error and economic loss. Our understanding of how sleep is achieved has greatly advanced in recent years, and with that, the management of sleep disorders has improved. There is still room for improvement and recently many new compounds have reached clinical trials with a few being approved for commercial use. Areas covered: In this review, the authors make the case of sleep disorders as a matter of public health. The mechanisms of sleep transition are discussed emphasizing the wake and sleep promoting interaction of different brain regions. Finally, advances in pharmacotherapy are examined in the context of chronic insomnia and narcolepsy. Expert opinion: The orexinergic system is an example of a breakthrough in sleep medicine that has catalyzed drug development. Nevertheless, sleep is a topic still with many unanswered questions. That being said, the melanin-concentrating hormone system is becoming increasingly relevant and we speculate it will be the next target of sleep medication.
Collapse
Affiliation(s)
- Ana Clementina Equihua-Benítez
- a Departamento de Neuropatología Molecular , Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Ciudad de México , México
| | - Khalil Guzmán-Vásquez
- a Departamento de Neuropatología Molecular , Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Ciudad de México , México
| | - René Drucker-Colín
- a Departamento de Neuropatología Molecular , Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Ciudad de México , México
| |
Collapse
|