1
|
Jayasuriya R, Ganesan K, Ramkumar KM. Mangiferin Represses Inflammation in Macrophages Under a Hyperglycemic Environment Through Nrf2 Signaling. Int J Mol Sci 2024; 25:11197. [PMID: 39456979 PMCID: PMC11508804 DOI: 10.3390/ijms252011197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Inflammation in macrophages is exacerbated under hyperglycemic conditions, contributing to chronic inflammation and impaired wound healing in diabetes. This study investigates the potential of mangiferin, a natural polyphenol, to alleviate this inflammatory response by targeting a redox-sensitive transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2). Mangiferin, a known Nrf2 activator, was evaluated for its ability to counteract the hyperglycemia-induced inhibition of Nrf2 and enhance antioxidant defenses. The protective effects of mangiferin on macrophages in a hyperglycemic environment were assessed by examining the expression of Nrf2, NF-κB, NLRP3, HO-1, CAT, COX-2, IL-6, and IL-10 through gene and protein expression analyses using qPCR and immunoblotting, respectively. The mangiferin-mediated nuclear translocation of Nrf2 was evidenced, leading to a robust antioxidant response in macrophages exposed to a hyperglycemic microenvironment. This activation suppressed NF-κB signaling, reducing the expression of pro-inflammatory mediators such as COX-2 and IL-6. Additionally, mangiferin decreased NLRP3 inflammasome activation and reactive oxygen species accumulation in hyperglycemia exposed macrophages. Our findings revealed that mangiferin alleviated hyperglycemia-induced reductions in AKT phosphorylation, highlighting its potential role in modulating key signaling pathways. Furthermore, mangiferin significantly enhanced the invasiveness and migration of macrophages in a hyperglycemic environment, indicating its potential to improve wound healing. In conclusion, this study suggests that mangiferin may offer a promising therapeutic approach for managing inflammation and promoting wound healing in diabetic patients by regulating Nrf2 activity in hyperglycemia-induced macrophages.
Collapse
Affiliation(s)
- Ravichandran Jayasuriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India;
| | - Kumar Ganesan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong 999077, China;
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India;
| |
Collapse
|
2
|
Alla N, Palatheeya S, Challa SR, Kakarla R. Morin attenuated the global cerebral ischemia via antioxidant, anti-inflammatory, and antiapoptotic mechanisms in rats. Metab Brain Dis 2024; 39:1323-1334. [PMID: 39136806 DOI: 10.1007/s11011-024-01410-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/07/2024] [Indexed: 10/29/2024]
Abstract
Global cerebral ischemia is one of the major causes of memory and cognitive impairment. Hyperactivation of acetylcholine esterase (AChE), oxidative stress, and inflammation are reported to cause memory and cognitive impairment in global cerebral ischemia. Morin, a flavonoid, is reported to have neuroprotective properties through its antioxidant and anti-inflammatory in multiple neurological diseases. However, its neuroprotective effects and memory and cognition enhancement have not yet been investigated. In the present study, we have determined the memory and cognition, and neuroprotective activity of Morin in bilateral common carotid artery occlusion and reperfusion (BCCAO/R) in Wistar rats. We found that Morin treatment significantly improved motor performance like grip strength and rotarod. Further, Morin improved memory and cognition in BCCAO rats by decreasing the AchE enzyme activity and enhancing the acetylcholine (Ach) levels. Additionally, Morin exhibited neuroprotection by ameliorating oxidative stress, neuroinflammation, and apoptosis in BCCAO rats. These findings confirm that Morin could enhance memory and cognition by ameliorating AchE activity, oxidative stress, neuroinflammation, and apoptosis in global cerebral ischemia. Therefore, Morin could be a promising neuroprotective and memory enhancer against global cerebral ischemic injury.
Collapse
Affiliation(s)
- Narayanarao Alla
- Department of Pharmacy, Krishna University, Machilipatnam, Andhra Pradesh, India.
- Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India.
| | - Sujatha Palatheeya
- Department of Pharmacy, Krishna University, Machilipatnam, Andhra Pradesh, India
- Department of Pharmacy, University College of Pharmaceutical Sciences, Palamuru University, Mahabubnagar, Telngana, India
| | - Siva Reddy Challa
- Department of Pharmacy, Krishna University, Machilipatnam, Andhra Pradesh, India
- Department of Pharmacology, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, Andhra Pradesh, India
| | - Ramakrishna Kakarla
- Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
| |
Collapse
|
3
|
Harithpriya K, Ganesan K, Ramkumar KM. Pterostilbene Reverses Epigenetic Silencing of Nrf2 and Enhances Antioxidant Response in Endothelial Cells in Hyperglycemic Microenvironment. Nutrients 2024; 16:2045. [PMID: 38999793 PMCID: PMC11242982 DOI: 10.3390/nu16132045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
The epigenetic regulation of nuclear factor erythroid 2-related factor 2 (Nrf2), a pivotal redox transcription factor, plays a crucial role in maintaining cellular homeostasis. Recent research has underscored the significance of epigenetic modifications of Nrf2 in the pathogenesis of diabetic foot ulcers (DFUs). This study investigates the epigenetic reversal of Nrf2 by pterostilbene (PTS) in human endothelial cells in a hyperglycemic microenvironment (HGM). The activation potential of PTS on Nrf2 was evaluated through ARE-Luciferase reporter assays and nuclear translocation studies. Following 72 h of exposure to an HGM, mRNA expression and protein levels of Nrf2 and its downstream targets NAD(P)H quinone oxidoreductase 1 (NQO1), heme-oxygenase 1(HO-1), superoxide dismutase (SOD), and catalase (CAT) exhibited a decrease, which was mitigated in PTS-pretreated endothelial cells. Epigenetic markers, including histone deacetylases (HDACs class I-IV) and DNA methyltransferases (DNMTs 1/3A and 3B), were found to be downregulated under diabetic conditions. Specifically, Nrf2-associated HDACs, including HDAC1, HDAC2, HDAC3, and HDAC4, were upregulated in HGM-induced endothelial cells. This upregulation was reversed in PTS-pretreated cells, except for HDAC2, which exhibited elevated expression in endothelial cells treated with PTS in a hyperglycemic microenvironment. Additionally, PTS was observed to reverse the activity of the methyltransferase enzyme DNMT. Furthermore, CpG islands in the Nrf2 promoter were hypermethylated in cells exposed to an HGM, a phenomenon potentially counteracted by PTS pretreatment, as shown by methyl-sensitive restriction enzyme PCR (MSRE-qPCR) analysis. Collectively, our findings highlight the ability of PTS to epigenetically regulate Nrf2 expression under hyperglycemic conditions, suggesting its therapeutic potential in managing diabetic complications.
Collapse
Affiliation(s)
- Kannan Harithpriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India;
| | - Kumar Ganesan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong 999077, China
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India;
| |
Collapse
|
4
|
Sharma V, Arora A, Bansal S, Semwal A, Sharma M, Aggarwal A. Role of bio-flavonols and their derivatives in improving mitochondrial dysfunctions associated with pancreatic tumorigenesis. Cell Biochem Funct 2024; 42:e3920. [PMID: 38269510 DOI: 10.1002/cbf.3920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/30/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024]
Abstract
Mitochondria, a cellular metabolic center, efficiently fulfill cellular energy needs and regulate crucial metabolic processes, including cellular proliferation, differentiation, apoptosis, and generation of reactive oxygen species. Alteration in the mitochondrial functions leads to metabolic imbalances and altered extracellular matrix dynamics in the host, utilized by solid tumors like pancreatic cancer (PC) to get energy benefits for fast-growing cancer cells. PC is highly heterogeneous and remains unidentified for a longer time because of its complex pathophysiology, retroperitoneal position, and lack of efficient diagnostic approaches, which is the foremost reason for accounting for the seventh leading cause of cancer-related deaths worldwide. PC cells often respond poorly to current therapeutics because of dense stromal barriers in the pancreatic tumor microenvironment, which limit the drug delivery and distribution of antitumor immune cell populations. As an alternative approach, various natural compounds like flavonoids are reported to possess potent antioxidant and anticancerous properties and are less toxic than current chemotherapeutic drugs. Therefore, we aim to summarize the current state of knowledge regarding the pharmacological properties of flavonols in PC in this review from the perspective of mitigating mitochondrial dysfunctions associated with cancer cells. Our literature survey indicates that flavonols efficiently regulate cellular metabolism by scavenging reactive oxygen species, mitigating inflammation, and arresting the cell cycle to promote apoptosis in tumor cells via intrinsic mitochondrial pathways. In particular, flavonols proficiently inhibit the cancer-associated proliferation and inflammatory pathways such as EGFR/MAPK, PI3K/Akt, and nuclear factor κB in PC. Overall, this review provides in-depth evidence about the therapeutic potential of flavonols for future anticancer strategies against PC; still, more multidisciplinary human interventional studies are required to dissect their pharmacological effect accurately.
Collapse
Affiliation(s)
- Vinit Sharma
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ankita Arora
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sakshi Bansal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ankita Semwal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Mayank Sharma
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anjali Aggarwal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
5
|
Kanner J. Food Polyphenols as Preventive Medicine. Antioxidants (Basel) 2023; 12:2103. [PMID: 38136222 PMCID: PMC10740609 DOI: 10.3390/antiox12122103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Reactive oxygen species (ROS) are the initiators in foods and in the stomach of oxidized dietary lipids, proteins, and lipid-oxidation end-products (ALEs), inducing in humans the development of several chronic diseases and cancer. Epidemiological, human clinical and animal studies supported the role of dietary polyphenols and derivatives in prevention of development of such chronic diseases. There is much evidence that polyphenols/derivatives at the right timing and concentration, which is critical, acts mostly in the aerobic stomach and generally in the gastrointestinal tract as reducing agents, scavengers of free radicals, trappers of reactive carbonyls, modulators of enzyme activity, generators of beneficial gut microbiota and effectors of cellular signaling. In the blood system, at low concentration, they act as generators of electrophiles and low concentration of H2O2, acting mostly as cellular signaling, activating the PI3K/Akt-mediated Nrf2/eNOS pathways and inhibiting the inflammatory transcription factor NF-κB, inducing the cells, organs and organism for eustress, adaptation and surviving.
Collapse
Affiliation(s)
- Joseph Kanner
- Department of Food Science, ARO, Volcani Center, Bet-Dagan 7505101, Israel; or
- Institute of Biochemistry, Food Science and Nutrtion, Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot 9190501, Israel
| |
Collapse
|
6
|
Ren X, Guo Q, Jiang H, Han X, He X, Liu H, Xiu Z, Dong Y. Combinational application of the natural products 1-deoxynojirimycin and morin ameliorates insulin resistance and lipid accumulation in prediabetic mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155106. [PMID: 37797432 DOI: 10.1016/j.phymed.2023.155106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Prediabetes, a stage characterized by chronic inflammation, obesity and insulin resistance. Morin and 1-deoxynojirimycin (DNJ) are natural flavonoids and alkaloids extracted from Morus nigra L., exhibiting anti-hyperglycemic efficacy. However, the benefits of DNJ are shadowed by the adverse events, and the mechanism of morin in anti-diabetes remains under investigation. PURPOSE In this study, the combinational efficacy and mechanisms of DNJ and morin in ameliorating insulin resistance and pre-diabetes were investigated. METHODS The mice model with prediabetes and Alpha mouse liver-12 (AML-12) cell model with insulin resistance were established. The anti-prediabetic efficacy of the drug combination was determined via analyzing the blood glucose, lipid profiles and inflammatory factors. The application of network pharmacology provided guidance for the research mechanism. RESULTS In our study, the intervention of morin ameliorated the insulin resistance via activating the Peroxisome proliferator-activated receptor γ (PPARγ). However, PPARγ activation leaded to the lipid accumulation in prediabetic mice. The combination of 5 mg/kg dose of DNJ and 25 mg/kg morin effectively hindered the progression of T2DM by 87.56%, which was achieved via inhibition of Suppressors of cytokine signaling 3 (SOCS3) and promotion of PPARγ as well as SOCS2 expression. Furthermore, this treatment exhibited notable capabilities in combating dyslipidemia and adipogenesis, achieved by suppressing the Cluster of differentiation 36/ Sterol-regulatory element binding proteins-1/ Fatty acid synthetase (CD36/Serbp1/Fas) signaling. CONCLUSION This research confirmed that the drug combination of DNJ and morin in ameliorating insulin resistance and lipid accumulation, and revealed the potential mechanisms. In summary, the combination of DNJ and morin is an underlying alternative pharmaceutical composition in T2DM prevention.
Collapse
Affiliation(s)
- Xinxiu Ren
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Qinfeng Guo
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Hui Jiang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Xiao Han
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Xiaoshi He
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Haodong Liu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Zhilong Xiu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Yuesheng Dong
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
7
|
Altyar AE, Kensara OA, Sayed AA, Aleya L, Almutairi MH, Zaazouee MS, Elshanbary AA, El-Demerdash FM, Abdel-Daim MM. Acute aflatoxin B1-induced hepatic and cardiac oxidative damage in rats: Ameliorative effects of morin. Heliyon 2023; 9:e21837. [PMID: 38027731 PMCID: PMC10663918 DOI: 10.1016/j.heliyon.2023.e21837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Aflatoxins (AFs) are secondary metabolites produced by the fungus Aspergillus flavus, of which Aflatoxin-B1 (AFB1) appears to be the most cancerogenic and of the highest toxicity. AFB1 causes serious effects on several organs including the liver. Morin is a flavonol that exists in many fruits and plants and has diverse biological properties including anticancer, anti-atherosclerotic, antioxidant, anti-inflammatory, immunomodulatory, and multi-organ protective activities. The present study aims to evaluate the potential protective effects of morin against acute AFB1-induced hepatic and cardiac toxicity in rats. Forty rats were divided into five groups (n = 8) as follows: control received the vehicle, morin was orally administered 30/mg/kg body weight (MRN30), the AFB1 was administered orally at a dose of 2.5 mg/kg, twice on days 12 and 14 of the experiment for the 3rd, 4th, and 5th groups., AFB1-MRN15 was orally given morin at a dose of 15 mg/kg body weight, and AFB1-MRN30 orally received morin at 30 mg/kg body weight. The results indicated a significant decrease in serum AST, ALP, LDH, GGT, CK, CK-MB, 8-OHdG, IL-1β, IL-6, TNF-a levels in MRN30 compared to AFB1, and AFB1-MRN15 groups. However, the results indicated non-significant differences in the serum levels between MRN30, control, and AFB1-MRN30 groups. Meanwhile, regarding the hepatic and cardiac parameters, there were significant differences in the levels of MDA, NO, GSH, GSH-Px, SOD, and CAT in MRN30 compared to AFB1, and AFB1-MRN15 groups, overall implying the protective effects of morin. To conclude, morin at a dose of 30 mg/kg b. wt. showed significant enhancements in acute AFB1-induced hepatic and cardiac toxicity in rats, which could play a role in limiting the public health hazards of AFs.
Collapse
Affiliation(s)
- Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
| | - Osama A. Kensara
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 7067, Makkah, 21955, Saudi Arabia
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR, CNRS 6249, Franche-Comté University, CEDEX, F-25030, Besançon, Bourgogne, France
| | - Mikhlid H. Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451, Riyadh, Saudi Arabia
| | | | | | - Fatma M. El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
8
|
Wei B, Zhang X, Qian J, Tang Z, Zhang B. Nrf2: Therapeutic target of islet function protection in diabetes and islet transplantation. Biomed Pharmacother 2023; 167:115463. [PMID: 37703659 DOI: 10.1016/j.biopha.2023.115463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
Nuclear factor-erythroid 2-related factor 2 (Nrf2) has been reported as a major intracellular regulator of antioxidant stress, notably in islet β cells with low antioxidant enzyme content. Nrf2 is capable of regulating antioxidant function, while it can also regulate insulin secretion, proliferation, and differentiation of β cells, ER stress, as well as mitochondrial function. Thus, Nrf2 pharmacological activators have been employed in the laboratory for the treatment of diabetic mice. Islet cells are exposed to oxidative environment when islet is being transplanted. Accordingly, less than 50% of islet cells are well transplanted, and their normal function is maintained. The pharmacological activation of Nrf2 has been confirmed to protect islet cells at different stages of transplantation stages during experiments for islet transplantation.
Collapse
Affiliation(s)
- Butian Wei
- Department of general Surgery, The Fourth affiliated Hospital, Zhejiang university School of Medicine, Yiwu 322000, China
| | - Xin Zhang
- Department of general Surgery, The Fourth affiliated Hospital, Zhejiang university School of Medicine, Yiwu 322000, China
| | - Jiwei Qian
- Department of general Surgery, The Fourth affiliated Hospital, Zhejiang university School of Medicine, Yiwu 322000, China
| | - Zhe Tang
- Department of general Surgery, The Fourth affiliated Hospital, Zhejiang university School of Medicine, Yiwu 322000, China
| | - Bo Zhang
- Department of general Surgery, The Second affiliated Hospital, Zhejiang university School of Medicine, Hangzhou 310000, China.
| |
Collapse
|
9
|
Nakai K, Umehara M, Minamida A, Yamauchi-Sawada H, Sunahara Y, Matoba Y, Okuno-Ozeki N, Nakamura I, Nakata T, Yagi-Tomita A, Uehara-Watanabe N, Ida T, Yamashita N, Kamezaki M, Kirita Y, Konishi E, Yasuda H, Matoba S, Tamagaki K, Kusaba T. Streptozotocin induces renal proximal tubular injury through p53 signaling activation. Sci Rep 2023; 13:8705. [PMID: 37248327 DOI: 10.1038/s41598-023-35850-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/24/2023] [Indexed: 05/31/2023] Open
Abstract
Streptozotocin (STZ), an anti-cancer drug that is primarily used to treat neuroendocrine tumors (NETs) in clinical settings, is incorporated into pancreatic β-cells or proximal tubular epithelial cells through the glucose transporter, GLUT2. However, its cytotoxic effects on kidney cells have been underestimated and the underlying mechanisms remain unclear. We herein demonstrated that DNA damage and subsequent p53 signaling were responsible for the development of STZ-induced tubular epithelial injury. We detected tubular epithelial DNA damage in NET patients treated with STZ. Unbiased transcriptomics of STZ-treated tubular epithelial cells in vitro showed the activation of the p53 signaling pathway. STZ induced DNA damage and activated p53 signaling in vivo in a dose-dependent manner, resulting in reduced membrane transporters. The pharmacological inhibition of p53 and sodium-glucose transporter 2 (SGLT2) mitigated STZ-induced epithelial injury. However, the cytotoxic effects of STZ on pancreatic β-cells were preserved in SGLT2 inhibitor-treated mice. The present results demonstrate the proximal tubular-specific cytotoxicity of STZ and the underlying mechanisms in vivo. Since the cytotoxic effects of STZ against β-cells were not impaired by dapagliflozin, pretreatment with an SGLT2 inhibitor has potential as a preventative remedy for kidney injury in NET patients treated with STZ.
Collapse
Affiliation(s)
- Kunihiro Nakai
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Minato Umehara
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Atsushi Minamida
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hiroko Yamauchi-Sawada
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yasuto Sunahara
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yayoi Matoba
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Natsuko Okuno-Ozeki
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Itaru Nakamura
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tomohiro Nakata
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Aya Yagi-Tomita
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Noriko Uehara-Watanabe
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tomoharu Ida
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Noriyuki Yamashita
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Michitsugu Kamezaki
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yuhei Kirita
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Eiichi Konishi
- Department of Surgical Pathology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroaki Yasuda
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiichi Tamagaki
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tetsuro Kusaba
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
10
|
Wang Z, Cui J, Li D, Ran S, Huang J, Chen G. Morin exhibits a neuroprotective effect in MPTP-induced Parkinson's disease model via TFEB/AMPK-mediated mitophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154866. [PMID: 37209604 DOI: 10.1016/j.phymed.2023.154866] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is one of the most common neurodegenerative diseases in the world. Mitophagy has been implicated in PD etiology for decades and its pharmacological activation is recognized as a promising treatment strategy for PD. For mitophagy initiation, low mitochondrial membrane potential (ΔΨm) is essential. We identified a natural compound morin that could induce mitophagy without affecting ΔΨm. Morin is a flavonoid that can be isolated from fruits like mulberry. PURPOSE To reveal the effect of morin on the PD mice model and their potential underlying molecular mechanism. METHODS Mitophagy process induced by morin in N2a cells meditation were measured using flow cytometry and immunofluorescence. JC-1 fluorescence dye used to detect the mitochondrial membrane potential (ΔΨm). The TFEB nuclear translocation were examined by immunofluorescence staining and western blot assay. The PD mice model was induced by MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) intraperitoneal administration. RESULTS We found that morin also promoted nuclear translocation of the mitophagy regulator TFEB and activated the AMPK-ULK1 pathway. In MPTP-induced PD in vivo models, morin protected DA neurons from MPTP neurotoxicity and ameliorated behavioral deficit. CONCLUSION Although morin was previously reported to be neuroprotective in PD, the detailed molecular mechanisms remain to be elucidated. For the first time, we report morin served as a novel and safe mitophagy enhancer underlying AMPK-ULK1 pathway and exhibited anti-Parkinsonian effects indicating its potential as a clinical drug for PD treatment.
Collapse
Affiliation(s)
- Ziying Wang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Jinshuai Cui
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Dongni Li
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Shuzhen Ran
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Junqing Huang
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Gang Chen
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
11
|
Harithpriya K, Jayasuriya R, Adhikari T, Rai A, Ramkumar KM. Modulation of transcription factors by small molecules in β-cell development and differentiation. Eur J Pharmacol 2023; 946:175606. [PMID: 36809813 DOI: 10.1016/j.ejphar.2023.175606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023]
Abstract
Transcription factors regulate gene expression and play crucial roles in development and differentiation of pancreatic β-cell. The expression and/or activities of these transcription factors are reduced when β-cells are chronically exposed to hyperglycemia, which results in loss of β-cell function. Optimal expression of such transcription factors is required to maintain normal pancreatic development and β-cell function. Over many other methods of regenerating β-cells, using small molecules to activate transcription factors has gained insights, resulting in β-cells regeneration and survival. In this review, we discuss the broad spectrum of transcription factors regulating pancreatic β-cell development, differentiation and regulation of these factors in normal and pathological states. Also, we have presented set of potential pharmacological effects of natural and synthetic compounds on activities of transcription factor involved in pancreatic β-cell regeneration and survival. Exploring these compounds and their action on transcription factors responsible for pancreatic β-cell function and survival could be useful in providing new insights for development of small molecule modulators.
Collapse
Affiliation(s)
- Kannan Harithpriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Ravichandran Jayasuriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Trishla Adhikari
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Awantika Rai
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
12
|
Prasad M K, Mohandas S, Kunka Mohanram R. Role of ferroptosis inhibitors in the management of diabetes. Biofactors 2022; 49:270-296. [PMID: 36468443 DOI: 10.1002/biof.1920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
Ferroptosis, the iron-dependent, lipid peroxide-mediated cell death, has garnered attention due to its critical involvement in crucial physiological and pathological cellular processes. Indeed, several studies have attributed its role in developing a range of disorders, including diabetes. As accumulating evidence further the understanding of ferroptotic mechanisms, the impact this specialized mode of cell death has on diabetic pathogenesis is still unclear. Several in vivo and in vitro studies have highlighted the association of ferroptosis with beta-cell death and insulin resistance, supported by observations of marked alterations in ferroptotic markers in experimental diabetes models. The constant improvement in understanding ferroptosis in diabetes has demonstrated it as a potential therapeutic target in diabetic management. In this regard, ferroptosis inhibitors promise to rescue pancreatic beta-cell function and alleviate diabetes and its complications. This review article elucidates the key ferroptotic pathways that mediate beta-cell death in diabetes, and its complications. In particular, we share our insight into the cross talk between ferroptosis and other hallmark pathogenic mediators such as oxidative and endoplasmic reticulum stress regulators relevant to diabetes progression. Further, we extensively summarize the recent developments on the role of ferroptosis inhibitors and their therapeutic action in alleviating diabetes and its complications.
Collapse
Affiliation(s)
- Krishna Prasad M
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Sundhar Mohandas
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ramkumar Kunka Mohanram
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
13
|
Jayasuriya R, Ramkumar KM. Mangiferin alleviates hyperglycemia-induced endothelial impairment via Nrf2 signaling pathway. Eur J Pharmacol 2022; 936:175359. [DOI: 10.1016/j.ejphar.2022.175359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/15/2022]
|
14
|
Deng T, Xu X, Fu J, Xu Y, Qu W, Pi J, Wang H. Application of ARE-reporter systems in drug discovery and safety assessment. Toxicol Appl Pharmacol 2022; 454:116243. [PMID: 36115658 DOI: 10.1016/j.taap.2022.116243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022]
Abstract
The human body is continuously exposed to xenobiotics and internal or external oxidants. The health risk assessment of exogenous chemicals remains a complex and challenging issue. Alternative toxicological test methods have become an essential strategy for health risk assessment. As a core regulator of constitutive and inducible expression of antioxidant response element (ARE)-dependent genes, nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in maintaining cellular redox homeostasis. Consistent with the properties of Nrf2-mediated antioxidant response, Nrf2-ARE activity is a direct indicator of oxidative stress and thus has been used to identify and characterize oxidative stressors and redox modulators. To screen and distinguish chemicals or environmental insults that affect the cellular antioxidant activity and/or induce oxidative stress, various in vitro cell models expressing distinct ARE reporters with high-throughput and high-content properties have been developed. These ARE-reporter systems are currently widely applied in drug discovery and safety assessment. In the present review, we provide an overview of the basic structures and applications of various ARE-reporter systems employed for discovering Nrf2-ARE modulators and characterizing oxidative stressors.
Collapse
Affiliation(s)
- Tianqi Deng
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China
| | - Xiaoge Xu
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yuanyuan Xu
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China
| | - Weidong Qu
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Huihui Wang
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
15
|
khan A, Wang F, Shal B, Khan AU, Zahra SS, Haq IU, Khan S, Rengasamy KRR. Anti-neuropathic pain activity of Ajugarin-I via activation of Nrf2 signaling and inhibition of TRPV1/TRPM8 nociceptors in STZ-induced diabetic neuropathy. Pharmacol Res 2022; 183:106392. [DOI: 10.1016/j.phrs.2022.106392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/26/2022]
|
16
|
Prasad M K, Mohandas S, Ramkumar KM. Role of ER stress inhibitors in the management of diabetes. Eur J Pharmacol 2022; 922:174893. [DOI: 10.1016/j.ejphar.2022.174893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/14/2022]
|
17
|
Ullah MF, Ahmad A, Bhat SH, Abuduhier FM, Mustafa SK, Usmani S. Diet-derived small molecules (nutraceuticals) inhibit cellular proliferation by interfering with key oncogenic pathways: an overview of experimental evidence in cancer chemoprevention. Biol Futur 2022; 73:55-69. [PMID: 35040098 DOI: 10.1007/s42977-022-00110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
Abstract
Discouraging statistics of cancer disease has projected an increase in the global cancer burden from 19.3 to 28.4 million incidences annually within the next two decades. Currently, there has been a revival of interest in nutraceuticals with evidence of pharmacological properties against human diseases including cancer. Diet is an integral part of lifestyle, and it has been proposed that an estimated one-third of human cancers can be prevented through appropriate lifestyle modification including dietary habits; hence, it is considered significant to explore the pharmacological benefits of these agents, which are easily accessible and have higher safety index. Accordingly, an impressive embodiment of evidence supports the concept that the dietary factors are critical modulators to prevent, retard, block, or reverse carcinogenesis. Such an action reflects the ability of these molecules to interfere with multitude of pathways to subdue and neutralize several oncogenic factors and thereby keep a restraint on neoplastic transformations. This review provides a series of experimental evidence based on the current literature to highlight the translational potential of nutraceuticals for the prevention of the disease through consumption of enriched diets and its efficacious management by means of novel interventions. Specifically, this review provides the current understanding of the chemopreventive pharmacology of nutraceuticals such as cucurbitacins, morin, fisetin, curcumin, luteolin and garcinol toward their potential as anticancer agents.
Collapse
Affiliation(s)
- Mohammad Fahad Ullah
- Prince Fahd Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Tabuk, Saudi Arabia.
| | - Aamir Ahmad
- University of Alabama at Birmingham, Birmingham, AL, USA
- Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Showket H Bhat
- Prince Fahd Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Tabuk, Saudi Arabia
- Department of Medical Laboratory Technology and Molecular Diagnostics, Center for Vocational Studies, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India
| | - Faisel M Abuduhier
- Prince Fahd Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Syed Khalid Mustafa
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Shazia Usmani
- Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
18
|
Jayasuriya R, Dhamodharan U, Ali D, Ganesan K, Xu B, Ramkumar KM. Targeting Nrf2/Keap1 signaling pathway by bioactive natural agents: Possible therapeutic strategy to combat liver disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153755. [PMID: 34583226 DOI: 10.1016/j.phymed.2021.153755] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/03/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Nuclear factor erythroid 2-related factor (Nrf2), a stress-activated transcription factor, has been documented to induce a defense mechanism against oxidative stress damage, and growing evidence considers this signaling pathway a key pharmacological target for the treatment of liver diseases. PURPOSE The present review highlights the role of phytochemical compounds in activating Nrf2 and mitigate toxicant-induced stress on liver injury. METHODS A comprehensive search of published articles was carried out to focus on original publications related to Nrf2 activators against liver disease using various literature databases, including the scientific Databases of Science Direct, Web of Science, Pubmed, Google, EMBASE, and Scientific Information (SID). RESULTS Nrf2 activators exhibited promising effects in resisting a variety of liver diseases induced by different toxicants in preclinical experiments and in vitro studies by regulating cell proliferation and apoptosis as well as an antioxidant defense mechanism. We found that the phytochemical compounds, such as curcumin, naringenin, sulforaphane, diallyl disulfide, mangiferin, oleanolic acid, umbelliferone, daphnetin, quercetin, isorhamnetin-3-O-galactoside, hesperidin, diammonium glycyrrhizinate, corilagin, shikonin, farrerol, and chenpi, had the potential to improve the Nrf2-ARE signaling thereby combat hepatotoxicity. CONCLUSION Nrf2 activators may offer a novel potential strategy for the prevention and treatment of liver diseases. More extensive studies are essential to identify the underlying mechanisms and establish future therapeutic potentials of these signaling modulators. Further clinical trials are warranted to determine the safety and effectiveness of Nrf2 activators for hepatopathy.
Collapse
Affiliation(s)
- Ravichandran Jayasuriya
- SRM Research Institute and Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | | | - Daoud Ali
- Department of Zoology, College of Science, King Saud University P.O. Box 2455, Riyadh 11451 Saudi Arabia
| | - Kumar Ganesan
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai 519087, China.
| | - Kunka Mohanram Ramkumar
- SRM Research Institute and Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
19
|
Annie-Mathew AS, Prem-Santhosh S, Jayasuriya R, Ganesh G, Ramkumar KM, Sarada DVL. The pivotal role of Nrf2 activators in adipocyte biology. Pharmacol Res 2021; 173:105853. [PMID: 34455076 DOI: 10.1016/j.phrs.2021.105853] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 01/07/2023]
Abstract
Adipose tissue is instrumental in maintaining metabolic homeostasis by regulating energy storage in the form of triglycerides. In the case of over-nutrition, adipocytes favorably regulate lipogenesis over lipolysis and accumulate excess triglycerides, resulting in increased adipose tissue mass. An abnormal increase in hypertrophic adipocytes is associated with chronic complications such as insulin resistance, obesity, diabetes, atherosclerosis and nonalcoholic fatty liver disease. Experimental studies indicate the occurrence of oxidative stress in the pathogenesis of obesity. A common underlying link between increasing adipose tissue mass and oxidative stress is the Nuclear Factor Erythroid 2-related factor 2 (Nrf2), Keap1-Nrf2-ARE signaling, which plays an indispensable role in metabolic homeostasis by regulating oxidative and inflammatory responses. Additionally, Nrf2 also activates CCAAT/enhancer-binding protein α, (C/EBP-α), C/EBP-β and peroxisome proliferator-activated receptor γ (PPARγ) the crucial pro-adipogenic factors that promote de novo adipogenesis. Hence, at the forefront of research is the quest for prospecting novel compounds to modulate Nrf2 activity in the context of adipogenesis and obesity. This review summarizes the molecular mechanism behind the activation of the Keap1-Nrf2-ARE signaling network and the role of Nrf2 activators in adipocyte pathophysiology.
Collapse
Affiliation(s)
- A S Annie-Mathew
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Subramanian Prem-Santhosh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Ravichandran Jayasuriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India; SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Goutham Ganesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India; SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India; SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - D V L Sarada
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
20
|
Thakur K, Zhu YY, Feng JY, Zhang JG, Hu F, Prasad C, Wei ZJ. Morin as an imminent functional food ingredient: an update on its enhanced efficacy in the treatment and prevention of metabolic syndromes. Food Funct 2021; 11:8424-8443. [PMID: 33043925 DOI: 10.1039/d0fo01444c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Flavonoids represent polyphenolic plant secondary metabolites with a general structure of a 15-carbon skeleton comprising two phenyl rings and a heterocyclic ring. Over 5000 natural flavonoids (flavanones, flavanonols, and flavans) from various plants have been characterized. Several studies provide novel and promising insights into morin hydrate for its different biological activities against a series of metabolic syndromes. The present review is a rendition of its sources, chemistry, functional potency, and protective effects on metabolic syndromes ranging from cancer to brain injury. Most importantly this systematic review article also highlights the mechanisms of interest to morin-mediated management of metabolic disorders. The key mechanisms (anti-oxidative and anti-inflammatory) responsible for its therapeutic potential are well featured after collating the in vitro and in vivo study reports. As a whole, based on the prevailing information rationalizing its medicinal use, morin can be identified as a therapeutic agent for the expansion of human health.
Collapse
Affiliation(s)
- Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Yun-Yang Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Jing-Yu Feng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Fei Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Chandan Prasad
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, USA. and Department of Medicine, LSU School of Medicine, New Orleans, LA, USA
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China. and Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| |
Collapse
|
21
|
Pharmacological Activation of Nrf2 by Rosolic Acid Attenuates Endoplasmic Reticulum Stress in Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2732435. [PMID: 33897939 PMCID: PMC8052152 DOI: 10.1155/2021/2732435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/17/2020] [Accepted: 12/05/2020] [Indexed: 12/18/2022]
Abstract
Endoplasmic reticulum (ER) plays a key role in the folding, modification, and trafficking of proteins. When the homeostasis of the ER is disturbed, un/misfolded proteins accumulate in the ER which leads to ER stress. Sustained ER stress results in apoptosis, which is associated with various diseases. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a major transcription factor in redox homeostasis by regulating various genes associated with detoxification and cell-protective mechanisms. We found that Rosolic acid (RA) treatment dose-dependently activates Nrf2 in endothelial cells using the enzyme fragment complementation assay. The cytoprotective role of RA against ER stress-induced endothelial apoptosis and its molecular mechanism was explored in the present study. The Nrf2 and its target genes, as well as ER stress marker expressions, were measured by qPCR in ER stress-exposed endothelial cells. The contribution of Nrf2 in RA-mediated defense mechanism in endothelial cells was established by knockout studies using Nrf2-CRISPR/Cas9. The treatment with RA to ER stress-induced endothelial cells exhibited activation of Nrf2, as demonstrated by Nrf2 translocation and reduction of ER stress markers. We found that the Nrf2 knockout sensitized the endothelial cells against ER stress, and further, RA failed to mediate its cytoprotective effect. Proteomic studies using LC-MS/MS revealed that among the 1370 proteins detected, we found 296 differentially regulated proteins in ER stress-induced endothelial cells, and RA administration ameliorated 71 proteins towards the control levels. Of note, the ER stress in endothelial cells was attenuated by the treatment with the RA, suggesting the role of the Nrf2 activator in the pathological conditions of ER stress-associated diseases.
Collapse
|
22
|
Natural compounds protect the skin from airborne particulate matter by attenuating oxidative stress. Biomed Pharmacother 2021; 138:111534. [PMID: 34311532 DOI: 10.1016/j.biopha.2021.111534] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/18/2021] [Accepted: 03/21/2021] [Indexed: 02/05/2023] Open
Abstract
Particulate matter (PM) is a common indirect indicator of air pollution and threatens public health upon prolonged exposure, leading to oxidative stress, increasing the risk of develop respiratory and cardiovascular, as well as several autoimmune diseases and cancer. Nowadays, as a first line defense against PM, skin health attracted much attention. Our review summarized the skin damage mechanism induced by PM, including damage skin barrier directly, reactive oxygen species (ROS) accumulation, autophagy, and two canonical signaling pathways. Furthermore, ROS and oxidative stress have been considered pathogenesis centers, with essential skin damage roles. Extracts from plants and natural compounds which present high antioxidant capacity could be used to treat or protect against air pollution-related skin damage. We conclude the extracts reported in recent studies with protective effects on PM-mediated skin damage. Besides, the mechanism of extracts' positive effects has been revealed partially.
Collapse
|
23
|
Amin KN, Palanisamy R, Sarada DVL, Ali D, Suzuki T, Ramkumar KM. Effect of Rosolic acid on endothelial dysfunction under ER stress in pancreatic microenvironment. Free Radic Res 2021; 55:698-713. [PMID: 33788639 DOI: 10.1080/10715762.2021.1892090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endothelial cell (EC) dysfunction is the underlying cause for the development of several pathologies, and the interdependency between the pancreatic β-cells and ECs has been established in the pathophysiology of diabetes. ECs release several factors that govern the expression of genes involved in the proliferation, physiology, and survival of the β-cells. Of the known factors that collapse this intricately balanced system, endothelial dysfunction is the crucial condition that manifests as the causative factor for micro and macrovascular diseases. Our earlier studies demonstrated that activation of nuclear factor erythroid-related factor (Nrf2) renders protection to the ECs experiencing ER stress. In this study, using a co-culture system, the crosstalk between pancreatic cells under ER stress and ECs and the effect of a novel Nrf2 activator Rosolic Acid (RA), on the crosstalk was investigated. ECs pre-treated with different concentrations RA and co-cultured with thapsigargin-induced ER stressed pancreatic β-cells showed increased levels of Nrf2 and its downstream targets such as heme oxygenase-1 (HO-1) and NADPH-quinone oxidoreductase-1 (NQO-1), and reduction of ER stress evinced by the decreased levels of glucose-regulated protein (GRP) 78 and C/ERB homologous protein (CHOP). The sensitization of ECs using RA, offered protection to pancreatic cells against ER stress as displayed by increased intracellular insulin and upregulated expression of cell survival and proliferative genes BCl2 and PDX-1. In addition, RA treatment resulted in elevated levels of various angiogenic factors, while inflammatory (TNF-α and IL-1β) and apoptotic markers (CXCL10 and CCL2) decreased. RA treatment normalized the levels of 115 proteins of the 277, which were differentially regulated as revealed by proteomic studies of ER stressed pancreatic β-cells in co-culture conditions. These findings clearly indicate the role of small molecule activators of Nrf2 not only in restoring the functioning of pancreatic cells but also in increasing the cell mass. Further, the study impinges on the strategies that can be developed to balance the pancreatic microenvironment, leading to the restoration of β-cell mass and their normophysiology in diabetic patients.
Collapse
Affiliation(s)
- Karan Naresh Amin
- SRM Research Institute and Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Rajaguru Palanisamy
- Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, India
| | - D V L Sarada
- SRM Research Institute and Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Daoud Ali
- Department of Zoology, College of Science King Saud University, Riyadh, Saudi Arabia
| | - Takayoshi Suzuki
- Division Cellular and Gene Therapy Products, National Institute of Health Sciences, Tokyo, Japan
| | - Kunka Mohanram Ramkumar
- SRM Research Institute and Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
24
|
Rajput SA, Wang XQ, Yan HC. Morin hydrate: A comprehensive review on novel natural dietary bioactive compound with versatile biological and pharmacological potential. Biomed Pharmacother 2021; 138:111511. [PMID: 33744757 DOI: 10.1016/j.biopha.2021.111511] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 01/02/2023] Open
Abstract
Flavonoids are natural plant-derived dietary bioactive compounds having a substantial impact on human health. Morin hydrate is a bioflavonoid mainly obtained from fruits, stem, and leaves of Moraceae family members' plants. Plenty of evidences supported that morin hydrate exerts its beneficial effects against various chronic and life-threatening degenerative diseases. Our current article discloses the recent advances that have been studied to explore the biological/pharmacological properties and molecular mechanisms to better understand the beneficial and multiple health benefits of morin hydrate. Indeed, Morin hydrate exerts free radical scavenging, antioxidant, anti-inflammatory, anti-cancerous, anti-microbial, antidiabetic, anti-arthritis, cardioprotective, neuroprotective, nephroprotective, and hepatoprotective effects. Moreover, morin hydrate exhibits its pharmacological activities by modulating various cellular signaling pathways such as Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-қB), Mitogen-activated protein kinase (MAPK), Janus kinases/ Signal transducer and activator of transcription proteins (JAKs/STATs), Kelch-like ECH-associated protein1/Nuclear erythroid-2-related factor (Keap1/Nrf2), Endoplasmic reticulum (ER), Mitochondrial-mediated apoptosis, Wnt/β-catenin, and Mechanistic target of rapamycin (mTOR). Most importantly, morin hydrate has the potential to modulate a variety of biological networks. Therefore, it can be predicted that this therapeutically potent compound could serve as a dietary agent for the expansion of human health and might be helpful for the development of the novel drug in the future. However, due to the lack of clinical trials, special human clinical trials are needed to address the effects of morin hydrate on various life-threatening disparities to recommend morin and/or morin-rich foods with other foods or bioactive dietary components, as well as dose-response interaction and safety profile.
Collapse
Affiliation(s)
- Shahid Ali Rajput
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China.
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China.
| |
Collapse
|
25
|
Padmavathi G, Ramkumar KM. MicroRNA mediated regulation of the major redox homeostasis switch, Nrf2, and its impact on oxidative stress-induced ischemic/reperfusion injury. Arch Biochem Biophys 2021; 698:108725. [PMID: 33326800 DOI: 10.1016/j.abb.2020.108725] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/21/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Ischemia/reperfusion injury (IRI) initiates from oxidative stress caused by lack of blood supply and subsequent reperfusion. It is often associated with sterile inflammation, cell death and microvascular dysfunction, which ultimately results in myocardial, cerebral and hepatic IRIs. Reportedly, deregulation of Nrf2 pathway plays a significant role in the oxidative stress-induced IRIs. Further, microRNAs (miRNAs/miRs) are proved to regulate the expression and activation of Nrf2 by targeting either the 3'-UTR or the upstream regulators of Nrf2. Additionally, compounds (crocin, ZnSO4 and ginsenoside Rg1) that modulate the levels of the Nrf2-regulating miRNAs were found to exhibit a protective effect against IRIs of different organs. Therefore, the current review briefs the impact of ischemia reperfusion (I/R) pathogenesis in various organs, role of miRNAs in the regulation of Nrf2 and the I/R protective effect of compounds that alter their expression.
Collapse
Affiliation(s)
- Ganesan Padmavathi
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
26
|
Adhikary M, Mukhopadhyay K, Sarkar B. Flavonoid-rich wheatgrass (Triticum aestivum L.) diet attenuates diabetes by modulating antioxidant genes in streptozotocin-induced diabetic rats. J Food Biochem 2021; 45:e13643. [PMID: 33547672 DOI: 10.1111/jfbc.13643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/28/2020] [Accepted: 01/21/2021] [Indexed: 01/14/2023]
Abstract
Wheatgrass, young germinated shoots of Triticum aestivum L., is proclaimed as antidiabetic nutraceutical by traditional medicines across the world. In this study, the effects of the wheatgrass diet in ameliorating oxidative stress (OS) induced during diabetes were investigated. Total phenolic and flavonoid contents (TPC and TFC) and in vitro antioxidant activity of wheatgrass extract were estimated at different days (5, 7, 9, 11, 13, and 15) after germination. Correlating the TPC and TFC with in vitro antioxidant activity, 9th DAG wheatgrass was found to possess maximum antioxidant potential. UHPLC-MS/MS analysis also revealed the presence of nine flavonoids. For in vivo studies, diabetes was induced by streptozotocin in Wistar rats fed with a high-fat diet. Concomitant administration of 9th-day wheatgrass diet (200 and 400 mg/kg) for 60 days exhibited significant improvements in hyperglycemia, body weight, lipid profile, biochemical indices (AST, ALT, GSH, GPx), and restoration of tissue architectures equivalent to normal rats. Further, qRT-PCR-based expression profiling revealed a significant modulation of major antioxidant marker genes and insulin gene which substantiated that the wheatgrass diet is effective in reducing OS during diabetes. Therefore, flavonoid-rich 9th-day wheatgrass could be used as a functional food to control diabetes. PRACTICAL APPLICATIONS: The present research supported that wheatgrass protects against oxidative stress and therefore could be utilized to ameliorate diabetes. The findings may contribute to the development and formulation of wheatgrass-based functional food or dietary supplement for diabetes by nutraceutical industries.
Collapse
Affiliation(s)
- Maria Adhikary
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, India
| | - Kunal Mukhopadhyay
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, India
| | - Biswatrish Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
27
|
Liu Y, Deng J, Fan D. G-Rh4 improves pancreatic β-cells dysfunction in vivo and in vitro by increased expression of Nrf2 and its target genes. Food Chem Toxicol 2021; 148:111925. [PMID: 33359794 DOI: 10.1016/j.fct.2020.111925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/10/2020] [Accepted: 12/11/2020] [Indexed: 01/02/2023]
Abstract
The aim of this study is to investigate the hypoglycemic mechanism of ginsenoside Rh4 (G-Rh4) in vivo and in vitro models. Our results showed that G-Rh4 markedly improved the symptoms of diabetes, normalized glucose metabolism, and promoted insulin secretion which contributed to attenuate symptoms of hyperglycemia in high-fat diet/streptozocin induced type 2 diabetes mellitus mice. This positive effect was associated with increased expression of Nrf2 by G-Rh4. Further results demonstrated that G-Rh4 promoted Nrf2 nucleus translocation as well as up-regulated the expression of HO-1, NQO1 and GCLC. Furthermore, we also found that G-Rh4 increased insulin secretion by activating the signal pathway of PDX-1, GLUT2 and GCK. More importantly, the protective effects of G-Rh4 on alloxan-induced upregulation of Nrf2 target gene and insulin secretion were abolished by Nrf2 knockdown. Finally, we explored the mechanism of G-Rh4 associated with Nrf2 activation and found that the Akt deficiency inhibited G-Rh4-mediated Nrf2 nuclear translocation. Altogether, we present evidence that G-Rh4 increased expression of Nrf2 and results in increased antioxidant gene, as well as a rise in insulin secretion in vivo and in vitro. Exploiting the Nrf2 pathway may show great potential as a therapeutic strategy to improve pancreatic β-cells dysfunction in the diabetic population.
Collapse
Affiliation(s)
- Yao Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
28
|
Jayasuriya R, Ramkumar KM. Role of long non-coding RNAs on the regulation of Nrf2 in chronic diseases. Life Sci 2021; 270:119025. [PMID: 33450255 DOI: 10.1016/j.lfs.2021.119025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 12/21/2022]
Abstract
Studies have identified dysregulated long non-coding RNA (lncRNA) in several diseases at transcriptional, translational, and post-translational levels. Although our mechanistic knowledge on the regulation of lncRNAs is still limited, one of the mechanisms of action attributed is binding and regulating transcription factors, thus controlling gene expression and protein function. One such transcription factor is nuclear factor erythroid 2-related factor 2 (Nrf2), which plays a critical biological role in maintaining cellular homeostasis at multiple levels in physiological and pathophysiological conditions. The levels of Nrf2 were found to be down-regulated in many chronic diseases, signifying that Nrf2 can be a key therapeutic target. Few lncRNAs like lncRNA ROR, ENSMUST00000125413, lncRNA ODRUL, Nrf2-lncRNA have been associated with the Nrf2 signaling pathway in response to various stimuli, including stress. This review discusses the regulation of Nrf2 in different responses and the potential role of specific lncRNA in modulating its transcriptional activities. This review further helps to enhance our knowledge on the regulatory role of the critical antioxidant transcription factor, Nrf2.
Collapse
Affiliation(s)
- Ravichandran Jayasuriya
- SRM Research Institute and Department of Biotechnology, School of bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- SRM Research Institute and Department of Biotechnology, School of bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
29
|
Baumel-Alterzon S, Katz LS, Brill G, Garcia-Ocaña A, Scott DK. Nrf2: The Master and Captain of Beta Cell Fate. Trends Endocrinol Metab 2021; 32:7-19. [PMID: 33243626 PMCID: PMC7746592 DOI: 10.1016/j.tem.2020.11.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 02/07/2023]
Abstract
Prolonged hyperglycemia is toxic to pancreatic β cells, generating excessive reactive oxygen species, defective glucose-stimulated insulin secretion, decreased insulin production, and eventually β cell death and diabetes. Nrf2 is a master regulator of cellular responses to counteract dangerous levels of oxidative stress. Maintenance of β cell mass depends on Nrf2 to promote the survival, function, and proliferation of β cells. Indeed, Nrf2 activation decreases inflammation, increases insulin sensitivity, reduces body weight, and preserves β cell mass. Therefore, numerous pharmacological activators of Nrf2 are being tested in clinical trials for the treatment of diabetes and diabetic complications. Modulating Nrf2 activity in β cells is a promising therapeutic approach for the treatment of diabetes.
Collapse
Affiliation(s)
- Sharon Baumel-Alterzon
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Liora S Katz
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriel Brill
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo Garcia-Ocaña
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donald K Scott
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
30
|
Victor P, Sarada D, Ramkumar KM. Crosstalk between endoplasmic reticulum stress and oxidative stress: Focus on protein disulfide isomerase and endoplasmic reticulum oxidase 1. Eur J Pharmacol 2020; 892:173749. [PMID: 33245896 DOI: 10.1016/j.ejphar.2020.173749] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022]
Abstract
Cellular stress and inflammation, establishing as disease pathology, have reached great heights in the last few decades. Stress conditions such as hyperglycemia, hyperlipidemia and lipoproteins are known to disturb proteostasis resulting in the accumulation of unfolded or misfolded proteins, alteration in calcium homeostasis culminating in unfolded protein response. Protein disulfide isomerase and endoplasmic reticulum oxidase-1 are the key players in protein folding. The protein folding process assisted by endoplasmic reticulum oxidase-1 results in the production of reactive oxygen species in the lumen of the endoplasmic reticulum. Production of reactive oxygen species beyond the quenching capacity of the antioxidant systems perturbs ER homeostasis. Endoplasmic reticulum stress also induces the production of cytokines leading to inflammatory responses. This has been proven to be the major causative factor for various pathophysiological states compared to other cellular triggers in diseases, which further manifests to increased oxidative stress, mitochondrial dysfunction, and altered inflammatory responses, deleterious to cellular physiology and homeostasis. Numerous studies have drawn correlations between the progression of several diseases in association with endoplasmic reticulum stress, redox protein folding, oxidative stress and inflammatory responses. This review aims to provide an insight into the role of protein disulfide isomerase and endoplasmic reticulum oxidase-1 in endoplasmic reticulum stress, unfolded protein response, mitochondrial dysfunction, and inflammatory responses, which exacerbate the progression of various diseases.
Collapse
Affiliation(s)
- Paul Victor
- Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamil Nadu, India
| | - Dronamraju Sarada
- Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamil Nadu, India; Life Science Division, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamil Nadu, India.
| |
Collapse
|
31
|
Saikosaponin A-Induced Gut Microbiota Changes Attenuate Severe Acute Pancreatitis through the Activation of Keap1/Nrf2-ARE Antioxidant Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9217219. [PMID: 33204401 PMCID: PMC7652616 DOI: 10.1155/2020/9217219] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/11/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022]
Abstract
Objective Severe acute pancreatitis (SAP) is a serious and life-threatening disease associated with multiple organ failure and a high mortality rate and is accompanied by distinct oxidative stress and inflammatory responses. Saikosaponin A has strong antioxidant properties and can affect the composition of gut microbiota. We sought to determine the effects of Saikosaponin A interventions on SAP by investigating the changes of gut microbiota and related antioxidant signaling. Methods A SAP model was established in Sprague-Dawley (SD) rats through the injection of sodium taurocholate into the biliopancreatic duct and confirmed by elevated levels of serum lipase and amylase. The model was fed a standard diet either with saline solution or with Saikosaponin A. Fecal microbiota transplantation (FMT) from Saikosaponin A-induced rats into the rat model was performed to test the effects of gut microbiota. The composition of gut microbiota was analyzed by using 16S rRNA gene sequencing. We measured apoptotic status, inflammatory biomarkers, and Keap1-Nrf2-ARE ((Kelch-like ECH-associated protein 1) nuclear factor erythroid 2-related factor 2-antioxidant response element) antioxidant signaling. Results Saikosaponin A intervention attenuated SAP lesions and reduced the levels of serum amylase and lipase, oxidative stress, and inflammatory responses by reducing pathological scores and affecting the serum level of oxidative and inflammatory factors. Meanwhile, the expression of Keap1-Nrf2-ARE was increased. Saikosaponin A intervention improved microbiota composition by increasing the relative abundance of Lactobacillus and Prevotella species. FMT resulted in similar results as those caused by the Saikosaponin A intervention, suggesting Saikosaponin A may exert its function via the improvement of gut microbiota composition. Conclusions Saikosaponin A-induced gut microbiota changes attenuate SAP progression in the rat model and may be a potential natural drug for adjuvant treatment of SAP. Further work is needed to clear up the points.
Collapse
|
32
|
Regulation of Nrf2/ARE Pathway by Dietary Flavonoids: A Friend or Foe for Cancer Management? Antioxidants (Basel) 2020; 9:antiox9100973. [PMID: 33050575 PMCID: PMC7600646 DOI: 10.3390/antiox9100973] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 12/25/2022] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cell signaling mechanism in maintaining redox homeostasis in humans. The role of dietary flavonoids in activating Nrf2/ARE in relation to cancer chemoprevention or cancer promotion is not well established. Here we summarize the dual effects of flavonoids in cancer chemoprevention and cancer promotion with respect to the regulation of the Nrf2/ARE pathway, while underlying the possible cellular mechanisms. Luteolin, apigenin, quercetin, myricetin, rutin, naringenin, epicatechin, and genistein activate the Nrf2/ARE pathway in both normal and cancer cells. The hormetic effect of flavonoids has been observed due to their antioxidant or prooxidant activity, depending on the concentrations. Reported in vitro and in vivo investigations suggest that the activation of the Nrf2/ARE pathway by either endogenous or exogenous stimuli under normal physiological conditions contributes to redox homeostasis, which may provide a mechanism for cancer chemoprevention. However, some flavonoids, such as luteolin, apigenin, myricetin, quercetin, naringenin, epicatechin, genistein, and daidzein, at low concentrations (1.5 to 20 µM) facilitate cancer cell growth and proliferation in vitro. Paradoxically, some flavonoids, including luteolin, apigenin, and chrysin, inhibit the Nrf2/ARE pathway in vitro. Therefore, even though flavonoids play a major role in cancer chemoprevention, due to their possible inducement of cancer cell growth, the effects of dietary flavonoids on cancer pathophysiology in patients or appropriate experimental animal models should be investigated systematically.
Collapse
|
33
|
Ganesan K, Ramkumar KM, Xu B. Vitexin restores pancreatic β-cell function and insulin signaling through Nrf2 and NF-κB signaling pathways. Eur J Pharmacol 2020; 888:173606. [PMID: 32980348 DOI: 10.1016/j.ejphar.2020.173606] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/22/2022]
Abstract
Chronic hyperglycemia induces pancreatic β-cell dysfunction through several cell signaling pathways. The β-cell loss by apoptosis appears to play a crucial role in the onset and progression of diabetes. This study was aimed to investigate the role of vitexin against high glucose-induced β-cells apoptosis and the underlying mechanisms involved therein. INS-1 cells were pretreated with vitexin (20 and 40 μM) followed by high glucose (33 mM) exposure and the cytotoxicity was assessed by MTT. The effect of vitexin on nuclear factor erythroid 2-related factor 2 (Nrf2) and NF-kB signaling molecules have been studied. Vitexin-mediated stimulation of Nrf2 was assessed. Vitexin protected the cells against high glucose toxicity in a concentration-dependent manner. Vitexin improved insulin signaling as analyzed by the levels of functional proteins in the insulin pathways, viz., insulin receptor (IR), insulin receptor substrate (IRS)-1 and IRS-2, glucose transporter -2, and glucose-stimulated insulin secretion. Vitexin improved the high glucose-induced nuclear transcription factor system by suppressing Rel A, Rel B, P50/p105, and IκB expression resulting in decreased cell apoptosis, further confirmed by the reduction in the percentage of Annexin-V positive cells. Our data suggest that vitexin improves insulin secretion by activating key proteins, including NF-κB and Nrf2 in β-cells regulating apoptosis.
Collapse
Affiliation(s)
- Kumar Ganesan
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519087, China; Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China.
| | - Kunka Mohanram Ramkumar
- Life Science Division, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, 603 203, India.
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519087, China.
| |
Collapse
|
34
|
Pharmacological activation of Nrf2 promotes wound healing. Eur J Pharmacol 2020; 886:173395. [PMID: 32710954 DOI: 10.1016/j.ejphar.2020.173395] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
Wound repair and regeneration is a complex orchestrated process, comprising several phases interconnecting various cellular events and triggering multiple intracellular molecular pathways in damaged cells and tissues. In several metabolic disorders including diabetes mellitus, delay in wound healing due to elevated levels of cellular stress poses a key challenge. Several therapeutic wound dressing materials and strategies including hyperbaric oxygen therapy and negative pressure wound therapy have been developed to accelerate repair and restore cellular homeostasis at the wound site. Further, tremendous progress has been made in identification of transcriptional regulators involved in the process of wound healing. Nuclear factor erythroid 2-related factor 2 (Nrf2), a redox sensitive transcription factor, is the key regulator of intracellular redox homeostasis which induces the expression of cytoprotective genes and increases the production of antioxidants that scavenge free radicals. Activators of Nrf2 have been reported to combat oxidative stress and enhance the process of wound healing in several pathophysiological conditions, including diabetes and its complications such as diabetic foot ulcer, and chronic kidney disease, and diabetic nephropathy. Several bioactive compounds have been reported to reduce cellular stress, and thus accelerate cell proliferation, neovascularization results in repairing damaged tissues by the activation of the transcription factor, Nrf2. This review is focused on the strategies for diabetic wound healing and the highlights the role of bioactive compounds that activate the Nrf2 signaling and revitalize the cellular and molecular mechanism in the chronic wound niche, regulate and restore redox homeostasis thereby promoting wound repair and regeneration.
Collapse
|
35
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
36
|
Ben-Azu B, Emokpae O, Ajayi AM, Jarikre TA, Orhode V, Aderibigbe AO, Umukoro S, Iwalewa EO. Repeated psychosocial stress causes glutamic acid decarboxylase isoform-67, oxidative-Nox-2 changes and neuroinflammation in mice: Prevention by treatment with a neuroactive flavonoid, morin. Brain Res 2020; 1744:146917. [PMID: 32474018 DOI: 10.1016/j.brainres.2020.146917] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
Psychosocial stress and biological predispositions are linked to mood and personality disorders related to psychiatric behaviors. Targeting neuroinflammation and oxidative stress has been recognized as a potential strategy for the prevention of psychosocial stress-induced psychiatric disorders. Morin, a bioactive compound isolated from mulberry leaf has been shown to produce antiamnesic, antipsychotic and anti-inflammatory effects relative to ginseng, a well-known adaptogen. Hence, the present study investigated the effect of morin on social-defeat stress (SDS)-induced behavioral, neurochemical, neuroimmune and neurooxidative changes in mice using intruder-resident paradigm. The intruder male mice were distributed into 6 groups (n = 10). Groups 1 (normal-control) and 2 (SDS-control) received normal saline, groups 3-5 had morin (25-100 mg/kg) while group 6 received ginseng (50 mg/kg) intraperitoneally daily for 14 days. Thirty minutes after treatment from days 7-14 onwards, mice in groups 2-6 were exposed to SDS for 10 min physical and psychological confrontations respectively with aggressive-resident mice. Neurobehavioral effects (locomotor activity, cognitive performance, anxiety- and depressive-like behavior) were assessed on day 14. Biomarkers of oxidative/nitrergic stress and neuroinflammation; acetylcholinesterase (AChE) and glutamic-acid decarboxylase-67 (GAD67) were measured in the striatum, prefrontal-cortex and hippocampus. Behavioral deficits induced by SDS were attenuated by morin and ginseng. Both morin and ginseng decreasedmalondialdehyde, nitrite levels and increased glutathione concentrations in the brain regions. They also reduced inflammatory mediators (TNF-α, IL-6, COX-2 and NF-κB), AChE activity and Nox-2 expression in the specific brain regions. However, morin increased the levels of GAD67 in the striatum, prefrontal-cortex and hippocampus in contrast to ginseng. Our results suggest that morin mitigates SDS-induced neurobehavioral deficits through enhancement of GAD67, inhibition of AChE activity, oxidative stress, Nox-2 and neuroinflammatory pathways.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- Department of Pharmacology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port Harcourt, River States, Nigeria; Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Osagie Emokpae
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Abayomi Mayowa Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Thiophilus Aghogho Jarikre
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Valiant Orhode
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Adegbuyi Oladele Aderibigbe
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Solomon Umukoro
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ezekiel O Iwalewa
- Inflammatory and Immunopharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
37
|
Frandsen J, Choi SR, Narayanasamy P. Neural Glyoxalase Pathway Enhancement by Morin Derivatives in an Alzheimer's Disease Model. ACS Chem Neurosci 2020; 11:356-366. [PMID: 31909963 DOI: 10.1021/acschemneuro.9b00566] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The glyoxalase pathway (GP) is an antioxidant defense system that detoxifies metabolic byproduct methylglyoxal (MG). Through sequential reactions, reduced glutathione (GSH), glyoxalase I (glo-1), and glyoxalase II (glo-2) convert MG into d-lactate. Spontaneous reactions involving MG alter the structure and function of cellular macromolecules through the formation of inflammatory advanced glycation endproducts (AGEs). Accumulation of MG and AGEs in neural cells contributes to oxidative stress (OS), a state of elevated inflammation commonly found in neurodegenerative diseases including Alzheimer's disease (AD). Morin is a common plant-produced flavonoid polyphenol that exhibits the ability to enhance the GP-mediated detoxification of MG. We hypothesize that structural modifications to morin will improve its inherent GP enhancing ability. Here we synthesized a morin derivative, dibromo-morin (DBM), formulated a morin encapsulated nanoparticle (MNP), and examined their efficacy in enhancing neural GP activity. Cultured mouse primary cerebellar neurons and Caenorhabditis elegans were induced to a state of OS with MG and treated with morin, DBM, and MNP. Results indicated the morin derivatives were more effective compared to the parent compound in neural GP enhancement and preventing MG-mediated OS in an AD model.
Collapse
Affiliation(s)
- Joel Frandsen
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Seoung-ryoung Choi
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
38
|
Karan A, Bhakkiyalakshmi E, Jayasuriya R, Sarada DVL, Ramkumar KM. The pivotal role of nuclear factor erythroid 2-related factor 2 in diabetes-induced endothelial dysfunction. Pharmacol Res 2019; 153:104601. [PMID: 31838079 DOI: 10.1016/j.phrs.2019.104601] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/23/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Endothelial dysfunction (ED) is a key event in the onset and progression of vascular complications associated with diabetes. Regulation of endothelial function and the underlying signaling mechanisms in the progression of diabetes-induced vascular complications have been well established. Recent studies indicate that increased oxidative stress is an important determinant of endothelial injury and patients with hypertension display ED mediated by impaired Nitric Oxide (NO) availability. Further, oxidative stress is known to be associated with inflammation and ED in vascular remodeling and diabetes-associated hypertension. Numerous strategies have been developed to improve the function of endothelial cells and increasing number of evidences highlight the indispensable role of antioxidants in modulation of endothelium-dependent vasodilation responses. Nuclear factor Erythroid 2-related factor 2 (Nrf2), is the principal transcriptional regulator, that is central in mediating oxidative stress signal response. Having unequivocally established the relationship between type 2 diabetes mellitus (T2DM) and oxidative stress, the pivotal role of Nrf2/Keap1/ARE network, has taken the center stage as target for developing therapies towards maintaining the cellular redox environment. Several activators of Nrf2 are known to combat diabetes-induced ED and few are currently in clinical trials. Focusing on their therapeutic value in diabetes-induced ED, this review highlights some natural and synthetic molecules that are involved in the modulation of the Nrf2/Keap1/ARE network and its underlying molecular mechanisms in the regulation of ED. Further emphasis is also laid on the therapeutic benefits of directly up-regulating Nrf2-mediated antioxidant defences in regulating endothelial redox homeostasis for countering diabetes-induced ED.
Collapse
Affiliation(s)
- Amin Karan
- Life Science Division, SRM Research Institute, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamilnadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Elango Bhakkiyalakshmi
- Life Science Division, SRM Research Institute, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamilnadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Ravichandran Jayasuriya
- Life Science Division, SRM Research Institute, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamilnadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - D V L Sarada
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Life Science Division, SRM Research Institute, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamilnadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
39
|
Lefaki M, Papaevgeniou N, Tur JA, Vorgias CE, Sykiotis GP, Chondrogianni N. The dietary triterpenoid 18α-Glycyrrhetinic acid protects from MMC-induced genotoxicity through the ERK/Nrf2 pathway. Redox Biol 2019; 28:101317. [PMID: 31505326 PMCID: PMC6737304 DOI: 10.1016/j.redox.2019.101317] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/28/2019] [Accepted: 09/01/2019] [Indexed: 02/08/2023] Open
Abstract
18α-Glycyrrhetinic acid (18α-GA) is a bioactive triterpenoid that has been shown to activate the nuclear factor (erythroid-derived-2)-like 2 (Nrf2), the main transcription factor that orchestrates the cellular antioxidant response, in both cellular and organismal context. Although various beneficial properties of 18α-GA have been revealed, including its anti-oxidation and anti-aging activity, its possible protective effect against DNA damage has never been addressed. In this study, we investigated the potential beneficial properties of 18α-GA against DNA damage induced by mitomycin C (MMC) treatment. Using human primary fibroblasts exposed to MMC following pre-treatment with 18α-GA, we reveal an Nrf2-mediated protective effect against MMC-induced cell death that depends on extracellular signal-regulated kinase (ERK) signaling. In total, our results reveal an additional beneficial effect of the Nrf2 activator 18α-GA, suggesting that this important phytochemical compound is a potential candidate in preventive and/or therapeutic schemes against conditions (such as aging) or diseases that are characterized by both oxidative stress and DNA damage.
Collapse
Affiliation(s)
- Maria Lefaki
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 116 35, Athens, Greece.
| | - Nikoletta Papaevgeniou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 116 35, Athens, Greece; Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University of Jena, Dornburger Straße 29, 07743, Jena, Germany.
| | - Josep A Tur
- Research Group on Nutrition and Oxidative Stress, Guillem Colom Bldg, Campus, University of Balearic Islands & CIBEROBN (Physiopahotology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain.
| | - Constantinos E Vorgias
- Section of Biochemistry and Molecular Biology, Department of Biology, National and Kapodistrian University of Athens, Zografou Campus, 15701, Athens, Greece.
| | - Gerasimos P Sykiotis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, 1011, Lausanne, Switzerland.
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 116 35, Athens, Greece.
| |
Collapse
|
40
|
Veerappan I, Sankareswaran SK, Palanisamy R. Morin Protects Human Respiratory Cells from PM 2.5 Induced Genotoxicity by Mitigating ROS and Reverting Altered miRNA Expression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2389. [PMID: 31284452 PMCID: PMC6651735 DOI: 10.3390/ijerph16132389] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022]
Abstract
Chronic fine particulate matter (PM2.5) exposure causes oxidative stress and leads to many diseases in human like respiratory and cardiovascular disorders, and lung cancer. It is known that toxic responses elicited by PM2.5 particles depend on its physical and chemical characteristics that are greatly influenced by the source. Dietary polyphenolic compounds that possess antioxidant and free radical scavenging properties could be used for therapeutic or preventive approaches against air pollution related health hazards. This study evaluates characteristics and toxicity of PM2.5 collected from rural, urban, industrial, and traffic regions in and around Coimbatore City, Tamilnadu, India. Traffic PM2.5 particles contained higher amounts of metals and polycyclic aromatic hydrocarbons (PAHs). It also possessed higher levels of oxidative potential, induced more intracellular reactive oxygen species (ROS), and caused more levels of cell death and DNA damage in human respiratory cells. Its exposure up regulated DNA damage response related miR222, miR210, miR101, miR34a, and miR93 and MycN and suppressed Rad52. Pre-treatment with morin significantly decreased the PM2.5 induced toxicity and conferred protection against PM2.5 induced altered miRNA expression. Results of this study showed that cytoprotective effect of morin is due to its antioxidative and free radical scavenging activity.
Collapse
Affiliation(s)
- Indhumathi Veerappan
- Department of Biotechnology, Anna University, BIT Campus, Tiruchirappalli 620 024, India
| | | | - Rajaguru Palanisamy
- Department of Biotechnology, Anna University, BIT Campus, Tiruchirappalli 620 024, India.
| |
Collapse
|
41
|
Ben-Azu B, Aderibigbe AO, Ajayi AM, Eneni AEO, Omogbiya IA, Owoeye O, Umukoro S, Iwalewa EO. Morin decreases cortical pyramidal neuron degeneration via inhibition of neuroinflammation in mouse model of schizophrenia. Int Immunopharmacol 2019; 70:338-353. [PMID: 30852289 DOI: 10.1016/j.intimp.2019.02.052] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 02/13/2019] [Accepted: 02/28/2019] [Indexed: 11/28/2022]
Abstract
Neuroinflammation plays a prominent role in the pathophysiology and progression of schizophrenia. Thus, suppression of neuroinflammation may retard the progression of the disease. This study was designed to investigate whether morin, a bioactive compound with antipsychotic-like activity could reduce biomarkers of neuroinflammation and neurodegeneration in lipopolysaccharide (LPS)- and ketamine (KET)-induced schizophrenic-like behavior in mice. Animals were treated once daily intraperitoneally with morin (100 mg/kg), haloperidol (1 mg/kg), risperidone (0.5 mg/kg), or saline (10 mL/kg) in combination with LPS (0.1 mg/kg) for 14 consecutive days. However, from days 8-14, overt schizophrenia-like episode was produced with i.p. injection of KET (20 mg/kg) once daily. Schizophrenic-like behaviors: positive (open-field test), negative (social-interaction and social-memory tests) and cognitive (Y-maze test) symptoms were assessed on day 14. Thereafter, the levels and expressions of biomarkers of neuroinflammation were estimated in the striatum (ST), prefrontal cortex (PFC) and hippocampus (HC) using spectrophotometry, ELISA and immunohistochemistry. The effects of morin on cortical pyramidal neurons were estimated using Golgi-impregnation staining technique. LPS in combination with KET significantly (p < 0.05) induced schizophrenia-like behaviors, which was attenuated by morin. Morin significantly (p < 0.05) decreased tumor necrosis factor-α, interleukine-6 levels and myeloperoxidase activity in the ST, PFC and HC of mice treated with LPS + KET. Moreover, morin reduced regional brain expressions of cyclooxygenase-2, inducible nitric oxide synthase and nuclear factor kappa-B, and also rescued loss of pyramidal neurons in the PFC. Taken together, these findings suggest that morin reduces schizophrenic-like symptoms induced by LPS + KET via mechanisms related to inhibition of the release of pro-inflammatory mediators and suppression of degeneration of cortical pyramidal neurons in mice.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria; Department of Pharmacology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port Harcourt, Rivers State, Nigeria.
| | - Adegbuyi Oladele Aderibigbe
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Abayomi Mayowa Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Aya-Ebi Okubo Eneni
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Itivere Adrian Omogbiya
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria; Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Olatunde Owoeye
- Neurotrauma & Neuroregeneration Unit, Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Solomon Umukoro
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ezekiel O Iwalewa
- Inflammatory and immunopharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
42
|
Mori Y, Kato S, Fujisawa Y, Ohnishi S, Hiraku Y, Kawanishi S, Murata M, Oikawa S. Mechanisms of DNA damage induced by morin, an inhibitor of amyloid β-peptide aggregation. Free Radic Res 2019; 53:115-123. [PMID: 30572734 DOI: 10.1080/10715762.2018.1562179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Morin is a potential inhibitor of amyloid β-peptide aggregation. This aggregation is involved in the pathogenesis of Alzheimer's disease. Meanwhile, morin has been found to be mutagenic and exhibits peroxidation of membrane lipids concurrent with DNA strand breaks in the presence of metal ions. To clarify a molecular mechanism of morin-induced DNA damage, we examined the DNA damage and its site specificity on 32P-5'-end-labeled human DNA fragments treated with morin plus Cu(II). The formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), an indicator of oxidative DNA damage, was also determined in calf thymus DNA treated with morin plus Cu(II). Morin-induced DNA strand breaks and base modification in the presence of Cu(II) were dose dependent. Morin plus Cu(II) caused piperidine-labile lesions preferentially at thymine and guanine residues. The DNA damage was inhibited by methional, catalase and Cu(I)-chelator bathocuproine. The typical •OH scavengers ethanol, mannitol and sodium formate showed no inhibitory effect on DNA damage induced by morin plus Cu(II). When superoxide dismutase was added to the solution, DNA damage was not inhibited. In addition, morin plus Cu(II) increased 8-oxodG formation in calf thymus DNA fragments. We conclude that morin undergoes autoxidation in the presence of Cu(II) via a Cu(I)/Cu(II) redox cycle and H2O2 generation to produce Cu(I)-hydroperoxide, which causes oxidative DNA damage.
Collapse
Affiliation(s)
- Yurie Mori
- a Department of Environmental and Molecular Medicine , Mie University Graduate School of Medicine , Tsu , Japan
| | - Shinya Kato
- b Radioisotope Facilities for Medical Science , Mie University , Tsu , Japan
| | - Yutaka Fujisawa
- c Faculty of Pharmaceutical Sciences , Suzuka University of Medical Science , Suzuka , Japan
| | - Shiho Ohnishi
- c Faculty of Pharmaceutical Sciences , Suzuka University of Medical Science , Suzuka , Japan
| | - Yusuke Hiraku
- a Department of Environmental and Molecular Medicine , Mie University Graduate School of Medicine , Tsu , Japan
| | - Shosuke Kawanishi
- c Faculty of Pharmaceutical Sciences , Suzuka University of Medical Science , Suzuka , Japan
| | - Mariko Murata
- a Department of Environmental and Molecular Medicine , Mie University Graduate School of Medicine , Tsu , Japan
| | - Shinji Oikawa
- a Department of Environmental and Molecular Medicine , Mie University Graduate School of Medicine , Tsu , Japan
| |
Collapse
|
43
|
Matzinger M, Fischhuber K, Heiss EH. Activation of Nrf2 signaling by natural products-can it alleviate diabetes? Biotechnol Adv 2018; 36:1738-1767. [PMID: 29289692 PMCID: PMC5967606 DOI: 10.1016/j.biotechadv.2017.12.015] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/19/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus (DM) has reached pandemic proportions and effective prevention strategies are wanted. Its onset is accompanied by cellular distress, the nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor boosting cytoprotective responses, and many phytochemicals activate Nrf2 signaling. Thus, Nrf2 activation by natural products could presumably alleviate DM. We summarize function, regulation and exogenous activation of Nrf2, as well as diabetes-linked and Nrf2-susceptible forms of cellular stress. The reported amelioration of insulin resistance, β-cell dysfunction and diabetic complications by activated Nrf2 as well as the status quo of Nrf2 in precision medicine for DM are reviewed.
Collapse
Affiliation(s)
- Manuel Matzinger
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Katrin Fischhuber
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Elke H Heiss
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
44
|
Negi CK, Jena G. Nrf2, a novel molecular target to reduce type 1 diabetes associated secondary complications: The basic considerations. Eur J Pharmacol 2018; 843:12-26. [PMID: 30359563 DOI: 10.1016/j.ejphar.2018.10.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 10/10/2018] [Accepted: 10/17/2018] [Indexed: 12/30/2022]
Abstract
Oxidative stress and inflammation are the mediators of diabetes and related secondary complications. Oxidative stress arises because of the excessive production of reactive oxygen species and diminished antioxidant production due to impaired Nrf2 activation, the master regulator of endogenous antioxidant. It has been established from various animal models that the transcription factor Nrf2 provides cytoprotection, ameliorates oxidative stress, inflammation and delays the progression of diabetes and its associated complications. Whereas, deletion of the transcription factor Nrf2 amplifies tissue level pathogenic alterations. In addition, Nrf2 also regulates the expression of numerous cellular defensive genes and protects against oxidative stress-mediated injuries in diabetes. The present review provides an overview on the role of Nrf2 in type 1 diabetes and explores if it could be a potential target for the treatment of diabetes and related complications. Further, the rationality of different agent's intervention has been discussed to mitigate organ damages induced by diabetes.
Collapse
Affiliation(s)
- Chander K Negi
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
45
|
Li LN, Wang L, Cheng YN, Cao ZQ, Zhang XK, Guo XL. Discovery and Characterization of 4-Hydroxy-2-pyridone Derivative Sambutoxin as a Potent and Promising Anticancer Drug Candidate: Activity and Molecular Mechanism. Mol Pharm 2018; 15:4898-4911. [PMID: 30223653 DOI: 10.1021/acs.molpharmaceut.8b00525] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sambutoxin, a representative derivative of 4-hydroxy-2-pyridone, was isolated from Hericium alpestre for the first time in this study. The possible correlation between the sambutoxin-induced suppression of tumor growth and its influence on cell-cycle arrest and apoptosis was investigated. The effects of sambutoxin on reactive oxygen species (ROS) production, DNA damage, mitochondrial transmembrane potential, cell apoptosis, and the expression of related proteins were evaluated. An in vitro cell viability study demonstrated that sambutoxin could inhibit the proliferation of various cancer cells. Treatment with sambutoxin induced the production of ROS, which caused DNA damage. Furthermore, the subsequent sambutoxin-induced activation of ATM and Chk2 resulted in G2/M arrest, accompanied by decreased expression of cdc25C, cdc2, and cyclin B1. Sambutoxin induced apoptosis by activating the mitochondrial apoptosis pathway through an increased Bax/Bcl-2 ratio, loss of mitochondrial membrane potential (ΔΨm), cytochrome (Cyt) c release, caspase-9 and caspase-3 activation, and poly(ADP-ribose) polymerase (PARP) degradation. The ROS elevation induced the sustained phosphorylation of c-Jun N-terminal kinase (JNK), while SP600125, a JNK inhibitor, nearly completely reversed sambutoxin-induced apoptosis. Accordingly, an in vivo study showed that sambutoxin exhibited potential antitumor activity in a BALB/c nude mouse xenograft model without significant systemic toxicity. Moreover, the expression changes in proteins related to the G2/M phase, DNA damage, and apoptosis in vivo were consistent with those in vitro. Importantly, sambutoxin has remarkable antiproliferative effects and is a promising anticarcinogen candidate for cancer treatment.
Collapse
|
46
|
Yue M, Zeng N, Xia Y, Wei Z, Dai Y. Morin Exerts Anti-Arthritic Effects by Attenuating Synovial Angiogenesis via Activation of Peroxisome Proliferator Activated Receptor-γ. Mol Nutr Food Res 2018; 62:e1800202. [DOI: 10.1002/mnfr.201800202] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/27/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Mengfan Yue
- Department of Pharmacology of Chinese Materia Medica; School of Traditional Chinese Pharmacy; China Pharmaceutical University; 24 Tong Jia Xiang Nanjing 210009 China
| | - Ni Zeng
- Department of Pharmacology of Chinese Materia Medica; School of Traditional Chinese Pharmacy; China Pharmaceutical University; 24 Tong Jia Xiang Nanjing 210009 China
| | - Yufeng Xia
- Department of Pharmacology of Chinese Materia Medica; School of Traditional Chinese Pharmacy; China Pharmaceutical University; 24 Tong Jia Xiang Nanjing 210009 China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica; School of Traditional Chinese Pharmacy; China Pharmaceutical University; 24 Tong Jia Xiang Nanjing 210009 China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica; School of Traditional Chinese Pharmacy; China Pharmaceutical University; 24 Tong Jia Xiang Nanjing 210009 China
| |
Collapse
|
47
|
Ben-Azu B, Aderibigbe AO, Ajayi AM, Eneni AEO, Umukoro S, Iwalewa EO. Involvement of GABAergic, BDNF and Nox-2 mechanisms in the prevention and reversal of ketamine-induced schizophrenia-like behavior by morin in mice. Brain Res Bull 2018; 139:292-306. [PMID: 29548911 DOI: 10.1016/j.brainresbull.2018.03.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 12/26/2022]
Abstract
GABAergic (Gamma-aminobutyric acid) and neurotrophic derangements have important implication in schizophrenia, a neuropsychiatric disease. Previous studies have shown that nicotinamide adenine dinucleotide phosphate oxidase (NADPH-oxidase) alters GABAergic and neurotrophic activities via inflammatory and oxidative pathways. Thus, it has been proposed that agents with anti-oxidant and anti-inflammatory properties might be beneficial for the treatment of the disease. Morin is neuroactive bioflavonoid compound, which has been reported to demonstrate antipsychotic and anti-oxidant/anti-inflammatory activities. In this study, we further evaluated its effects on the brain markers of GABAergic, neurotrophic and oxidative alterations in the preventive and reversal of schizophrenia-like behavior induced by ketamine (KET). In the prevention protocol, adult mice were treated intraperitoneally with morin (100 mg/kg/day), haloperidol (1 mg/kg/day), risperidone (0.5 mg/kg/day), or saline (10 mL/kg/day) for 14 consecutive days. In addition, the animals were administered KET (20 mg/kg/day) from the 8th to the 14th day. In the reversal protocol, the animals received KET or saline for 14 days. From 8th to 14th days mice were additionally treated with morin, haloperidol, risperidone or saline. Schizophrenic-like behaviors consisting of positive (stereotypy test), negative (behavioral despair in forced swim test) and cognitive (novel-object recognition test) symptoms were evaluated. Afterwards, brain levels of biomarkers of GABAergic (Glutamic acid decarboxylase-67, GAD67), neurotrophic (Brain-derived neurotrophic factor, BDNF) and oxidative [NADPH-oxidase, superoxide dismutase, (SOD) and catalase (CAT)] alterations were determined in the striatum, prefrontal cortex (PFC) and hippocampus, respectively. Morin significantly (p < 0.05) prevented and reversed KET-induced increased stereotypy, behavioral despair and deficit in cognitive functions when compared with KET-treated mice respectively. Also, morin and risperidone but not haloperidol, significantly (p < 0.05) prevented and reversed the decreases in expressions of GAD67 and BDNF immunoreactivity in the striatum, PFC and hippocampus caused by KET. Moreover, morin and risperidone significantly (p < 0.05) decreased regional brain expressions of NADPH-oxidase immunopositive cells and increased endogenous anti-oxidant enzymes (SOD and CAT) in the striatum, PFC and hippocampus relative to KET controls respectively. Taken together, these findings further suggest that the antipsychotic-like activity of morin may be mediated via mechanisms related to enhancement of GABAergic neurotransmission and neurotrophic factor, and suppression of NADPH-oxidase induced oxidative damage in mice.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Adegbuyi Oladele Aderibigbe
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Abayomi Mayowa Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Aya-Ebi Okubo Eneni
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Solomon Umukoro
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ezekiel O Iwalewa
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
48
|
Zhang Q, Zhang F, Thakur K, Wang J, Wang H, Hu F, Zhang JG, Wei ZJ. Molecular mechanism of anti-cancerous potential of Morin extracted from mulberry in Hela cells. Food Chem Toxicol 2018; 112:466-475. [DOI: 10.1016/j.fct.2017.07.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/29/2017] [Accepted: 07/02/2017] [Indexed: 12/29/2022]
|
49
|
Du H, Liu Y, Chen X, Yu X, Hou X, Li H, Zhan M, Lin S, Lu L, Yuan S, Sun L. DT-13 synergistically potentiates the sensitivity of gastric cancer cells to topotecan via cell cycle arrest in vitro and in vivo. Eur J Pharmacol 2017; 818:124-131. [PMID: 29037767 DOI: 10.1016/j.ejphar.2017.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 12/11/2022]
Abstract
Natural medicine has multi-levels, multi-paths and multi-targets, and an increasing number of reports have confirmed that the combination of natural medicine with chemotherapy drugs exhibit a significant synergistic effect. It is necessary to find drug combination strategies to enhance efficacy and reduce toxicity, which can relieve the restrictions on the use of several chemotherapy drugs that have serious toxicity. Our previous reports showed that DT-13 inhibits cancer proliferation, invasion, migration, metastasis, and angiogenesis and induces autophagy. In this study, we evaluated the anti-proliferation effect of DT-13 on a panel of 40 different cancer cell lines for the first time. Moreover, it is also the first time that the combination of DT-13 with 5 different chemotherapy drugs on 3 common cancer cells has been examined. We further confirmed that DT-13 enhanced the sensitivity of gastric cancer cells to topotecan (TPT) via cell cycle arrest in vitro and in vivo. Considering that TPT has been subjected to restriction because of its serious toxicity, DT-13 showed the ability to enhance its effect and reduce its toxicity, which could provide a strategy to reduce the toxic and clinical side effects of TPT.
Collapse
Affiliation(s)
- Hongzhi Du
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yang Liu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xudong Chen
- Department of Intervention Treatment, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Xiaowen Yu
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaoying Hou
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hongyang Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Meixiao Zhan
- Interventional Radiology Center, Zhuhai Precision Medicine Center, Zhuhai People's Hospital of Tongji University, Zhuhai, Guangdong, China
| | - Sensen Lin
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ligong Lu
- Interventional Radiology Center, Zhuhai Precision Medicine Center, Zhuhai People's Hospital of Tongji University, Zhuhai, Guangdong, China.
| | - Shengtao Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|