1
|
Huang Z, Wen B, Wang M, Lu Y, Ji Q, Mei J, Shi X, Jiang Z. Molecular structure of VEGFA polysaccharide protein and its regulation of monocyte infiltration and oxidative stress after myocardial infarction. Int J Biol Macromol 2025; 310:143199. [PMID: 40258548 DOI: 10.1016/j.ijbiomac.2025.143199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/03/2025] [Accepted: 04/14/2025] [Indexed: 04/23/2025]
Abstract
The pathogenesis of myocardial infarction (MI) is complex, involving multiple biomarkers and cell signaling pathways. The aim of this study was to elucidate the molecular structure of VEGFA dioglycan protein and explore how it regulates monocyte infiltration and oxidative stress response after myocardial infarction, so as to provide a new molecular target for the treatment of myocardial infarction. Differential expression analysis and enrichment analysis were performed to investigate the composition and characteristics of immune cells in myocardial infarction. The regulatory network was constructed by network analysis, and in vitro experiments were carried out by BMDM isolation culture. Animal experiments were conducted in mouse models, and data were verified and statistically analyzed by combining immunohistochemical staining, real-time PCR, Western blot and enzyme-linked immunosorbent assay (ELISA). Genome-wide association studies (GWAS) and single-cell data successfully identified key immune-related genes and analyzed differentially expressed mRNA and its characteristics in myocardial infarction. The immune microenvironment of myocardial infarction was investigated, the differentially expressed circRNA and miRNA were characterized, and the circrNa-mirNA-mrna regulatory network was constructed. The characteristics of differentially expressed proteins in myocardial infarction and the changes of mRNA during oxidative stress were identified and compared. By analyzing the changes in chromatin accessibility, the regulatory network between oxidative stress and myocardial infarction in immune cells was constructed, and the expression and co-localization of oxidative stress in myocardial infarction were verified.
Collapse
Affiliation(s)
- Zhenyu Huang
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Bohan Wen
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ming Wang
- Department of Cardiology, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Yanqiao Lu
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qingqi Ji
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Ju Mei
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Xin Shi
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Zhaolei Jiang
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
2
|
Li H, Xiao F, Zhou C, Zhu T, Wang S. Metabolic Adaptations and Therapies in Cardiac Hypoxia: Mechanisms and Clinical Implications/ Potential Strategies. JACC Basic Transl Sci 2025:S2452-302X(24)00458-3. [PMID: 40265246 DOI: 10.1016/j.jacbts.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 04/24/2025]
Abstract
Cardiac hypoxia triggers a cascade of responses and functional changes in myocardial and non-myocardial cells, profoundly affecting cellular metabolism, oxygen-sensing mechanisms, and immune responses. Myocardial cells, being the primary cell type in cardiac tissue, undergo significant alterations in energy metabolism, including glycolysis, fatty acid metabolism, ketone body utilization, and branched-chain amino acid metabolism, to maintain cardiac function under hypoxic conditions. Non-myocardial cells, such as fibroblasts, endothelial cells, and immune cells, although fewer in number, play crucial roles in regulating cardiac homeostasis, maintaining structural integrity, and responding to injury. This review discusses the metabolic reprogramming of immune cells, particularly macrophages, during ischemia-reperfusion injury and explores various therapeutic strategies that modulate these metabolic pathways to protect the heart during hypoxia. Understanding these interactions provides valuable insights and potential therapeutic targets for heart disease treatment.
Collapse
Affiliation(s)
- Huili Li
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Emergency Department, The State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fei Xiao
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chenghui Zhou
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China; Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012, West China Hospital, Sichuan University, Chengdu, China.
| | - Sheng Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Linzhi People's Hospital, Linzhi, Tibet, China.
| |
Collapse
|
3
|
Naoi M, Wu Y, Maruyama W, Shamoto-Nagai M. Phytochemicals Modulate Biosynthesis and Function of Serotonin, Dopamine, and Norepinephrine for Treatment of Monoamine Neurotransmission-Related Psychiatric Diseases. Int J Mol Sci 2025; 26:2916. [PMID: 40243512 PMCID: PMC11988947 DOI: 10.3390/ijms26072916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Serotonin (5-HT), dopamine (DA), and norepinephrine (NE) are key monoamine neurotransmitters regulating behaviors, mood, and cognition. 5-HT affects early brain development, and its dysfunction induces brain vulnerability to stress, raising the risk of depression, anxiety, and autism in adulthood. These neurotransmitters are synthesized from tryptophan and tyrosine via hydroxylation and decarboxylation, and are metabolized by monoamine oxidase (MAO). This review aims to summarize the current findings on the role of dietary phytochemicals in modulating monoamine neurotransmitter biosynthesis, metabolism, and function, with an emphasis on their potential therapeutic applications in neuropsychiatric disorders. Phytochemicals exert antioxidant, neurotrophic, and neurohormonal activities, regulate gene expression, and induce epigenetic modifications. Phytoestrogens activate the estrogen receptors or estrogen-responsive elements of the promoter of target genes, enhance transcription of tryptophan hydroxylase and tyrosine hydroxylase, while inhibiting that of MAO. These compounds also influence the interaction between genetic and environmental factors, potentially reversing dysregulated neurotransmission and the brain architecture associated with neuropsychiatric conditions. Despite promising preclinical findings, clinical applications of phytochemicals remain challenging. Advances in nanotechnology and targeted delivery systems offer potential solutions to enhance clinical efficacy. This review discusses mechanisms, challenges, and strategies, underscoring the need for further research to advance phytochemical-based interventions for neuropsychiatric diseases.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health and Nutritional Sciences, Faculty of Health Sciences, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin 320-195, Aichi, Japan; (Y.W.); (W.M.); (M.S.-N.)
| | | | | | | |
Collapse
|
4
|
Li Y, Wang X, Meng X, Xia C, Yang C, Wang J, Yang J, Wang F. Aerobic exercise inhibits GSDME-dependent myocardial cell pyroptosis to protect ischemia-reperfusion injury. Mol Med 2024; 30:273. [PMID: 39719560 DOI: 10.1186/s10020-024-01048-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/15/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) remains a significant cause of global mortality, exacerbated by ischemia-reperfusion (IR) injury. Myocardial cell pyroptosis has emerged as a critical pathway influencing IR injury severity. METHODS We aimed to investigate the cardioprotective effects of aerobic exercise on IR injury by examining the modulation of IGFBP2 and its impact on GSDME-dependent myocardial cell pyroptosis. Mechanistic pathways were explored using western blot analysis, ELISA, immunofluorescence, and echocardiography. RESULTS Our findings demonstrate that aerobic exercise leads to increased circulating levels of IGFBP2, which effectively suppresses GSDME-dependent myocardial cell pyroptosis. This regulation occurs via the AKT-GSK3β signaling pathway, involving VDAC1 phosphorylation, thereby enhancing mitochondrial function and reducing oxidative stress. CONCLUSION In conclusion, our study highlights the role of IGFBP2 in mitigating GSDME-dependent pyroptosis as a mechanism through which aerobic exercise exerts cardioprotective effects against IR injury. These insights suggest potential therapeutic targets for managing acute myocardial infarction.
Collapse
Affiliation(s)
- Yi Li
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Xiang Wang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.
| | - Xuyang Meng
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Chenxi Xia
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Chenguang Yang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Jun Wang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Jiefu Yang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.
| | - Fang Wang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.
| |
Collapse
|
5
|
Hu F, Hu T, He A, Yuan Y, Wang X, Zou C, Qiao Y, Xu H, Liu L, Wang Q, Liu J, Lai S, Huang H. Puerarin Protects Myocardium From Ischaemia/Reperfusion Injury by Inhibiting Ferroptosis Through Downregulation of VDAC1. J Cell Mol Med 2024; 28:e70313. [PMID: 39730981 DOI: 10.1111/jcmm.70313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024] Open
Abstract
Despite improvements in interventional techniques leading to faster myocardial reperfusion postmyocardial infarction, there has been a significant rise in the occurrence of myocardial ischaemia/reperfusion injury (MI/RI). A deeper understanding of the underlying mechanisms of MI/RI could offer a crucial approach to reducing myocardial damage and enhancing patient outcomes. This study examined the myocardial protective properties of puerarin (PUE) in the context of MI/RI using hypoxia/reoxygenation (H/R) or ischaemia/reperfusion (I/R) injury models were employed in H9c2 cells and C57BL/6 mice. Our findings demonstrate that pretreatment with PUE effectively mitigated cardiomyocyte ferroptosis, restored redox balance, preserved mitochondrial energy production and maintained mitochondrial function following MI/RI. Furthermore, these cardioprotective effects of PUE were found to be mediated by the downregulation of voltage-dependent anion channel 1 (VDAC1) protein. These data reveal a novel mechanism by which PUE inhibits MI/RI and reveal that this protective effect of PUE is dependent on the downregulation of VDAC1.
Collapse
Affiliation(s)
- Fajia Hu
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Cardiovascular Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Tie Hu
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Cardiovascular Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Andi He
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yong Yuan
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiuqi Wang
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Chenchao Zou
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yamei Qiao
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Huaihan Xu
- Department of Cardiovascular Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Lanxiang Liu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qun Wang
- Department of Cardiovascular Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jichun Liu
- Department of Cardiovascular Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Songqing Lai
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Huang Huang
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Cardiovascular Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Arif T, Shteinfer-Kuzmine A, Shoshan-Barmatz V. Decoding Cancer through Silencing the Mitochondrial Gatekeeper VDAC1. Biomolecules 2024; 14:1304. [PMID: 39456237 PMCID: PMC11506819 DOI: 10.3390/biom14101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Mitochondria serve as central hubs for regulating numerous cellular processes that include metabolism, apoptosis, cell cycle progression, proliferation, differentiation, epigenetics, immune signaling, and aging. The voltage-dependent anion channel 1 (VDAC1) functions as a crucial mitochondrial gatekeeper, controlling the flow of ions, such as Ca2+, nucleotides, and metabolites across the outer mitochondrial membrane, and is also integral to mitochondria-mediated apoptosis. VDAC1 functions in regulating ATP production, Ca2+ homeostasis, and apoptosis, which are essential for maintaining mitochondrial function and overall cellular health. Most cancer cells undergo metabolic reprogramming, often referred to as the "Warburg effect", supplying tumors with energy and precursors for the biosynthesis of nucleic acids, phospholipids, fatty acids, cholesterol, and porphyrins. Given its multifunctional nature and overexpression in many cancers, VDAC1 presents an attractive target for therapeutic intervention. Our research has demonstrated that silencing VDAC1 expression using specific siRNA in various tumor types leads to a metabolic rewiring of the malignant cancer phenotype. This results in a reversal of oncogenic properties that include reduced tumor growth, invasiveness, stemness, epithelial-mesenchymal transition. Additionally, VDAC1 depletion alters the tumor microenvironment by reducing angiogenesis and modifying the expression of extracellular matrix- and structure-related genes, such as collagens and glycoproteins. Furthermore, VDAC1 depletion affects several epigenetic-related enzymes and substrates, including the acetylation-related enzymes SIRT1, SIRT6, and HDAC2, which in turn modify the acetylation and methylation profiles of histone 3 and histone 4. These epigenetic changes can explain the altered expression levels of approximately 4000 genes that are associated with reversing cancer cells oncogenic properties. Given VDAC1's critical role in regulating metabolic and energy processes, targeting it offers a promising strategy for anti-cancer therapy. We also highlight the role of VDAC1 expression in various disease pathologies, including cardiovascular, neurodegenerative, and viral and bacterial infections, as explored through siRNA targeting VDAC1. Thus, this review underscores the potential of targeting VDAC1 as a strategy for addressing high-energy-demand cancers. By thoroughly understanding VDAC1's diverse roles in metabolism, energy regulation, mitochondrial functions, and other cellular processes, silencing VDAC1 emerges as a novel and strategic approach to combat cancer.
Collapse
Affiliation(s)
- Tasleem Arif
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Varda Shoshan-Barmatz
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
7
|
Ma Y, Sun X, Yao X. The role and mechanism of VDAC1 in type 2 diabetes: An underestimated target of environmental pollutants. Mitochondrion 2024; 78:101929. [PMID: 38986923 DOI: 10.1016/j.mito.2024.101929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/08/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disease that accounts for more than 90% of diabetic patients. Its main feature is hyperglycemia due to insulin resistance or insulin deficiency. With changes in diet and lifestyle habits, the incidence of T2D in adolescents has burst in recent decades. The deterioration in the exposure to the environmental pollutants further aggravates the prevalence of T2D, and consequently, it imposes a significant economic burden. Therefore, early prevention and symptomatic treatment are essential to prevent diabetic complications. Mitochondrial number and electron transport chain activity are decreased in the patients with T2D. Voltage-Dependent Anion Channel 1 (VDAC1), as a crucial channel protein on the outer membrane of mitochondria, regulates signal transduction between mitochondria and other cellular components, participating in various biological processes. When VDAC1 exists in oligomeric form, it additionally facilitates the entry and exit of macromolecules into and from mitochondria, modulating insulin secretion. We summarize and highlight the interplay between VDAC1 and T2D, especially in the environmental pollutants-related T2D, shed light on the potential therapeutic implications of targeting VDAC1 monomers and oligomers, providing a new possible target for the treatment of T2D.
Collapse
Affiliation(s)
- Yu Ma
- Environmental and Occupational Health Department, Dalian Medical University, 9 West Lushun South Road, Dalian, China
| | - Xiance Sun
- Environmental and Occupational Health Department, Dalian Medical University, 9 West Lushun South Road, Dalian, China
| | - Xiaofeng Yao
- Environmental and Occupational Health Department, Dalian Medical University, 9 West Lushun South Road, Dalian, China.
| |
Collapse
|
8
|
Wu Y, Zou Y, Song C, Cao K, Cai K, Chen S, Zhang Z, Geng D, Zhang N, Feng H, Tang M, Li Z, Sun G, Zhang Y, Sun Y, Zhang Y. The role of serine/threonine protein kinases in cardiovascular disease and potential therapeutic methods. Biomed Pharmacother 2024; 177:117093. [PMID: 38971012 DOI: 10.1016/j.biopha.2024.117093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
Protein phosphorylation is an important link in a variety of signaling pathways, and most of the important life processes in cells involve protein phosphorylation. Based on the amino acid residues of phosphorylated proteins, protein kinases can be categorized into the following families: serine/threonine protein kinases, tyrosine-specific protein kinases, histidine-specific protein kinases, tryptophan kinases, and aspartate/glutamyl protein kinases. Of all the protein kinases, most are serine/threonine kinases, where serine/threonine protein kinases are protein kinases that catalyze the phosphorylation of serine or threonine residues on target proteins using ATP as a phosphate donor. The current socially accepted classification of serine/threonine kinases is to divide them into seven major groups: protein kinase A, G, C (AGC), CMGC, Calmodulin-dependent protein kinase (CAMK), Casein kinase (CK1), STE, Tyrosine kinase (TKL) and others. After decades of research, a preliminary understanding of the specific classification and respective functions of serine/threonine kinases has entered a new period of exploration. In this paper, we review the literature of the previous years and introduce the specific signaling pathways and related therapeutic modalities played by each of the small protein kinases in the serine/threonine protein kinase family, respectively, in some common cardiovascular system diseases such as heart failure, myocardial infarction, ischemia-reperfusion injury, and diabetic cardiomyopathy. To a certain extent, the current research results, including molecular mechanisms and therapeutic methods, are fully summarized and a systematic report is made for the prevention and treatment of cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Yanjiao Wu
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China.
| | - Hao Feng
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Man Tang
- Department of clinical pharmacology, College of Pharmacy, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Zhao Li
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Guozhe Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| |
Collapse
|
9
|
Hu T, Zou HX, Zhang ZY, Wang YC, Hu FJ, Huang WX, Liu JC, Lai SQ, Huang H. Resveratrol protects cardiomyocytes against ischemia/reperfusion-induced ferroptosis via inhibition of the VDAC1/GPX4 pathway. Eur J Pharmacol 2024; 971:176524. [PMID: 38561102 DOI: 10.1016/j.ejphar.2024.176524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
The present study aimed to explore how resveratrol (Res) confers myocardial protection by attenuating ferroptosis. In vivo and in vitro myocardial ischemia/reperfusion injury (MIRI) models were established, with or without Res pretreatment. The results showed that Res pretreatment effectively attenuated MIRI, as evidenced by increased cell viability, reduced lactate dehydrogenase activity, decreased infarct size, and maintained cardiac function. Moreover, Res pretreatment inhibited MIRI-induced ferroptosis, as shown by improved mitochondrial integrity, increased glutathione level, decreased prostaglandin-endoperoxide synthase 2 level, inhibited iron overload, and abnormal lipid peroxidation. Of note, Res pretreatment decreased or increased voltage-dependent anion channel 1/glutathione peroxidase 4 (VDAC1/GPX4) expression, which was increased or decreased via anoxia/reoxygenation (A/R) treatment, respectively. However, the overexpression of VDAC1 via pAd/VDAC1 and knockdown of GPX4 through Si-GPX4 reversed the protective effect of Res in A/R-induced H9c2 cells, whereas the inhibition of GPX4 with RSL3 abolished the protective effect of Res on mice treated with ischemia/reperfusion.Interestingly, knockdown of VDAC1 by Si-VDAC1 promoted the protective effect of Res on A/R-induced H9c2 cells and the regulation of GPX4. Finally, the direct interaction between VDAC1 and GPX4 was determined using co-immunoprecipitation. In conclusion, Res pretreatment could protect the myocardium against MIRI-induced ferroptosis via the VDAC1/GPX4 signaling pathway.
Collapse
Affiliation(s)
- Tie Hu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China; Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Hua-Xi Zou
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Ze-Yu Zhang
- Institute of Nanchang University Trauma Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, Nanchang, China
| | - Yi-Cheng Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Fa-Jia Hu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China; Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Wen-Xiong Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Ji-Chun Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Song-Qing Lai
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Huang Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
10
|
Chen S, Zou Y, Song C, Cao K, Cai K, Wu Y, Zhang Z, Geng D, Sun W, Ouyang N, Zhang N, Li Z, Sun G, Zhang Y, Sun Y, Zhang Y. The role of glycolytic metabolic pathways in cardiovascular disease and potential therapeutic approaches. Basic Res Cardiol 2023; 118:48. [PMID: 37938421 PMCID: PMC10632287 DOI: 10.1007/s00395-023-01018-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
Cardiovascular disease (CVD) is a major threat to human health, accounting for 46% of non-communicable disease deaths. Glycolysis is a conserved and rigorous biological process that breaks down glucose into pyruvate, and its primary function is to provide the body with the energy and intermediate products needed for life activities. The non-glycolytic actions of enzymes associated with the glycolytic pathway have long been found to be associated with the development of CVD, typically exemplified by metabolic remodeling in heart failure, which is a condition in which the heart exhibits a rapid adaptive response to hypoxic and hypoxic conditions, occurring early in the course of heart failure. It is mainly characterized by a decrease in oxidative phosphorylation and a rise in the glycolytic pathway, and the rise in glycolysis is considered a hallmark of metabolic remodeling. In addition to this, the glycolytic metabolic pathway is the main source of energy for cardiomyocytes during ischemia-reperfusion. Not only that, the auxiliary pathways of glycolysis, such as the polyol pathway, hexosamine pathway, and pentose phosphate pathway, are also closely related to CVD. Therefore, targeting glycolysis is very attractive for therapeutic intervention in CVD. However, the relationship between glycolytic pathway and CVD is very complex, and some preclinical studies have confirmed that targeting glycolysis does have a certain degree of efficacy, but its specific role in the development of CVD has yet to be explored. This article aims to summarize the current knowledge regarding the glycolytic pathway and its key enzymes (including hexokinase (HK), phosphoglucose isomerase (PGI), phosphofructokinase-1 (PFK1), aldolase (Aldolase), phosphoglycerate metatase (PGAM), enolase (ENO) pyruvate kinase (PKM) lactate dehydrogenase (LDH)) for their role in cardiovascular diseases (e.g., heart failure, myocardial infarction, atherosclerosis) and possible emerging therapeutic targets.
Collapse
Affiliation(s)
- Shuxian Chen
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Nanxiang Ouyang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
- Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Zhao Li
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
11
|
Gao J, Zhang M, Zu X, Gu X, Hao E, Hou X, Bai G. Glucuronic acid metabolites of phenolic acids target AKT-PH domain to improve glucose metabolism. CHINESE HERBAL MEDICINES 2023; 15:398-406. [PMID: 37538860 PMCID: PMC10394347 DOI: 10.1016/j.chmed.2022.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/08/2022] [Accepted: 11/03/2022] [Indexed: 08/05/2023] Open
Abstract
Objective Phenolic acids widely exist in the human diet and exert beneficial effects such as improving glucose metabolism. It is not clear whether phenolic acids or their metabolites play a major role in vivo. In this study, caffeic acid (CA) and ferulic acid (FA), the two most ingested phenolic acids, and their glucuronic acid metabolites, caffeic-4'-O-glucuronide (CA4G) and ferulic-4'-O-glucuronide (FA4G), were investigated. Methods Three insulin resistance models in vitro were established by using TNF-α, insulin and palmitic acid (PA) in HepG2 cells, respectively. We compared the effects of FA, FA4G, CA and CA4G on glucose metabolism in these models by measuring the glucose consumption levels. The potential targets and related pathways were predicted by network pharmacology. Fluorescence quenching measurement was used to analyze the binding between the compounds and the predicted target. To investigate the binding mode, molecular docking was performed. Then, we performed membrane recruitment assays of the AKT pleckstrin homology (PH) domain with the help of the PH-GFP plasmid. AKT enzymatic activity was determined to compare the effects between the metabolites with their parent compounds. Finally, the downstream signaling pathway of AKT was investigated by Western blot analysis. Results The results showed that CA4G and FA4G were more potent than their parent compounds in increasing glucose consumption. AKT was predicted to be the key target of CA4G and FA4G by network pharmacology analysis. The fluorescence quenching test confirmed the more potent binding to AKT of the two metabolites compared to their parent compounds. The molecular docking results indicated that the carbonyl group in the glucuronic acid structure of CA4G and FA4G might bind to the PH domain of AKT at the key Arg-25 site. CA4G and FA4G inhibited the translocation of the AKT PH domain to the membrane, while increasing the activity of AKT. Western blot analysis demonstrated that the metabolites could increase the phosphorylation of AKT and downstream glycogen synthase kinase 3β in the AKT signaling pathway to increase glucose consumption. Conclusion In conclusion, our results suggested that the metabolites of phenolic acids, which contain glucuronic acid, are the key active substances and that they activate AKT by targeting the PH domain, thus improving glucose metabolism.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Manqian Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Xingwang Zu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Xue Gu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
12
|
Wan H, Yan YD, Hu XM, Shang L, Chen YH, Huang YX, Zhang Q, Yan WT, Xiong K. Inhibition of mitochondrial VDAC1 oligomerization alleviates apoptosis and necroptosis of retinal neurons following OGD/R injury. Ann Anat 2023; 247:152049. [PMID: 36690044 DOI: 10.1016/j.aanat.2023.152049] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
Ischemia-reperfusion (I/R) injury is a common pathological mechanism in many retinal diseases, which can lead to cell death via mitochondrial dysfunction. Voltage-dependent anion channel 1 (VDAC1), which is mainly located in the outer mitochondrial membrane, is the gatekeeper of mitochondria. The permeability of mitochondrial membrane can be regulated by controlling the oligomerization of VDAC1. However, the functional mechanism of VDAC1 in retinal I/R injury was unclear. Our results demonstrate that oxygen-glucose deprivation and re-oxygenation (OGD/R) injury leads to apoptosis, necroptosis, and mitochondrial dysfunction of R28 cells. The OGD/R injury increases the levels of VDAC1 oligomerization. Inhibition of VDAC1 oligomerization by VBIT-12 rescued mitochondrial dysfunction by OGD/R and also reduced apoptosis/necroptosis of R28 cells. In vivo, the use of VBIT-12 significantly reduced aHIOP-induced neuronal death (apoptosis/necroptosis) in the rat retina. Our findings indicate that VDAC1 oligomers may open and enlarge mitochondrial membrane pores during OGD/R injury, leading to the release of death-related factors in mitochondria, resulting in apoptosis and necroptosis. This study provides a potential therapeutic strategy against ocular diseases caused by I/R injury.
Collapse
Affiliation(s)
- Hao Wan
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Yan-di Yan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lei Shang
- Jiangxi Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, Nanchang 330006, China
| | - Yu-Hua Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Yan-Xia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Wei-Tao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China.
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China; Hunan Key Laboratory of Ophthalmology, Changsha 410008, China; Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
13
|
Zhao J, Li J, Li G, Chen M. The role of mitochondria-associated membranes mediated ROS on NLRP3 inflammasome in cardiovascular diseases. Front Cardiovasc Med 2022; 9:1059576. [PMID: 36588561 PMCID: PMC9794868 DOI: 10.3389/fcvm.2022.1059576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/01/2022] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) metabolism is essential for the homeostasis of cells. Appropriate production of ROS is an important signaling molecule, but excessive ROS production can damage cells. ROS and ROS-associated proteins can act as damage associated molecular pattern molecules (DAMPs) to activate the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome in cardiovascular diseases. Previous studies have shown that there are connected sites, termed mitochondria-associated membranes (MAMs), between mitochondria and the endoplasmic reticulum. In cardiovascular disease progression, MAMs play multiple roles, the most important of which is the ability to mediate ROS generation, which further activates the NLPR3 inflammasome, exacerbating the progression of disease. In this review, the following topics will be covered: 1. Molecular structures on MAMs that can mediate ROS generation; 2. Specific mechanisms of molecule-mediated ROS generation and the molecules' roles in cardiovascular disease, 3. The effects of MAMs-mediated ROS on the NLRP3 inflammasome in cardiovascular disease. The purpose of this review is to provide a basis for subsequent clinical treatment development.
Collapse
Affiliation(s)
- Jiahao Zhao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junli Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Guoyong Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China,Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Mao Chen
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China,Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Mao Chen
| |
Collapse
|
14
|
Wang L, Lai S, Zou H, Zhou X, Wan Q, Luo Y, Wu Q, Wan L, Liu J, Huang H. Ischemic preconditioning/ischemic postconditioning alleviates anoxia/reoxygenation injury via the Notch1/Hes1/VDAC1 axis. J Biochem Mol Toxicol 2022; 36:e23199. [PMID: 35975741 DOI: 10.1002/jbt.23199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/06/2022] [Accepted: 08/05/2022] [Indexed: 11/07/2022]
Abstract
Ischemic preconditioning (IPC), and ischemic postconditioning (IPost) have a significant protective effect on myocardial ischemia/reperfusion (MI/R) injury by alleviating oxidative stress and mitochondrial disturbances, although the underlying molecular mechanisms are unclear. The study was to demonstrate that cardioprotection against anoxia/reoxygenation (A/R) injury is transduced via the Notch1/Hes1/VDAC1 signaling pathway. Using mass spectrometry and tandem affinity purification (TAP), to screen for differentially expressed proteins associated with Hes1, followed by standard bioinformatics analysis. The co-immunoprecipitation (Co-IP) assay confirmed an interaction between Hes1 and VDAC1 proteins. H9c2 cells were transfected with Hes1 adenoviral N-terminal TAP vector (AD-NTAP/Hes1) and Hes1-short hairpin RNA adenoviral vector (AD-Hes1-shRNA) to establish A/R injury, IPC, and IPost models, respectively. The expression of Hes1 and VDAC1 proteins were measured by western blot analysis, while the levels of reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨm), and apoptosis were evaluated by flow cytometry. AD-NTAP/Hes1 can activate the exogenous protein expression of Hes1, thus decreasing creatine phosphokinase (CPK) and lactate dehydrogenase (LDH) activity and promoting cell viability. The study found that VDAC1 was a potential target protein for Hes1 and the overexpression of Hes1 protein expression downregulated protein expression levels of VDAC1, reduced ROS production, stabilized ΔΨm, and inhibited apoptosis in H9c2 cells. Additionally, downregulation of Hes1 protein expression also upregulated VDAC1 protein expression, increased ROS production, imbalanced ΔΨm, promoted cell apoptosis, and attenuated the cardioprotection afforded by IPC and IPost. The Notch1/Hes1 signaling pathway activated by IPC/IPost can directly downregulate the protein expression of VDAC1 and consequently relieve A/R injury.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Department of Cardiac Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | | | - Huaxi Zou
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Department of Cardiac Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xueliang Zhou
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qing Wan
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yong Luo
- Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Qicai Wu
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Li Wan
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jichun Liu
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Department of Cardiac Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Huang Huang
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
15
|
Li H, Zheng F, Zhang Y, Sun J, Gao F, Shi G. Resveratrol, novel application by preconditioning to attenuate myocardial ischemia/reperfusion injury in mice through regulate AMPK pathway and autophagy level. J Cell Mol Med 2022; 26:4216-4229. [PMID: 35791579 PMCID: PMC9345293 DOI: 10.1111/jcmm.17431] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/23/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
Myocardial ischemia/reperfusion injury (MI/RI) is the main cause of deaths in the worldwide, leading to severe cardiac dysfunction. Resveratrol (RSV) is a polyphenol plant-derived compound. Our study aimed to elucidate the underlying molecular mechanism of preconditioning RSV in protecting against MI/RI. Mice were ligated and re-perfused by the left anterior descending branch with or without RSV (30 mg/kg·ip) for 7 days. Firstly, we found that RSV pretreatment significantly alleviated myocardial infarct size, improved cardiac function and decreased oxidative stress. Furthermore, RSV activated p-AMPK and SIRT1, ameliorated inflammation including the level of TNF-α and IL-1β, and promoting autophagy level. Moreover, neonatal rat ventricular myocytes (NRVMs) and H9c2 cells with knockdown the expression of AMPK, SIRT1 or FOXO1 were used to uncover the underlying molecular mechanism for the cardio-protection of RSV. In NRVMs, RSV increased cellular viability, decreased LDH release and reduced oxidative stress. Importantly, Compound C(CpC) and EX527 reversed the effect of RSV against MI/RI in vivo and in vitro and counteracted the autophagy level induced by RSV. Together, our study indicated that RSV could alleviate oxidative stress in cardiomyocytes through activating AMPK/SIRT1-FOXO1 signallingpathway and enhanced autophagy level, thus presenting high potential protection on MI/RI.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Fuchun Zheng
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Yanmei Zhang
- Department of PharmacologyShantou University Medical CollegeShantouChina
| | - Jiajia Sun
- Reproductive Center of the First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Fenfei Gao
- Department of PharmacologyShantou University Medical CollegeShantouChina
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| |
Collapse
|
16
|
Akt-GSK3β-mPTP pathway regulates the mitochondrial dysfunction contributing to odontoblasts apoptosis induced by glucose oxidative stress. Cell Death Dis 2022; 8:168. [PMID: 35383148 PMCID: PMC8983683 DOI: 10.1038/s41420-022-00981-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Diabetes Mellitus can cause dental pulp cells apoptosis by oxidative stress, and affect the integrity and function of dental pulp tissue. Mitochondria are the main attack targets of oxidative stress and have a critical role in apoptosis. However, whether mitochondria are involved in dental pulp damage caused by diabetes mellitus remains unclear. This study aimed to investigate the role of mitochondria in the apoptosis of odontoblast-like cell line (mDPC6T) induced by glucose oxidative stress, and to explore its possible mechanism. We established an oxidative stress model in vitro using glucose oxidase/glucose to simulate the pathological state under diabetic conditions. We found that the opening of mitochondrial permeability transition pore (mPTP) contributed to the apoptosis of mDPC6T treated with glucose oxidase, as evidenced by enhanced mitochondrial reactive oxygen species (mtROS) and intracellular Ca2+ disorder, significantly reduced mitochondrial membrane potential (MMP) and ATP production. Antioxidant N-acetylcysteine (NAC) or Cyclosporine A (mPTP inhibitor) blocked the mPTP opening, which significantly attenuated mitochondrial dysfunction and apoptosis induced by glucose oxidative stress. In addition, we found that glucose oxidative stress stimulated mPTP opening may through inhibition of Akt-GSK3β pathway. This study provides a new insight into the mitochondrial mechanism underlying diabetes-associated odontoblast-like cell apoptosis, laying a foundation for the prevention and treatment of diabetes-associated pulp injury.
Collapse
|
17
|
García-Niño WR, Zazueta C, Buelna-Chontal M, Silva-Palacios A. Mitochondrial Quality Control in Cardiac-Conditioning Strategies against Ischemia-Reperfusion Injury. Life (Basel) 2021; 11:1123. [PMID: 34832998 PMCID: PMC8620839 DOI: 10.3390/life11111123] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are the central target of ischemic preconditioning and postconditioning cardioprotective strategies, which consist of either the application of brief intermittent ischemia/reperfusion (I/R) cycles or the administration of pharmacological agents. Such strategies reduce cardiac I/R injury by activating protective signaling pathways that prevent the exacerbated production of reactive oxygen/nitrogen species, inhibit opening of mitochondrial permeability transition pore and reduce apoptosis, maintaining normal mitochondrial function. Cardioprotection also involves the activation of mitochondrial quality control (MQC) processes, which replace defective mitochondria or eliminate mitochondrial debris, preserving the structure and function of the network of these organelles, and consequently ensuring homeostasis and survival of cardiomyocytes. Such processes include mitochondrial biogenesis, fission, fusion, mitophagy and mitochondrial-controlled cell death. This review updates recent advances in MQC mechanisms that are activated in the protection conferred by different cardiac conditioning interventions. Furthermore, the role of extracellular vesicles in mitochondrial protection and turnover of these organelles will be discussed. It is concluded that modulation of MQC mechanisms and recognition of mitochondrial targets could provide a potential and selective therapeutic approach for I/R-induced mitochondrial dysfunction.
Collapse
|
18
|
Naoi M, Maruyama W, Shamoto-Nagai M. Disease-modifying treatment of Parkinson's disease by phytochemicals: targeting multiple pathogenic factors. J Neural Transm (Vienna) 2021; 129:737-753. [PMID: 34654977 DOI: 10.1007/s00702-021-02427-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022]
Abstract
Parkinson's disease is characterized by typical motor symptoms, loss of dopamine neurons in the substantia nigra, and accumulation of Lewy body composed of mutated α-synuclein. However, now it is considered as a generalized disease with multiple pathological features. Present available treatments can ameliorate symptoms at least for a while, but only a few therapies could delay progressive neurodegeneration of dopamine neurons. Lewy body accumulates in peripheral tissues many years before motor dysfunction becomes manifest, suggesting that disease-modifying therapy should start earlier during the premotor stage. Long-termed regulation of lifestyle, diet and supplement of nutraceuticals may be possible ways for the disease-modification. Diet can reduce the incidence of Parkinson's disease and phytochemicals, major bioactive ingredients of herbs and plant food, modulate multiple pathogenic factors and exert neuroprotective effects in preclinical studies. This review presents mechanisms underlying neuroprotection of phytochemicals against neuronal cell death and α-synuclein toxicity in Parkinson's disease. Phytochemicals are antioxidants, maintain mitochondrial function and homeostasis, prevent intrinsic apoptosis and neuroinflammation, activate cellular signal pathways to induce anti-apoptotic and pro-survival genes, such as Bcl-2 protein family and neurotrophic factors, and promote cleavage of damaged mitochondria and α-synuclein aggregates. Phytochemicals prevent α-synuclein oligomerization and aggregation, and dissolve preformed α-synuclein aggregates. Novel neuroprotective agents are expected to develop based on the scaffold of phytochemicals permeable across the blood-brain-barrier, to increase the bioavailability, ameliorate brain dysfunction and prevent neurodegeneration.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan.
| | - Wakako Maruyama
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| | - Masayo Shamoto-Nagai
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| |
Collapse
|
19
|
Angelini A, Saha PK, Jain A, Jung SY, Mynatt RL, Pi X, Xie L. PHDs/CPT1B/VDAC1 axis regulates long-chain fatty acid oxidation in cardiomyocytes. Cell Rep 2021; 37:109767. [PMID: 34610308 PMCID: PMC8658754 DOI: 10.1016/j.celrep.2021.109767] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/19/2021] [Accepted: 09/02/2021] [Indexed: 12/23/2022] Open
Abstract
Cardiac metabolism is a high-oxygen-consuming process, showing a preference for long-chain fatty acid (LCFA) as the fuel source under physiological conditions. However, a metabolic switch (favoring glucose instead of LCFA) is commonly reported in ischemic or late-stage failing hearts. The mechanism regulating this metabolic switch remains poorly understood. Here, we report that loss of PHD2/3, the cellular oxygen sensors, blocks LCFA mitochondria uptake and β-oxidation in cardiomyocytes. In high-fat-fed mice, PHD2/3 deficiency improves glucose metabolism but exacerbates the cardiac defects. Mechanistically, we find that PHD2/3 bind to CPT1B, a key enzyme of mitochondrial LCFA uptake, promoting CPT1B-P295 hydroxylation. Further, we show that CPT1B-P295 hydroxylation is indispensable for its interaction with VDAC1 and LCFA β-oxidation. Finally, we demonstrate that a CPT1B-P295A mutant constitutively binds to VDAC1 and rescues LCFA metabolism in PHD2/3-deficient cardiomyocytes. Together, our data identify an oxygen-sensitive regulatory axis involved in cardiac metabolism.
Collapse
Affiliation(s)
- Aude Angelini
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pradip K Saha
- Department of Medicine, Division of Diabetes, Endocrinology & Metabolism, Diabetes Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Antrix Jain
- Department of Biochemistry and Molecular Biology, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Biology, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Randall L Mynatt
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Xinchun Pi
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liang Xie
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
20
|
Shoshan-Barmatz V, Anand U, Nahon-Crystal E, Di Carlo M, Shteinfer-Kuzmine A. Adverse Effects of Metformin From Diabetes to COVID-19, Cancer, Neurodegenerative Diseases, and Aging: Is VDAC1 a Common Target? Front Physiol 2021; 12:730048. [PMID: 34671273 PMCID: PMC8521008 DOI: 10.3389/fphys.2021.730048] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Metformin has been used for treating diabetes mellitus since the late 1950s. In addition to its antihyperglycemic activity, it was shown to be a potential drug candidate for treating a range of other diseases that include various cancers, cardiovascular diseases, diabetic kidney disease, neurodegenerative diseases, renal diseases, obesity, inflammation, COVID-19 in diabetic patients, and aging. In this review, we focus on the important aspects of mitochondrial dysfunction in energy metabolism and cell death with their gatekeeper VDAC1 (voltage-dependent anion channel 1) as a possible metformin target, and summarize metformin's effects in several diseases and gut microbiota. We question how the same drug can act on diseases with opposite characteristics, such as increasing apoptotic cell death in cancer, while inhibiting it in neurodegenerative diseases. Interestingly, metformin's adverse effects in many diseases all show VDAC1 involvement, suggesting that it is a common factor in metformin-affecting diseases. The findings that metformin has an opposite effect on various diseases are consistent with the fact that VDAC1 controls cell life and death, supporting the idea that it is a target for metformin.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | | | - Marta Di Carlo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
21
|
Luo L, Wu J, Lin T, Lian G, Wang H, Gao G, Xie L. Influence of atorvastatin on metabolic pattern of rats with pulmonary hypertension. Aging (Albany NY) 2021; 13:11954-11968. [PMID: 33886502 PMCID: PMC8109122 DOI: 10.18632/aging.202898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 12/23/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Metabonomics has been widely used to analyze the initiation, progress, and development of diseases. However, application of metabonomics to explore the mechanism of pulmonary arterial hypertension (PAH) are poorly reported. This study aimed to investigate the influence of atorvastatin (Ato) on metabolic pattern of rats with pulmonary hypertension. METHODS PAH animal model was established using monocrotaline (MCT). The mean pulmonary artery pressure (mPAP) and right ventricular hypertrophy index (RVHI) were measured. The microstructure of pulmonary arterioles was observed by HE staining. Nuclear magnetic resonance was used to detect and analyze the serum metabolites. The levels of glycogen synthase kinase-3β (GSK-3β), hexokinase 2 (HK-2), sterol regulatory element-binding protein 1c (SREBP-1c), and carnitine palmitoyltransferase I (CPT-1) in the lung tissues were measured. RESULTS Ato significantly improved lung function by decreasing mPAP, RVHI, wall thickness, and wall area. Differences in metabolic patterns were observed among normal, PAH, and Ato group. The levels of GSK-3β and SREBP-1c were decreased, but HK-2 and CPT-1 were increased in the group PAH. Ato treatment markedly reversed the influence of MCT. CONCLUSION Ato significantly improved the pulmonary vascular remodeling and pulmonary hypertension of PAH rats due to its inhibition on Warburg effect and fatty acid β oxidation.
Collapse
Affiliation(s)
- Li Luo
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jianmin Wu
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Taijie Lin
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Guili Lian
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Huajun Wang
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Gufeng Gao
- Fujian Medical University, Fuzhou, China
| | - Liangdi Xie
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
22
|
Vinegar/Tetramethylpyrazine Induces Nutritional Preconditioning Protecting the Myocardium Mediated by VDAC1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6670088. [PMID: 33995824 PMCID: PMC8081599 DOI: 10.1155/2021/6670088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/10/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
Vinegar is good for health. Tetramethylpyrazine (TMP) is the main component of its flavor, quality, and function. We hypothesized that vinegar/TMP pretreatment could induce myocardial protection of "nutritional preconditioning (NPC)" by low-dose, long-term supplementation and alleviate the myocardial injury caused by anoxia/reoxygenation (A/R). To test this hypothesis, TMP content in vinegar was detected by HPLC; A/R injury model was prepared by an isolated mouse heart and rat cardiomyocyte to evaluate the myocardial protection and mechanism of vinegar/TMP pretreatment by many enzymatic or functional, or cellular and molecular biological indexes. Our results showed that vinegar contained TMP, and its content was in direct proportion to storage time. Vinegar/TMP pretreatment could improve hemodynamic parameters, decrease lactate dehydrogenase (LDH) and creatine phosphokinase activities, and reduce infarct size and apoptosis in the isolated hearts of mice with A/R injury. Similarly, vinegar/TMP pretreatment could increase cell viability, decrease LDH activity, and decrease apoptosis against A/R injury of cardiomyocytes. Vinegar/TMP pretreatment could also maintain the mitochondrial function of A/R-injured cardiomyocytes, including improving oxygen consumption rate and extracellular acidification rate, reducing reactive oxygen species generation, mitochondrial membrane potential loss, mitochondrial permeability transition pore openness, and cytochrome c releasing. However, the protective effects of vinegar/TMP pretreatment were accompanied by the downregulation of VDAC1 expression in the myocardium and reversed by pAD/VDAC1, an adenovirus that upregulates VDAC1 expression. In conclusion, this study is the first to demonstrate that vinegar/TMP pretreatment could induce myocardial protection of NPC due to downregulating VDAC1 expression, inhibiting oxidative stress, and preventing mitochondrial dysfunction; that is, VDAC1 is their target, and the mitochondria are their target organelles. TMP is one of the most important myocardial protective substances in vinegar.
Collapse
|
23
|
Yang X, Zhou Y, Liang H, Meng Y, Liu H, Zhou Y, Huang C, An B, Mao H, Liao Z. VDAC1 promotes cardiomyocyte autophagy in anoxia/reoxygenation injury via the PINK1/Parkin pathway. Cell Biol Int 2021; 45:1448-1458. [PMID: 33675282 DOI: 10.1002/cbin.11583] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/05/2021] [Accepted: 02/27/2021] [Indexed: 12/15/2022]
Abstract
Ischemia/reperfusion (I/R) is a well-known injury to the myocardium, but the mechanism involved remains elusive. In addition to the well-accepted apoptosis theory, autophagy was recently found to be involved in the process, exerting a dual role as protection in ischemia and detriment in reperfusion. Activation of autophagy is mediated by mitochondrial permeability transition pore (MPTP) opening during reperfusion. In our previous study, we showed that MPTP opening is regulated by VDAC1, a channel protein located in the outer membrane of mitochondria. Thus, upregulation of VDAC1 expression is a possible trigger to cardiomyocyte autophagy via an unclear pathway. Here, we established an anoxia/reoxygenation (A/R) model in vitro to simulate the I/R process in vivo. At the end of A/R treatment, VDAC1, Beclin 1, and LC3-II/I were upregulated, and autophagic vacuoles were increased in cardiomyocytes, which showed a connection of VDAC1 and autophagy development. These variations also led to ROS burst, mitochondrial dysfunction, and aggravated apoptosis. Knockdown of VDAC1 by RNAi could alleviate the above-mentioned cellular damages. Additionally, the expression of PINK1 and Parkin was enhanced after A/R injury. Furthermore, Parkin was recruited to mitochondria from the cytosol, which suggested that the PINK1/Parkin autophagic pathway was activated during A/R. Nevertheless, the PINK1/Parkin pathway was effectively inhibited when VDAC1 was knocked-down. Taken together, the A/R-induced cardiomyocyte injury was mediated by VDAC1 upregulation, which led to cell autophagy via the PINK1/Parkin pathway, and finally aggravated apoptosis.
Collapse
Affiliation(s)
- Xiaomei Yang
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Yuancheng Zhou
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Haiyan Liang
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Yan Meng
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Haocheng Liu
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Ying Zhou
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Chunhong Huang
- Department of Biochemistry, College of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Binyi An
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hongli Mao
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Zhangping Liao
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| |
Collapse
|
24
|
Li Y, Kang J, Fu J, Luo H, Liu Y, Li Y, Sun L. PGC1α Promotes Cisplatin Resistance in Ovarian Cancer by Regulating the HSP70/HK2/VDAC1 Signaling Pathway. Int J Mol Sci 2021; 22:ijms22052537. [PMID: 33802591 PMCID: PMC7961780 DOI: 10.3390/ijms22052537] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/23/2021] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial apoptosis is one of the main mechanisms for cancer cells to overcome chemoresistance. Hexokinase 2 (HK2) can resist cancer cell apoptosis by expressing on mitochondria and binding to voltage-dependent anion channel 1 (VDAC1). We previously reported that peroxisome proliferator-activated receptor coactivator 1 α (PGC1α) is highly expressed in ovarian cancer cisplatin-resistant cells. However, the underlying mechanism remains unclear. Therefore, we evaluated the interaction between PGC1α and HK2 in ovarian cancer cisplatin-resistant cells. We found that the knockdown of PGC1α promotes the apoptosis of ovarian cancer cisplatin-resistant cells and increases their sensitivity to cisplatin. In addition, we found that the knockdown of PGC1α affects the mitochondrial membrane potential and the binding of HK2 and VDAC1. As the heat shock protein 70 (HSP70) family can help protein transport, we detected it and found that PGC1α can promote HSP70 gene transcription. Furthermore, HSP70 can promote an increase of HK2 expression on mitochondria and an increase of binding to VDAC1. Based on these results, PGC1α may reduce apoptosis through the HSP70/HK2/VDAC1 signaling pathway, thus promoting cisplatin resistance of ovarian cancer. These findings provide strong theoretical support for PGC1α as a potential therapeutic target of cisplatin resistance in ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Li
- Correspondence: (Y.L.); (L.S.); Tel.: +86-431-8561-9101 (Y.L.)
| | - Liankun Sun
- Correspondence: (Y.L.); (L.S.); Tel.: +86-431-8561-9101 (Y.L.)
| |
Collapse
|
25
|
Rottenberg H, Hoek JB. The Mitochondrial Permeability Transition: Nexus of Aging, Disease and Longevity. Cells 2021; 10:cells10010079. [PMID: 33418876 PMCID: PMC7825081 DOI: 10.3390/cells10010079] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 01/01/2021] [Indexed: 12/11/2022] Open
Abstract
The activity of the mitochondrial permeability transition pore, mPTP, a highly regulated multi-component mega-channel, is enhanced in aging and in aging-driven degenerative diseases. mPTP activity accelerates aging by releasing large amounts of cell-damaging reactive oxygen species, Ca2+ and NAD+. The various pathways that control the channel activity, directly or indirectly, can therefore either inhibit or accelerate aging or retard or enhance the progression of aging-driven degenerative diseases and determine lifespan and healthspan. Autophagy, a catabolic process that removes and digests damaged proteins and organelles, protects the cell against aging and disease. However, the protective effect of autophagy depends on mTORC2/SKG1 inhibition of mPTP. Autophagy is inhibited in aging cells. Mitophagy, a specialized form of autophagy, which retards aging by removing mitochondrial fragments with activated mPTP, is also inhibited in aging cells, and this inhibition leads to increased mPTP activation, which is a major contributor to neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. The increased activity of mPTP in aging turns autophagy/mitophagy into a destructive process leading to cell aging and death. Several drugs and lifestyle modifications that enhance healthspan and lifespan enhance autophagy and inhibit the activation of mPTP. Therefore, elucidating the intricate connections between pathways that activate and inhibit mPTP, in the context of aging and degenerative diseases, could enhance the discovery of new drugs and lifestyle modifications that slow aging and degenerative disease.
Collapse
Affiliation(s)
- Hagai Rottenberg
- New Hope Biomedical R&D, 23 W. Bridge street, New Hope, PA 18938, USA
- Correspondence: ; Tel.: +1-267-614-5588
| | - Jan B. Hoek
- MitoCare Center, Department of Anatomy, Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
26
|
Cui Y, Pan M, Ma J, Song X, Cao W, Zhang P. Recent progress in the use of mitochondrial membrane permeability transition pore in mitochondrial dysfunction-related disease therapies. Mol Cell Biochem 2021; 476:493-506. [PMID: 33000352 DOI: 10.1007/s11010-020-03926-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria have various cellular functions, including ATP synthesis, calcium homeostasis, cell senescence, and death. Mitochondrial dysfunction has been identified in a variety of disorders correlated with human health. Among the many underlying mechanisms of mitochondrial dysfunction, the opening up of the mitochondrial permeability transition pore (mPTP) is one that has drawn increasing interest in recent years. It plays an important role in apoptosis and necrosis; however, the molecular structure and function of the mPTP have still not been fully elucidated. In recent years, the abnormal opening up of the mPTP has been implicated in the development and pathogenesis of diverse diseases including ischemia/reperfusion injury (IRI), neurodegenerative disorders, tumors, and chronic obstructive pulmonary disease (COPD). This review provides a systematic introduction to the possible molecular makeup of the mPTP and summarizes the mitochondrial dysfunction-correlated diseases and highlights possible underlying mechanisms. Since the mPTP is an important target in mitochondrial dysfunction, this review also summarizes potential treatments, which may be used to inhibit pore opening up via the molecules composing mPTP complexes, thus suppressing the progression of mitochondrial dysfunction-related diseases.
Collapse
Affiliation(s)
- Yuting Cui
- School of Life Science, Shandong University of Technology, Zibo, Shandong Province, China
| | - Mingyue Pan
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong Province, China
| | - Jing Ma
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong Province, China
| | - Xinhua Song
- School of Life Science, Shandong University of Technology, Zibo, Shandong Province, China
| | - Weiling Cao
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong Province, China.
| | - Peng Zhang
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong Province, China.
| |
Collapse
|
27
|
VDAC1 in the diseased myocardium and the effect of VDAC1-interacting compound on atrial fibrosis induced by hyperaldosteronism. Sci Rep 2020; 10:22101. [PMID: 33328613 PMCID: PMC7744539 DOI: 10.1038/s41598-020-79056-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022] Open
Abstract
The voltage-dependent anion channel 1 (VDAC1) is a key player in mitochondrial function. VDAC1 serves as a gatekeeper mediating the fluxes of ions, nucleotides, and other metabolites across the outer mitochondrial membrane, as well as the release of apoptogenic proteins initiating apoptotic cell death. VBIT-4, a VDAC1 oligomerization inhibitor, was recently shown to prevent mitochondrial dysfunction and apoptosis, as validated in mouse models of lupus and type-2 diabetes. In the present study, we explored the expression of VDAC1 in the diseased myocardium of humans and rats. In addition, we evaluated the effect of VBIT-4 treatment on the atrial structural and electrical remodeling of rats exposed to excessive aldosterone levels. Immunohistochemical analysis of commercially available human cardiac tissues revealed marked overexpression of VDAC1 in post-myocardial infarction patients, as well as in patients with chronic ventricular dilatation\dysfunction. In agreement, rats exposed to myocardial infarction or to excessive aldosterone had a marked increase of VDAC1 in both ventricular and atrial tissues. Immunofluorescence staining indicated a punctuated appearance typical for mitochondrial-localized VDAC1. Finally, VBIT-4 treatment attenuated the atrial fibrotic load of rats exposed to excessive aldosterone without a notable effect on the susceptibility to atrial fibrillation episodes induced by burst pacing. Our results indicate that VDAC1 overexpression is associated with myocardial abnormalities in common pathological settings. Our data also indicate that inhibition of the VDAC1 can reduce excessive fibrosis in the atrial myocardium, a finding which may have important therapeutic implications. The exact mechanism\s of this beneficial effect need further studies.
Collapse
|
28
|
Anti-Stem Cell Property of Pterostilbene in Gastrointestinal Cancer Cells. Int J Mol Sci 2020; 21:ijms21249347. [PMID: 33302440 PMCID: PMC7762551 DOI: 10.3390/ijms21249347] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/06/2020] [Indexed: 12/17/2022] Open
Abstract
Pterostilbene (PTE) is a natural sterbenoid contained in blueberries that has an antioxidant effect. In contrast, PTE also generates oxidative stress in cancer cells and provides an antitumor effect. Here, we examined the potential mechanism of this contrasting effect of PTE using three gastrointestinal cancer cell lines, namely CT26, HT29, and MKN74. PTE showed a dose-dependent inhibition of cell proliferation, sphere-forming ability, and stem cell marker expression in all three cell lines. Furthermore, the cells treated with PTE showed an increase in mitochondrial membrane potential and an increase in mitochondrial oxidative stress and lipid peroxide. Upon concurrent treatment with vitamin E, N-acetyl-L-cysteine, and PTE, the PTE-induced mitochondrial oxidative stress and growth inhibition were suppressed. These findings indicate that PTE induces oxidative stress in cancer cells, suppresses stemness, and inhibits proliferation. These antitumor effects of PTE are considered to be useful in cancer treatment.
Collapse
|
29
|
Shoshan-Barmatz V, Shteinfer-Kuzmine A, Verma A. VDAC1 at the Intersection of Cell Metabolism, Apoptosis, and Diseases. Biomolecules 2020; 10:E1485. [PMID: 33114780 PMCID: PMC7693975 DOI: 10.3390/biom10111485] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/02/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
The voltage-dependent anion channel 1 (VDAC1) protein, is an important regulator of mitochondrial function, and serves as a mitochondrial gatekeeper, with responsibility for cellular fate. In addition to control over energy sources and metabolism, the protein also regulates epigenomic elements and apoptosis via mediating the release of apoptotic proteins from the mitochondria. Apoptotic and pathological conditions, as well as certain viruses, induce cell death by inducing VDAC1 overexpression leading to oligomerization, and the formation of a large channel within the VDAC1 homo-oligomer. This then permits the release of pro-apoptotic proteins from the mitochondria and subsequent apoptosis. Mitochondrial DNA can also be released through this channel, which triggers type-Ι interferon responses. VDAC1 also participates in endoplasmic reticulum (ER)-mitochondria cross-talk, and in the regulation of autophagy, and inflammation. Its location in the outer mitochondrial membrane, makes VDAC1 ideally placed to interact with over 100 proteins, and to orchestrate the interaction of mitochondrial and cellular activities through a number of signaling pathways. Here, we provide insights into the multiple functions of VDAC1 and describe its involvement in several diseases, which demonstrate the potential of this protein as a druggable target in a wide variety of pathologies, including cancer.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (A.S.-K.); (A.V.)
| | | | | |
Collapse
|
30
|
Kim JM, Lee U, Kang JY, Park SK, Shin EJ, Kim HJ, Kim CW, Kim MJ, Heo HJ. Anti-Amnesic Effect of Walnut via the Regulation of BBB Function and Neuro-Inflammation in Aβ 1-42-Induced Mice. Antioxidants (Basel) 2020; 9:antiox9100976. [PMID: 33053754 PMCID: PMC7600148 DOI: 10.3390/antiox9100976] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022] Open
Abstract
This study was conducted to assess the protective effect of walnut (Juglans regia L.) extract on amyloid beta (Aβ)1-42-induced institute of cancer research (ICR) mice. By conducting a Y-maze, passive avoidance, and Morris water maze tests with amyloidogenic mice, it was found that walnut extract ameliorated behavioral dysfunction and memory deficit. The walnut extract showed a protective effect on the antioxidant system and cholinergic system by regulating malondialdehyde (MDA) levels, superoxide dismutase (SOD) contents, reduced glutathione (GSH) contents, acetylcholine (ACh) levels, acetylcholinesterase (AChE) activity, and protein expression of AChE and choline acetyltransferase (ChAT). Furthermore, the walnut extract suppressed Aβ-induced abnormality of mitochondrial function by ameliorating reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and ATP contents. Finally, the walnut extract regulated the expression of zonula occludens-1 (ZO-1) and occludin concerned with blood–brain barrier (BBB) function, expression of tumor necrosis factor-alpha (TNF-α), tumor necrosis factor receptor 1 (TNFR1), phosphorylated c-Jun N-terminal kinase (p-JNK), phosphorylated nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (p-IκB), cyclooxygenase-2 (COX-2), and interleukin 1 beta (IL-1β), related to neuroinflammation and the expression of phosphorylated protein kinase B (p-Akt), caspase-3, hyperphosphorylation of tau (p-tau), and heme oxygenase-1 (HO-1), associated with the Aβ-related Akt pathway.
Collapse
Affiliation(s)
- Jong Min Kim
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (E.J.S.); (H.-J.K.)
| | - Uk Lee
- Division of Special Purpose Tree, National Institute of Forest Science, Suwon 16631, Korea; (U.L.); (C.-W.K.); (M.-J.K.)
| | - Jin Yong Kang
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (E.J.S.); (H.-J.K.)
| | - Seon Kyeong Park
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (E.J.S.); (H.-J.K.)
| | - Eun Jin Shin
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (E.J.S.); (H.-J.K.)
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (E.J.S.); (H.-J.K.)
| | - Chul-Woo Kim
- Division of Special Purpose Tree, National Institute of Forest Science, Suwon 16631, Korea; (U.L.); (C.-W.K.); (M.-J.K.)
| | - Mahn-Jo Kim
- Division of Special Purpose Tree, National Institute of Forest Science, Suwon 16631, Korea; (U.L.); (C.-W.K.); (M.-J.K.)
| | - Ho Jin Heo
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (E.J.S.); (H.-J.K.)
- Correspondence: ; Tel.: +82-55-772-1907
| |
Collapse
|
31
|
Liu R, Sun F, Forghani P, Armand LC, Rampoldi A, Li D, Wu R, Xu C. Proteomic Profiling Reveals Roles of Stress Response, Ca 2+ Transient Dysregulation, and Novel Signaling Pathways in Alcohol-Induced Cardiotoxicity. Alcohol Clin Exp Res 2020; 44:2187-2199. [PMID: 32981093 DOI: 10.1111/acer.14471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Alcohol use in pregnancy increases the risk of abnormal cardiac development, and excessive alcohol consumption in adults can induce cardiomyopathy, contractile dysfunction, and arrhythmias. Understanding molecular mechanisms underlying alcohol-induced cardiac toxicity could provide guidance in the development of therapeutic strategies. METHODS We have performed proteomic and bioinformatic analysis to examine protein alterations globally and quantitatively in cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs) treated with ethanol (EtOH). Proteins in both cell lysates and extracellular culture media were systematically quantitated. RESULTS Treatment with EtOH caused severe detrimental effects on hiPSC-CMs as indicated by significant cell death and deranged Ca2+ handling. Treatment of hiPSC-CMs with EtOH significantly affected proteins responsible for stress response (e.g., GPX1 and HSPs), ion channel-related proteins (e.g. ATP1A2), myofibril structure proteins (e.g., MYL2/3), and those involved in focal adhesion and extracellular matrix (e.g., ILK and PXN). Proteins involved in the TNF receptor-associated factor 2 signaling (e.g., CPNE1 and TNIK) were also affected by EtOH treatment. CONCLUSIONS The observed changes in protein expression highlight the involvement of oxidative stress and dysregulation of Ca2+ handling and contraction while also implicating potential novel targets in alcohol-induced cardiotoxicity. These findings facilitate further exploration of potential mechanisms, discovery of novel biomarkers, and development of targeted therapeutics against EtOH-induced cardiotoxicity.
Collapse
Affiliation(s)
- Rui Liu
- From the, Department of Pediatrics, (RL, PF, LCA, AR, DL, CX), Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia.,Department of Pediatrics, (RL), the Third Xiangya Hospital of Central South University, Changsha, China
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, (FS, RW), Georgia Institute of Technology, Atlanta, Georgia
| | - Parvin Forghani
- From the, Department of Pediatrics, (RL, PF, LCA, AR, DL, CX), Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Lawrence C Armand
- From the, Department of Pediatrics, (RL, PF, LCA, AR, DL, CX), Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Antonio Rampoldi
- From the, Department of Pediatrics, (RL, PF, LCA, AR, DL, CX), Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Dong Li
- From the, Department of Pediatrics, (RL, PF, LCA, AR, DL, CX), Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, (FS, RW), Georgia Institute of Technology, Atlanta, Georgia
| | - Chunhui Xu
- From the, Department of Pediatrics, (RL, PF, LCA, AR, DL, CX), Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia.,Wallace H. Coulter Department of Biomedical Engineering, (CX), Georgia Institute of Technology and Emory University, Atlanta, Georgia
| |
Collapse
|
32
|
Chen WY, Chen YF, Chan HC, Chung CH, Peng HY, Ho YC, Chen CH, Chang KC, Tang CH, Lee AS. Role of apolipoprotein E in electronegative low-density lipoprotein-induced mitochondrial dysfunction in cardiomyocytes. Metabolism 2020; 107:154227. [PMID: 32275974 DOI: 10.1016/j.metabol.2020.154227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/18/2020] [Accepted: 04/07/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE L5, a highly electronegative subtype of low-density lipoprotein (LDL), is likely associated with the development of atherosclerosis and cardiovascular diseases. Normal LDL is composed mainly of apolipoprotein (Apo) B, but L5 has additional proteins such as ApoE. We previously demonstrated that L5 induces endothelial cell senescence by increasing mitochondrial reactive oxygen species. In the present study, we examined the effect of L5 on mitochondrial function in cardiomyocytes. METHODS We used the Seahorse XF24 extracellular flux analyzer to examine the effect of L5 and its components on mitochondrial energy production. The effects of L5 on mitochondrial morphology were examined by immunofluorescence using MitoTracker Green FM and the corresponding probes in H9c2 cardiomyoblasts. Mitochondrial permeability was assessed by using a calcium-induced swelling assay with a voltage-dependent anion-selective channel (VDAC) inhibitor to determine VDAC-dependence both in vitro and in vivo. L5 without ApoE, referred to as △L5, was used to clarify the role of ApoE in L5-induced mitochondrial dysfunction. RESULTS L5 not only significantly decreased basal (P < 0.05) and maximal respiration (P < 0.01) but also reduced spare respiratory capacity (P < 0.01) in H9c2 cells. Additionally, L5 caused phosphorylation of Drp1 and mitochondrial fission. Recombinant ApoE mimicked the mitochondrial effects of L5, but △L5 did not cause similar effects. After entering cells, ApoE on L5 colocalized with mitochondrial VDAC and caused mitochondria swelling both in vitro and in vivo. This effect was also seen with recombinant ApoE but not △L5. CONCLUSIONS ApoE may play an important role in electronegative LDL-induced mitochondrial dysfunction through the opening of the mitochondrial permeability transition pore via the interaction of ApoE and VDAC.
Collapse
Affiliation(s)
- Wei-Yu Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan; Cardiovascular Research Laboratory, China Medical University Hospital, Taichung 40447, Taiwan
| | - Yun-Fang Chen
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan; Cardiovascular Research Laboratory, China Medical University Hospital, Taichung 40447, Taiwan; Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
| | - Hua-Cheng Chan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Ching-Hu Chung
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Yu-Cheng Ho
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan.
| | - Chu-Huang Chen
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA; New York Heart Research Foundation, Mineola, New York 11501, USA.
| | - Kuan-Cheng Chang
- Cardiovascular Research Laboratory, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan.
| | - An-Sheng Lee
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan; Cardiovascular Research Laboratory, China Medical University Hospital, Taichung 40447, Taiwan.
| |
Collapse
|
33
|
The signaling interplay of GSK-3β in myocardial disorders. Drug Discov Today 2020; 25:633-641. [PMID: 32014454 DOI: 10.1016/j.drudis.2020.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/08/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) regulates numerous signaling transductions and pathological states, from cell growth, inflammation, apoptosis, and heart failure to cancer. Recent studies have validated the feasibility of targeting GSK-3β for its therapeutic potential to maintain myocardial homeostasis. Herein, we review the multifactorial roles of GSK-3β in cardiac abnormalities, focusing primarily on recent investigations into myocardial survival. In addition, we discuss the cardioprotective potential of divergent GSK-3β inhibitors. Finally, we also highlight crosstalk between the various mechanisms underlying abnormal myocardial functions in which GSK-3β is involved.
Collapse
|
34
|
Rosuvastatin protects isolated hearts against ischemia-reperfusion injury: role of Akt-GSK-3β, metabolic environment, and mitochondrial permeability transition pore. J Physiol Biochem 2020; 76:85-98. [PMID: 31916218 DOI: 10.1007/s13105-019-00718-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023]
Abstract
The cardioprotective activity of rosuvastatin (R) is yet to be known. The objective of this study was to research whether R perfusion before global ischemia can mitigate myocardial ischemia-reperfusion damage, considering the metabolic condition in which these effects occur, and to contemplate potential mitochondrial benefits. Protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β) and mitochondrial permeability transition pore (MPTP) are key elements in myocardial injury produced by ischemia-reperfusion. Isolated rat hearts were subjected to 25-min ischemia and 1-h reperfusion in the presence or absence of R, with or without Wortmannin (W), a phosphatidylinositol 3-kinase (PI3K)/Akt inhibitor. Akt and GSK-3β were measured by Western blot analysis; lactate, glycogen, and G6PDH were determined; and Ca2+-induced MPTP opening was evaluated using a spectrophotometric method. Contractility was assessed by left ventricular developed pressure (LVDP), and rate-pressure product (RPP), peak rate of contraction and peak rate of relaxation (± dP/dt), and left ventricular end-diastolic pressure (LVEDP) were determined. Tissue samples were extracted to evaluate mitochondrial damage by electron microscopy and to assess infarct size. Statistical analysis employed ANOVA (n = 6/per group). Myocardial infarct size was significantly reduced by R, which also improved cardiac function. MPTP opening was delayed to 300 μM CaCl2, while use of W resulted in MPTP opening at 200 μM CaCl2. Electron microscopy showed better mitochondrial preservation with R, which reduced lactic acid production, increased glycogen consumption and G6PDH activity, as well as phosphorylation of Akt and GSK-3β. R before ischemia is cardioprotective against ischemic and reperfusion damage, activating Akt and regulating GSK-3β negatively and attenuating the MPTP opening.
Collapse
|
35
|
Meng Y, Tian M, Yin S, Lai S, Zhou Y, Chen J, He M, Liao Z. Downregulation of TSPO expression inhibits oxidative stress and maintains mitochondrial homeostasis in cardiomyocytes subjected to anoxia/reoxygenation injury. Biomed Pharmacother 2020; 121:109588. [DOI: 10.1016/j.biopha.2019.109588] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/15/2019] [Accepted: 10/26/2019] [Indexed: 02/06/2023] Open
|
36
|
Peroxiredoxin II Maintains the Mitochondrial Membrane Potential against Alcohol-Induced Apoptosis in HT22 Cells. Antioxidants (Basel) 2019; 9:antiox9010001. [PMID: 31861323 PMCID: PMC7023630 DOI: 10.3390/antiox9010001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022] Open
Abstract
Excessive alcohol intake can significantly reduce cognitive function and cause irreversible learning and memory disorders. The brain is particularly vulnerable to alcohol-induced ROS damage; the hippocampus is one of the most sensitive areas of the brain for alcohol neurotoxicity. In the present study, we observed significant increasing of intracellular ROS accumulations in Peroxiredoxin II (Prx II) knockdown HT22 cells, which were induced by alcohol treatments. We also found that the level of ROS in mitochondrial was also increased, resulting in a decrease in the mitochondrial membrane potential. The phosphorylation of GSK3β (Ser9) and anti-apoptotic protein Bcl2 expression levels were significantly downregulated in Prx II knockdown HT22 cells, which suggests that Prx II knockdown HT22 cells were more susceptible to alcohol-induced apoptosis. Scavenging the alcohol-induced ROS with NAC significantly decreased the intracellular ROS levels, as well as the phosphorylation level of GSK3β in Prx II knockdown HT22 cells. Moreover, NAC treatment also dramatically restored the mitochondrial membrane potential and the cellular apoptosis in Prx II knockdown HT22 cells. Our findings suggest that Prx II plays a crucial role in alcohol-induced neuronal cell apoptosis by regulating the cellular ROS levels, especially through regulating the ROS-dependent mitochondrial membrane potential. Consequently, Prx II may be a therapeutic target molecule for alcohol-induced neuronal cell death, which is closely related to ROS-dependent mitochondria dysfunction.
Collapse
|
37
|
Li Y, Liu X. The inhibitory role of Chinese materia medica in cardiomyocyte apoptosis and underlying molecular mechanism. Biomed Pharmacother 2019; 118:109372. [DOI: 10.1016/j.biopha.2019.109372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 01/04/2023] Open
|
38
|
Naryzhnaya NV, Maslov LN, Oeltgen PR. Pharmacology of mitochondrial permeability transition pore inhibitors. Drug Dev Res 2019; 80:1013-1030. [PMID: 31823411 DOI: 10.1002/ddr.21593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Natalia V. Naryzhnaya
- Laboratory of Experimental CardiologyCardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science Tomsk Russia
| | - Leonid N. Maslov
- Laboratory of Experimental CardiologyCardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science Tomsk Russia
| | - Peter R. Oeltgen
- Department of PathologyUniversity of Kentucky College of Medicine Lexington Kentucky
| |
Collapse
|
39
|
Recent Advances in Pharmacological and Non-Pharmacological Strategies of Cardioprotection. Int J Mol Sci 2019; 20:ijms20164002. [PMID: 31426434 PMCID: PMC6720817 DOI: 10.3390/ijms20164002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 02/08/2023] Open
Abstract
Ischemic heart diseases (IHD) are the leading cause of death worldwide. Although the principal form of treatment of IHD is myocardial reperfusion, the recovery of coronary blood flow after ischemia can cause severe and fatal cardiac dysfunctions, mainly due to the abrupt entry of oxygen and ionic deregulation in cardiac cells. The ability of these cells to protect themselves against injury including ischemia and reperfusion (I/R), has been termed “cardioprotection”. This protective response can be stimulated by pharmacological agents (adenosine, catecholamines and others) and non-pharmacological procedures (conditioning, hypoxia and others). Several intracellular signaling pathways mediated by chemical messengers (enzymes, protein kinases, transcription factors and others) and cytoplasmic organelles (mitochondria, sarcoplasmic reticulum, nucleus and sarcolemma) are involved in cardioprotective responses. Therefore, advancement in understanding the cellular and molecular mechanisms involved in the cardioprotective response can lead to the development of new pharmacological and non-pharmacological strategies for cardioprotection, thus contributing to increasing the efficacy of IHD treatment. In this work, we analyze the recent advances in pharmacological and non-pharmacological strategies of cardioprotection.
Collapse
|
40
|
Zambrano A, Molt M, Uribe E, Salas M. Glut 1 in Cancer Cells and the Inhibitory Action of Resveratrol as A Potential Therapeutic Strategy. Int J Mol Sci 2019; 20:ijms20133374. [PMID: 31324056 PMCID: PMC6651361 DOI: 10.3390/ijms20133374] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/14/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022] Open
Abstract
An important hallmark in cancer cells is the increase in glucose uptake. GLUT1 is an important target in cancer treatment because cancer cells upregulate GLUT1, a membrane protein that facilitates the basal uptake of glucose in most cell types, to ensure the flux of sugar into metabolic pathways. The dysregulation of GLUT1 is associated with numerous disorders, including cancer and metabolic diseases. There are natural products emerging as a source for inhibitors of glucose uptake, and resveratrol is a molecule of natural origin with many properties that acts as antioxidant and antiproliferative in malignant cells. In the present review, we discuss how GLUT1 is involved in the general scheme of cancer cell metabolism, the mechanism of glucose transport, and the importance of GLUT1 structure to understand the inhibition process. Then, we review the current state-of-the-art of resveratrol and other natural products as GLUT1 inhibitors, focusing on those directed at treating different types of cancer. Targeting GLUT1 activity is a promising strategy for the development of drugs aimed at treating neoplastic growth.
Collapse
Affiliation(s)
- Angara Zambrano
- Instituto de Bioquimica y Microbiologia, Universidad Austral de Chile, Valdivia 0000000, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Concepción, Concepción 4070386, Chile
| | - Matías Molt
- Instituto de Bioquimica y Microbiologia, Universidad Austral de Chile, Valdivia 0000000, Chile
| | - Elena Uribe
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Concepción, Concepción 4070386, Chile
| | - Mónica Salas
- Instituto de Bioquimica y Microbiologia, Universidad Austral de Chile, Valdivia 0000000, Chile.
| |
Collapse
|
41
|
Flavin Oxidase-Induced ROS Generation Modulates PKC Biphasic Effect of Resveratrol on Endothelial Cell Survival. Biomolecules 2019; 9:biom9060209. [PMID: 31151226 PMCID: PMC6628153 DOI: 10.3390/biom9060209] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/22/2019] [Accepted: 05/25/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Dietary intake of natural antioxidants is thought to impart protection against oxidative-associated cardiovascular diseases. Despite many in vivo studies and clinical trials, this issue has not been conclusively resolved. Resveratrol (RES) is one of the most extensively studied dietary polyphenolic antioxidants. Paradoxically, we have previously demonstrated that high RES concentrations exert a pro-oxidant effect eventually elevating ROS levels leading to cell death. Here, we further elucidate the molecular determinants underpinning RES-induced oxidative cell death. Methods: Using human umbilical vein endothelial cells (HUVECs), the effect of increasing concentrations of RES on DNA synthesis and apoptosis was studied. In addition, mRNA and protein levels of cell survival or apoptosis genes, as well as protein kinase C (PKC) activity were determined. Results: While high concentrations of RES reduce PKC activity, inhibit DNA synthesis and induce apoptosis, low RES concentrations elicit an opposite effect. This biphasic concentration-dependent effect (BCDE) of RES on PKC activity is mirrored at the molecular level. Indeed, high RES concentrations upregulate the proapoptotic Bax, while downregulating the antiapoptotic Bcl-2, at both mRNA and protein levels. Similarly, high RES concentrations downregulate the cell cycle progression genes, c-myc, ornithine decarboxylase (ODC) and cyclin D1 protein levels, while low RES concentrations display an increasing trend. The BCDE of RES on PKC activity is abrogated by the ROS scavenger Tempol, indicating that this enzyme acts downstream of the RES-elicited ROS signaling. The RES-induced BCDE on HUVEC cell cycle machinery was also blunted by the flavin inhibitor diphenyleneiodonium (DPI), implicating flavin oxidase-generated ROS as the mechanistic link in the cellular response to different RES concentrations. Finally, PKC inhibition abrogates the BCDE elicited by RES on both cell cycle progression and pro-apoptotic gene expression in HUVECs, mechanistically implicating PKC in the cellular response to different RES concentrations. Conclusions: Our results provide new molecular insight into the impact of RES on endothelial function/dysfunction, further confirming that obtaining an optimal benefit of RES is concentration-dependent. Importantly, the BCDE of RES could explain why other studies failed to establish the cardio-protective effects mediated by natural antioxidants, thus providing a guide for future investigation looking at cardio-protection by natural antioxidants.
Collapse
|
42
|
Mitochondria in Neuroprotection by Phytochemicals: Bioactive Polyphenols Modulate Mitochondrial Apoptosis System, Function and Structure. Int J Mol Sci 2019; 20:ijms20102451. [PMID: 31108962 PMCID: PMC6566187 DOI: 10.3390/ijms20102451] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/11/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
In aging and neurodegenerative diseases, loss of distinct type of neurons characterizes disease-specific pathological and clinical features, and mitochondria play a pivotal role in neuronal survival and death. Mitochondria are now considered as the organelle to modulate cellular signal pathways and functions, not only to produce energy and reactive oxygen species. Oxidative stress, deficit of neurotrophic factors, and multiple other factors impair mitochondrial function and induce cell death. Multi-functional plant polyphenols, major groups of phytochemicals, are proposed as one of most promising mitochondria-targeting medicine to preserve the activity and structure of mitochondria and neurons. Polyphenols can scavenge reactive oxygen and nitrogen species and activate redox-responsible transcription factors to regulate expression of genes, coding antioxidants, anti-apoptotic Bcl-2 protein family, and pro-survival neurotrophic factors. In mitochondria, polyphenols can directly regulate the mitochondrial apoptosis system either in preventing or promoting way. Polyphenols also modulate mitochondrial biogenesis, dynamics (fission and fusion), and autophagic degradation to keep the quality and number. This review presents the role of polyphenols in regulation of mitochondrial redox state, death signal system, and homeostasis. The dualistic redox properties of polyphenols are associated with controversial regulation of mitochondrial apoptosis system involved in the neuroprotective and anti-carcinogenic functions. Mitochondria-targeted phytochemical derivatives were synthesized based on the phenolic structure to develop a novel series of neuroprotective and anticancer compounds, which promote the bioavailability and effectiveness. Phytochemicals have shown the multiple beneficial effects in mitochondria, but further investigation is required for the clinical application.
Collapse
|