1
|
Dong XM, Chen L, Xu YX, Wu P, Xie T, Liu ZQ. Exploring metabolic reprogramming in esophageal cancer: the role of key enzymes in glucose, amino acid, and nucleotide pathways and targeted therapies. Cancer Gene Ther 2025; 32:165-183. [PMID: 39794467 DOI: 10.1038/s41417-024-00858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 01/13/2025]
Abstract
Esophageal cancer (EC) is one of the most common malignancies worldwide with the character of poor prognosis and high mortality. Despite significant advancements have been achieved in elucidating the molecular mechanisms of EC, for example, in the discovery of new biomarkers and metabolic pathways, effective treatment options for patients with advanced EC are still limited. Metabolic heterogeneity in EC is a critical factor contributing to poor clinical outcomes. This heterogeneity arises from the complex interplay between the tumor microenvironment and genetic factors of tumor cells, which drives significant metabolic alterations in EC, a process known as metabolic reprogramming. Understanding the mechanisms of metabolic reprogramming is essential for developing new antitumor therapies and improving treatment outcomes. Targeting the distinct metabolic alterations in EC could enable more precise and effective therapies. In this review, we explore the complex metabolic changes in glucose, amino acid, and nucleotide metabolism during the progression of EC, and how these changes drive unique nutritional demands in cancer cells. We also evaluate potential therapies targeting key metabolic enzymes and their clinical applicability. Our work will contribute to enhancing knowledge of metabolic reprogramming in EC and provide new insights and approaches for the clinical treatment of EC.
Collapse
Affiliation(s)
- Xue-Man Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Lin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Yu-Xin Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Pu Wu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.
| | - Zhao-Qian Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.
| |
Collapse
|
2
|
Jin M, Shi L, Wang L, Zhang D, Li Y. Dihydroartemisinin enhances the anti-tumour effect of photodynamic therapy by targeting PKM2-mediated glycolysis in oesophageal cancer cell. J Enzyme Inhib Med Chem 2024; 39:2296695. [PMID: 38111311 PMCID: PMC11722009 DOI: 10.1080/14756366.2023.2296695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/17/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023] Open
Abstract
Photodynamic therapy (PDT) has been demonstrated to provide immediate relief of oesophageal cancer patients' re-obstruction and extend their lifespan. However, tumour regrowth may occur after PDT due to enhanced aerobic glycolysis. Previous research has confirmed the inhibitory effect of Dihydroartemisinin (DHA) on aerobic glycolysis. Therefore, the current study intends to investigate the function and molecular mechanism of DHA targeting tumour cell aerobic glycolysis in synergia PDT. The combined treatment significantly suppressed glycolysis in vitro and in vivo compared to either monotherapy. Exploration of the mechanism through corresponding experiments revealed that pyruvate kinase M2 (PKM2) was downregulated in treated cells, whereas overexpression of PKM2 nullified the inhibitory effects of DHA and PDT. This study proposes a novel therapeutic strategy for oesophageal cancer through DHA-synergized PDT treatment, targeting inhibit PKM2 to reduce tumour cell proliferation and metastasis.
Collapse
Affiliation(s)
- Mengru Jin
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P. R. China
| | - Luyao Shi
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P. R. China
| | - Li Wang
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P. R. China
| | - Dingyuan Zhang
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P. R. China
| | - Yanjing Li
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P. R. China
| |
Collapse
|
3
|
Yang C, Ming H, Li B, Liu S, Chen L, Zhang T, Gao Y, He T, Huang C, Du Z. A pH and glutathione-responsive carbon monoxide-driven nano-herb delivery system for enhanced immunotherapy in colorectal cancer. J Control Release 2024; 376:659-677. [PMID: 39442888 DOI: 10.1016/j.jconrel.2024.10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Dihydroartemisinin (DHA), a compound extracted from the herbal medicine Artemisia annua, has shown promise as a clinical treatment strategy for colorectal cancer. However, its clinical use is hindered by its low water solubility and bioavailability. A pH/glutathione (GSH) dual-responsive nano-herb delivery system (PMDC NPs) has been developed for the targeted delivery of DHA, accompanied by abundant carbon monoxide (CO) release. Due to the passive enhanced permeability and retention (EPR) effect and active targeting mediated by pHCT74 peptide binding to overexpressed α-enolase on colorectal cancer cells, the pHCT74/MOF-5@DHA&CORM-401 nanoparticles (PMDC NPs) exhibited specific targeting capacity against colorectal cancer cells. Once reaching the tumor site, the pH/GSH dual-responsive behavior of metal-organic framework-5 (MOF-5) enabled the rapid release of cargo, including DHA and CORM-401, in the acidic tumor microenvironment. Subsequently, DHA stimulated CORM-401 to release CO, which facilitated ROS-induced ferroptosis and apoptosis, leading to immunogenic cell death (ICD) and a sustained antitumor response through the release of tumor-associated antigens (TAAs) and damage-associated molecular patterns (DAMPs). Overall, PMDC NPs enhanced the bioavailability of DHA and exhibited outstanding therapeutic effectiveness both in vitro and in vivo, indicating their potential as a promising and feasible alternative for synergistic treatment with immunotherapy and gas therapy in the clinical management of colorectal cancer.
Collapse
Affiliation(s)
- Chen Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Ming
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bowen Li
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shanshan Liu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lihua Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingting Zhang
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yajie Gao
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Tao He
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Canhua Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China.
| | - Zhongyan Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou 310053, China.
| |
Collapse
|
4
|
Tang Q, Wu S, Zhao B, Li Z, Zhou Q, Yu Y, Yang X, Wang R, Wang X, Wu W, Wang S. Reprogramming of glucose metabolism: The hallmark of malignant transformation and target for advanced diagnostics and treatments. Biomed Pharmacother 2024; 178:117257. [PMID: 39137648 DOI: 10.1016/j.biopha.2024.117257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Reprogramming of cancer metabolism has become increasingly concerned over the last decade, particularly the reprogramming of glucose metabolism, also known as the "Warburg effect". The reprogramming of glucose metabolism is considered a novel hallmark of human cancers. A growing number of studies have shown that reprogramming of glucose metabolism can regulate many biological processes of cancers, including carcinogenesis, progression, metastasis, and drug resistance. In this review, we summarize the major biological functions, clinical significance, potential targets and signaling pathways of glucose metabolic reprogramming in human cancers. Moreover, the applications of natural products and small molecule inhibitors targeting glucose metabolic reprogramming are analyzed, some clinical agents targeting glucose metabolic reprogramming and trial statuses are summarized, as well as the pros and cons of targeting glucose metabolic reprogramming for cancer therapy are analyzed. Overall, the reprogramming of glucose metabolism plays an important role in the prediction, prevention, diagnosis and treatment of human cancers. Glucose metabolic reprogramming-related targets have great potential to serve as biomarkers for improving individual outcomes and prognosis in cancer patients. The clinical innovations related to targeting the reprogramming of glucose metabolism will be a hotspot for cancer therapy research in the future. We suggest that more high-quality clinical trials with more abundant drug formulations and toxicology experiments would be beneficial for the development and clinical application of drugs targeting reprogramming of glucose metabolism.This review will provide the researchers with the broader perspective and comprehensive understanding about the important significance of glucose metabolic reprogramming in human cancers.
Collapse
Affiliation(s)
- Qing Tang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China.
| | - Siqi Wu
- The First Clinical School of Guangzhou University of Chinese Medicine;Department of Oncology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine,Guangzhou 510000, China; Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan 528400, China
| | - Baiming Zhao
- The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhanyang Li
- School of Biosciences and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qichun Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China
| | - Yaya Yu
- The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China
| | - Xiaobing Yang
- The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China
| | - Rui Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China
| | - Xi Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China
| | - Wanyin Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China.
| | - Sumei Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China.
| |
Collapse
|
5
|
Liu Y, Zhao Y, Song H, Li Y, Liu Z, Ye Z, Zhao J, Wu Y, Tang J, Yao M. Metabolic reprogramming in tumor immune microenvironment: Impact on immune cell function and therapeutic implications. Cancer Lett 2024; 597:217076. [PMID: 38906524 DOI: 10.1016/j.canlet.2024.217076] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Understanding of the metabolic reprogramming has revolutionized our insights into tumor progression and potential treatment. This review concentrates on the aberrant metabolic pathways in cancer cells within the tumor microenvironment (TME). Cancer cells differ from normal cells in their metabolic processing of glucose, amino acids, and lipids in order to adapt to heightened biosynthetic and energy needs. These metabolic shifts, which crucially alter lactic acid, amino acid and lipid metabolism, affect not only tumor cell proliferation but also TME dynamics. This review also explores the reprogramming of various immune cells in the TME. From a therapeutic standpoint, targeting these metabolic alterations represents a novel cancer treatment strategy. This review also discusses approaches targeting the regulation of metabolism of different nutrients in tumor cells and influencing the tumor microenvironment to enhance the immune response. In summary, this review summarizes metabolic reprogramming in cancer and its potential as a target for innovative therapeutic strategies, offering fresh perspectives on cancer treatment.
Collapse
Affiliation(s)
- Yuqiang Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Yu Zhao
- Department of Thoracic Surgery, Sheng Jing Hospital, China Medical University, Shenyang, Liaoning, 110000, China
| | - Huisheng Song
- Affiliated Qingyuan Hospital, Guangzhou Medica University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511500, China
| | - Yunting Li
- Department of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Zihao Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Zhiming Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jianzhu Zhao
- Department of oncology, Sheng Jing Hospital, China Medical University, Shenyang, Liaoning, 110000, China
| | - Yuzheng Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jun Tang
- Department of Thoracic Surgery, Sheng Jing Hospital, China Medical University, Shenyang, Liaoning, 110000, China.
| | - Maojin Yao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China.
| |
Collapse
|
6
|
Tang N, Liu X, Liu Y, Wang H, Zhao Y, Wang H, Hu Z. Dihydroartemisinin induces ferroptosis in T cell acute lymphoblastic leukemia cells by downregulating SLC7A11 and activating the ATF4‑CHOP signaling pathway. Oncol Lett 2024; 28:337. [PMID: 38846431 PMCID: PMC11153983 DOI: 10.3892/ol.2024.14470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/02/2024] [Indexed: 06/09/2024] Open
Abstract
The present study aimed to investigate the anti-leukemic effects of dihydroartemisinin (DHA) on T-cell acute lymphoblastic leukemia (T-ALL) cell lines, Jurkat and Molt-4, and the underlying mechanisms. Cell Counting Kit-8 was performed to measure cell viability. Cell apoptosis and cell cycle distribution were assessed by flow cytometry. The expression levels of ATF4 and CHOP mRNA were assessed by reverse transcription-quantitative PCR, while the protein abundance of SLC7A11, GPX4, ATF4 and CHOP was determined by western blotting. Moreover, malondialdehyde, glutathione (GSH) and reactive oxygen species (ROS) assays were used to detect the levels of ferroptosis. The results showed that DHA suppressed T-ALL cell viability in vitro, and induced cell cycle arrest at S or G2/M phase. DHA also induced ROS burst, activated endoplasmic reticulum (ER) stress, disrupted the system Xc--GSH-GSH peroxidase 4 antioxidant system, and increased lipid peroxide accumulation, resulting in cell death. By contrast, the pharmacological inhibition of ferroptosis alleviated DHA-induced cell death, confirming that DHA induces T-ALL cell death via ferroptosis. Mechanistically, the effect of DHA on ferroptosis was partly mediated by downregulating SLC7A11 and upregulating the ATF4-CHOP signaling pathway, which is associated with ER stress. These results indicated that DHA may induce ferroptosis in T-ALL cell lines and could represent a promising therapeutic agent for treating T-ALL.
Collapse
Affiliation(s)
- Na Tang
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042, P.R. China
- Graduate School, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xinling Liu
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042, P.R. China
| | - Yong Liu
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042, P.R. China
| | - Haihua Wang
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042, P.R. China
| | - Yao Zhao
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042, P.R. China
| | - Haiying Wang
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042, P.R. China
| | - Zhenbo Hu
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042, P.R. China
| |
Collapse
|
7
|
Han JH, Lee EJ, Park W, Ha KT, Chung HS. Natural compounds as lactate dehydrogenase inhibitors: potential therapeutics for lactate dehydrogenase inhibitors-related diseases. Front Pharmacol 2023; 14:1275000. [PMID: 37915411 PMCID: PMC10616500 DOI: 10.3389/fphar.2023.1275000] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
Lactate dehydrogenase (LDH) is a crucial enzyme involved in energy metabolism and present in various cells throughout the body. Its diverse physiological functions encompass glycolysis, and its abnormal activity is associated with numerous diseases. Targeting LDH has emerged as a vital approach in drug discovery, leading to the identification of LDH inhibitors among natural compounds, such as polyphenols, alkaloids, and terpenoids. These compounds demonstrate therapeutic potential against LDH-related diseases, including anti-cancer effects. However, challenges concerning limited bioavailability, poor solubility, and potential toxicity must be addressed. Combining natural compounds with LDH inhibitors has led to promising outcomes in preclinical studies. This review highlights the promise of natural compounds as LDH inhibitors for treating cancer, cardiovascular, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jung Ho Han
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
| | - Eun-Ji Lee
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
| | - Wonyoung Park
- Korean Convergence Medical Science Major, KIOM Campus, University of Science and Technology (UST), Daegu, Republic of Korea
| | - Ki-Tae Ha
- Korean Convergence Medical Science Major, KIOM Campus, University of Science and Technology (UST), Daegu, Republic of Korea
| | - Hwan-Suck Chung
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
8
|
Xi Y, Shen Y, Chen L, Tan L, Shen W, Niu X. Exosome-mediated metabolic reprogramming: Implications in esophageal carcinoma progression and tumor microenvironment remodeling. Cytokine Growth Factor Rev 2023; 73:78-92. [PMID: 37696716 DOI: 10.1016/j.cytogfr.2023.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Esophageal carcinoma is among the most fatal malignancies with increasing incidence globally. Tumor onset and progression can be driven by metabolic reprogramming, especially during esophageal carcinoma development. Exosomes, a subset of extracellular vesicles, display an average size of ∼100 nanometers, containing multifarious components (nucleic acids, proteins, lipids, etc.). An increasing number of studies have shown that exosomes are capable of transferring molecules with biological functions into recipient cells, which play crucial roles in esophageal carcinoma progression and tumor microenvironment that is a highly heterogeneous ecosystem through rewriting the metabolic processes in tumor cells and environmental stromal cells. The review introduces the reprogramming of glucose, lipid, amino acid, mitochondrial metabolism in esophageal carcinoma, and summarize current pharmaceutical agents targeting such aberrant metabolism rewiring. We also comprehensively overview the biogenesis and release of exosomes, and recent advances of exosomal cargoes and functions in esophageal carcinoma and their promising clinical application. Moreover, we discuss how exosomes trigger tumor growth, metastasis, drug resistance, and immunosuppression as well as tumor microenvironment remodeling through focusing on their capacity to transfer materials between cells or between cells and tissues and modulate metabolic reprogramming, thus providing a theoretical reference for the design potential pharmaceutical agents targeting these mechanisms. Altogether, our review attempts to fully understand the significance of exosome-based metabolic rewriting in esophageal carcinoma progression and remodeling of the tumor microenvironment, bringing novel insights into the prevention and treatment of esophageal carcinoma in the future.
Collapse
Affiliation(s)
- Yong Xi
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315040, Zhejiang, China; Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yaxing Shen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lijie Chen
- School of Medicine, Xiamen University, Xiamen 361102, Fujian, China; China Medical University, Shenyang 110122, Liaoning, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Weiyu Shen
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315040, Zhejiang, China.
| | - Xing Niu
- China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
9
|
Lin D, Yan K, Chen L, Chen J, Xu J, Xie Z, Li Z, Lin S, Li J, Chen Z. Hypoxia-induced reprogramming of glucose-dependent metabolic pathways maintains the stemness of human bone marrow-derived endothelial progenitor cells. Sci Rep 2023; 13:8776. [PMID: 37258701 DOI: 10.1038/s41598-023-36007-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 05/27/2023] [Indexed: 06/02/2023] Open
Abstract
The benefits of hypoxia for maintaining the stemness of cultured human bone marrow-derived endothelial progenitor cells (BM EPCs) have previously been demonstrated but the mechanisms responsible remain unclear. Growing evidences suggest that cellular metabolism plays an important role in regulating stem cell fate and self-renewal. Here we aimed to detect the changes of glucose metabolism and to explore its role on maintaining the stemness of BM EPCs under hypoxia. We identified the metabolic status of BM EPCs by using extracellular flux analysis, LC-MS/MS, and 13C tracing HPLC-QE-MS, and found that hypoxia induced glucose metabolic reprogramming, which manifested as increased glycolysis and pentose phosphate pathway (PPP), decreased tricarboxylic acid (TCA) and mitochondrial respiration. We further pharmacologically altered the metabolic status of cells by employing various of inhibitors of key enzymes of glycolysis, PPP, TCA cycle and mitochondria electron transport chain (ETC). We found that inhibiting glycolysis or PPP impaired cell proliferation either under normoxia or hypoxia. On the contrary, inhibiting pyruvate oxidation, TCA or ETC promoted cell proliferation under normoxia mimicking hypoxic conditions. Moreover, promoting pyruvate oxidation reverses the maintenance effect of hypoxia on cell stemness. Taken together, our data suggest that hypoxia induced glucose metabolic reprogramming maintains the stemness of BM EPCs, and artificial manipulation of cell metabolism can be an effective way for regulating the stemness of BM EPCs, thereby improving the efficiency of cell expansion in vitro.
Collapse
Affiliation(s)
- Dongni Lin
- The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinical Specialty, Zhujiang Hospital, Southern Medical University, 253# Gongye RD, Guangzhou, 510282, China
| | - Kaihao Yan
- The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinical Specialty, Zhujiang Hospital, Southern Medical University, 253# Gongye RD, Guangzhou, 510282, China
| | - Lingyun Chen
- Hygiene Detection Center, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Junxiong Chen
- The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinical Specialty, Zhujiang Hospital, Southern Medical University, 253# Gongye RD, Guangzhou, 510282, China
| | - Jianing Xu
- The Second School of Clinical Medicine, Undergraduate Innovation and Entrepreneurship Project, Southern Medical University, 253 Gongye Road, Guangzhou, 510282, China
| | - Zijing Xie
- The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinical Specialty, Zhujiang Hospital, Southern Medical University, 253# Gongye RD, Guangzhou, 510282, China
| | - Zhujun Li
- The Second School of Clinical Medicine, Undergraduate Innovation and Entrepreneurship Project, Southern Medical University, 253 Gongye Road, Guangzhou, 510282, China
| | - Shuo Lin
- The Second School of Clinical Medicine, Undergraduate Innovation and Entrepreneurship Project, Southern Medical University, 253 Gongye Road, Guangzhou, 510282, China
| | - Jinghuan Li
- The Second School of Clinical Medicine, Undergraduate Innovation and Entrepreneurship Project, Southern Medical University, 253 Gongye Road, Guangzhou, 510282, China
| | - Zhenzhou Chen
- The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinical Specialty, Zhujiang Hospital, Southern Medical University, 253# Gongye RD, Guangzhou, 510282, China.
| |
Collapse
|
10
|
Zhu H, Yip HC, Cheung MK, Chan HC, Ng C, Lau EHL, Yeung ZWC, Wong EWY, Leung L, Qu X, Wang D, Cai L, Chan PKS, Chan JYK, Chen Z. Convergent dysbiosis of upper aerodigestive microbiota between patients with esophageal and oral cavity squamous cell carcinoma. Int J Cancer 2023; 152:1903-1915. [PMID: 36752573 DOI: 10.1002/ijc.34460] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/09/2023]
Abstract
The bidirectional association between primary esophageal squamous cell carcinoma (ESCC) and oral cavity squamous cell carcinoma (OSCC) suggests common risk factors and oncogenic molecular processes but it is unclear whether these two cancers display similar patterns of dysbiosis in their upper aerodigestive microbiota (UADM). We conducted a case-control study to characterize the microbial communities in esophageal lavage samples from 49 ESCC patients and oral rinse samples from 91 OSCC patients using 16S rRNA V3-V4 amplicon sequencing. Compared with their respective non-SCC controls from the same anatomical sites, 32 and 45 discriminative bacterial genera were detected in ESCC and OSCC patients, respectively. Interestingly, 20 of them were commonly enriched or depleted in both types of cancer, suggesting a convergent niche adaptation of upper aerodigestive SCC-associated bacteria that may play important roles in the pathogenesis of malignancies. Notably, Fusobacterium, Selenomonas, Peptoanaerobacter and Peptostreptococcus were enriched in both ESCC and OSCC, whereas Streptococcus and Granulicatelia were commonly depleted. We further identified Fusobacterium nucleatum as the most abundant species enriched in the upper aerodigestive SCC microenvironment, and the higher relative abundances of Selenomonas danae and Treponema maroon were positively correlated with smoking. In addition, predicted functional analysis revealed several depleted (eg, lipoic acid and pyruvate metabolism) and enriched (eg, RNA polymerase and nucleotide excision repair) pathways common to both cancers. Our findings reveal a convergent dysbiosis in the UADM between patients with ESCC and OSCC, suggesting a shared niche adaptation of host-microbiota interactions in the pathogenesis of upper aerodigestive tract malignancies.
Collapse
Affiliation(s)
- Hengyan Zhu
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hon Chi Yip
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Man Kit Cheung
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hiu Ching Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Cherrie Ng
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Eric H L Lau
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zenon W C Yeung
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Eddy W Y Wong
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Leanne Leung
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xinyu Qu
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Daijuanru Wang
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Liuyang Cai
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Paul K S Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jason Y K Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zigui Chen
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Li S, Yue M, Xu H, Zhang X, Mao T, Quan M, Ma J, Wang Y, Ge W, Wang Y, Xue S, Shentu D, Cui J, Wang L. Chemotherapeutic drugs-induced pyroptosis mediated by gasdermin E promotes the progression and chemoresistance of pancreatic cancer. Cancer Lett 2023; 564:216206. [PMID: 37120007 DOI: 10.1016/j.canlet.2023.216206] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/12/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023]
Abstract
Pyroptosis is closely associated with cancer development; however, the role of pyroptosis in pancreatic ductal adenocarcinoma (PDAC), a fatal malignant tumour with a poor overall survival rate, remains elusive. Here, we explored the mechanism of chemotherapy-induced pyroptosis and elucidated the role of pyroptosis in mediating PDAC progression and chemoresistance. The results demonstrated first- and second-line chemotherapeutic drugs against PDAC, including gemcitabine, irinotecan, 5-fluorouracil, paclitaxel, and cisplatin, induced concurrent pyroptosis and apoptosis. During this process, gasdermin E (GSDME) was cleaved by activated caspase-3, which was accompanied by pro-apoptotic caspase-7/8 activation. GSDME knockdown switched pyroptosis to apoptosis, decreased invasion and migration, and enhanced the sensitivity of PDAC cells to chemotherapy in vitro and in vivo. GSDME was highly expressed in PDAC tissues and positively correlated with histological differentiation and vascular invasion. Furthermore, cells that survived pyroptosis promoted proliferation and invasion and impaired the chemosensitivity of PDAC cells, which was attenuated by the GSDME knockdown. Our findings demonstrated that chemotherapeutics against PDAC induce GSDME-dependent pyroptosis, and GSDME expression positively correlated with PDAC progression and chemoresistance. Targeting GSDME may be a novel approach to overcoming chemoresistance in PDAC.
Collapse
Affiliation(s)
- Shumin Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Yue
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyan Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofei Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tiebo Mao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Quan
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingyu Ma
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanling Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weiyu Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongchao Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shengbai Xue
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Daiyuan Shentu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiujie Cui
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Liwei Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
12
|
Shi S, Luo H, Ji Y, Ouyang H, Wang Z, Wang X, Hu R, Wang L, Wang Y, Xia J, Cheng B, Bao B, Li X, Liao G, Xu B. Repurposing Dihydroartemisinin to Combat Oral Squamous Cell Carcinoma, Associated with Mitochondrial Dysfunction and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9595201. [PMID: 37273554 PMCID: PMC10239307 DOI: 10.1155/2023/9595201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 08/15/2023]
Abstract
Oral squamous cell carcinoma (OSCC), with aggressive locoregional invasion, has a high rate of early recurrences and poor prognosis. Dihydroartemisinin (DHA), as a derivative of artemisinin, has been found to exert potent antitumor activity. Recent studies reported that DHA suppresses OSCC cell growth and viability through the regulation of reactive oxygen species (ROS) production and mitochondrial calcium uniporter. However, the mechanism underlying the action of DHA on OSCCs remains elusive. In the study, we observed that 159 genes were remarkably misregulated in primary OSCC tumors associated with DHA-inhibited pathways, supporting that OSCCs are susceptible to DHA treatment. Herein, our study showed that DHA exhibited promising effects to suppress OSCC cell growth and survival, and single-cell colony formation. Interestingly, the combination of DHA and cisplatin (CDDP) significantly reduced the toxicity of CDDP treatment alone on human normal oral cells (NOK). Moreover, DHA remarkably impaired mitochondrial structure and function, and triggered DNA damage and ROS generation, and activation of mitophagy. In addition, DHA induced leakage of cytochrome C and apoptosis-inducing factor (AIF) from mitochondria, elevated Bax/cleaved-caspase 3 expression levels and compromised Bcl2 protein expression. In the OSCC tumor-xenograft mice model, DHA remarkably suppressed tumor growth and induced apoptosis of OSCCs in vivo. Intriguingly, a selective mitophagy inhibitor Mdivi-1 could significantly reinforce the anticancer activity of DHA treatment. DHA and Mdivi-1 can synergistically suppress OSCC cell proliferation and survival. These data uncover a previously unappreciated contribution of the mitochondria-associated pathway to the antitumor activity of DHA on OSCCs. Our study shed light on a new aspect of a DHA-based therapeutic strategy to combat OSCC tumors.
Collapse
Affiliation(s)
- Shanwei Shi
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Huigen Luo
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuna Ji
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Huiya Ouyang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zheng Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xinchen Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Renjie Hu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Lihong Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yun Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Juan Xia
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Bin Cheng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Baicheng Bao
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xin Li
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Guiqing Liao
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Baoshan Xu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
13
|
Peng Q, Hao L, Guo Y, Zhang Z, Ji J, Xue Y, Liu Y, Li C, Lu J, Shi X. Dihydroartemisinin inhibited the Warburg effect through YAP1/SLC2A1 pathway in hepatocellular carcinoma. J Nat Med 2023; 77:28-40. [PMID: 36068393 DOI: 10.1007/s11418-022-01641-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 07/21/2022] [Indexed: 01/12/2023]
Abstract
Hepatocellular carcinoma (HCC) was the third most common cause of cancer death. But it has only limited therapeutic options, aggressive nature, and very low overall survival. Dihydroartemisinin (DHA), an anti-malarial drug approved by the Food and Drug Administration (FDA), inhibited cell growth in HCC. The Warburg effect was one of the ten new hallmarks of cancer. Solute carrier family 2 member 1 (SLC2A1) was a crucial carrier for glucose to enter target cells in the Warburg effect. Yes-associated transcriptional regulator 1 (YAP1), an effector molecule of the hippo pathway, played a crucial role in promoting the development of HCC. This study sought to determine the role of DHA in the SLC2A1 mediated Warburg effect in HCC. In this study, DHA inhibited the Warburg effect and SLC2A1 in HepG2215 cells and mice with liver tumors in situ. Meanwhile, DHA inhibited YAP1 expression by inhibiting YAP1 promoter binding protein GA binding protein transcription factor subunit beta 1 (GABPB1) and cAMP responsive element binding protein 1 (CREB1). Further, YAP1 knockdown/knockout reduced the Warburg effect and SLC2A1 expression by shYAP1-HepG2215 cells and Yap1LKO mice with liver tumors. Taken together, our data indicated that YAP1 knockdown/knockout reduced the SLC2A1 mediated Warburg effect by shYAP1-HepG2215 cells and Yap1LKO mice with liver tumors induced by DEN/TCPOBOP. DHA, as a potential YAP1 inhibitor, suppressed the SLC2A1 mediated Warburg effect in HCC.
Collapse
Affiliation(s)
- Qing Peng
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Liyuan Hao
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Yinglin Guo
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Zhiqin Zhang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Jingmin Ji
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Yu Xue
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Yiwei Liu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Caige Li
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Junlan Lu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Xinli Shi
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China.
| |
Collapse
|
14
|
Jin Q, Liu T, Chen D, Yang L, Mao H, Ma F, Wang Y, Li P, Zhan Y. Therapeutic potential of artemisinin and its derivatives in managing kidney diseases. Front Pharmacol 2023; 14:1097206. [PMID: 36874000 PMCID: PMC9974673 DOI: 10.3389/fphar.2023.1097206] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Artemisinin, an antimalarial traditional Chinese herb, is isolated from Artemisia annua. L, and has shown fewer side effects. Several pieces of evidence have demonstrated that artemisinin and its derivatives exhibited therapeutic effects on diseases like malaria, cancer, immune disorders, and inflammatory diseases. Additionally, the antimalarial drugs demonstrated antioxidant and anti-inflammatory activities, regulating the immune system and autophagy and modulating glycolipid metabolism properties, suggesting an alternative for managing kidney disease. This review assessed the pharmacological activities of artemisinin. It summarized the critical outcomes and probable mechanism of artemisinins in treating kidney diseases, including inflammatory, oxidative stress, autophagy, mitochondrial homeostasis, endoplasmic reticulum stress, glycolipid metabolism, insulin resistance, diabetic nephropathy, lupus nephritis, membranous nephropathy, IgA nephropathy, and acute kidney injury, suggesting the therapeutic potential of artemisinin and its derivatives in managing kidney diseases, especially the podocyte-associated kidney diseases.
Collapse
Affiliation(s)
- Qi Jin
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Tongtong Liu
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Danqian Chen
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Liping Yang
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Huimin Mao
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Fang Ma
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Yuyang Wang
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Yongli Zhan
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| |
Collapse
|
15
|
Wu Y, Guo Y, Wang Q. USP21 accelerates the proliferation and glycolysis of esophageal cancer cells by regulating the STAT3/FOXO1 pathway. Tissue Cell 2022; 79:101916. [DOI: 10.1016/j.tice.2022.101916] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
|
16
|
Wang H. Network pharmacology- and molecular docking-based approaches to unveil the pharmacological mechanisms of dihydroartemisinin against esophageal carcinoma. Front Genet 2022; 13:1017520. [PMID: 36506308 PMCID: PMC9732420 DOI: 10.3389/fgene.2022.1017520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022] Open
Abstract
Objective: Dihydroartemisinin (DHA) is an active metabolite of artemisinin and its derivatives, which is a potent drug extensively applied in clinical treatment of malaria. The antitumor properties of DHA have received increasing attention. However, there is no systematic summary on the pharmacological mechanisms of DHA against esophageal carcinoma (ESCA). The present study implemented network pharmacology- and molecular docking-based approaches to unveil the pharmacological mechanisms of DHA against ESCA. Methods: DHA targets were accessed through integrating the SwissTargetPrediction, HERB, as well as BATMAN-TCM platforms. In TCGA-ESCA dataset, genes with differential expression were screened between 161 ESCA and 11 normal tissue specimens. DHA targets against ESCA were obtained through intersection. Their biological significance was evaluated with functional enrichment analysis. A prognostic signature was established via uni- and multivariate cox regression analyses. DHA-target interactions were predicted via molecular docking. Molecular dynamics simulation was implemented to examine the stability of DHA binding to potential targets. Results: The study predicted 160 DHA targets as well as 821 genes with differential expression in ESCA. Afterwards, 16 DHA targets against ESCA were obtained, which remarkably correlated to cell cycle progression. The ADORA2B- and AURKA-based prognostic signature exhibited the reliability and independency in survival prediction. The stable docking of DHA-ADORA2B and DHA-AURKA was confirmed. Conclusion: Collectively, this study systematically revealed the basis and mechanism of DHA against ESCA through targeting multi-target and multi-pathway mechanisms, and thus offered theoretical and scientific basis for the clinical application of DHA.
Collapse
|
17
|
Cui Y, Li C, Sang F, Cao W, Qin Z, Zhang P. Natural products targeting glycolytic signaling pathways-an updated review on anti-cancer therapy. Front Pharmacol 2022; 13:1035882. [PMID: 36339566 PMCID: PMC9631946 DOI: 10.3389/fphar.2022.1035882] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
Glycolysis is a complex metabolic process that occurs to convert glucose into pyruvate to produce energy for living cells. Normal cells oxidized pyruvate into adenosine triphosphate and carbon dioxide in the presence of oxygen in mitochondria while cancer cells preferentially metabolize pyruvate to lactate even in the presence of oxygen in order to maintain a slightly acidic micro-environment of PH 6.5 and 6.9, which is beneficial for cancer cell growth and metastasis. Therefore targeting glycolytic signaling pathways provided new strategy for anti-cancer therapy. Natural products are important sources for the treatment of diseases with a variety of pharmacologic activities. Accumulated studies suggested that natural products exhibited remarkable anti-cancer properties both in vitro and in vivo. Plenty of studies suggested natural products like flavonoids, terpenoids and quinones played anti-cancer properties via inhibiting glucose metabolism targets in glycolytic pathways. This study provided an updated overview of natural products controlling glycolytic pathways, which also provide insight into druggable mediators discovery targeting cancer glucose metabolism.
Collapse
Affiliation(s)
- Yuting Cui
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Chuang Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Feng Sang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Weiling Cao
- Department of Pharmacy, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong, China
- *Correspondence: Weiling Cao, ; Zhuo Qin, ; Peng Zhang,
| | - Zhuo Qin
- Department of Pharmacy, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong, China
- *Correspondence: Weiling Cao, ; Zhuo Qin, ; Peng Zhang,
| | - Peng Zhang
- Department of Pharmacy, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong, China
- *Correspondence: Weiling Cao, ; Zhuo Qin, ; Peng Zhang,
| |
Collapse
|
18
|
Zheng Z, Zhang L, Hou X. Potential roles and molecular mechanisms of phytochemicals against cancer. Food Funct 2022; 13:9208-9225. [PMID: 36047380 DOI: 10.1039/d2fo01663j] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Increasing evidence has been reported regarding phytochemicals, plant secondary metabolites, having therapeutic functions against numerous human diseases. Recently, phytochemicals (flavonoids, polyphenols, terpenoids, alkaloids, saponins, coumarins and so on) have shown promising anti-cancer efficacy with their distinct advantages of high efficiency and low toxicity. They regulate programmed cell death (apoptosis, pyroptosis, and autophagy), migration and senescence-related signaling pathways of cancer via the modulation of reactive oxygen species (ROS), mitogen activated protein kinase (MAPK) pathway, deleted in liver cancer 1 (DLC1), nuclear factor κ light-chain-enhancer of activated B cell (NF-κB) pathways and glycolytic enzymes. Here, we review the molecular mechanisms by which phytochemicals prevent the development of cancer. Furthermore, phytochemicals combined with chemotherapeutic agents could target the crosstalk among multiple signal cascades to block chemoresistance and attenuate carcinogenic properties, and can be considered as a novel and potential therapeutic strategy. Our review highlights that the mechanisms and promising applications are required to be understood to decisively establish the anti-cancer efficacy of natural phytochemicals.
Collapse
Affiliation(s)
- Zhaodi Zheng
- School of Forensics and Laboratory Medicine, Jining Medical University, Jining, 272067, Shandong, China.
| | - Leilei Zhang
- School of Forensics and Laboratory Medicine, Jining Medical University, Jining, 272067, Shandong, China.
| | - Xitan Hou
- School of Forensics and Laboratory Medicine, Jining Medical University, Jining, 272067, Shandong, China.
| |
Collapse
|
19
|
Xu DL, Fan K, Zhang H, Tang LX, Wang Y, Xiang Z, Shi AM, Qu YC, Su CJ, Pan J. Anti-proliferation and apoptosis-inducing effects of dihydroartemisinin on SH-SY5Y cells and metabolomic analysis. Transl Pediatr 2022; 11:1346-1361. [PMID: 36072536 PMCID: PMC9442203 DOI: 10.21037/tp-22-331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND In childhood, metastatic neuroblastoma (NB) is the most common extracranial solid tumor, but there are no appropriate drugs for its treatment. Dihydroartemisinin (DHA), a drug for malaria treatment, has therapeutic potential in several cancers; however, its mechanisms remain unclear. This study aimed to investigate the anti-proliferation effect of DHA on SH-SY5Y cells and to explore its mechanism in vitro. METHODS We used 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to measure the half-maximal inhibitory concentration (IC50) of DHA; western blot was used to determine protein levels; propidium iodide (PI) staining was used to determine apoptotic cells; JC-1 staining to measure mitochondrial membrane potential; and dichloro-dihydro-fluorescein diacetate (DCFH-DA) staining was used to determine reactive oxygen species (ROS). Metabonomic analysis was performed by using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS)-based untargeted metabolomics. Multivariate statistical analysis was performed to screen potential metabolites associated with DHA treatment in SH-SY5Y cells. RESULTS It was shown that DHA inhibited SH-SY5Y cell proliferation and increased poly (ADP-ribose) polymerase (PARP-1) and caspase 3 in a dose-dependent manner. In Further, DHA promoted ROS generation and γH2AX expression. In addition, a total of 125 proposed metabolites in SH-SY5Y cells and 45 vital metabolic pathways were identified through UHPLC-MS/MS-based untargeted metabolomic analysis. CONCLUSIONS These data suggest that DHA could regulate taurine, linoleic acid, phenylalanine metabolism, and tryptophan metabolism, which are involved in the anti-proliferation effect of DHA in SH-SY5Y cells.
Collapse
Affiliation(s)
- De-Lai Xu
- Department of Pharmacy, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Kai Fan
- Department of Pharmacy, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liu-Xing Tang
- Department of Pharmacy, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Wang
- Department of Pharmacy, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhen Xiang
- Department of Pharmacy, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ai-Ming Shi
- Department of Pharmacy, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu-Chen Qu
- Department of Pharmacy, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Cun-Jin Su
- Department of Pharmacy, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Pan
- Department of Pharmacy, the Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
20
|
Wong KH, Yang D, Chen S, He C, Chen M. Development of Nanoscale Drug Delivery Systems of Dihydroartemisinin for Cancer Therapy: A Review. Asian J Pharm Sci 2022; 17:475-490. [PMID: 36105316 PMCID: PMC9459003 DOI: 10.1016/j.ajps.2022.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/20/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022] Open
|
21
|
Kooshki L, Mahdavi P, Fakhri S, Akkol EK, Khan H. Targeting lactate metabolism and glycolytic pathways in the tumor microenvironment by natural products: A promising strategy in combating cancer. Biofactors 2022; 48:359-383. [PMID: 34724274 DOI: 10.1002/biof.1799] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
Anticancer drugs are not purely effective because of their toxicity, side effects, high cost, inaccessibility, and associated resistance. On the other hand, cancer is a complex public health problem that could intelligently adopt different signaling pathways and alter the body's metabolism to escape from the immune system. One of the cancer strategies to metastasize is modifying pH in the tumor microenvironment, ranging between 6.5 and 6.9. As a powerful determiner, lactate is responsible for this acidosis. It is involved in immune stimulation, including innate and adaptive immunity, apoptotic-related factors (Bax/Bcl-2, caspase), and glycolysis pathways (e.g., GLUT-1, PKM2, PFK, HK2, MCT-1, and LDH). Lactate metabolism, in turn, is interconnected with several dysregulated signaling mediators, including PI3K/Akt/mTOR, AMPK, NF-κB, Nrf2, JAK/STAT, and HIF-1α. Because of lactate's emerging and critical role, targeting lactate production and its transporters is important for preventing and managing tumorigenesis. Hence, exploring and developing novel promising anticancer agents to minimize human cancers is urgent. Based on numerous studies, natural secondary metabolites as multi-target alternative compounds with health-promoting properties possess more high effectiveness and low side effects than conventional agents. Besides, the mechanism of multi-targeted natural sources is related to lactate production and cancer-associated cross-talked factors. This review focuses on targeting the lactate metabolism/transporters, and lactate-associated mediators, including glycolytic pathways. Besides, interconnected mediators to lactate metabolism are also targeted by natural products. Accordingly, plant-derived secondary metabolites are introduced as alternative therapies in combating cancer through modulating lactate metabolism and glycolytic pathways.
Collapse
Affiliation(s)
- Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Mahdavi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
22
|
Arora S, Joshi G, Chaturvedi A, Heuser M, Patil S, Kumar R. A Perspective on Medicinal Chemistry Approaches for Targeting Pyruvate Kinase M2. J Med Chem 2022; 65:1171-1205. [PMID: 34726055 DOI: 10.1021/acs.jmedchem.1c00981] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The allosteric regulation of pyruvate kinase M2 (PKM2) affects the switching of the PKM2 protein between the high-activity and low-activity states that allow ATP and lactate production, respectively. PKM2, in its low catalytic state (dimeric form), is chiefly active in metabolically energetic cells, including cancer cells. More recently, PKM2 has emerged as an attractive target due to its role in metabolic dysfunction and other interrelated conditions. PKM2 (dimer) activity can be inhibited by modulating PKM2 dimer-tetramer dynamics using either PKM2 inhibitors that bind at the ATP binding active site of PKM2 (dimer) or PKM2 activators that bind at the allosteric site of PKM2, thus activating PKM2 from the dimer formation to the tetrameric formation. The present perspective focuses on medicinal chemistry approaches to design and discover PKM2 inhibitors and activators and further provides a scope for the future design of compounds targeting PKM2 with better efficacy and selectivity.
Collapse
Affiliation(s)
- Sahil Arora
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
| | - Gaurav Joshi
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttarakhand 248171, India
| | - Anuhar Chaturvedi
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover 30625, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover 30625, Germany
| | - Santoshkumar Patil
- Discovery Services, Syngene International Ltd., Biocon Park, SEZ, Bommasandra Industrial Area-Phase-IV, Bommasandra-Jigani Link Road, Bengaluru, Karnataka 560099, India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
23
|
Jiang M, Wu Y, Qi L, Li L, Song D, Gan J, Li Y, Ling X, Song C. Dihydroartemisinin mediating PKM2-caspase-8/3-GSDME axis for pyroptosis in esophageal squamous cell carcinoma. Chem Biol Interact 2021; 350:109704. [PMID: 34655567 DOI: 10.1016/j.cbi.2021.109704] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022]
Abstract
Pyroptosis is a novel type of pro-inflammatory programmed cell death that has been strongly reported to be related to inflammation, immune, and cancer. Dihydroartemisinin (DHA) has good anti-tumor properties. However, the exact mechanism by which DHA induces pyroptosis to inhibit esophageal squamous cell carcinoma (ESCC) remains unclear. After applying DHA treatment to ESCC, we found that some dying cells exhibited the characteristic morphology of pyroptosis, such as blowing large bubbles from the cell membrane, accompanied by downregulation of pyruvate kinase isoform M2 (PKM2), activation of caspase-8/3, and production of GSDME-NT. Meanwhile, it was accompanied by an increased release of LDH and inflammatory factors (IL-18 and IL-1β). Both knockdown of GSDME and application of caspase-8/3 specific inhibitors (z-ITED-FMK/Ac-DEVD-CHO) significantly inhibited DHA-induced pyroptosis. However, the former did not affect the activation of caspase-3. In contrast, overexpression of PKM2 inhibited caspase-8/3 activation as well as GSDME-N production. Furthermore, both si-GSDME and OE-PKM2 inhibited DHA-induced pyroptosis in vivo and in vitro. Therefore, the results suggest that DHA can induce pyroptosis of ESCC cells via the PKM2-caspase-8/3-GSDME pathway. Implication: In this study, we identified new mechanism of DHA in inhibiting ESCC development and progression, and provide a potential therapeutic agent for the treatment of ESCC.
Collapse
Affiliation(s)
- Mingxia Jiang
- Department of Gastroenterology Oncology, Harbin Medical University Cancer Hospital, 150 Haping St, Nangang District, Harbin, Heilongjiang, 150081, PR China
| | - Yiming Wu
- Department of Gastroenterology Oncology, Harbin Medical University Cancer Hospital, 150 Haping St, Nangang District, Harbin, Heilongjiang, 150081, PR China
| | - Ling Qi
- Department of Gastroenterology Oncology, Harbin Medical University Cancer Hospital, 150 Haping St, Nangang District, Harbin, Heilongjiang, 150081, PR China
| | - Lisha Li
- Department of Gastroenterology Oncology, Harbin Medical University Cancer Hospital, 150 Haping St, Nangang District, Harbin, Heilongjiang, 150081, PR China
| | - Dongfeng Song
- Department of Gastroenterology Oncology, Harbin Medical University Cancer Hospital, 150 Haping St, Nangang District, Harbin, Heilongjiang, 150081, PR China
| | - Junqing Gan
- Department of Gastroenterology Oncology, Harbin Medical University Cancer Hospital, 150 Haping St, Nangang District, Harbin, Heilongjiang, 150081, PR China
| | - Yanjing Li
- Department of Gastroenterology Oncology, Harbin Medical University Cancer Hospital, 150 Haping St, Nangang District, Harbin, Heilongjiang, 150081, PR China.
| | - Xiaodong Ling
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150081, China.
| | - Chengxin Song
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
24
|
Yu R, Jin G, Fujimoto M. Dihydroartemisinin: A Potential Drug for the Treatment of Malignancies and Inflammatory Diseases. Front Oncol 2021; 11:722331. [PMID: 34692496 PMCID: PMC8529146 DOI: 10.3389/fonc.2021.722331] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Dihydroartemisinin (DHA) has been globally recognized for its efficacy and safety in the clinical treatment of malaria for decades. Recently, it has been found that DHA inhibits malignant tumor growth and regulates immune system function in addition to anti-malaria. In parasites and tumors, DHA causes severe oxidative stress by inducing excessive reactive oxygen species production. DHA also kills tumor cells by inducing programmed cell death, blocking cell cycle and enhancing anti-tumor immunity. In addition, DHA inhibits inflammation by reducing the inflammatory cells infiltration and suppressing the production of pro-inflammatory cytokines. Further, genomics, proteomics, metabolomics and network pharmacology of DHA therapy provide the basis for elucidating the pharmacological effects of DHA. This review provides a summary of the recent research progress of DHA in anti-tumor, inhibition of inflammatory diseases and the relevant pharmacological mechanisms. With further research of DHA, it is likely that DHA will become an alternative therapy in the clinical treatment of malignant tumors and inflammatory diseases.
Collapse
Affiliation(s)
- Ran Yu
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Guihua Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Manabu Fujimoto
- Department of Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Laboratory of Cutaneous Immunology, Osaka University Immunology Frontier Research Center, Osaka, Japan
| |
Collapse
|
25
|
Yang L, Zheng S, Liu Q, Liu T, Zhang Q, Han X, Tuerxun A, Lu X. Plasma‑derived exosomal pyruvate kinase isoenzyme type M2 accelerates the proliferation and motility of oesophageal squamous cell carcinoma cells. Oncol Rep 2021; 46:216. [PMID: 34396437 PMCID: PMC8377463 DOI: 10.3892/or.2021.8167] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/17/2021] [Indexed: 01/15/2023] Open
Abstract
Exosomal pyruvate kinase isoenzyme type M2 (PKM2) has been found to play a key role in the progression of human hepatocarcinoma. However, exosomal PKM2 (especially plasma‑derived exosomal PKM2), in patients with oesophageal squamous cell carcinoma (ESCC) has not been well defined. In the present study, plasma‑derived exosomes were isolated from healthy controls and patients with ESCC, and identified by transmission electronic microscopy, western blotting, nano‑flow cytometry, nanoparticle tracking and phagocytosis analysis; exosomal PKM2 was detected by western blotting and ELISA. In addition, changes in cellular proliferation and motility in recipient cells (Eca109) were assessed using Cell Counting Kit‑8, colony formation, wound‑healing and Transwell assays. The PKM2 content was higher in exosomes from patients with ESCC than in those from healthy donors. Furthermore, exosomes from patients with ESCC enhanced the proliferation and motility of ESCC cells in vitro. Notably, PKM2 was found to be transferred by exosomes, and was able to act by activating STAT3. To verify the association between PKM2 and STAT3, immunohistochemistry was employed to analyse the protein levels of PKM2 and pSTAT3Tyr705. These data revealed that PKM2 and pSTAT3Tyr705 were upregulated and associated with overall survival in patients with ESCC. Therefore, the present study highlights that exosomes from patients with ESCC enhance the migration and invasiveness of ESCC cells by transferring PKM2.
Collapse
Affiliation(s)
- Lifei Yang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
- First Department of Lung Cancer Chemotherapy, Cancer Hospital Affiliated with Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 83000, P.R. China
| | - Shutao Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| | - Tao Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 83000, P.R. China
| | - Qiqi Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| | - Xiujuan Han
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| | - Aerziguli Tuerxun
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| | - Xiaomei Lu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
- XinJiang Branch of Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Urumqi, Xinjiang Uygur Autonomous Region 83000, P.R. China
| |
Collapse
|
26
|
Jiang M, Zhong G, Zhu Y, Wang L, He Y, Sun Q, Wu X, You X, Gao S, Tang D, Wang D. Retardant effect of dihydroartemisinin on ulcerative colitis in a JAK2/STAT3-dependent manner. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1113-1123. [PMID: 34259316 DOI: 10.1093/abbs/gmab097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
Dihydroartemisinin (DHA) is a semi-synthetic derivative and the main active metabolite of artemisinin. The purpose of this study was to investigate the effect of DHA on the ulcerative colitis (UC) in both in vivo and in vitro models. Weight, survival rate, colon length, and Disease Activity Index score were used to evaluate the severity of colitis. Reverse transcription quantitative polymerase chain reaction and enzyme-linked immunosorbent assay were used to detect the expressions of cytokines interleukin (IL)-1, IL-1β, IL-4, IL-6, IL-10, IL-12, and tumor necrosis factor-α (TNF-α). The expressions of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3), and the phosphorylation of JAK2 (p-JAK2) and STAT3 (p-STAT3), were measured by western blot analysis. Western blot analysis and immunohistochemistry were used to detect the expressions of tight junction proteins. We found that the weights and colon lengths of mice in dextran sodium sulfate (DSS)+DHA group were significantly lower and longer than those in the DSS group, respectively. Compared with those in the DSS group, the expressions of IL-1β, IL-6, IL-17, and TNF-α in the DSS+DHA and DSS+5-aminosalicylic acid (5-ASA) groups were decreased, while the expressions of IL-4 and IL-10 were significantly upregulated. DHA largely increased the expressions of zonula occludens-1 and occludin. Western blot analysis and/or immunohistochemical staining analysis showed that the expressions of JAK2, STAT3, p-JAK2, and p-STAT3 in DSS+DHA and DSS+5-ASA groups were significantly lower than those in DSS group. DHA has a specific therapeutic effect on UC. The anti-inflammatory mechanism of DHA is related to the blockage of the JAK2/STAT3 signaling pathway. These findings provide evidence that DHA may be a useful drug and is expected to become a promising new treatment for human UC.
Collapse
Affiliation(s)
- Mingrui Jiang
- Department of General Surgery, General Surgery Institute of Yangzhou, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
- Medical College of Yangzhou University, Yangzhou 225001, China
| | | | - Yichao Zhu
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
- Yangzhou Clinical Medical School, Nanjing Medical University, Northern Jiangsu People's Hospital, Yangzhou 225001, China
| | - Liuhua Wang
- Department of General Surgery, General Surgery Institute of Yangzhou, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yuzhe He
- Medical College of Yangzhou University, Yangzhou 225001, China
| | - Qiannan Sun
- Department of General Surgery, General Surgery Institute of Yangzhou, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Xiaoqing Wu
- Medical College of Yangzhou University, Yangzhou 225001, China
| | - Xiaolan You
- Department of Gastrointestinal Surgery, Taizhou People's Hospital, Taizhou 225300, China
| | - Sujun Gao
- Department of General Surgery, General Surgery Institute of Yangzhou, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Dong Tang
- Department of General Surgery, General Surgery Institute of Yangzhou, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Daorong Wang
- Department of General Surgery, General Surgery Institute of Yangzhou, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
- Yangzhou Clinical Medical School, Nanjing Medical University, Northern Jiangsu People's Hospital, Yangzhou 225001, China
| |
Collapse
|
27
|
Jiang M, Qi L, Jin K, Li L, Wu Y, Song D, Gan J, Huang M, Li Y, Song C. eEF2K as a novel metastatic and prognostic biomarker in gastric cancer patients. Pathol Res Pract 2021; 225:153568. [PMID: 34352439 DOI: 10.1016/j.prp.2021.153568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Although eukaryotic elongation factor 2 kinase (eEF2K) has been reported to be a potential oncogenic factor in many human cancers, its usefulness as a clinical prognostic biomarker for gastric cancer has not been investigated. METHODS In this study, data about 540 patients with stomach adenocarcinoma (STAD) were analyzed from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases to determine the expression of eEF2K. Immunohistochemistry (IHC), western blots, and real-time polymerase chain reaction (RT-PCR) were also performed to determine the clinical significance of eEF2K expression in 96 postoperative patients with gastric cancer. Among the 96 patients, 36 had low expression of eEF2K and 60 had high expression. RESULTS Analysis of the TCGA and GEO datasets revealed that eEF2K expression was significantly higher in the STAD tissue samples than in the non-tumorous gastric tissues. IHC, western blots, and RT-PCR confirmed these findings. The high expression level of eEF2K was found to be related to the presence of lymph node metastasis (p = 0.002). Moreover, multivariate analysis showed that eEF2K was an independent indicator of prognosis for overall survival (OS) (hazard ratio [HR] = 1.72, 95% confidence interval [CI] = 1.06-2.79; p = 0.03) and disease-free survival (DFS) (HR = 1.66, 95% CI = 0.997-2.765; p = 0.052) in patients with surgically resected STAD. CONCLUSION Collectively, our findings suggest that eEF2K is a clinical indicator of metastatic and prognostic significance for STAD survival and could serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Mingxia Jiang
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, 150 Haping St, Nangang District, Harbin, Heilongjiang 150081, PR China.
| | - Ling Qi
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, 150 Haping St, Nangang District, Harbin, Heilongjiang 150081, PR China.
| | - Kexin Jin
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, 150 Haping St, Nangang District, Harbin, Heilongjiang 150081, PR China.
| | - Lisha Li
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, 150 Haping St, Nangang District, Harbin, Heilongjiang 150081, PR China.
| | - Yiming Wu
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, 150 Haping St, Nangang District, Harbin, Heilongjiang 150081, PR China.
| | - Dongfeng Song
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, 150 Haping St, Nangang District, Harbin, Heilongjiang 150081, PR China.
| | - Junqing Gan
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, 150 Haping St, Nangang District, Harbin, Heilongjiang 150081, PR China.
| | - Mei Huang
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, 150 Haping St, Nangang District, Harbin, Heilongjiang 150081, PR China.
| | - Yanjing Li
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, 150 Haping St, Nangang District, Harbin, Heilongjiang 150081, PR China.
| | - Chengxin Song
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China.
| |
Collapse
|
28
|
Zhang Q, Zheng S, Liu Q, Liu T, Tuerxun A, Yang L, Han X, Lu X. Prognostic significance of pyruvate kinase M2 expression in esophageal squamous cell carcinoma and its meta-analysis. Transl Cancer Res 2021; 10:2643-2652. [PMID: 35116577 PMCID: PMC8798200 DOI: 10.21037/tcr-21-442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/14/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Pyruvate kinase 2 (PKM2) is a key enzyme in the glycolysis pathway and has been reported to be associated with the development of esophageal squamous cell carcinoma (ESCC). However, the prognostic value of PKM2 in ESCC remains undetermined. METHODS This study aimed to investigate the clinicopathological significance of PKM2 expression in ESCC. A comprehensive and systematic literature search was conducted using the PubMed, Embase, Medline, and Cochrane library databases. The quality of studies and potential for bias were appraised, and meta-analysis was performed to assess the prognostic impact of PKM2 on overall survival (OS). RESULTS A total of 5 studies with 781 participants were eligible and enrolled. Patients with high PKM2 expression were associated with poor prognosis in ESCC [hazard ratio (HR) =1.72, 95% confidence interval (CI): 1.41-2.09; P<0.01]. Furthermore, upregulated PKM2 was significantly associated with lymph node metastasis [odds ratio (OR) =2.38, 95% CI: 1.68-3.35; P<0.01], clinical stage (OR =3.29, 95% CI: 2.27-4.77; P<0.01), and tumor (T) classification (OR =2.92, 95% CI: 2.05-4.16, P<0.01). DISCUSSION High PKM2 expression denotes worse OS in ESCC patients, and correlates with the lymph node metastasis, clinical stage, and T classification. However, further studies are warranted to assess how PKM2 can be implemented as a reliable staging element in clinical practice and whether it could provide a new target for therapeutic intervention.
Collapse
Affiliation(s)
- Qiqi Zhang
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| | - Shutao Zheng
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| | - Qing Liu
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| | - Tao Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Aerziguli Tuerxun
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| | - Lifei Yang
- Cancer Hospital Affiliated of Xinjiang Medical University, Urumqi, China
| | - Xiujuan Han
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| | - Xiaomei Lu
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| |
Collapse
|
29
|
Dai X, Zhang X, Chen W, Chen Y, Zhang Q, Mo S, Lu J. Dihydroartemisinin: A Potential Natural Anticancer Drug. Int J Biol Sci 2021; 17:603-622. [PMID: 33613116 PMCID: PMC7893584 DOI: 10.7150/ijbs.50364] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Dihydroartemisinin (DHA) is an active metabolite of artemisinin and its derivatives (ARTs), and it is an effective clinical drug widely used to treat malaria. Recently, the anticancer activity of DHA has attracted increasing attention. Nevertheless, there is no systematic summary on the anticancer effects of DHA. Notably, studies have shown that DHA exerts anticancer effects through various molecular mechanisms, such as inhibiting proliferation, inducing apoptosis, inhibiting tumor metastasis and angiogenesis, promoting immune function, inducing autophagy and endoplasmic reticulum (ER) stress. In this review, we comprehensively summarized the latest progress regarding the anticancer activities of DHA in cancer. Importantly, the underlying anticancer molecular mechanisms and pharmacological effects of DHA in vitro and in vivo are the focus of our attention. Interestingly, new methods to improve the solubility and bioavailability of DHA are discussed, which greatly enhance its anticancer efficacy. Remarkably, DHA has synergistic anti-tumor effects with a variety of clinical drugs, and preclinical and clinical studies provide stronger evidence of its anticancer potential. Moreover, this article also gives suggestions for further research on the anticancer effects of DHA. Thus, we hope to provide a strong theoretical support for DHA as an anticancer drug.
Collapse
Affiliation(s)
- Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Xiaoyan Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.,Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Wei Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.,Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Yihuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Qiushuang Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Saijun Mo
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.,Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.,Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| |
Collapse
|
30
|
Zhu L, Chen X, Zhu Y, Qin J, Niu T, Ding Y, Xiao Y, Jiang Y, Liu K, Lu J, Yang W, Qiao Y, Jin G, Ma J, Dong Z, Zhao J. Dihydroartemisinin Inhibits the Proliferation of Esophageal Squamous Cell Carcinoma Partially by Targeting AKT1 and p70S6K. Front Pharmacol 2020; 11:587470. [PMID: 33658929 PMCID: PMC7919191 DOI: 10.3389/fphar.2020.587470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
Dihydroartemisinin (DHA), a sesquiterpene lactone with endoperoxide bridge, is one of the derivatives of artemisinin. In addition to having good antimalarial properties, DHA exhibits anticancer effects including against malignant solid tumors. However, the mechanism by which DHA inhibits the progression of esophageal cancer, especially esophageal squamous cell carcinoma (ESCC), is unclear. In this study, DHA was found to inhibit the proliferation of ESCC, and the underlying molecular mechanisms were explored. DHA inhibited ESCC cells proliferation and anchorage-independent growth. Flow cytometry analysis revealed that DHA significantly blocked cell cycle in the G1 phase. The results of human phospho-kinase array revealed that DHA downregulated the levels of p70S6KT389 and p70S6KT421/S424. Furthermore, the levels of mTORS2448, p70S6KT389, p70S6KT421/S424 and RPS6S235/S236 were decreased after DHA treatment in KYSE30 and KYSE150 cells. We then explored the proteins targeted by DHA to inhibit the mTOR-p70S6K-RPS6 pathway. Results of the in vitro kinase assay revealed that DHA significantly inhibited phosphorylation of mTORS2448 by binding to AKT1 and p70S6K kinases. In vivo, DHA inhibited the tumor growth of ESCC patient-derived xenografts and weakened p-mTOR, p-p70S6K, and p-RPS6 expression in tumor tissues. Altogether, our results indicate that DHA has antiproliferative effects in ESCC cells and can downregulate mTOR cascade pathway partially by binding to AKT1 and p70S6K. Thus, DHA has considerable potential for the prevention or treatment of ESCC.
Collapse
Affiliation(s)
- Lili Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Yanyan Zhu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jiace Qin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Tingting Niu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Yongwei Ding
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Yang Xiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Yanan Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Wanjing Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Ge Jin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Junfen Ma
- Department of Clinical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Ziming Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
31
|
Xu C, Zhang H, Mu L, Yang X. Artemisinins as Anticancer Drugs: Novel Therapeutic Approaches, Molecular Mechanisms, and Clinical Trials. Front Pharmacol 2020; 11:529881. [PMID: 33117153 PMCID: PMC7573816 DOI: 10.3389/fphar.2020.529881] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Artemisinin and its derivatives have shown broad-spectrum antitumor activities in vitro and in vivo. Furthermore, outcomes from a limited number of clinical trials provide encouraging evidence for their excellent antitumor activities. However, some problems such as poor solubility, toxicity and controversial mechanisms of action hamper their use as effective antitumor agents in the clinic. In order to accelerate the use of ARTs in the clinic, researchers have recently developed novel therapeutic approaches including developing novel derivatives, manufacturing novel nano-formulations, and combining ARTs with other drugs for cancer therapy. The related mechanisms of action were explored. This review describes ARTs used to induce non-apoptotic cell death containing oncosis, autophagy, and ferroptosis. Moreover, it highlights the ARTs-caused effects on cancer metabolism, immunosuppression and cancer stem cells and discusses clinical trials of ARTs used to treat cancer. The review provides additional insight into the molecular mechanism of action of ARTs and their considerable clinical potential.
Collapse
Affiliation(s)
- Cangcang Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Huihui Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Lingli Mu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
32
|
Gan J, Li S, Meng Y, Liao Y, Jiang M, Qi L, Li Y, Bai Y. The influence of photodynamic therapy on the Warburg effect in esophageal cancer cells. Lasers Med Sci 2020; 35:1741-1750. [PMID: 32034563 DOI: 10.1007/s10103-020-02966-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
To investigate whether the Warburg effect is a key modulator on the resistance mechanism of photodynamic therapy (PDT). Glycolysis was examined by the test of lactate product and glucose uptake at different post-PDT time points. Cell viability was detected by the CCK-8 assay and cell proliferation was detected by colony formation assay. The expression of glycolysis and related proteins were examined by western blotting. Target gene was silenced by RNAi. In the present study, we assessed the effect of PDT on cancer cell glycolysis. Our team has demonstrated that pyruvate kinase M2 (PKM2), a key speed-limiting enzyme of glycolysis, was significantly overexpressed in patients with esophageal cancer. Our results in the present study showed that PKM2 was downregulated, and lactate product and glucose uptake were inhibited in cells exposed to 5-aminolevulinic acid (5-ALA)-mediated PDT at 4 h after treatment. However, at 24 h after PDT, we observed a substantial increase in PKM2 expression, lactate product, and glucose uptake. Moreover, silencing of PKM2 gene abrogated the upregulatory effect of PDT on glycolysis at late post-PDT period. 2-Deoxy-D-glucose (2-DG) is a recognized chemical inhibitor of glycolysis. The combined treatment of 2-DG and PDT significantly inhibited tumor growth in vitro at 24 h. These results demonstrate that PDT drives the Warburg effect in a time-dependent manner, and PKM2 plays an important role in this progress, which indicated that PKM2 may be a potential molecular target to increase the sensitivity of esophageal cancer cells to PDT.
Collapse
Affiliation(s)
- Junqing Gan
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Shumin Li
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Yu Meng
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Yuanyu Liao
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Mingxia Jiang
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Ling Qi
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Yanjing Li
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China.
| | - Yuxian Bai
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
33
|
Malami I, Bunza AM, Alhassan AM, Muhammad A, Abubakar IB, Yunusa A, Waziri PM, Etti IC. Dihydroartemisinin as a potential drug candidate for cancer therapy: a structural-based virtual screening for multitarget profiling. J Biomol Struct Dyn 2020; 40:1347-1362. [PMID: 32964804 DOI: 10.1080/07391102.2020.1824811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cancer is a rapidly growing non-communicable disease worldwide that is responsible for high mortality rates, which account for 9.6 million death in 2018. Dihydroartemisinin (DHA) is an active metabolite of artemisinin, an active principle present in the Chinese medicinal plant Artemisia annua used for malaria treatment. Dihydroartemisinin possesses remarkable and selective anticancer properties however the underlying mechanism of the antitumor effects of DHA from the structural point of view is still not yet elucidated. In the present study, we employed molecular docking simulation techniques using Autodock suits to access the binding properties of dihydroartemisinin to multiple protein targets implicated in cancer pathogenesis. Its potential targets with comprehensive pharmacophore were predicted using a PharmMapper database. The co-crystallised structures of the protein were obtained from a Protein Data Bank and prepared for molecular docking simulation. Out of the 24 selected protein targets, DHA has shown about 29% excellent binding to the targets compared to their co-crystallised ligand. Additionally, 75% of the targets identified for dihydroartemisinin binding are protein kinases, and 25% are non-protein kinases. Hydroxyl functional group of dihydroartemisinin contributed to 58.5% of the total hydrogen interactions, while pyran (12.2%), endoperoxide (9.8%), and oxepane (19.5%) contributed to the remaining hydrogen bonding. The present findings have elucidated the possible antitumor properties of dihydroartemisinin through the structural-based virtual studies, which provides a lead to a safe and effective anticancer agent useful for cancer therapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ibrahim Malami
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria.,Centre for Advanced Medical Research and Training (CAMRET), Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Aisha Muktar Bunza
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Alhassan Muhammad Alhassan
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | | | - Abdulmajeed Yunusa
- Department of Pharmacology and Therapeutics, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Peter M Waziri
- Department of Biochemistry, Kaduna State University, Kaduna, Nigeria
| | - Imaobong C Etti
- Department of Pharmacology and Toxicology, University of Uyo, Uyo, Nigeria
| |
Collapse
|
34
|
Chen X, He LY, Lai S, He Y. Dihydroartemisinin inhibits the migration of esophageal cancer cells by inducing autophagy. Oncol Lett 2020; 20:94. [PMID: 32831913 PMCID: PMC7439151 DOI: 10.3892/ol.2020.11955] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/23/2020] [Indexed: 12/26/2022] Open
Abstract
Esophageal cancer (EC) is a complex gastrointestinal malignancy and its global incidence rate ranks 7th among all cancer types. Due to its aggressive nature and the potential for early metastasis, the survival rates of patients with EC are poor. Dihydroartemisinin (DHA) is the primary active derivative of artemisinin, and, as well as its use as an anti-malarial, DHA has also exhibited antitumor activity in various cancer models, such as cholangiocarcinoma, head and neck carcinoma, and hepatocellular carcinoma cells. However, the molecular mechanisms underlying the antitumor effect of DHA in the treatment of EC remains poorly understood. The results of the present study demonstrated that DHA significantly inhibited the migration of TE-1 and Eca-109 EC cells in a dose-dependent manner by activating autophagy. DHA treatment also significantly reversed epithelial-mesenchymal transition (EMT) by downregulating the EMT-associated markers, N-cadherin and vimentin, and upregulating the expression of E-cadherin. Mechanistically, DHA treatment decreased Akt phosphorylation and inhibited the Akt/mTOR signaling pathway, leading to the activation of autophagy. The levels of the autophagy-associated proteins were suppressed and DHA-mediated inhibition of migration in EC cells was reversed when an active form of Akt was overexpressed. In conclusion, the present study demonstrated the potential value of DHA in the treatment of EC, and revealed the underlying mechanism by which FDHA inhibits cellular migration.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Pharmacy, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400014, P.R. China
| | - Lan-Ying He
- Department of Gastroenterology, Tumor Hospital Affiliated to Chongqing University, Chongqing 400030, P.R. China
| | - Shu Lai
- Department of Pharmacy, Jiulongpo District People's Hospital of Chongqing, Chongqing 400050, P.R. China
| | - Yao He
- Department of Pharmacy, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400014, P.R. China
| |
Collapse
|
35
|
Gao P, Shen S, Li X, Liu D, Meng Y, Liu Y, Zhu Y, Zhang J, Luo P, Gu L. Dihydroartemisinin Inhibits the Proliferation of Leukemia Cells K562 by Suppressing PKM2 and GLUT1 Mediated Aerobic Glycolysis. Drug Des Devel Ther 2020; 14:2091-2100. [PMID: 32546972 PMCID: PMC7261662 DOI: 10.2147/dddt.s248872] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Leukemia threatens so many lives around the world. Dihydroartemisinin (DHA), as a typical derivative of artemisinin (ART), can efficiently inhibit leukemia, but the controversial mechanisms are still controversial. Many reports showed that tumor cells acquire energy through the glycolysis pathway, pyruvate kinase M2 (PKM2) plays a crucial role in regulating glycolysis. However, it is unclear whether PKM2 or other key molecules are involved in DHA induced cytotoxicity in leukemia cells. Thus, this paper systematically investigated the anticancer effect and mechanism of DHA on human chronic myeloid leukemia K562 cells. METHODS In vitro, cytotoxicity was detected with CCK-8. Glucose uptake, lactate production and pyruvate kinase activity were investigated to evaluate the effect of DHA on K562 cells. To elucidate the cellular metabolism alterations induced by DHA, the extracellular acidification rate was assessed using Seahorse XF96 extracellular flux analyzer. Immunofluorescence, real-time PCR, and Western blotting were used to investigate the molecular mechanism. RESULTS We found that DHA prevented cell proliferation in K562 cells through inhibiting aerobic glycolysis. Lactate product and glucose uptake were inhibited after DHA treatment. Results showed that DHA modulates glucose uptake through downregulating glucose transporter 1 (GLUT1) in both gene and protein levels. The cytotoxicity of DHA on K562 cells was significantly reversed by PKM2 agonist DASA-58. Pyruvate kinase activity was significantly reduced after DHA treatment, decreased expression of PKM2 was confirmed in situ. CONCLUSION The present study implicated that DHA inhibits leukemia cell proliferation by regulating glycolysis and metabolism, which mediated by downregulating PKM2 and GLUT1 expression. Our finding might enrich the artemisinins' antitumor mechanisms.
Collapse
Affiliation(s)
- Peng Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Shuo Shen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Xiaodong Li
- Institute of Chinese Materia Medica, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou730050, People’s Republic of China
| | - Dandan Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Yuqing Meng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Yanqing Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Yongping Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Junzhe Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Piao Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Liwei Gu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| |
Collapse
|
36
|
Ginsenoside Rh4 suppresses aerobic glycolysis and the expression of PD-L1 via targeting AKT in esophageal cancer. Biochem Pharmacol 2020; 178:114038. [PMID: 32422139 DOI: 10.1016/j.bcp.2020.114038] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022]
Abstract
Ginsenoside Rh4, as a bioactive component obtained from Panax notoginseng, has excellent pharmacological efficacy especially antitumor effects. However, its anticancer effects and target mechanisms in regulating human esophageal cancer are still poorly understood. Here, the results suggested that Rh4 exhibited potent anti-esophageal cancer effects in vivo and in vitro. Flow cytometric analysis and Western Blot showed that Rh4 significantly inhibited the growth by inducing G1 phase arrest. In parallel, Rh4 inhibited aerobic glycolysis in esophageal cancer cells by hindering lactate production, glucose uptake and ATP production; reducing the extracellular acidification rate (ECAR) and oxygen consumption rate (OCR); suppressing aerobic glycolysis-related protein expression. Mechanistic studies demonstrated that AKT is a possible target of Rh4, which suppresses aerobic glycolysis. Rh4 administration resulted in AKT deregulation, whereas treatment with insulin abolished the inhibitory effect of Rh4 on aerobic glycolysis. In contrast, treatment with AKT inhibitors or siRNA that silenced AKT enhanced the inhibitory effect of Rh4 on aerobic glycolysis. Moreover, molecular docking results indicated that Rh4 was able to bind to the interdomain region of AKT. Interestingly, the results revealed that Rh4 also inhibited the expression of PD-L1 via the AKT/mTOR pathway. Taken together, our findings provide important insights into the anti-esophageal cancer effects of Rh4 via suppressing aerobic glycolysis and PD-L1 expression, which indicated Rh4 could be as promising drug for clinical treatment.
Collapse
|
37
|
Ma Q, Liao H, Xu L, Li Q, Zou J, Sun R, Xiao D, Liu C, Pu W, Cheng J, Zhou X, Huang G, Yao L, Zhong X, Guo X. Autophagy-dependent cell cycle arrest in esophageal cancer cells exposed to dihydroartemisinin. Chin Med 2020; 15:37. [PMID: 32351616 PMCID: PMC7183693 DOI: 10.1186/s13020-020-00318-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
Background Dihydroartemisinin (DHA), a derivate of artemisinin, is an effective antimalarial agent. DHA has been shown to exert anticancer activities to numerous cancer cells in the past few years, while the exact molecular mechanisms remain to be elucidated, especially in esophageal cancer. Methods Crystal violet assay was conducted to determine the cell viability of human esophageal cancer cell line Eca109 treated with DHA. Tumor-bearing nude mice were employed to evaluate the anticancer effect of DHA in vivo. Soft agar and crystal violet assays were used to measure the tumorigenicity of Eca109 cells. Flow cytometry was performed to evaluate ROS or cell cycle distribution. GFP-LC3 plasmids were delivered into Eca109 cells to visualize autophagy induced by DHA under a fluorescence microscope. The mRNA and protein levels of each gene were tested by qRT-PCR and western blot, respectively. Results Our results proved that DHA significantly reduced the viability of Eca109 cells in a dose- and time-dependent manner. Further investigation showed that DHA evidently induced cell cycle arrest at the G2/M phase in Eca109 cells. Mechanistically, DHA induced intracellular ROS generation and autophagy in Eca109 cells, while blocking ROS by an antioxidant NAC obviously inhibited autophagy. Furthermore, we found that telomere shelterin component TRF2 was down-regulated in Eca109 cells exposed to DHA through autophagy-dependent degradation, which could be rescued after autophagy was blocked by ROS inhibition. Moreover, the DNA damage response (DDR) was induced obviously in DHA treated cells. To further explore whether ROS or autophagy played a vital role in DHA induced cell cycle arrest, the cell cycle distribution of Eca109 cells was evaluated after ROS or autophagy blocking, and the results showed that autophagy, but not ROS, was essential for cell cycle arrest in DHA treated cells. Conclusion Taken together, DHA showed anticancer effect on esophageal cancer cells through autophagy-dependent cell cycle arrest at the G2/M phase, which unveiled a novel mechanism of DHA as a chemotherapeutic agent, and the degradation of TRF2 followed by DDR might be responsible for this cell phenotype.
Collapse
Affiliation(s)
- Qiang Ma
- 1Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,2Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,3Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 People's Republic of China
| | - Hebin Liao
- 2Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000 People's Republic of China
| | - Lei Xu
- 2Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000 People's Republic of China
| | - Qingrong Li
- 1Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,2Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,3Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 People's Republic of China
| | - Jiang Zou
- 1Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,2Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,3Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 People's Republic of China
| | - Ru Sun
- 3Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,4Department of Blood Transfusion, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 People's Republic of China
| | - Dan Xiao
- 1Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,2Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,3Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 People's Republic of China
| | - Chang Liu
- 1Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,2Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,3Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 People's Republic of China
| | - Wenjie Pu
- 1Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,2Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,3Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 People's Republic of China
| | - Jibing Cheng
- 1Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,2Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,3Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 People's Republic of China
| | - Xi Zhou
- 1Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,2Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,3Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 People's Republic of China
| | - Guangcheng Huang
- 1Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,2Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,3Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 People's Republic of China
| | - Lihua Yao
- 1Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,2Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,3Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 People's Republic of China
| | - Xiaowu Zhong
- 1Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,2Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,3Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 People's Republic of China
| | - Xiaolan Guo
- 1Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,2Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000 People's Republic of China.,3Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 People's Republic of China
| |
Collapse
|