1
|
Wang J, Zhang CS, Zhang AL, Changli Xue C, Lu C. Chinese herbal medicine bath therapy for psoriasis vulgaris using topical calcipotriol as the comparator: A systematic review with meta-analysis and association rule analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118166. [PMID: 38621466 DOI: 10.1016/j.jep.2024.118166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/09/2024] [Accepted: 04/06/2024] [Indexed: 04/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoriasis is a chronic inflammatory skin disease. Vitamin D analogues are the first-line topical agents for the long-term management of psoriasis. Chinese herbal medicine (CHM) bath therapy is commonly employed for psoriasis. However, the effects and safety of CHM bath therapy for psoriasis vulgaris, using topical calcipotriol as the comparator, remain inconclusive. Furthermore, the combination of herbs, a distinctive feature of CHM, is essential for its therapeutic effects due to the individual and synergistic properties of the herbs involved. AIM OF THE STUDY The review was conducted to evaluate the effectiveness and safety of CHM bath therapy for psoriasis vulgaris, using calcipotriol as the comparator. Potential herbs and herb combinations of CHM bath therapy were also explored for further drug discovery. MATERIALS AND METHODS Nine databases were searched from inception until March 05, 2024. Randomised controlled trials (RCTs) investigating CHM bath therapy, using calcipotriol as the comparator, were included. Statistical analyses were performed using RevMan 5.4, Stata 12.0 and SPSS Clementine 12.0 software. The evidence certainty for outcomes was assessed using the approach proposed by the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group. Moreover, association rule analysis on herbs identified in the systematic review was conducted to explore the potential herbs and herb combinations. RESULTS A total of 17 RCTs involving 1,379 participants were included in this systematic review. The findings of this review revealed that: 1) CHM bath therapy produced comparable effects to calcipotriol in reducing Psoriasis Area and Severity Index (PASI), Psoriasis Scalp Severity Index (PSSI), and itch visual analogue scale (VAS) at the end of the treatment phase; as well as exhibited a superior long-term effect than calcipotriol through decreasing relapse rates at the end of the follow-up phase; 2) CHM bath therapy showed an additional benefit when combined with calcipotriol in managing psoriasis vulgaris at the end of the treatment phase, in terms of PASI, PSSI, itch VAS, IL-17, IL-23, CD3+ and CD4+ T cells. The certainty of the evidence was rated as 'very low', 'low' or 'moderate' based on the GRADE assessment, considering some concerns or high risk of bias of included studies, substantial heterogeneity, and existing publication bias of some outcomes. Additionally, the proportions of participants reporting adverse events were similar in both groups. Association rule analysis of all included herbs identified 23 herb combinations including Prunus persica (L.) Batsch and Carthamus tinctorius L., as well as 11 frequently used herbs, such as Kochia scoparia (L.) Schrad., Dictamnus dasycarpus Turcz. And Sophora flavescens Ait. CONCLUSIONS The effects of CHM bath therapy were comparable with those of topical calcipotriol but demonstrated a longer-lasting effect. Combining CHM bath therapy with calcipotriol also provided an additional benefit for adult psoriasis vulgaris. However, the certainty of the evidence was downgraded due to the methodological limitations of included studies. To confirm the findings of this review, future investigations should involve double-blinded, placebo-controlled RCTs. Importantly, it appears worthwhile to consider further research for drug development utilising the identified herbs or herb combinations.
Collapse
Affiliation(s)
- Junyue Wang
- The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.
| | - Claire Shuiqing Zhang
- The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.
| | - Anthony Lin Zhang
- The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.
| | - Charlie Changli Xue
- The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.
| | - Chuanjian Lu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
2
|
Burlec AF, Hăncianu M, Ivănescu B, Macovei I, Corciovă A. Exploring the Therapeutic Potential of Natural Compounds in Psoriasis and Their Inclusion in Nanotechnological Systems. Antioxidants (Basel) 2024; 13:912. [PMID: 39199158 PMCID: PMC11352172 DOI: 10.3390/antiox13080912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Psoriasis is a chronic inflammatory disease that affects around 2-3% of the world's population. The treatment for this autoimmune disease still remains centered around conventional methods using synthetic substances, even though more recent advancements focus on biological therapies. Given the numerous side effects of such treatments, current research involves plant extracts and constituents that could prove useful in treating psoriasis. The aim of this narrative review is to highlight the most known representatives belonging to classes of natural compounds such as polyphenols (e.g., astilbin, curcumin, hesperidin, luteolin, proanthocyanidins, and resveratrol), alkaloids (e.g., berberine, capsaicin, and colchicine), coumarins (psoralen and 8-methoxypsoralen), and terpenoids (e.g., celastrol, centelloids, and ursolic acid), along with plants used in traditional medicine that could present therapeutic potential in psoriasis. The paper also provides an overview of these compounds' mechanisms of action and current inclusion in clinical studies, as well as an investigation into their potential incorporation in various nanotechnological systems, such as lipid-based nanocarriers or polymeric nanomaterials, that may optimize their efficacy during treatment.
Collapse
Affiliation(s)
- Ana Flavia Burlec
- Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.F.B.); (A.C.)
| | - Monica Hăncianu
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| | - Bianca Ivănescu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Irina Macovei
- Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.F.B.); (A.C.)
| | - Andreia Corciovă
- Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.F.B.); (A.C.)
| |
Collapse
|
3
|
Yang D, Peng M, Fu F, Zhao W, Zhang B. Diosmetin ameliorates psoriasis-associated inflammation and keratinocyte hyperproliferation by modulation of PGC-1α / YAP signaling pathway. Int Immunopharmacol 2024; 134:112248. [PMID: 38749332 DOI: 10.1016/j.intimp.2024.112248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Psoriasis, characterized by aberrant epidermal keratinocyte proliferation and differentiation, is a chronic inflammatory immune-related skin disease. Diosmetin (Dios), derived from citrus fruits, exhibits anti-inflammatory and anti-proliferative properties. In this study, IL-17A-induced HaCaT cell model and Imiquimod (IMQ)-induced mouse model were utilized to investigate the effects of Dios against psoriasis. The morphology and biomarkers of psoriasis were regarded as the preliminary evaluation including PASI score, skin thickness, H&E staining, EdU staining and inflammatory factors. Transcriptomics analysis revealed PGC-1α as a key target for Dios in ameliorating psoriasis. Specifically, Dios, through PGC-1α, suppressed YAP-mediated proliferation and inflammatory responses in psoriatic keratinocytes. In conclusion, Dios shows promise in psoriasis treatment and holds potential for development as targeted medications for application in psoriasis.
Collapse
Affiliation(s)
- Dailin Yang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Mingwei Peng
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Fengping Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Wenjuan Zhao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Baoshun Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China.
| |
Collapse
|
4
|
Wang J, Zhang CS, Zhang AL, Chen H, Xue CC, Lu C. Adding Chinese herbal medicine bath therapy to conventional therapies for psoriasis vulgaris: A systematic review with meta-analysis of randomised controlled trials. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155381. [PMID: 38537444 DOI: 10.1016/j.phymed.2024.155381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/26/2023] [Accepted: 01/20/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Chinese herbal medicine (CHM) bath is commonly used in China as an adjuvant therapy for managing psoriasis vulgaris. Previous systematic reviews showed that CHM bath therapy was effective and safe for psoriasis vulgaris, however, without exploration of the specifics of CHM bath therapy such as the optimal temperature, duration of each session, and the total treatment duration. PURPOSE To evaluate the add-on effects of CHM bath therapy to conventional therapies for adult psoriasis vulgaris. METHODS We conducted a comprehensive search in nine medical databases from inception to September 2022 to identify relevant randomised controlled trials (RCTs) published in Chinese or English. The included studies compared the combination of CHM bath therapy and conventional therapies to conventional therapies alone for adult psoriasis vulgaris. Methodological quality assessment of the included RCTs was performed using the Cochrane risk-of-bias tool 2 (RoB 2). Statistical analysis was carried out using RevMan 5.4, R 4.2.3 and Stata 12.0 software. The certainty of evidence of outcome measures was evaluated using the Grading of Recommendations Assessment, Development, and Evaluation Working Group (GRADE) system. RESULTS A total of 23 RCTs involving 2,183 participants were included in this systematic review. Findings suggested that the combination of CHM bath therapy and conventional therapies was more effective in reducing Psoriasis Area and Severity Index (PASI), Dermatology Life Quality Index (DLQI) and itch visual analogue scale, compared to using conventional therapies alone. These enhanced effects were notably observed when the CHM bath was set above 38 °C and had a duration of 20 and 30 min, as assessed by DLQI. Moreover, an eight-week treatment duration resulted in better effects for PASI compared to shorter durations. Additionally, the top ten frequently used herbs in the included studies were identified. Despite the findings, the certainty of evidence was rated as 'low' or 'moderate' based on the GRADE assessment, and significant heterogeneity was detected in subgroup and sensitivity analyses. CONCLUSION The CHM bath therapy combined with conventional therapies is more effective and safer than conventional therapies alone for adult psoriasis vulgaris. The results suggest a potential correlation between treatment effects and factors such as extended treatment duration, increased bath temperature, and longer bath sessions. However, the certainty of evidence was downgraded due to methodological limitations of the included studies. To confirm the findings of this systematic review, a double-blinded, placebo-controlled RCT is needed in the future.
Collapse
Affiliation(s)
- Junyue Wang
- The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Claire Shuiqing Zhang
- The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Anthony Lin Zhang
- The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Haiming Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Charlie Changli Xue
- The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.
| | - Chuanjian Lu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
5
|
Yang X, Liu T, Yang R, Fan H, Liu X, Xuan Y, Wang Y, Chen L, Duan Y, Zhu X. Overexpression of GmPAL Genes Enhances Soybean Resistance Against Heterodera glycines. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:416-423. [PMID: 38171485 DOI: 10.1094/mpmi-09-23-0151-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Soybean cyst nematode (Heterodera glycines, soybean cyst nematode [SCN]) disease adversely affects the yield of soybean and leads to billions of dollars in losses every year. To control the disease, it is necessary to study the resistance genes of the plant and their mechanisms. Isoflavonoids are secondary metabolites of the phenylalanine pathway, and they are synthesized in soybean. They are essential in plant response to biotic and abiotic stresses. In this study, we reported that phenylalanine ammonia-lyase (PAL) genes GmPALs involved in isoflavonoid biosynthesis, can positively regulate soybean resistance to SCN. Our previous study demonstrated that the expression of GmPAL genes in the resistant cultivar Huipizhi (HPZ) heidou are strongly induced by SCN. PAL is the rate-limiting enzyme that catalyzes the first step of phenylpropanoid metabolism, and it responds to biotic or abiotic stresses. Here, we demonstrate that the resistance of soybeans against SCN is suppressed by PAL inhibitor l-α-(aminooxy)-β-phenylpropionic acid (L-AOPP) treatment. Overexpression of eight GmPAL genes caused diapause of nematodes in transgenic roots. In a petiole-feeding bioassay, we identified that two isoflavones, daidzein and genistein, could enhance resistance against SCN and suppress nematode development. This study thus reveals GmPAL-mediated resistance against SCN, information that has good application potential. The role of isoflavones in soybean resistance provides new information for the control of SCN. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Xiaowen Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
| | - Ting Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
| | - Ruowei Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
| | - Haiyan Fan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoyu Liu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
- College of Sciences, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanyuan Wang
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110866, China
| | - Lijie Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuxi Duan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaofeng Zhu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
6
|
Kong H, Han JJ, Gorbachev D, Zhang XA. Role of the Hippo pathway in autoimmune diseases. Exp Gerontol 2024; 185:112336. [PMID: 38042379 DOI: 10.1016/j.exger.2023.112336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
The immune system is an important defense against diseases, and it is essential to maintain the homeostasis of the body's internal environment. Under normal physiological conditions, the steady state of the immune system should be sustained to play normal immune response and immune function. Exploring the molecular mechanism of maintaining immune homeostasis under physiological and pathological conditions will provides understanding of the pathogenesis of autoimmune diseases, infections, metabolic disorders, and tumors, as well as new ideas and molecular targets for the prevention and treatment of these diseases. Hippo signaling pathway can not only regulate immune cells such as macrophages, T cells and dendritic cells, but also interact with immune-related signaling pathways such as NF-kB signaling pathway, TGF-β signaling pathway and Toll-like receptor signaling pathway, so as to resist the internal environment disorder caused by the invasion of exogenous pathogenic microorganisms and maintain the internal environment stability and physiological balance of the body. Hippo signaling pathway is also involved in the pathological process of immune system-related diseases such as rheumatoid arthritis, inflammatory bowel disease and psoriasis. Hippo pathway is closely related to organ development, stem cell biology, regeneration, and tumor biology. It affects cell differentiation by participating in extracellular and intracellular physiological signal reactions, sensing cell environment, and coordinating cell reactions. This pathway is crucial in maintaining immune homeostasis. This review summarizes the mechanism of Hippo pathway in different immune cells and some autoimmune diseases and the interaction between different immune signaling pathways and Hippo signaling pathway. It aims to explore the role of Hippo in autoimmune diseases and provide theoretical and practical basis for the treatment of autoimmune diseases through Hippo signaling pathway.
Collapse
Affiliation(s)
- Hui Kong
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Juan-Juan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | | | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China.
| |
Collapse
|
7
|
Paik SJ, Kim DJ, Jung SK. Preventive Effect of Pharmaceutical Phytochemicals Targeting the Src Family of Protein Tyrosine Kinases and Aryl Hydrocarbon Receptor on Environmental Stress-Induced Skin Disease. Int J Mol Sci 2023; 24:ijms24065953. [PMID: 36983027 PMCID: PMC10056297 DOI: 10.3390/ijms24065953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The skin protects our body; however, it is directly exposed to the environment and is stimulated by various external factors. Among the various environmental factors that can threaten skin health, the effects of ultraviolet (UV) and particulate matter (PM) are considered the most notable. Repetitive exposure to ultraviolet and particulate matter can cause chronic skin diseases such as skin inflammation, photoaging, and skin cancer. The abnormal activation of the Src family of protein tyrosine kinases (SFKs) and the aryl hydrocarbon receptor (AhR) in response to UV and/or PM exposure are involved in the development and aggravation of skin diseases. Phytochemicals, chemical compounds of natural plants, exert preventive effects on skin diseases through the regulation of various signaling pathways. Therefore, this review aims to highlight the efficacy of phytochemicals as potential nutraceuticals and pharmaceutical materials for the treatment of skin diseases, primarily by targeting SFK and AhR, and to explore the underlying mechanisms of action. Future studies are essential to validate the clinical potential for the prevention and treatment of skin diseases.
Collapse
Affiliation(s)
- So Jeong Paik
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong Joon Kim
- Department of Microbiology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
8
|
Jia X, He L, Yang Z. Recent advances in the role of Yes-associated protein in dermatosis. Skin Res Technol 2023; 29:e13285. [PMID: 36973973 PMCID: PMC10155855 DOI: 10.1111/srt.13285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 03/04/2023]
Abstract
BACKGROUND Dermatosis is a general term for diseases of the skin and skin appendages including scleroderma, psoriasis, bullous disease, atopic dermatitis, basal cell carcinoma, squamous cell carcinoma, and melanoma. These diseases affect millions of individuals globally and are a serious public health concern. However, the pathogenesis of skin diseases is not fully understood, and treatments are not optimal. Yes-associated protein (YAP) is a transcriptional coactivator that plays a role in the regulation of gene transcription and signal transduction. AIMS To study the role of Yes-associated protein in skin diseases. MATERIALS AND METHODS The present review summarizes recent advances in our understanding of the role of YAP in skin diseases, current treatments that target YAP, and potential avenues for novel therapies. RESULTS Abnormal YAP expression has been implicated in occurrence and development of dermatosis. YAP regulates the cell homeostasis, proliferation, differentiation, apoptosis, angiopoiesis, and epithelial-to-mesenchymal transition, among other processes. As well as, it serves as a potential target in many biological processes for treating dermatosis. CONCLUSIONS The effects of YAP on the skin are complex and require multidimensional investigational approaches. YAP functions as an oncoprotein that can promote the occurrence and development of cancer, but there is currently limited information on the therapeutic potential of YAP inhibition for cancer treatment. Additional studies are also needed to clarify the role of YAP in the development and maturation of dermal fibroblasts; skin barrier function, homeostasis, aging, and melanin production; and dermatosis.
Collapse
Affiliation(s)
- Xiaorong Jia
- Department of DermatologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Li He
- Department of DermatologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Zhi Yang
- Department of DermatologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingChina
| |
Collapse
|
9
|
Yang XY, Cai WL, Guo CL, Chen QH. Chinese Medicine as Supporting Therapy for Psoriasis: Past, Present, and Future. Chin J Integr Med 2023; 29:280-288. [PMID: 36301454 DOI: 10.1007/s11655-022-3683-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
Abstract
Psoriasis is a chronic skin disease and an important health concern. Western medicine and therapies are the main treatment strategies for psoriasis vulgaris (PV); however, the overall prognosis of patients with PV is still poor. Therefore, PV prevention is especially crucial. Chinese medicine (CM) has a long history of treating psoriasis, and it has unique wisdom in different cognitive angles and treatment modes from modern medicine. In this review, we first summarized the herbs and ancient CM formulas that have therapeutic effects on PV. Second, the research status and obstacles to the current development of CM in modern medicine were reviewed. Finally, the future of CM in the context of precision medicine and integrated medicine was discussed. After a detailed reading of the abundant literature, we believe that CM, through thousands of years of continuous development and clinical practice, has achieved high effectiveness and safety for PV treatment, despite its surrounding controversy. Moreover, precise analyses and systematic research methods have provided new approaches for the modernization of CM in the future. The treatment of PV with CM is worth popularizing, and we hope it can benefit more patients.
Collapse
Affiliation(s)
- Xue-Yuan Yang
- Department of Andrology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China.,Post-Graduate School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wan-Ling Cai
- Department of Dermatology, Shuguang Hospital, Shanghai University of Chinese Medicine, Shanghai, 201203, China
| | - Chen-Lu Guo
- Department of Andrology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Qi-Hua Chen
- Department of Andrology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China.
| |
Collapse
|
10
|
Bai D, Cheng X, Li Q, Zhang B, Zhang Y, Lu F, Sun T, Hao J. Eupatilin inhibits keratinocyte proliferation and ameliorates imiquimod-induced psoriasis-like skin lesions in mice via the p38 MAPK/NF-κB signaling pathway. Immunopharmacol Immunotoxicol 2022; 45:133-139. [PMID: 36305632 DOI: 10.1080/08923973.2022.2121928] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disease that is currently incurable and causes long-term distress to patients. Therefore, there is an urgent need to develop safe and effective psoriatic drugs. Eupatilin is a natural flavone, that has a variety of pharmacological effects. However, the anti-psoriatic effect of eupatilin and its underlying mechanism remain unclear. METHODS HaCaT cells were treated with 20 μg/mL LPS for 24 h to establish the proliferation model of HaCaT cells. Cell viability was measured by MTT assay. Western blotting was used to detect the expression of p-p38 MAPK, p38 MAPK, p-NF-κB p65 and NF-κB p65 in HaCaT cells. Imiquimod (IMQ) was used to induce psoriasis-like mouse model. Psoriasis Area Severity Index (PASI) score was used to evaluate the degree of skin injury, H&E staining was used to observe the pathological damage of skin tissues, and the expression levels of TNF-α, IL-6, IL-23 and IL-17 in the serum were detected by enzyme-linked immunosorbent assay (ELISA). RESULTS Eupatilin could inhibit the hyperproliferation of LPS-stimulated HaCaT cells through p38 MAPK/NF-κB signaling pathway in vitro. In psoriatic mice, eupatilin could significantly reduce skin erythema, scales and thickening scores, ameliorate skin histopathological lesions, and decrease the levels of TNF-α, IL-6, IL-23 and IL-17 in the serum. CONCLUSION Eupatilin had a good anti-proliferative effect in LPS-stimulated HaCaT cells, and significantly alleviated IMQ-induced psoriasis-like lesions in mice. Eupatilin was a promising drug for the treatment of psoriasis.
Collapse
Affiliation(s)
- Donghui Bai
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | | | - Qiong Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Bo Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Yan Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Fang Lu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Tianxiao Sun
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Jiejie Hao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, PR China
| |
Collapse
|
11
|
Hu S, Chen Y, Huang S, Liu M, Liu Y, Huang S. Sodium Danshensu protects against oxygen glucose deprivation/reoxygenation-induced astrocytes injury through regulating NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome and tuberous sclerosis complex-2 (TSC2)/mammalian target of rapamycin (mTOR) pathways. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1097. [PMID: 36388798 PMCID: PMC9652549 DOI: 10.21037/atm-22-2143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/31/2022] [Indexed: 09/18/2023]
Abstract
BACKGROUND Cerebral ischemic stroke is a serious condition with high incidence, mortality, and associated disability. Currently, effective therapeutic options are available for ischemic stroke are limited. Accumulating evidence indicates that sodium Danshensu, mono sodium compound derived from Salvia miltiorrhiza, plays protective roles in ischemic stroke. However, the underlying protective mechanism of sodium Danshensu in cerebral ischemic stroke remains unknown. METHODS In the current study, we explored the role and mechanism of sodium Danshensu on astrocytes exposed to oxygen-glucose deprivation/reoxygenation (OGD/R), which mimics the process of ischemia-reperfusion. The impact of sodium Danshensu on cell viability and apoptosis after OGD/R were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-dophenyl tetrazolium bromide (MTT) assay and flow cytometry. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot were used to detect the expression of target messenger RNA (mRNA) and proteins associated with apoptosis and autophagy. The release of lactate dehydrogenase (LDH) was determined, and the production of proinflammatory cytokines were detected using enzyme-linked immunosorbent assay (ELISA) kits. RESULTS It was found that sodium Danshensu could significantly increase cell viability and decrease LDH release and apoptosis. Besides, it inhibited the production of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6. Sodium Danshensu also dose-dependently decreased protein and mRNA levels of nucleotide binding oligomerization NOD-like receptor pyrin domain containing 3 (NLRP3) and high mobility group box 1 (HMGB1), which play a crucial role in promoting ischemic stroke-induced cell injury. Moreover, sodium Danshensu dose-dependently upregulated Beclin 1 expression, downregulated P62 protein expression, and further increased LC3B-II/LC3B-I ratio through inducing autophagy in astrocytes. Additionally, we noticed that sodium Danshensu dose-dependently increased tuberous sclerosis complex-2 (TSC2) protein expression, while significantly reduced the levels of mammalian target of rapamycin (mTOR) in the presence of OGD/R insult. CONCLUSIONS These findings suggest that sodium Danshensu protects against OGD/R-induced injury by modulating the NLRP3 inflammasome and TSC2/mTOR pathways.
Collapse
Affiliation(s)
- Shengzhao Hu
- Department of Emergency, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yingli Chen
- Department of Hematology, Jiangxi Provincial Children’s Hospital, Nanchang, China
| | - Shipeng Huang
- Department of Emergency, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Liu
- Department of Emergency, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ying Liu
- Department of Emergency, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shaofang Huang
- Department of Emergency, the First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Nguyen LTH. Signaling pathways and targets of natural products in psoriasis treatment. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Aim: Psoriasis is a common chronic inflammatory skin disorder, which has adverse effects on patients’ quality of life. Natural products exhibit significant therapeutic capacities with small side effects and might be preferable alternative treatments for patients with psoriasis. This study summarizes the signaling pathways with the potential targets of natural products and their efficacy for psoriasis treatment.
Methods: The literature for this article was acquired from PubMed and Web of Science, from January 2010 to December 2020. The keywords for searching included “psoriasis” and “natural product”, “herbal medicine”, “herbal therapy”, “medicinal plant”, “medicinal herb” or “pharmaceutical plant”.
Results: Herbal extracts, natural compounds, and herbal prescriptions could regulate the signaling pathways to alleviate psoriasis symptoms, such as T helper 17 (Th17) differentiation, Janus kinase (JAK)/signal transducer and activator of transcription (STAT), nuclear factor-kappa B (NF-κB), mitogen‑activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), and other signaling pathways, which are involved in the inflammatory response and keratinocyte hyperproliferation. The anti-psoriatic effect of natural products in clinical trials was summarized.
Conclusions: Natural products exerted the anti-psoriatic effect by targeting multiple signaling pathways, providing evidence for the investigation of novel drugs. Further experimental research should be performed to screen and characterize the therapeutic targets of natural products for application in psoriasis treatment.
Collapse
Affiliation(s)
- Ly Thi Huong Nguyen
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| |
Collapse
|
13
|
Role of Yes-Associated Protein in Psoriasis and Skin Tumor Pathogenesis. J Pers Med 2022; 12:jpm12060978. [PMID: 35743763 PMCID: PMC9225571 DOI: 10.3390/jpm12060978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Psoriasis and skin tumors (such as basal cell carcinoma, squamous cell carcinoma, and melanoma) are chronic diseases that endanger physical and mental health, and yet the causes are largely unknown and treatment options limited. The development of targeted drugs requires a better understanding of the exact pathogenesis of these diseases, and Yes-associated protein (YAP), a member of the Hippo signaling pathway, is believed to play an important role. Psoriasis and skin tumors are characterized by excessive cell proliferation, abnormal differentiation, vasodilation, and proliferation. Here, we review the literature related to YAP-associated disease mechanisms and discuss the latest research. YAP regulates cell apoptosis, proliferation, and differentiation; inhibits cell density and intercellular contacts and angiogenesis; and maintains the three-dimensional structure of the skin. These mechanisms may be associated with the occurrence and development of psoriasis and skin tumors. The results of recent studies have shown that YAP expression is increased in psoriasis and skin tumors. High expression of YAP in psoriasis and skin tumors may indicate its positive functions in skin inflammation and malignancies and may play an important role in disease pathogenesis. The study of new drugs targeting YAP can provide novel approaches for the treatment of skin diseases.
Collapse
|
14
|
Mechanism of Huoluo Xiaoling Dan in the Treatment of Psoriasis Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7053613. [PMID: 35265149 PMCID: PMC8898804 DOI: 10.1155/2022/7053613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 01/09/2023]
Abstract
Objective To explore the mechanism of the action of Huoluo Xiaoling Dan (HLXLD) in the treatment of psoriasis based on network pharmacology and molecular docking. Methods The main active components and targets of HLXLD were collected from CMSP, and the targets related to psoriasis were collected from GeneCards, OMIM, TTD, DisGeNET, and DrugBank. Drug disease target genes were obtained by Venny tools, drug-component-target networks were constructed and analyzed, and pathway enrichment analysis was performed. AutoDockTools is used to connect the core components and the target, and PyMOL software is used to visualize the results. Results 126 active components (such as quercetin, luteolin, tanshinone IIA, dihydrotanshinlactone, and beta-sitosterol) and 238 targets of HLXLD were screened out. 1,293 targets of psoriasis were obtained, and 123 drug-disease targets were identified. Key targets included AKT1, TNF, IL6, TP53, VEGFA, JUN, CASP3, IL1B, STAT3, PTGS2, HIF1A, EGF, MYC, EGFR, MMP9, and PPARG. Enrichment analysis showed that 735 GO analysis and 85 KEGG pathways were mainly involved in biological processes such as response to the drug, inflammatory response, gene expression, and cell proliferation and apoptosis, as well as signal pathways such as cancer, TNF, HIF-1, and T cell receptor. Molecular docking showed that there was strong binding activity between the active ingredient and the target protein. Conclusions HLXLD could treat psoriasis through multicomponents, multitargets, and multipathways, which provides a new theoretical basis for further basic research and clinical application.
Collapse
|
15
|
Promising Strategies in Plant-Derived Treatments of Psoriasis-Update of In Vitro, In Vivo, and Clinical Trials Studies. Molecules 2022; 27:molecules27030591. [PMID: 35163855 PMCID: PMC8839811 DOI: 10.3390/molecules27030591] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023] Open
Abstract
Psoriasis is a common, chronic systemic inflammatory disease affecting 125 million people worldwide. It is associated with several important conditions, including psoriatic arthritis, cardiometabolic syndrome, and depression, leading to a significant reduction in patients’ quality of life. Current treatments only reduce symptoms, not cure. This review discusses the mechanisms involved in the initiation and development of the disease, the role of oxidative stress in this autoimmune disease, as well as potential therapeutic options with substances of natural origin. The main aim of the study is intended to offer a review of the literature to present plants and phytochemicals that can represent potential remedies in the fight against psoriasis. We identified many in vitro, in vivo, and clinical trials studies that evaluated the relationship between chosen natural substances and immune system response in the course of psoriasis. We sought to find articles about the efficacy of potential natural-derived drugs in controlling symptoms and their ability to maintain long-term disease inactivity without side effects, and the result of our work is a review, which highlights the effectiveness of plant-derived drugs in controlling the inflammatory burden on psoriatic patients by decreasing the oxidative stress conditions.
Collapse
|
16
|
Jin X, Xu H, Huang C, Ma H, Xiong X, Cheng L, Wang F, Feng Y, Zhang G. A Traditional Chinese Medicine Formula Danshen Baibixiao Ameliorates Imiquimod-Induced Psoriasis-Like Inflammation in Mice. Front Pharmacol 2021; 12:749626. [PMID: 34925011 PMCID: PMC8678074 DOI: 10.3389/fphar.2021.749626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Danshen Baibixiao (DB) is a traditional Chinese medicine formula, which has been used to treat psoriasis for decades. Although DB shows good efficacy in clinical practice, the pharmacological effects and underlying mechanisms of DB remain elusive. This study aimed to evaluate the anti-psoriatic effects of DB and explore its underlying mechanisms in an imiquimod (IMQ)-induced psoriasis-like mouse model. Materials and methods: DB was orally administered on IMQ-induced psoriatic mice. Psoriasis area severity index (PASI) was used to evaluate the severity of the inflammation in skin, and histological changes were evaluated by hematoxylin and eosin (H and E) staining. Levels of inflammatory cytokines, such as tumor necrosis factor α (TNF-α), interleukin (IL)-17A, IL-23, IL-6, IL-1β and IL-22 in serum were assessed by enzyme-linked immunosorbent assay (ELISA). mRNA expressions of IL-17A, IL-23, IL-6 and IL-22 were determined by real-time polymerase chain reaction (PCR). Expression levels of proteins related to NF-κB, STAT3 and MAPKs signaling pathways were measured by western blotting (WB). Results: DB significantly ameliorated the psoriatic symptoms in IMQ-induced mice. The serum levels of inflammatory cytokines (TNF-α, IL-17A, IL-23, IL-6, IL-1β and IL-22) were decreased, and mRNA expressions of IL-17A, IL-23, IL-6 and IL-22 in skin tissues were down-regulated. Moreover, WB analysis indicated that DB inhibited the activation of NF-κB, STAT3 and MAPKs signaling pathways. Conclusion: This study confirms the anti-psoriatic activity of DB in IMQ-induced psoriasis-like mice. The possible mechanism may relate to the activities of regulating the IL-23/TH-17 axis and suppressing the activation of NF-κB, STAT3 and MAPKs signaling pathways.
Collapse
Affiliation(s)
- Xiaoqi Jin
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Hongfeng Xu
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Chuanqi Huang
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Haoran Ma
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Xin Xiong
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Lu Cheng
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Fuqian Wang
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Yan Feng
- Department of Pathology, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Geng Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| |
Collapse
|
17
|
Iftikhar R, Zahoor AF, Irfan M, Rasul A, Rao F. Synthetic molecules targeting yes associated protein activity as chemotherapeutics against cancer. Chem Biol Drug Des 2021; 98:1025-1037. [PMID: 34587361 DOI: 10.1111/cbdd.13960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022]
Abstract
The Hippo signaling pathway extorts several signals that concomitantly target the activity of transcriptional cofactor yes associated protein (YAP). YAP is a key regulator that elicits signature gene expression by coupling with transcriptional enhanced associate domain (TEAD) family of transcriptional factors. The YAP-TEAD complex via target gene expression gets associated with the development, proliferation, and progression of cancerous cells. Moreover, YAP adorns cells with several oncogenic traits such as inhibition of apoptosis, enhanced proliferation, drug resistance, and immune response suppression, which later became associated with various diseases, particularly cancer. Therefore, inhibition of the YAP activity is an appealing and viable therapeutic target for cancer treatment. This review highlights the recent advances in existing and novel synthetic therapeutics targeting YAP inhibition and regulation. The synthetically produced YAPD93A belonging to cyclic peptides and DC-TEADin02 and vinyl sulfonamide class of compounds are the most potent compounds to inhibit the YAP-TEAD expression by targeting protein-protein interaction (IC50 = 25 nM) and palmitate binding central pocket of TEAD (IC50 = 197 nM), respectively. On the other hand, Chlorpromazine belonging to phenothiazines class has the least potential to suppress YAP via proteasomal degradation (cell viability value of <20% at 40 µM).
Collapse
Affiliation(s)
- Ramsha Iftikhar
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Government College University Faisalabad, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Faiza Rao
- Fujian Provincial Key Laboratory of Reproduction Health Research, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
18
|
Zhao Z, Liu T, Zhu S, Pi J, Guo P, Qi D, Liu Z, Li N. Natural medicine combined with nanobased topical delivery systems: a new strategy to treat psoriasis. Drug Deliv Transl Res 2021; 12:1326-1338. [PMID: 34287767 DOI: 10.1007/s13346-021-01031-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 12/23/2022]
Abstract
Psoriasis, an autoimmune inflammatory skin disorder, is one of the commonest immune-mediated disease conditions affecting individuals globally. At the moment, the conventional methods applied against psoriasis treatment have various drawbacks involving limited efficacy, skin irritation, immunosuppression, etc. Therefore, it is important for scientists to find a more potent and alternative drug approach towards psoriasis therapeutics. Natural medicine still remains an important source for new drug discovery due to its therapeutical significance in various drug administration routes. However, the traditional formulation of topical therapies for psoriasis is limited in efficacy, which limits the use of natural medicine. Based on the aforementioned limitations, the use of nanocarriers in preparation of these topical herbal products could be tremendously beneficial in enhancing the efficacy of topical medications. Growing pieces of evidence have proposed that the utilization of nanocarriers in transdermal preparation as a prospective technique, with regards to better potency, directs drug absorption to site of action, and minimum toxicity effect respectively. In the course of this review, we emphasized the pathological mechanism of psoriasis, natural medicine formula, active components of natural medicine, and nanopreparations used in the treatment of psoriasis.
Collapse
Affiliation(s)
- Zhiyue Zhao
- State Key Laboratory of Component Natural Medicine, Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tao Liu
- State Key Laboratory of Component Natural Medicine, Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Tianjin, 301617, China
| | - Shan Zhu
- State Key Laboratory of Component Natural Medicine, Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Tianjin, 301617, China
| | - Jiaxin Pi
- State Key Laboratory of Component Natural Medicine, Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Pan Guo
- State Key Laboratory of Component Natural Medicine, Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Dongli Qi
- State Key Laboratory of Component Natural Medicine, Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhidong Liu
- State Key Laboratory of Component Natural Medicine, Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Tianjin, 301617, China. .,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Nan Li
- State Key Laboratory of Component Natural Medicine, Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Tianjin, 301617, China. .,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
19
|
Liu H, Zhang X, Shao Y, Lin X, Dong F, Liu X. Danshensu alleviates bleomycin-induced pulmonary fibrosis by inhibiting lung fibroblast-to-myofibroblast transition via the MEK/ERK signaling pathway. Bioengineered 2021; 12:3113-3124. [PMID: 34187349 PMCID: PMC8806824 DOI: 10.1080/21655979.2021.1944020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pulmonary fibrosis (PF) is a chronic pulmonary interstitial disease, and its pathological process is closely related to fibroblast-myofibroblast differentiation. Danshensu (DSS) has been reported to exert an anti-fibrotic effect in heart and liver. However, it is unknown whether DSS has an equally anti-fibrotic effect on lungs. To evaluate the effect of DSS on PF and demonstrate its possible molecular mechanisms, we established an in vitro model on TGF-β1 (5 ng/mL)-stimulated NIH3T3 cells and in vivo model on bleomycin (BLM) (5 mg/kg)-induced PF mice. In vitro, our results revealed that 50 μM DSS effectively inhibited the fibroblast proliferation, migration and differentiation into myofibroblast. In vivo, our results showed that DSS (28 and 56 mg/kg) reduced damaged lung structures, infiltrated inflammatory cells and accumulated areas of collagen deposition. Moreover, we showed that DSS decreased the fibroblast-specific protein 1 (FSP-1) - and α-SMA-positive areas. Meanwhile, we indicated that DSS reduced the expression of TGF-β1, α-SMA and COL-I in the lung tissues of mice. To further explore the mechanism of DSS on alleviating PF, we detected the MEK/ERK signaling pathway. Our results showed that DSS reduced the phosphorylation of MEK1/2 and ERK1/2, indicating that DSS might inhibit the MEK/ERK signaling pathway. Taken together, these results demonstrated that DSS could suppress lung fibroblast proliferation, migration and differentiation to myofibroblasts, possibly through suppressing the MEK/ERK signaling pathway, which suggested that DSS might be a potential therapeutic drug for PF treatment.
Collapse
Affiliation(s)
- Huaman Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of General Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyue Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yumeng Shao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuehong Lin
- Department of General Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feng Dong
- Department of General Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue Liu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Respiration, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
20
|
Zhang X, Li X, Chen Y, Li B, Guo C, Xu P, Yu Z, Ding Y, Shi Y, Gu J. Xiao-Yin-Fang Therapy Alleviates Psoriasis-like Skin Inflammation Through Suppressing γδT17 Cell Polarization. Front Pharmacol 2021; 12:629513. [PMID: 33935720 PMCID: PMC8087247 DOI: 10.3389/fphar.2021.629513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/30/2021] [Indexed: 01/20/2023] Open
Abstract
Psoriasis is an immune-mediated chronic inflammatory skin disease primarily mediated by the activation of interleukin (IL)-17-producing T cells. Traditional Chinese Medicine (TCM) represents one of the most effective complementary and alternative medicine (CAM) agents for psoriasis, which provides treasured sources for the development of anti-psoriasis medications. Xiao-Yin-Fang (XYF) is an empirically developed TCM formula that has been used to treat psoriasis patients in Shanghai Changhai Hospital for over three decades. Imiquimod (IMQ)-induced psoriasis-like dermatitis mouse model was utilized to investigate the therapeutic effects of XYF by the assessment of disease severity and skin thickness. Flow cytometric assay was performed to explore the influence of XYF on skin-related immunocytes, primarily T cells. And, RNA sequencing analysis was employed to determine the alternation in gene expression upon XYF therapy. We discovered that XYF alleviated psoriasis-like skin inflammation mainly through suppressing dermal and draining lymph-node IL-17-producing γδT (γδT17) cell polarization. Moreover, XYF therapy ameliorated the relapse of psoriasis-like dermatitis and prohibited dermal γδT cell reactivation. Transcriptional analysis suggested that XYF might regulate various inflammatory signaling pathways and metabolic processes. In conclusion, our results clarified the therapeutic efficacy and inner mechanism of XYF therapy in psoriasis, which might promote its clinical application in psoriasis patients and facilitate the development of novel anti-psoriasis drugs based on the bioactive components of XYF.
Collapse
Affiliation(s)
- Xilin Zhang
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.,Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiaorui Li
- Department of Dermatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Youdong Chen
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.,Department of Dermatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bingjie Li
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Chunyuan Guo
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Peng Xu
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.,Department of Dermatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zengyang Yu
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Yangfeng Ding
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Jun Gu
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.,Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Department of Dermatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
21
|
Tu Y, Wu W, Guo Y, Lu F, Li X, Xu D, Zou D, Tu Y, Chai Y, He L. Up-regulation of hsa-miR-221-3p induced by UVB affects proliferation and apoptosis of keratinocytes via Bcl-xL/Bax pathway. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2021; 37:269-277. [PMID: 33351232 DOI: 10.1111/phpp.12647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/19/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Chronic actinic dermatitis (CAD) is a photoallergic skin disease with abnormal hyperplasia. At present, the mechanism of abnormal proliferation is not clear. OBJECTIVE To explore possible mechanism of CAD proliferative lesions. METHODS Immunohistochemistry (IHC) assay and small RNA sequencing were carried out. Quantitative real-time PCR (qRT-PCR) analysis was performed to evaluate expression levels of hsa-miR-221-3p and FOS. The interaction between hsa-miR-221-3p and FOS was identified by dual-luciferase reporter assay. Expression of hsa-miR-221-3p also was detected by qRT-PCR after UVB irradiation. Influences of hsa-miR-221-3p and FOS on cell viability and apoptosis were assessed through a series of functional experiments and rescue experiments. Western blot analysis was used to detect protein expression of fos, Bax, Bcl-xL, and caspase-3. RESULTS Patients with CAD had marked epidermal hyperplasia. The expression of hsa-miR-221-3p was up-regulated in CAD while FOS was significantly down-regulated. Dual-luciferase reporter assay confirmed that hsa-miR-221-3p targeted FOS 3'UTR. Hsa-miR-221-3p induced by UVB ranged from 0 to 30 mJ. Moreover, hsa-miR-221-3p overexpression or FOS knockdown promoted cell proliferation and reduced cell apoptosis. Western blot showed that hsa-miR-221-3p negatively regulated fos, which regulated Bcl-xL/Bax. Cell proliferation caused by hsa-miR-221-3p overexpression or FOS knockdown could be reversed by Bcl-xL inhibitor. CONCLUSION Hsa-miR-221-3p induced by UVB targeted FOS 3'UTR, which played an important role in regulating proliferation and apoptosis of keratinocytes via Bcl-xL/Bax pathway; this may provide a new insight for CAD proliferative lesions.
Collapse
Affiliation(s)
- Yunhua Tu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Dermatology, The Second People's Hospital of Guiyang, Guizhou, China
| | - Wenjuan Wu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yanni Guo
- Department of Dermatology, The Second Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Fengyan Lu
- Department of Dermatology, The First People's Hospital of Qujing, Qujing, China
| | - Xing Li
- Department of Dermatology, People's Hospital of Chuxiong Yi Autonomous Prefecture, Chuxiong, China
| | - Dan Xu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dandan Zou
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ying Tu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yanjie Chai
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|