1
|
Ye Y, Xie X, Bi Y, Liu Q, Qiu L, Zhao H, Wang C, Zhu W, Zeng T. Nrf2 alleviates acute ischemic stroke induced ferroptosis via regulating xCT/GPX4 pathway. Free Radic Biol Med 2025; 231:153-162. [PMID: 40020881 DOI: 10.1016/j.freeradbiomed.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Ferroptosis is a form of regulating cell death, and iron accumulation in the brain after acute ischemic stroke (AIS) is associated with the triggering of iron metabolism. Nuclear factor erythroid 2-related factor 2 (Nrf2), one of the most critical antioxidant transcription factors in cells, is closely associated with ferroptosis and oxidative stress.In the present study, we explore the intrinsic mechanisms by which Nrf2 exerts neuroprotective effects against AIS-induced ferroptosis.In vivo experiments, we explored the protective effects of AIS induced by middle cerebral artery occlusion (MCAO) and its mechanisms by using intraperitoneal injections of ferrostatin-1 (Fer-1, an inhibitor of ferroptosis), Oltipraz (an agonist of Nrf2) and ML385 (an inhibitor of Nrf2) in wild-type (WT) mice, as well as using Nrf2-/- mice. In vitro experiments, we investigated the mechanism of action of Nrf2 on the establishment of a ferroptosis cell model induced by Erastin by overexpressing or silencing Nrf2 expression using shRNA in SH-SY5Y cells.Ferroptosis played an important role in AIS, and Fer-1 inhibited iron accumulation and alleviated neuronal damage caused by AIS.Oltipraz attenuated AIS-induced neuronal damage and cerebral infarction by increasing cortical blood flow (CBF). Additionally, Oltipraz protected against AIS-induced ferroptosis by reducing oxidative stress and iron overload. Meanwhile, in Oltipraz-treated AIS mice, Nrf2, solute carrier family 7 member 11 (SLC7A11/xCT), and glutathione peroxidase 4 (GPX4) were upregulated. Conversely, ML385 decreased CBF and exacerbated IS-induced neuronal damage. Furthermore, both ML385 treatment and Nrf2 knockout mice exacerbated oxidative stress injury and iron overload and downregulated the expression of both xCT and GPX4. Consistent with the in vivo results, Nrf2 conferred ferroptosis resistance in vitro upon exposure to compounds that induce ferroptosis, by modulating the xCT/GPX4 pathway.The present study confirmed that Nrf2 could attenuate AIS-induced neuronal ferroptosis and oxidative stress by regulating xCT/GPX4.
Collapse
Affiliation(s)
- Yujun Ye
- Department of Brain Diseases, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangdong, China; School of Combine Traditional Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China; Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuexin Xie
- Department of Brain Diseases, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangdong, China; School of Combine Traditional Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China; Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yiming Bi
- Department of Brain Diseases, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangdong, China; Sleep Research Institute of Traditional Chinese Medicine, Guangzhou Medical University, Guangdong, China
| | - Qing Liu
- Department of Brain Diseases, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangdong, China; Sleep Research Institute of Traditional Chinese Medicine, Guangzhou Medical University, Guangdong, China
| | - Lingling Qiu
- Department of Brain Diseases, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangdong, China; Sleep Research Institute of Traditional Chinese Medicine, Guangzhou Medical University, Guangdong, China
| | - He Zhao
- Department of Brain Diseases, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangdong, China; Sleep Research Institute of Traditional Chinese Medicine, Guangzhou Medical University, Guangdong, China
| | - Chengyin Wang
- Department of Brain Diseases, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangdong, China; Sleep Research Institute of Traditional Chinese Medicine, Guangzhou Medical University, Guangdong, China.
| | - Weifeng Zhu
- Department of Brain Diseases, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangdong, China; Sleep Research Institute of Traditional Chinese Medicine, Guangzhou Medical University, Guangdong, China.
| | - Ting Zeng
- Department of Brain Diseases, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangdong, China; Sleep Research Institute of Traditional Chinese Medicine, Guangzhou Medical University, Guangdong, China.
| |
Collapse
|
2
|
Liu X, Wang W, Nie Q, Liu X, Sun L, Ma Q, Zhang J, Wei Y. The Role and Mechanisms of Ubiquitin-Proteasome System-Mediated Ferroptosis in Neurological Disorders. Neurosci Bull 2025; 41:691-706. [PMID: 39775589 PMCID: PMC11979074 DOI: 10.1007/s12264-024-01343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/29/2024] [Indexed: 01/11/2025] Open
Abstract
Ferroptosis is a form of cell death elicited by an imbalance in intracellular iron concentrations, leading to enhanced lipid peroxidation. In neurological disorders, both oxidative stress and mitochondrial damage can contribute to ferroptosis, resulting in nerve cell dysfunction and death. The ubiquitin-proteasome system (UPS) refers to a cellular pathway in which specific proteins are tagged with ubiquitin for recognition and degradation by the proteasome. In neurological conditions, the UPS plays a significant role in regulating ferroptosis. In this review, we outline how the UPS regulates iron metabolism, ferroptosis, and their interplay in neurological diseases. In addition, we discuss the future application of small-molecule inhibitors and identify potential drug targets. Further investigation into the mechanisms of UPS-mediated ferroptosis will provide novel insights and strategies for therapeutic interventions and clinical applications in neurological diseases.
Collapse
Affiliation(s)
- Xin Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Wei Wang
- Cancer Biology Institute, Baotou Medical College, Baotou, 014010, China
| | - Qiucheng Nie
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xinjing Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Lili Sun
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Qiang Ma
- Cancer Biology Institute, Baotou Medical College, Baotou, 014010, China
| | - Jie Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
- Biomedical Sciences College & Shandong Medicinal Biotechnology Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Yiju Wei
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
3
|
Hassan MAM, Fahmy MI, Azzam HN, Ebrahim YM, El-Shiekh RA, Aboulmagd YM. Multifaceted therapeutic potentials of catalpol, an iridoid glycoside: an updated comprehensive review. Inflammopharmacology 2025:10.1007/s10787-025-01694-1. [PMID: 40097877 DOI: 10.1007/s10787-025-01694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025]
Abstract
Catalpol, classified as an iridoid glucoside, is recognized for its significant role in medicine, particularly in the treatment of various conditions such as diabetes mellitus, neuronal disorders, and inflammatory diseases. This review aims to evaluate the biological implications of catalpol and the mechanisms underlying its diverse pharmacological effects. A thorough exploration of existing literature was conducted utilizing the keyword "Catalpol" across prominent public domains like Google Scholar, PubMed, and EKB. Catalpol has demonstrated a diverse array of pharmacological effects in experimental models, showcasing its anti-diabetic, cardiovascular-protective, neuroprotective, anticancer, hepatoprotective, anti-inflammatory, and antioxidant properties. In summary, catalpol manifests a spectrum of biological effects through a myriad of mechanisms, prominently featuring its anti-inflammatory and antioxidant capabilities. Its diverse pharmacological profile underscores its potential for therapeutic applications across a range of conditions. Further research is warranted to fully elucidate the clinical implications of catalpol and optimize its use in medical practice.
Collapse
Affiliation(s)
- Mennat-Allah M Hassan
- Department of Pharmacology & Toxicology Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Mohamed I Fahmy
- Department of Pharmacology and Toxicology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Giza, Egypt
| | - Hany N Azzam
- Pharmacy Practice Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Yasmina M Ebrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Yara M Aboulmagd
- Department of Pharmacology & Toxicology Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| |
Collapse
|
4
|
Tkaczenko H, Kurhaluk N. Antioxidant-Rich Functional Foods and Exercise: Unlocking Metabolic Health Through Nrf2 and Related Pathways. Int J Mol Sci 2025; 26:1098. [PMID: 39940866 PMCID: PMC11817741 DOI: 10.3390/ijms26031098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
This article reviews the synergistic effects of antioxidant-enriched functional foods and exercise in improving metabolic health, focusing on the underlying molecular mechanisms. The review incorporates evidence from PubMed, SCOPUS, Web of Science, PsycINFO, and reference lists of relevant reviews up to 20 December 2024, highlighting the central role of the Nrf2 pathway. As a critical regulator of oxidative stress and metabolic adaptation, Nrf2 mediates the benefits of these interventions. This article presents an innovative approach to understanding the role of Nrf2 in the regulation of oxidative stress and inflammation, highlighting its potential in the prevention and treatment of various diseases, including cancer, neurodegenerative disorders, cardiovascular and pulmonary diseases, diabetes, inflammatory conditions, ageing, and infections such as COVID-19. The novelty of this study is to investigate the synergistic effects of bioactive compounds found in functional foods (such as polyphenols, flavonoids, and vitamins) and exercise-induced oxidative stress on the activation of the Nrf2 pathway. This combined approach reveals their potential to improve insulin sensitivity and lipid metabolism and reduce inflammation, offering a promising strategy for the management of chronic diseases. However, there are significant gaps in current research, particularly regarding the molecular mechanisms underlying the interaction between diet, physical activity, and Nrf2 activation, as well as their long-term effects in different populations, including those with chronic diseases. In addition, the interactions between Nrf2 and other critical signalling pathways, including AMPK, NF-κB, and PI3K/Akt, and their collective contributions to metabolic health are explored. Furthermore, novel biomarkers are presented to assess the impact of these synergistic strategies, such as the NAD+/NADH ratio, the GSH ratio, and markers of mitochondrial health. The findings provide valuable insights into how the integration of an antioxidant-rich diet and regular exercise can improve metabolic health by activating Nrf2 and related molecular pathways and represent promising strategies for the prevention and treatment of metabolic disorders. Further studies are needed to fully understand the therapeutic potential of these interventions in diseases related to oxidative stress, such as cardiovascular disease, neurodegenerative disease, diabetes, and cancer.
Collapse
Affiliation(s)
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22b, 76-200 Słupsk, Poland;
| |
Collapse
|
5
|
Ye Y, Xie X, Bi Y, Liu Q, Weng X, Qiu L, Zhao H, Hei S, Yang L, Wang C, Zhu W, Zeng T. Naoqing formula alleviates acute ischaemic stroke-induced ferroptosis via activating Nrf2/xCT/GPX4 pathway. Front Pharmacol 2024; 15:1525456. [PMID: 39741629 PMCID: PMC11686226 DOI: 10.3389/fphar.2024.1525456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 11/28/2024] [Indexed: 01/03/2025] Open
Abstract
Backgrounds Ferroptosis is a form of regulated cell death. The accumulation of iron in the brain is linked to trigger ferroptosis after an ischaemic stroke (IS). Naoqing formula (NQ) is a traditional Chinese medicine metabolites with the clinical function of activating blood circulation, which is applied to treat IS clinically in China. Methods Mice and SH-SY5Y cells were utilized to investigate the protective effects and the underlying mechanism of NQ against middle cerebral artery occlusion (MCAO) induced acute ischaemic stroke (AIS) and neuronal cellular ferroptosis caused by ferroptosis inducer Erastin in vitro and in vivo. Utilizing molecular biological techniques, transcriptomics, and proteomics analyses, the role of NQ in Nrf2 regulation and ferroptosis was evaluated through the pharmacologic inhibition of Nrf2. Results NQ attenuated AIS-induced neuronal damage and cerebral infarction by increasing cortical blood flow (CBF). Transcriptomics and proteomics analyses revealed that NQ might regulate lipid and iron metabolism through Nrf2 pathway. Additionally, NQ can protect AIS from ferroptosis by reducing oxidative stress and iron overload. Meanwhile, Nrf2, solute carrier family 7 member 11 (SLC7A11; also known as xCT) and glutathione peroxidase 4 (GPX4) were upregulated in NQ-treated AIS mice. Consistent with the results in vivo, NQ led to ferroptosis resistance upon exposure to a ferroptosis-inducing compound through activation of Nrf2/xCT/GPX4 pathway in vitro. Notably, in vivo inhibition of Nrf2 expression by ML385 aggravated the ferroptotic events and weakened the neuroprotective effect of NQ as well as subsequently reduced the expression of xCT and GPX4. Conclusion This study demonstrated that NQ protected against AIS via suppression of ferroptosis and oxidative stress, which were largely dependent on the upregulation of Nrf2 pathway.
Collapse
Affiliation(s)
- Yujun Ye
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- School of Combine Traditional Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
- Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuexin Xie
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- School of Combine Traditional Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
- Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yiming Bi
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qing Liu
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuliang Weng
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lingling Qiu
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - He Zhao
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shangyan Hei
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ling Yang
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chengyin Wang
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weifeng Zhu
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ting Zeng
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Al-Awadhi F, Kokkaliari S, Ratnayake R, Paul VJ, Luesch H. Isolation and Characterization of the Cyanobacterial Macrolide Glycoside Moorenaside, an Anti-Inflammatory Analogue of Aurisides Targeting the Keap1/Nrf2 Pathway. JOURNAL OF NATURAL PRODUCTS 2024; 87:2355-2365. [PMID: 39315953 PMCID: PMC11519913 DOI: 10.1021/acs.jnatprod.4c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/07/2024] [Accepted: 09/07/2024] [Indexed: 09/25/2024]
Abstract
A new 14-membered ring brominated macrolide glycoside, named moorenaside (1), was discovered from a marine cyanobacterial sample collected from Shands Key in Florida. The structure of 1 was established by analysis of spectroscopic data including its relative configuration. The absolute configuration was inferred from optical rotation data and comparison with related compounds. The structure of 1 features an α,β-unsaturated carbonyl system, which is also found in aurisides. The presence of this motif in 1 prompted us to evaluate its effect on Keap1/Nrf2 signaling, a cytoprotective pathway culminating in the activation of antioxidant genes activated upstream by the cysteine alkylation of Keap1. Moorenaside exhibited moderate ARE luciferase activity at 32 μM. Due to the established crosstalk between Nrf2 and NF-κB pathways, we investigated the anti-inflammatory effects of 1 in LPS-induced mouse macrophages (RAW264.7 cells), a commonly used model for inflammation. Moorenaside significantly upregulated Nqo1 (Nrf2 target gene) and downregulated iNos (NF-κB target gene) at 32 μM by 5.0- and 2.5-fold, respectively, resulting in a significant reduction of nitric oxide (NO) levels. Furthermore, we performed RNA-sequencing and demonstrated the transcriptional activity of 1 on a global level and identified canonical pathways and upstream regulators involved in inflammation, immune response, and certain oxidative-stress-underlying diseases such as multiple sclerosis and chronic kidney disease.
Collapse
Affiliation(s)
- Fatma
H. Al-Awadhi
- Department
of Medicinal Chemistry and Center for Natural Products, Drug Discovery
and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Sofia Kokkaliari
- Department
of Medicinal Chemistry and Center for Natural Products, Drug Discovery
and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Ranjala Ratnayake
- Department
of Medicinal Chemistry and Center for Natural Products, Drug Discovery
and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Valerie J. Paul
- Smithsonian
Marine Station, Fort Pierce, Florida 34949, United States
| | - Hendrik Luesch
- Department
of Medicinal Chemistry and Center for Natural Products, Drug Discovery
and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
7
|
Kim Y, Kim J, Kim B, Kim R, Kim HJ, Lee EH, Kim J, Park J, Jeong Y, Park SI, Kim H, Kang M, Lee J, Bahn YS, Choi JW, Park JH, Park KD. Discovery and Optimization of a Series of Vinyl Sulfoximine-Based Analogues as Potent Nrf2 Activators for the Treatment of Multiple Sclerosis. J Med Chem 2024; 67:17866-17892. [PMID: 39323296 PMCID: PMC11472819 DOI: 10.1021/acs.jmedchem.4c01907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Multiple sclerosis (MS) is an immune-mediated neurodegenerative disease of the central nervous system (CNS), which leads to demyelination, axonal loss, and neurodegeneration. Increased oxidative stress and neurodegeneration have been implicated in all stages of MS, making neuroprotective therapeutics a promising strategy for its treatment. We previously have reported vinyl sulfones with antioxidative and anti-inflammatory properties that activate nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that induces the expression of cytoprotective genes against oxidative stress. In this study, we synthesized vinyl sulfoximine derivatives by modifying the core structure and determined therapeutic potential as Nrf2 activators. Among them, 10v effectively activated Nrf2 (EC50 = 83.5 nM) and exhibited favorable drug-like properties. 10v successfully induced expression of Nrf2-dependent antioxidant enzymes and suppressed lipopolysaccharide (LPS)-induced inflammatory responses in BV-2 microglial cells. We also confirmed that 10v effectively reversed disease progression and attenuated demyelination in an experimental autoimmune encephalitis (EAE) mouse model of MS.
Collapse
Affiliation(s)
- Yoowon Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Department
of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jaehwan Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Byungeun Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Rium Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyeon Jeong Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
| | - Elijah Hwejin Lee
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Jushin Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Department
of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jiwoo Park
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Yeeun Jeong
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sang In Park
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyemin Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Minsik Kang
- Doping
Control Center, KIST, Seoul 02792, Republic of Korea
| | - Jaeick Lee
- Doping
Control Center, KIST, Seoul 02792, Republic of Korea
| | - Yong-Sun Bahn
- Department
of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji Won Choi
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Cureverse
Co., Ltd., Seoul Biohub, Seoul 02455, Republic
of Korea
| | - Jong-Hyun Park
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ki Duk Park
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
8
|
Xu WD, Yang C, Huang AF. The role of Nrf2 in immune cells and inflammatory autoimmune diseases: a comprehensive review. Expert Opin Ther Targets 2024; 28:789-806. [PMID: 39256980 DOI: 10.1080/14728222.2024.2401518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Nrf2 regulates mild stress, chronic inflammation, and metabolic changes by regulating different immune cells via downstream signaling. Collection of information about the role of Nrf2 in inflammatory autoimmune diseases will better understand the therapeutic potential of targeting Nrf2 in these diseases. AREAS COVERED In this review, we comprehensively discussed biological function of Nrf2 in different immune cells, including Nrf2 preventing oxidative tissue injury, affecting apoptosis of immune cells and inflammatory cytokine production. Moreover, we discussed the role of Nrf2 in the development of inflammatory autoimmune diseases. EXPERT OPINION Nrf2 binds to downstream signaling molecules and then provides durable protection against different cellular and organ stress. It has emerged as an important target for inflammatory autoimmune diseases. Development of Nrf2 modulator drugs needs to consider factors such as target specificity, short/long term safety, disease indication identification, and the extent of variation in Nrf2 activity. We carefully discussed the dual role of Nrf2 in some diseases, which helps to better target Nrf2 in the future.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Chan Yang
- Preventive Health Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
9
|
Zhang Q, Sun W, Zheng M, Zhang N. Contribution of microglia/macrophage to the pathogenesis of TMEV infection in the central nervous system. Front Microbiol 2024; 15:1452390. [PMID: 39155988 PMCID: PMC11327027 DOI: 10.3389/fmicb.2024.1452390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
The infection of the central nervous system (CNS) with neurotropic viruses induces neuroinflammation and an immune response, which is associated with the development of neuroinflammatory and neurodegenerative diseases, including multiple sclerosis (MS). The activation of both innate and adaptive immune responses, involving microglia, macrophages, and T and B cells, while required for efficient viral control within the CNS, is also associated with neuropathology. Under pathological events, such as CNS viral infection, microglia/macrophage undergo a reactive response, leading to the infiltration of immune cells from the periphery into the brain, disrupting CNS homeostasis and contributing to the pathogenesis of disease. The Theiler's murine encephalomyelitis virus (TMEV)-induced demyelination disease (TMEV-IDD), which serves as a mouse model of MS. This murine model made significant contributions to our understanding of the pathophysiology of MS following subsequent to infection. Microglia/macrophages could be activated into two different states, classic activated state (M1 state) and alternative activated state (M2 state) during TMEV infection. M1 possesses the capacity to initiate inflammatory response and secretes pro-inflammatory cytokines, and M2-liked microglia/macrophages are anti-inflammatory characterized by the secretion of anti-inflammatory cytokines. This review aims to discuss the roles of microglia/macrophages M1/M2-liked polarization during TMEV infection, and explore the potential therapeutic effect of balancing M1/M2-liked polarization of microglia/macrophages on MS.
Collapse
Affiliation(s)
| | | | | | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, China
| |
Collapse
|
10
|
Liu X, Xie C, Wang Y, Xiang J, Chen L, Yuan J, Chen C, Tian H. Ferritinophagy and Ferroptosis in Cerebral Ischemia Reperfusion Injury. Neurochem Res 2024; 49:1965-1979. [PMID: 38834843 PMCID: PMC11233298 DOI: 10.1007/s11064-024-04161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/07/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is the second leading cause of death worldwide, posing a huge risk to human life and health. Therefore, investigating the pathogenesis underlying CIRI and developing effective treatments are essential. Ferroptosis is an iron-dependent mode of cell death, which is caused by disorders in iron metabolism and lipid peroxidation. Previous studies demonstrated that ferroptosis is also a form of autophagic cell death, and nuclear receptor coactivator 4(NCOA4) mediated ferritinophagy was found to regulate ferroptosis by interfering with iron metabolism. Ferritinophagy and ferroptosis are important pathogenic mechanisms in CIRI. This review mainly summarizes the link and regulation between ferritinophagy and ferroptosis and further discusses their mechanisms in CIRI. In addition, the potential treatment methods targeting ferritinophagy and ferroptosis for CIRI are presented, providing new ideas for the prevention and treatment of clinical CIRI in the future.
Collapse
Affiliation(s)
- Xiaoyue Liu
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Canming Xie
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yao Wang
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jing Xiang
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Litong Chen
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jia Yuan
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chutao Chen
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Haomei Tian
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
11
|
Ashrafpour S, Nasr-Taherabadi MJ, Sabouri-Rad A, Hosseinzadeh S, Pourabdolhossein F. Arbutin intervention ameliorates memory impairment in a rat model of lysolecethin induced demyelination: Neuroprotective and anti-inflammatory effects. Behav Brain Res 2024; 469:115041. [PMID: 38723674 DOI: 10.1016/j.bbr.2024.115041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
Cognitive impairment (CI) and memory deficit are prevalent manifestations of multiple sclerosis (MS). This study explores the therapeutic potential of arbutin on memory deficits using a rat hippocampal demyelination model induced by lysophosphatidylcholine (LPC). Demyelination was induced by bilateral injection of 1% LPC into the CA1 area of the hippocampus, and the treated group received daily arbutin injections (50 mg/kg, i.p) for two weeks. Arbutin significantly improved memory impairment 14 days post-demyelination as assessed by Morris water maze test. Histological and immunohistochemical analyses demonstrated that arbutin reduced demyelination suppressed pro-inflammatory markers (IL-1β, TNF-α) and increased anti-inflammatory cytokine IL-10. Arbutin also diminished astrocyte activation, decreased iNOS, enhanced anti-oxidative factors (Nrf2, HO-1), and exhibited neuroprotective effects by elevating myelin markers (MBP) and brain derived neurotrophic factor (BDNF). These findings propose arbutin as a potential therapeutic candidate for multiple sclerosis-associated memory deficits, warranting further clinical exploration.
Collapse
Affiliation(s)
- Sahand Ashrafpour
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | - Alie Sabouri-Rad
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Soheila Hosseinzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Pourabdolhossein
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
12
|
Chu Z, Zhu L, Zhou Y, Yang F, Hu Z, Luo Y, Li W, Luo F. Targeting Nrf2 by bioactive peptides alleviate inflammation: expanding the role of gut microbiota and metabolites. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38881345 DOI: 10.1080/10408398.2024.2367570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Inflammation is a complex process that usually refers to the general response of the body to the harmful stimuli of various pathogens, tissue damage, or exogenous pollutants. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates cellular defense against oxidative damage and toxicity by expressing genes related to oxidative stress response and drug detoxification. In addition to its antioxidant properties, Nrf2 is involved in many other important physiological processes, including inflammation and metabolism. Nrf2 can bind the promoters of antioxidant genes and upregulates their expressions, which alleviate oxidation-induced inflammation. Nrf2 has been shown to upregulate heme oxygenase-1 expression, which promotes NF-κB activation and is closely related with inflammation. Nrf2, as a key factor in antioxidant response, is closely related to the expressions of pro-inflammatory factors, NF-κB pathway and cell metabolism. Bioactive peptides come from a wide range of sources and have many biological functions. Increasing evidence indicates that bioactive peptides have potential anti-inflammatory activities. This article summarized the sources, absorption and utilization of bioactive peptides and their role in alleviating inflammation via Nrf2 pathway. Bioactive peptides can also regulate gut microbiota and alter metabolites, which regulates the Nrf2 pathway through novel pathway and supplement the anti-inflammatory mechanisms of bioactive peptides. This review provides a reference for further study on the anti-inflammatory effect of bioactive peptides and the development and utilization of functional foods.
Collapse
Affiliation(s)
- Zhongxing Chu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Lingfeng Zhu
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Yaping Zhou
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Feiyan Yang
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wen Li
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
13
|
Xu B, Dong Q, Yu C, Chen H, Zhao Y, Zhang B, Yu P, Chen M. Advances in Research on the Activity Evaluation, Mechanism and Structure-Activity Relationships of Natural Antioxidant Peptides. Antioxidants (Basel) 2024; 13:479. [PMID: 38671926 PMCID: PMC11047381 DOI: 10.3390/antiox13040479] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Antioxidant peptides are a class of biologically active peptides with low molecular weights and stable antioxidant properties that are isolated from proteins. In this review, the progress in research on the activity evaluation, action mechanism, and structure-activity relationships of natural antioxidant peptides are summarized. The methods used to evaluate antioxidant activity are mainly classified into three categories: in vitro chemical, in vitro cellular, and in vivo animal methods. Also, the biological effects produced by these three methods are listed: the scavenging of free radicals, chelation of metal ions, inhibition of lipid peroxidation, inhibition of oxidative enzyme activities, and activation of antioxidant enzymes and non-enzymatic systems. The antioxidant effects of natural peptides primarily consist of the regulation of redox signaling pathways, which includes activation of the Nrf2 pathway and the inhibition of the NF-κB pathway. The structure-activity relationships of the antioxidant peptides are investigated, including the effects of peptide molecular weight, amino acid composition and sequence, and secondary structure on antioxidant activity. In addition, four computer-assisted methods (molecular docking, molecular dynamics simulation, quantum chemical calculations, and the determination of quantitative structure-activity relationships) for analyzing the structure-activity effects of natural peptides are summarized. Thus, this review lays a theoretical foundation for the development of new antioxidants, nutraceuticals, and cosmetics.
Collapse
Affiliation(s)
- Baoting Xu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qin Dong
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
| | - Changxia Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
| | - Hongyu Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
| | - Baosheng Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Panling Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
- Shanghai Fanshun Edible Fungus Professional Cooperative, Shanghai 201317, China
| |
Collapse
|
14
|
Tang Y, Liang F, Yan Y, Zeng Y, Li Y, Zhou R. Purification and Identification of Peptides from Hydrilla verticillata (Linn. f.) Royle with Cytoprotective and Antioxidative Effect against H 2O 2-Treated HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4170-4183. [PMID: 38358942 DOI: 10.1021/acs.jafc.3c09917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Antioxidant peptides were purified from Hydrilla verticillata (Linn. f.) Royle (HVR) protein hydrolysate by ultrafiltration, gel filtration chromatography, and semipreparative reversed-phase HPLC and identified by UPLC-ESI-MS/MS. Therein, TCLGPK and TCLGER were selected to be synthesized, and they displayed desirable radical-scavenging activity to ABTS (99.20 ± 0.56-99.20 ± 0.43%), DPPH (97.32 ± 0.59-97.56 ± 0.97%), hydroxyl radical (54.32 ± 1.27-70.42 ± 2.01%), and superoxide anion (42.93 ± 1.46-52.62 ± 1.11%) at a concentration of 0.96 μmol/mL. They possessed a cytoprotective effect against H2O2-induced oxidative stress in HepG2 cells in a dose-dependent manner. 1.6 μmol/mL of the two peptides could perfectly protect HepG2 cells from H2O2-induced injury. The TCLGPK exhibited higher antioxidant activity and cytoprotective effect than TCLGER. Western blot and molecular docking results indicated that the two peptides achieved antioxidant ability and cytoprotective effect by combining with Kelch-like ECH-associated protein 1 (Keap1) to activate the Keap1-nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response elements signaling pathway, leading to the activity and expression of the related antioxidases in the pathway significantly up-regulating and the intracellular reactive oxygen species level, lipid peroxidation, and cell apoptosis rate significantly down-regulating.
Collapse
Affiliation(s)
- Yufang Tang
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Fan Liang
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yue Yan
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yanlin Zeng
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yuqin Li
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Rong Zhou
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
15
|
Bai X, Qiu Y, Wang J, Dong Y, Zhang T, Jin H. Panax quinquefolium saponins attenuates microglia activation following acute cerebral ischemia-reperfusion injury via Nrf2/miR-103-3p/TANK pathway. Cell Biol Int 2024; 48:201-215. [PMID: 37885132 DOI: 10.1002/cbin.12100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/20/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Ischemic stroke is one of the leading causes of death and disability among adults worldwide. Intravenous thrombolysis is the only approved pharmacological treatment for acute ischemic stroke. However, reperfusion by thrombolysis will lead to the rapid activation of microglia cells which induces interferon-inflammatory response in the ischemic brain tissues. Panax quinquefolium saponins (PQS) has been proven to be effective in acute ischemic stroke, but there is no unified understanding about its specific mechanism. Here, we will report for the first time that PQS can significantly inhibit the activation of microglia cells in cerebral of MCAO rats via activation of Nrf2/miR-103-3p/TANK axis. Our results showed that PQS can directly bind to Nrf2 protein and inhibit its ubiquitination, which result in the indirectly enhancing the expression of TANK protein via transcriptional regulation on miR-103-3p, and finally to suppress the nuclear factor kappa-B dominated rapid activation of microglial cells induced by oxygen-glucose deprivation/reoxygenation vitro and cerebral ischemia-reperfusion injury in vivo. In conclusion, our study not only revealed the new mechanism of PQS in protecting against the inflammatory activation of microglia cells caused by cerebral ischemia-reperfusion injury, but also suggested that Nrf2 is a potential target for development of new drugs of ischemic stroke. More importantly, our study also reminded that miR-103-3p might be used as a prognostic biomarker for patients with ischemic stroke.
Collapse
Affiliation(s)
- Xuesong Bai
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Yan Qiu
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Jian Wang
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Yafen Dong
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Tao Zhang
- Department of Laboratory Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Jin
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, China
| |
Collapse
|
16
|
Mendes O. Inflammation and neurodegeneration in multiple sclerosis. A REVIEW ON DIVERSE NEUROLOGICAL DISORDERS 2024:321-345. [DOI: 10.1016/b978-0-323-95735-9.00023-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Abusree Ahmed A, Fayez Hasan S, Ahmed Rashed L, Ragab N, Shehata Ismail R, Mostafa Gharib D. The Potential Association Between microRNA 135-5P and p62 and Their Effect on NRF2 Pathway in Multiple Sclerosis. Rep Biochem Mol Biol 2024; 12:512-521. [PMID: 39086595 PMCID: PMC11288234 DOI: 10.61186/rbmb.12.4.512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/30/2023] [Indexed: 08/02/2024]
Abstract
Background Multiple Sclerosis (MS) is a prevalent non-traumatic disabling disease affecting young adults, characterized by complexity in its pathogenesis. Nuclear factor erythroid 2-Related Factor 2 (NRF2) serves as a crucial transcriptional regulator of anti-inflammatory and antioxidant enzymes, influenced by the ubiquitous protein p62. It acts as a scaffold directing substrates to autophagosomes. This study aims to explore the potential association between microRNA 135-5p and p62 and their impact on inflammation and oxidative stress through the NRF2 pathway in MS. Methods The study included 30 healthy controls and 60 MS patients (relapsing-remitting and secondary progressive). Real-time PCR was employed for the detection of Nrf2, p62, miRNA135-5P, and NF-κB in serum, while p53 levels were determined using ELISA. Results Nrf2 and p62 expression was significantly downregulated in the MS group compared to controls. Conversely, miRNA135-5P, NF-κB expression, and P53 levels were significantly elevated in the MS group. Conclusions This study reveals a potential association between miRNA 135-5p and p62, indicating their role in the pathogenesis of MS. Results suggest that miRNA 135-5p and p62 may influence inflammation and oxidative stress in MS through the NRF2 pathway, potentially mediated by NF-κB and p53.
Collapse
Affiliation(s)
- Azza Abusree Ahmed
- Medical Biochemistry and Molecular Biology Department, Unit of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Salwa Fayez Hasan
- Medical Biochemistry and Molecular Biology Department, Unit of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Laila Ahmed Rashed
- Medical Biochemistry and Molecular Biology Department, Unit of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Noura Ragab
- Medical Biochemistry and Molecular Biology Department, Unit of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | | | - Doaa Mostafa Gharib
- Medical Biochemistry and Molecular Biology Department, Unit of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
18
|
Tonev D, Momchilova A. Oxidative Stress and the Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Pathway in Multiple Sclerosis: Focus on Certain Exogenous and Endogenous Nrf2 Activators and Therapeutic Plasma Exchange Modulation. Int J Mol Sci 2023; 24:17223. [PMID: 38139050 PMCID: PMC10743556 DOI: 10.3390/ijms242417223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/18/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The pathogenesis of multiple sclerosis (MS) suggests that, in genetically susceptible subjects, T lymphocytes undergo activation in the peripheral compartment, pass through the BBB, and cause damage in the CNS. They produce pro-inflammatory cytokines; induce cytotoxic activities in microglia and astrocytes with the accumulation of reactive oxygen species, reactive nitrogen species, and other highly reactive radicals; activate B cells and macrophages and stimulate the complement system. Inflammation and neurodegeneration are involved from the very beginning of the disease. They can both be affected by oxidative stress (OS) with different emphases depending on the time course of MS. Thus, OS initiates and supports inflammatory processes in the active phase, while in the chronic phase it supports neurodegenerative processes. A still unresolved issue in overcoming OS-induced lesions in MS is the insufficient endogenous activation of the Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) pathway, which under normal conditions plays an essential role in mitochondria protection, OS, neuroinflammation, and degeneration. Thus, the search for approaches aiming to elevate endogenous Nrf2 activation is capable of protecting the brain against oxidative damage. However, exogenous Nrf2 activators themselves are not without drawbacks, necessitating the search for new non-pharmacological therapeutic approaches to modulate OS. The purpose of the present review is to provide some relevant preclinical and clinical examples, focusing on certain exogenous and endogenous Nrf2 activators and the modulation of therapeutic plasma exchange (TPE). The increased plasma levels of nerve growth factor (NGF) in response to TPE treatment of MS patients suggest their antioxidant potential for endogenous Nrf2 enhancement via NGF/TrkA/PI3K/Akt and NGF/p75NTR/ceramide-PKCζ/CK2 signaling pathways.
Collapse
Affiliation(s)
- Dimitar Tonev
- Department of Anesthesiology and Intensive Care, University Hospital “Tzaritza Yoanna—ISUL”, Medical University of Sofia, 1527 Sofia, Bulgaria
| | - Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, 1113 Sofia, Bulgaria;
| |
Collapse
|
19
|
Chang XQ, Xu L, Zuo YX, Liu YG, Li J, Chi HT. Emerging trends and hotspots of Nuclear factor erythroid 2-related factor 2 in nervous system diseases. World J Clin Cases 2023; 11:7833-7851. [DOI: 10.12998/wjcc.v11.i32.7833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND The Nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor has attracted much attention in the context of neurological diseases. However, none of the studies have systematically clarified this field's research hotspots and evolution rules.
AIM To investigate the research hotspots, evolution patterns, and future research trends in this field in recent years.
METHODS We conducted a comprehensive literature search in the Web of Science Core Collection database using the following methods: (((((TS=(NFE2 L2)) OR TS=(Nfe2 L2 protein, mouse)) OR TS=(NF-E2-Related Factor 2)) OR TS=(NRF2)) OR TS=(NFE2L2)) OR TS=(Nuclear factor erythroid2-related factor 2) AND (((((((TS=(neurological diseases)) OR TS=(neurological disorder)) OR TS=(brain disorder)) OR TS=(brain injury)) OR TS=(central nervous system disease)) OR TS=(CNS disease)) OR TS=(central nervous system disorder)) OR TS=(CNS disorder) AND Language = English from 2010 to 2022. There are just two forms of literature available: Articles and reviews. Data were processed with the software Cite-Space (version 6.1. R6).
RESULTS We analyzed 1884 articles from 200 schools in 72 countries/regions. Since 2015, the number of publications in this field has increased rapidly. China has the largest number of publications, but the articles published in the United States have better centrality and H-index. Among the top ten authors with the most published papers, five of them are from China, and the author with the most published papers is Wang Handong. The institution with the most articles was Nanjing University. To their credit, three of the top 10 most cited articles were written by Chinese scholars. The keyword co-occurrence map showed that "oxidative stress", "NRF2", "activation", "expression" and "brain" were the five most frequently used keywords.
CONCLUSION Research on the role of NRF2 in neurological diseases continues unabated. Researchers in developed countries published more influential papers, while Chinese scholars provided the largest number of articles. There have been numerous studies on the mechanism of NRF2 transcription factor in neurological diseases. NRF2 is also emerging as a potentially effective target for the treatment of neurological diseases. However, despite decades of research, our knowledge of NRF2 transcription factor in nervous system diseases is still limited. Further studies are needed in the future.
Collapse
Affiliation(s)
- Xue-Qin Chang
- Department of Neurology, Xinhua Hospital Affiliated with Dalian University, Dalian 116011, Liaoning Province, China
| | - Ling Xu
- Department of Neurology, Xinhua Hospital Affiliated with Dalian University, Dalian 116011, Liaoning Province, China
| | - Yi-Xuan Zuo
- Department of Neurology, Xinhua Hospital Affiliated with Dalian University, Dalian 116011, Liaoning Province, China
| | - Yi-Guo Liu
- Department of Neurology, Xinhua Hospital Affiliated with Dalian University, Dalian 116011, Liaoning Province, China
| | - Jia Li
- Department of Neurology, Xinhua Hospital Affiliated with Dalian University, Dalian 116011, Liaoning Province, China
| | - Hai-Tao Chi
- Department of Neurology, Xinhua Hospital Affiliated with Dalian University, Dalian 116011, Liaoning Province, China
| |
Collapse
|
20
|
Al-Awadhi FH, Simon EF, Liu N, Ratnayake R, Paul VJ, Luesch H. Discovery and Anti-Inflammatory Activity of a Cyanobacterial Fatty Acid Targeting the Keap1/Nrf2 Pathway. Mar Drugs 2023; 21:553. [PMID: 37999377 PMCID: PMC10672429 DOI: 10.3390/md21110553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
The monounsaturated fatty acid 7(E)-9-keto-hexadec-7-enoic acid (1) and three structurally related analogues with different oxidation states and degrees of unsaturation (2-4) were discovered from a marine benthic cyanobacterial mat collected from Delta Shoal, Florida Keys. Their structures were elucidated using NMR spectroscopy and mass spectrometry. The structure of 1 contained an α,β-unsaturated carbonyl system, a key motif required for the activation of the Keap1/Nrf2-ARE pathway that is involved in the activation of antioxidant and phase II detoxification enzymes. Compounds 1-4 were screened in ARE-luciferase reporter gene assay using stably transfected HEK293 cells, and only 1 significantly induced Nrf2 activity at 32 and 10 µM, whereas 2-4 were inactive. As there is crosstalk between inflammation and oxidative stress, subsequent biological studies were focused on 1 to investigate its anti-inflammatory potential. Compound 1 induced Nqo1, a well-known target gene of Nrf2, and suppressed iNos transcript levels, which translated into reduced levels of nitric oxide in LPS-activated mouse macrophage RAW264.7 cells, a more relevant model for inflammation. RNA sequencing was performed to capture the effects of 1 on a global level and identified additional canonical pathways and upstream regulators involved in inflammation and immune response, particularly those related to multiple sclerosis. A targeted survey of marine cyanobacterial samples from other geographic locations, including Guam, suggested the widespread occurrence of 1. Furthermore, the previous isolation of 1 from marine diatoms and green algae implied a potentially important ecological role across marine algal eukaryotes and prokaryotes. The previous isolation from sea lettuce raises the possibility of dietary intervention to attenuate inflammation and related disease progression.
Collapse
Affiliation(s)
- Fatma H. Al-Awadhi
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA or (F.H.A.-A.); (E.F.S.); (N.L.); (R.R.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Emily F. Simon
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA or (F.H.A.-A.); (E.F.S.); (N.L.); (R.R.)
| | - Na Liu
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA or (F.H.A.-A.); (E.F.S.); (N.L.); (R.R.)
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Ranjala Ratnayake
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA or (F.H.A.-A.); (E.F.S.); (N.L.); (R.R.)
| | | | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA or (F.H.A.-A.); (E.F.S.); (N.L.); (R.R.)
| |
Collapse
|
21
|
Al-Kharashi LA, Al-Harbi NO, Ahmad SF, Attia SM, Algahtani MM, Ibrahim KE, Bakheet SA, Alanazi MM, Alqarni SA, Alsanea S, Nadeem A. Auranofin Modulates Thioredoxin Reductase/Nrf2 Signaling in Peripheral Immune Cells and the CNS in a Mouse Model of Relapsing-Remitting EAE. Biomedicines 2023; 11:2502. [PMID: 37760943 PMCID: PMC10526216 DOI: 10.3390/biomedicines11092502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Multiple sclerosis (MS) is one of the most prevalent chronic inflammatory autoimmune diseases. It causes the demyelination of neurons and the subsequent degeneration of the central nervous system (CNS). The infiltration of leukocytes of both myeloid and lymphoid origins from the systemic circulation into the CNS triggers autoimmune reactions through the release of multiple mediators. These mediators include oxidants, pro-inflammatory cytokines, and chemokines which ultimately cause the characteristic plaques observed in MS. Thioredoxin reductase (TrxR) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling plays a crucial role in the regulation of inflammation by modulating the transcription of antioxidants and the suppression of inflammatory cytokines. The gold compound auranofin (AFN) is known to activate Nrf2 through the inhibition of TrxR; however, the effects of this compound have not been explored in a mouse model of relapsing-remitting MS (RRMS). Therefore, this study explored the influence of AFN on clinical features, TrxR/Nrf2 signaling [heme oxygenase 1 (HO-1), superoxide dismutase 1 (SOD-1)] and oxidative/inflammatory mediators [IL-6, IL-17A, inducible nitric oxide synthase (iNOS), myeloperoxidase (MPO), nitrotyrosine] in peripheral immune cells and the CNS of mice with the RR type of EAE. Our results showed an increase in TrxR activity and a decrease in Nrf2 signaling in SJL/J mice with RR-EAE. The treatment with AFN caused the amelioration of the clinical features of RR-EAE through the elevation of Nrf2 signaling and the subsequent upregulation of the levels of antioxidants as well as the downregulation of oxidative/pro-inflammatory mediators in peripheral immune cells and the CNS. These data suggest that AFN may be beneficial in the treatment of RRMS.
Collapse
Affiliation(s)
- Layla A. Al-Kharashi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naif O. Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad M. Algahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid E. Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Alqarni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sary Alsanea
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
22
|
Chen Y, Liu Z, Gong Y. Neuron-immunity communication: mechanism of neuroprotective effects in EGCG. Crit Rev Food Sci Nutr 2023; 64:9333-9352. [PMID: 37216484 DOI: 10.1080/10408398.2023.2212069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Epigallocatechin gallate (EGCG), a naturally occurring active ingredient unique to tea, has been shown to have neuroprotective potential. There is growing evidence of its potential advantages in the prevention and treatment of neuroinflammation, neurodegenerative diseases, and neurological damage. Neuroimmune communication is an important physiological mechanism in neurological diseases, including immune cell activation and response, cytokine delivery. EGCG shows great neuroprotective potential by modulating signals related to autoimmune response and improving communication between the nervous system and the immune system, effectively reducing the inflammatory state and neurological function. During neuroimmune communication, EGCG promotes the secretion of neurotrophic factors into the repair of damaged neurons, improves intestinal microenvironmental homeostasis, and ameliorates pathological phenotypes through molecular and cellular mechanisms related to the brain-gut axis. Here, we discuss the molecular and cellular mechanisms of inflammatory signaling exchange involving neuroimmune communication. We further emphasize that the neuroprotective role of EGCG is dependent on the modulatory role between immunity and neurology in neurologically related diseases.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| | - Yushun Gong
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
| |
Collapse
|
23
|
Dong F, Yan W, Meng Q, Song X, Cheng B, Liu Y, Yao R. Ebselen alleviates white matter lesions and improves cognitive deficits by attenuating oxidative stress via Keap1/Nrf2 pathway in chronic cerebral hypoperfusion mice. Behav Brain Res 2023; 448:114444. [PMID: 37098387 DOI: 10.1016/j.bbr.2023.114444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/02/2023] [Accepted: 03/20/2023] [Indexed: 04/27/2023]
Abstract
Oxidative stress is crucial in cerebral white matter lesions (WMLs) induced by chronic cerebral hypoperfusion. Therefore, ameliorating oxidative damage is considered to be a beneficial strategy for the treatment of WMLs. Ebselen (EbSe), a small lipid organoselenium compound, its lipid peroxidation activity is mediated through the glutathione peroxidase-mimetic properties. This study aimed to investigate the role of EbSe in WMLs after bilateral common carotid artery stenosis (BCAS). The BCAS model can moderately reduce cerebral blood flow, and mimics white matter damage caused by chronic cerebral hypoperfusion or small vessel disease. Laser Speckle Contrast Imaging (LSCI) was used to monitor the cerebral blood flow of mice. The spatial learning and memory were tested by using the eight-arm maze. LFB staining was used to detect demyelination. The expression of MBP, GFAP and Iba1 was assayed by immunofluorescence. The demyelination was assessed by Transmission Electron Microscope (TEM). The activities of MDA, SOD and GSH-Px were detected by assay kits. The mRNA levels of SOD, GSH-Px and HO-1 was detected by realtime PCR. The activation of the Nrf2/ARE pathway and the expression of SOD, GSH-Px and HO-1was assessed by Western blot. EbSe ameliorated cognitive deficits and white matter lesions induced by bilateral common carotid artery stenosis (BCAS). The expression of GFAP and Iba1 was decreased in the corpus callosum of BCAS mice after EbSe treatment. Moreover, EbSe alleviated the level of MDA by elevating the expression and mRNA of SOD, GSH-Px and HO-1 in BCAS mice. Furthermore, EbSe promoted the dissociation of the Keap1/Nrf2 complex, resulting in the accumulation of Nrf2 in the nucleus. This study demonstrates a favorable effect of EbSe on cognitive impairment in a chronic cerebral hypoperfusion model, and the improvement of EbSe's antioxidant property is mediated by Keap1/Nrf2 pathway.
Collapse
Affiliation(s)
- Fuxing Dong
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China; Public Experimental Research Center, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Weixing Yan
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China
| | - Qiqi Meng
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China
| | - Xueli Song
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China
| | - Bing Cheng
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China
| | - Yaping Liu
- Laboratory of National Experimental Teaching and Demonstration Center of Basic Medicine, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China.
| |
Collapse
|
24
|
Devanand M, V N S, Madhu K. Signaling mechanisms involved in the regulation of remyelination in multiple sclerosis: a mini review. J Mol Med (Berl) 2023:10.1007/s00109-023-02312-9. [PMID: 37084092 DOI: 10.1007/s00109-023-02312-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 02/22/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
Multiple sclerosis is an autoimmune neurodegenerative disease of the CNS that causes progressive disabilities, owing to CNS axon degeneration as a late result of demyelination. In the search for the prevention of axonal loss, mitigating inflammatory attacks in the CNS and myelin restoration are two possible approaches. As a result, therapies that target diverse signaling pathways involved in neuroprotection and remyelination have the potential to overcome the challenges in the development of multiple sclerosis treatments. LINGO1 (Leucine rich repeat and Immunoglobulin domain containing, Nogo receptor- interaction protein), AKT/PIP3/mTOR, Notch, Wnt, RXR (Retinoid X receptor gamma), and Nrf2 (nuclear factor erythroid 2-related factor 2) signaling pathways are highlighted in this section. This article reviews the present knowledge regarding numerous signaling pathways and their functions in regulating remyelination in multiple sclerosis pathogenesis. These pathways are potential biomarkers and therapeutic targets in MS.
Collapse
Affiliation(s)
- Midhuna Devanand
- Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Saiprabha V N
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India.
| | - Krishnadas Madhu
- Department of Pharmacology, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India.
| |
Collapse
|
25
|
Zhang XM, Song Y, Zhu XY, Wang WJ, Fan XL, El-Aziz TMA. MITOCHONDRIA: The dual function of the transient receptor potential melastatin 2 channels from cytomembrane to mitochondria. Int J Biochem Cell Biol 2023; 157:106374. [PMID: 36708986 DOI: 10.1016/j.biocel.2023.106374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/20/2022] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Mitochondria are closely related to oxidative stress and play an important role in maintaining cell functional homeostasis and meeting cell energy demand. The transient receptor potential melastatin 2 (TRPM2) channel affects the occurrence and progression of diseases by regulating mitochondrial function. TRPM2 channel promotes Ca2+ influx to affect 18 kDa translocator protein (TSPO), mitochondrial membrane potential (MMP), reactive oxygen species (ROS), adenosine triphosphate (ATP) production, and mitochondrial autophagy. The mechanism of Ca2+ influx into the mitochondria by TRPM2 is abundant. Interestingly, the TRPM2 channel inhibits the production of mitochondrial ROS in cancer cells and promotes the production of mitochondrial ROS in normal cells, which induces cell death in normal cells but proliferation in cancer cells. TRPM2 can be a potential target for the treatment of various diseases due to its role as a molecular link between mitochondria and Ca2+ signals.
Collapse
Affiliation(s)
- Xiao-Min Zhang
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ying Song
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Xin-Yi Zhu
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Wen-Jun Wang
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xu-Li Fan
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Tarek Mohamed Abd El-Aziz
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA; Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt.
| |
Collapse
|
26
|
Pant A, Dasgupta D, Tripathi A, Pyaram K. Beyond Antioxidation: Keap1-Nrf2 in the Development and Effector Functions of Adaptive Immune Cells. Immunohorizons 2023; 7:288-298. [PMID: 37099275 PMCID: PMC10579846 DOI: 10.4049/immunohorizons.2200061] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/05/2023] [Indexed: 04/27/2023] Open
Abstract
Ubiquitously expressed in mammalian cells, the Kelch-like ECH-associated protein 1 (Keap1)-NF erythroid 2-related factor 2 (Nrf2) complex forms the evolutionarily conserved antioxidation system to tackle oxidative stress caused by reactive oxygen species. Reactive oxygen species, generated as byproducts of cellular metabolism, were identified as essential second messengers for T cell signaling, activation, and effector responses. Apart from its traditional role as an antioxidant, a growing body of evidence indicates that Nrf2, tightly regulated by Keap1, modulates immune responses and regulates cellular metabolism. Newer functions of Keap1 and Nrf2 in immune cell activation and function, as well as their role in inflammatory diseases such as sepsis, inflammatory bowel disease, and multiple sclerosis, are emerging. In this review, we highlight recent findings about the influence of Keap1 and Nrf2 in the development and effector functions of adaptive immune cells, that is, T cells and B cells, and discuss the knowledge gaps in our understanding. We also summarize the research potential and targetability of Nrf2 for treating immune pathologies.
Collapse
Affiliation(s)
- Anil Pant
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX
| | - Debolina Dasgupta
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS
| | - Aprajita Tripathi
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS
| | - Kalyani Pyaram
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
27
|
Feng Z, Huang Q, Zhang X, Xu P, Li S, Ma D, Meng Q. PPAR-γ Activation Alleviates Osteoarthritis through Both the Nrf2/NLRP3 and PGC-1α/Δψm Pathways by Inhibiting Pyroptosis. PPAR Res 2023; 2023:2523536. [PMID: 37020714 PMCID: PMC10070030 DOI: 10.1155/2023/2523536] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 03/30/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease with a gradually increasing morbidity in the aging and obese population. Emerging evidence has implicated pyroptosis in the etiology of OA and it may be recognized as a therapeutic target in OA. We have previously reported regarding another disease that peroxisome proliferator-activated receptor gamma (PPAR-γ) activation exerts an anti-inflammatory effect by suppressing the nucleotide-binding and oligomerization domain-like receptor containing protein (NLRP) 3 inflammasome. However, the relationship between PPAR-γ and NLRP3-mediated pyroptosis in OA cartilage and its underlying mechanisms is fully unclear. In this study, we found that the level of NLRP3-mediated pyroptosis in severe lateral femoral condyle cartilage wear in the knee of an OA patient was significantly higher than that in the mild lateral femoral condyle cartilage wear areas. Moreover, in lipopolysaccharide (LPS)/adenosine triphosphate (ATP)-induced primary chondrocytes and knee OA rat models, we demonstrated that activation of PPAR-γ by pioglitazone (Piog) attenuated LPS/ATP-induced chondrocyte pyroptosis and arthritis. These effects were partially counteracted by either blocking the nuclear factor erythroid-2-related factor (Nrf2)/NLRP3 or PGC1-α/Δψm signaling pathway. Simultaneous depression of these two signaling pathways can completely abrogate the protective effects of Piog on OA and chondrocytes. Taken together, Piog protects OA cartilage against pyroptosis-induced damage by simultaneously activating both the Nrf2/NLRP3 and PGC-1α/Δψm pathways, which enhances antioxidative and anti-inflammatory responses as well as mitochondrial biogenesis. Therefore, Piog may be a promising agent for human OA cartilage damage in future clinical treatments.
Collapse
|
28
|
Dadashkhan S, Mirmotalebisohi SA, Poursheykhi H, Sameni M, Ghani S, Abbasi M, Kalantari S, Zali H. Deciphering crucial genes in multiple sclerosis pathogenesis and drug repurposing: A systems biology approach. J Proteomics 2023; 280:104890. [PMID: 36966969 DOI: 10.1016/j.jprot.2023.104890] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/14/2023] [Accepted: 03/09/2023] [Indexed: 04/10/2023]
Abstract
This study employed systems biology and high-throughput technologies to analyze complex molecular components of MS pathophysiology, combining data from multiple omics sources to identify potential biomarkers and propose therapeutic targets and repurposed drugs for MS treatment. This study analyzed GEO microarray datasets and MS proteomics data using geWorkbench, CTD, and COREMINE to identify differentially expressed genes associated with MS disease. Protein-protein interaction networks were constructed using Cytoscape and its plugins, and functional enrichment analysis was performed to identify crucial molecules. A drug-gene interaction network was also created using DGIdb to propose medications. This study identified 592 differentially expressed genes (DEGs) associated with MS disease using GEO, proteomics, and text-mining datasets. 37 DEGs were found to be important by topographical network studies, and 6 were identified as the most significant for MS pathophysiology. Additionally, we proposed six drugs that target these key genes. Crucial molecules identified in this study were dysregulated in MS and likely play a key role in the disease mechanism, warranting further research. Additionally, we proposed repurposing certain FDA-approved drugs for MS treatment. Our in silico results were supported by previous experimental research on some of the target genes and drugs. SIGNIFICANCE: As the long-lasting investigations continue to discover new pathological territories in neurodegeneration, here we apply a systems biology approach to determine multiple sclerosis's molecular and pathophysiological origin and identify multiple sclerosis crucial genes that contribute to candidating new biomarkers and proposing new medications.
Collapse
Affiliation(s)
- Sadaf Dadashkhan
- Molecular Medicine Research Centre, Universitätsklinikum Jena, Jena, Germany; Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Amir Mirmotalebisohi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Poursheykhi
- Department of New Scientist, Faculty of Medical Sciences, Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Sameni
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Ghani
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sima Kalantari
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Chen Y, Wang Z, Song Y, Chen N, Guo J, Liu W, Guo K, Ling X, Zhang L. 4-octyl itaconate improves the viability of D66H cells by regulating the KEAP1-NRF2-GCLC/HO-1 pathway. J Cell Mol Med 2023; 27:962-975. [PMID: 36916028 PMCID: PMC10064036 DOI: 10.1111/jcmm.17708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
As a novel nuclear factor E2-related factor 2 (NRF2) activator, the itaconate has shown significant therapeutic potential for oxidative stress diseases. However, its role in Vohwinkel syndrome in relation to the gap junction protein beta 2 (GJB2) mutation is still unclear. This study aimed at investigating the effect of 4-octyl itaconate (OI) on HaCaT and D66H cells and clarify its potential mechanism in vitro. The optimal concentration and treatment time of OI on HaCaT cells and D66H cells were determined by CCK-8 and LDH experiments. The effect of OI on cell proliferation was detected by EdU staining and FACS analysis of PI, while the apoptosis was evaluated by TUNEL staining and FACS analysis of Annexin V. The ROS staining was performed, and the levels of SOD, MDA, GSH and GSH/GSSG were detected to evaluate the effect of OI on oxidative damage induced by D66H-type mutation. CO-IP, Western blot, immunofluorescence and qPCR analyses were employed to detect the activation of KEAP1-NRF2-GCLC/HO-1 pathway by OI. Finally, sh-NRF2 was used to confirm the activation of this pathway by OI. Results showed that OI could improve the cell viability decreased by GJB2 gene mutation by regulating the balance between cell growth and apoptosis induced by oxidative damage. Furthermore, this alleviation process was regulated by the KEAP1-NRF2-HO-1/GCLC pathway. In conclusion, OI could improve the viability of HaCaT and D66H cells via regulating the KEAP1-NRF2-GCLC/HO-1 pathway, which provided a wide spectrum of potential targets for effective therapeutic treatments of Vohwinkel syndrome in the clinic.
Collapse
Affiliation(s)
- Yanrui Chen
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Dermatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenying Wang
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Dermatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yali Song
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Dermatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Chen
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Dermatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Guo
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Dermatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenmin Liu
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Dermatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Keying Guo
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Dermatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xia Ling
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Dermatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li Zhang
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Dermatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
30
|
Transcutaneous Electrical Acupoint Stimulation Pretreatment Alleviates Cerebral Ischemia-Reperfusion Injury in Rats by Modulating Microglia Polarization and Neuroinflammation Through Nrf2/HO-1 Signaling Pathway. Neurochem Res 2023; 48:862-873. [PMID: 36357746 DOI: 10.1007/s11064-022-03797-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/29/2022] [Accepted: 10/15/2022] [Indexed: 11/12/2022]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) may lead to severe disability even death, but the strategies for prevention and treatment are still limited. Transcutaneous electrical acupoint stimulation (TEAS) has been reported to have a significant neuroprotection against CIRI, but the underlying mechanisms remain obscure. In this study, we established a focal cerebral ischemia-reperfusion model in male Sprague-Dawley rats. TEAS pretreatment was applied to Baihui (GV20), Sanyinjiao (SP6) and Zusanli (ST36) acupoints for 5 consecutive days before CIRI. After 24 h reperfusion, the brain damage was assessed using Zea-Longa score, brain water content (BWC) and infarct volume. Meanwhile, the number of activated microglia and the TNF-α were detected by immunofluorescence and ELISA respectively. Moreover, Western Blot and RT-qPCR were conducted to detect the proteins and mRNA expressions of Nrf2, HO-1, iNOS and Arg-1. We found that TEAS pretreatment significantly reduced Longa score, BWC, infarct volume and the number of activated microglia. Besides, TEAS pretreatment increased Nrf2 and HO-1 levels, while lowered the expression of TNF-α. Subsequently, we also discovered that the microglia M1 phenotype maker iNOS decreased and the M2 maker Arg-1 increased after TEAS pretreatment. However, these effects of TEAS pretreatment were markedly eliminated by brusatol. These findings clearly suggested that TEAS pretreatment exerted neuroprotection against CIRI, which might be related to modulating microglia polarization and neuroinflammation via Nrf2/HO-1 pathway.
Collapse
|
31
|
Michalickova D, Kramarikova I, Ozturk HK, Kucera T, Vacik T, Hrncir T, Kutinova Canova N, Sima M, Slanar O. Detection of galanin receptors in the spinal cord in experimental autoimmune encephalomyelitis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2023; 167:36-42. [PMID: 35147137 DOI: 10.5507/bp.2022.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/28/2022] [Indexed: 11/23/2022] Open
Abstract
AIMS The neuropeptide galanin is a widely distributed neurotransmitter/neuromodulator that regulates a variety of physiological processes and also participates in the regulation of stress responses. The aims of the present study were to investigate the expression of galanin receptors (GalR1, GalR2, GalR3) in the spinal cords in a murine model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE) using qPCR analysis and to determine GalR1 cellular localization (oligodendrocytes, microglia, astrocytes, ependymal cells, and endothelial cells in the capillaries) by immunohistochemistry. METHODS Twelve samples from the EAE group and 14 samples from the control group were analyzed. Spinal cords samples were obtained at the peak of the EAE disease. RESULTS The GalR1 mRNA level was significantly decreased in the EAE mice compared with the controls (P=0.016), whereas the mRNA levels of GalR2 and GalR3 were not significantly different for the EAE and the control mice. No significant correlations were found between the severity of the EAE disease and the mRNA levels of GalR1, GalR2 and GalR3. Immunochemical detection of the GalR1 revealed its expression in the ependymal and endothelial cells. Additionally, a weak GalR1 immunoreactivity was occasionally detected in the oligodendrocytes. CONCLUSION This study provides additional evidence of galanin involvement in EAE pathophysiology, but this has to be further investigated.
Collapse
Affiliation(s)
- Danica Michalickova
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Ivana Kramarikova
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Hatice Kubra Ozturk
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Tomas Kucera
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Tomas Vacik
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Tomas Hrncir
- Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Nikolina Kutinova Canova
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Martin Sima
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Ondrej Slanar
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| |
Collapse
|
32
|
Efforts Towards Repurposing of Antioxidant Drugs and Active Compounds for Multiple Sclerosis Control. Neurochem Res 2023; 48:725-744. [PMID: 36385213 DOI: 10.1007/s11064-022-03821-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/20/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
Multiple Sclerosis (MS) is a degenerative disorder of the central nervous system (CNS) with complicated etiology that has not been clearly analyzed until nowadays. Apart from anti-inflammatory, immune modulatory and symptomatic treatments, which are the main tools towards MS control, antioxidant molecules may be of interest. Oxidative stress is a key condition implicated in the disease progression. Reactive species production is associated with immune cell activation in the brain as well as in the periphery, accounting for demyelinating and axonal disruptive processes. This review refers to research articles, of the last decade. It describes biological evaluation of antioxidant drugs, and molecules with pharmaceutical interest, which are not designed for MS treatment, however they seem to have potency against MS. Their antioxidant effect is accompanied, in most of the cases, by anti-inflammatory, immune-modulatory and neuroprotective properties. Compounds with such characteristics are expected to be beneficial in the treatment of MS, alone or as complementary therapy, improving some clinical and mechanistic aspects of the disease. This review also summarizes some of the pathobiological characteristics of MS, as well as the role of oxidative stress and inflammation in the progression of neurodegeneration. It presents known drugs and bioactive compounds with antioxidant, and in many cases, pleiotropic activity that have been tested for their efficacy in MS progression or the experimentally induced MS. Antioxidants may offer reduction or prevention of the disease symptoms and progression. Thus, their results may, combined with already applied treatments, be beneficial for the development of new molecules or the repurposing of drugs and supplements that are used with other indication so far.
Collapse
|
33
|
Zhang W, Geng X, Dong Q, Li X, Ye P, Lin M, Xu B, Jiang H. Crosstalk between autophagy and the Keap1-Nrf2-ARE pathway regulates realgar-induced neurotoxicity. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115776. [PMID: 36191662 DOI: 10.1016/j.jep.2022.115776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Realgar, the main component of which is As2S2 or As4S4 (≥90%), is a traditional Chinese natural medicine that has been used to treat carbuncles, furuncles, snake and insect bites, abdominal pain caused by parasitic worms, and epilepsy in China for many years. Because realgar contains arsenic, chronic or excessive use of single-flavor realgar and realgar-containing Chinese patent medicine can lead to drug-induced arsenic poisoning, but the exact mechanism underlying its toxicity to the central nervous system is unclear. AIM OF THE STUDY The aim of this study was to clarify the mechanism of realgar-induced neurotoxicity and to investigate the effects of realgar on autophagy and the Keap1-Nrf2-ARE pathway. MATERIALS AND METHODS We used rats treated with the autophagy inhibitor 3-methyladenine (3-MA) or adeno-associated virus (AAV2/9-r-shRNA-Sqstm1, sh-p62) to investigate realgar-induced neurotoxicity and explore the specific relationship between autophagy and the Keap1-Nrf2-ARE pathway (the Nrf2 pathway) in the cerebral cortex. Molecular docking analysis was used to assess the interactions among the Nrf2, p62 and Keap1 proteins. RESULTS Our results showed that arsenic from realgar accumulated in the brain and blood to cause neuronal and synaptic damage, decrease exploratory behavior and spontaneous movement, and impair memory ability in rats. The mechanism may have involved realgar-mediated autophagy impairment and continuous activation of the Nrf2 pathway via the LC3-p62-Keap1-Nrf2 axis. However, because this activation of the Nrf2 pathway was not sufficient to counteract oxidative damage, apoptosis was aggravated in the cerebral cortex. CONCLUSIONS This study revealed that autophagy, the Nrf2 pathway, and apoptosis are involved in realgar-induced central nervous system toxicity and identified p62 as the hub of the LC3-p62-Keap1-Nrf2 axis in the regulation of autophagy, the Nrf2 pathway, and apoptosis.
Collapse
Affiliation(s)
- Weiwei Zhang
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, Liaoning, PR China.
| | - Xu Geng
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China.
| | - Qing Dong
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China.
| | - Xiuhan Li
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China.
| | - Ping Ye
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China.
| | - Mengyuan Lin
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China.
| | - Bin Xu
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China.
| | - Hong Jiang
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, Liaoning, PR China.
| |
Collapse
|
34
|
Xu Z, Lu S, Liu X, Tang L, Liu Z, Cui J, Wang W, Lu W, Huang J. Drug repurposing of ilepcimide that ameliorates experimental autoimmune encephalomyelitis via restricting inflammatory response and oxidative stress. Toxicol Appl Pharmacol 2023; 458:116328. [PMID: 36455640 DOI: 10.1016/j.taap.2022.116328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory and demyelinating disease of the central nervous system (CNS) that remains incurable. Herein, we demonstrated that ilepcimide (Antiepilepsirine), an antiepileptic drug used for decades, protects mice from experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Our studies found that ilepcimide treatment effectively ameliorates demyelination, blood-brain barrier leakage and infiltration of CD4+ and CD8+ T cells in EAE mice. On the one hand, ilepcimide can inhibit dihydroorotate dehydrogenase (DHODH), an important therapeutic target for MS. Computer molecular docking, thermal shift and fluorescence quenching assay demonstrated the directly interaction between ilepcimide and DHODH. Accordingly, ilepcimide observably repressed T cell proliferation in mixed lymphocyte reaction (MLR) assay and concanavalin A (Con-A) model in a DHODH-dependent manner. On the other hand, ilepcimide exhibited neuroprotective effect possibly through activating NRF2 antioxidant pathway in mouse neural crest-derived Neuro2a cells. Collectively, our findings have revealed the therapeutic potential of ilepcimide in EAE mouse model via restricting inflammatory response and oxidative stress, offering a potential opportunity for repurposing existing drug ilepcimide for MS therapy.
Collapse
Affiliation(s)
- Zhaomin Xu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Sisi Lu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xi Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Lu Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zehui Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jiayan Cui
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wanyan Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Jin Huang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
35
|
Bai X, Bian Z, Zhang M. Targeting the Nrf2 signaling pathway using phytochemical ingredients: A novel therapeutic road map to combat neurodegenerative diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154582. [PMID: 36610130 DOI: 10.1016/j.phymed.2022.154582] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Nuclear factor erythroid 2-related factor 2 (Nrf2) is a classical nuclear transcription factor that regulates the system's anti-oxidative stress response. The activation of Nrf2 induces the expression of antioxidant proteins and improves the system's anti-oxidative stress ability. Accumulating evidence suggests that Nrf2-centered signaling pathways may be a key pharmacological target for the treatment of neurodegenerative diseases (NDDs). However, phytochemicals as new therapeutic agents against NDDs have not been clearly delineated. PURPOSE To review the therapeutic effects of phytochemical ingredients on NDDs by activating Nrf2 and reducing oxidative stress injury. METHODS A comprehensive search of published articles was performed using various literature databases including PubMed, Google Scholar, and China National Knowledge Infrastructure. The search terms included "Nrf2", "phytochemical ingredients", "natural bioactive agents", "neurodegenerative diseases", "Antioxidant", "Alzheimer's disease", "Parkinson's disease", "Huntington's disease", "amyotrophic lateral sclerosis" "multiple sclerosis", "toxicity", and combinations of these keywords. A total of 769 preclinical studies were retrieved until August 2022, and we included 39 of these articless on phytochemistry, pharmacology, toxicology and other fields. RESULTS Numerous in vivo and in vitro studies showed that phytochemical ingredients could act as an Nrf2 activator in the treatment of NDDs through the antioxidant defense mechanism. These phytochemical ingredients, such as salidroside, naringenin, resveratrol, sesaminol, ellagic acid, ginsenoside Re, tanshinone I, sulforaphane, curcumin, naringin, tetramethylpyrazine, withametelin, magnolol, piperine, and myricetin, had the potential to improve Nrf2 signaling, thereby combatting NDDs. CONCLUSION As Nrf2 activators, phytochemical ingredients may provide a novel potential strategy for the treatment of NDDs. Here, we reviewed the interaction between phytochemical ingredients, Nrf2, and its antioxidant damaging pathway in NDDs and explored the advantages of phytochemical ingredients in anti-oxidative stress, which provides a reliable basis for improving the treatment of NDDs. However, further clinical trials are needed to determine the safety and efficacy of Nrf2 activators for NDDs.
Collapse
Affiliation(s)
- Xue Bai
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, Liaoning, PR China
| | - Zhigang Bian
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, Liaoning, PR China
| | - Meng Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, Liaoning, PR China.
| |
Collapse
|
36
|
Therapeutic Effects of Green Tea Polyphenol (‒)-Epigallocatechin-3-Gallate (EGCG) in Relation to Molecular Pathways Controlling Inflammation, Oxidative Stress, and Apoptosis. Int J Mol Sci 2022; 24:ijms24010340. [PMID: 36613784 PMCID: PMC9820274 DOI: 10.3390/ijms24010340] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
(‒)-Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea. Thanks to multiple interactions with cell surface receptors, intracellular signaling pathways, and nuclear transcription factors, EGCG possesses a wide variety of anti-inflammatory, antioxidant, antifibrotic, anti-remodelation, and tissue-protective properties which may be useful in the treatment of various diseases, particularly in cancer, and neurological, cardiovascular, respiratory, and metabolic disorders. This article reviews current information on the biological effects of EGCG in the above-mentioned disorders in relation to molecular pathways controlling inflammation, oxidative stress, and cell apoptosis.
Collapse
|
37
|
Dehydroeburicoic Acid, a Dual Inhibitor against Oxidative Stress in Alcoholic Liver Disease. Pharmaceuticals (Basel) 2022; 16:ph16010014. [PMID: 36678511 PMCID: PMC9866905 DOI: 10.3390/ph16010014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022] Open
Abstract
Alcoholic liver disease (ALD) is a complicated disease which can lead to hepatocellular carcinoma; however, there is a lack of satisfactory therapeutics. Dehydroeburicoic acid (DEA) (1), a triterpenoid isolated from Antrodia cinnamomea, has been reported to act against ALD, but its mechanisms of action are still not clear. In this study, we report for the first time the use of DEA (1) as a dual inhibitor of the Keap1-Nrf2 protein-protein interaction (PPI) and GSK3β in an in vitro ALD cell model. DEA (1) engages Keap1 to disrupt the Keap1-Nrf2 PPI and inhibits GSK3β to restore Nrf2 activity in a Keap1-independent fashion. DEA (1) promotes Nrf2 nuclear translocation to activate downstream antioxidant genes. Importantly, DEA (1) restores the mitochondrial dysfunction induced by ethanol and generates antioxidant activity in the ALD cell model with minimal toxicity. We anticipate that DEA (1) could be a potential scaffold for the further development of clinical agents for treating ALD.
Collapse
|
38
|
Nrf2 Regulates Oxidative Stress and Its Role in Cerebral Ischemic Stroke. Antioxidants (Basel) 2022; 11:antiox11122377. [PMID: 36552584 PMCID: PMC9774301 DOI: 10.3390/antiox11122377] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Cerebral ischemic stroke is characterized by acute ischemia in a certain part of the brain, which leads to brain cells necrosis, apoptosis, ferroptosis, pyroptosis, etc. At present, there are limited effective clinical treatments for cerebral ischemic stroke, and the recovery of cerebral blood circulation will lead to cerebral ischemia-reperfusion injury (CIRI). Cerebral ischemic stroke involves many pathological processes such as oxidative stress, inflammation, and mitochondrial dysfunction. Nuclear factor erythroid 2-related factor 2 (Nrf2), as one of the most critical antioxidant transcription factors in cells, can coordinate various cytoprotective factors to inhibit oxidative stress. Targeting Nrf2 is considered as a potential strategy to prevent and treat cerebral ischemia injury. During cerebral ischemia, Nrf2 participates in signaling pathways such as Keap1, PI3K/AKT, MAPK, NF-κB, and HO-1, and then alleviates cerebral ischemia injury or CIRI by inhibiting oxidative stress, anti-inflammation, maintaining mitochondrial homeostasis, protecting the blood-brain barrier, and inhibiting ferroptosis. In this review, we have discussed the structure of Nrf2, the mechanisms of Nrf2 in cerebral ischemic stroke, the related research on the treatment of cerebral ischemia through the Nrf2 signaling pathway in recent years, and expounded the important role and future potential of the Nrf2 pathway in cerebral ischemic stroke.
Collapse
|
39
|
Yue M, Wei J, Chen W, Hong D, Chen T, Fang X. Neurotrophic Role of the Next-Generation Probiotic Strain L. lactis MG1363-pMG36e-GLP-1 on Parkinson's Disease via Inhibiting Ferroptosis. Nutrients 2022; 14:nu14224886. [PMID: 36432569 PMCID: PMC9698534 DOI: 10.3390/nu14224886] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/01/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease (NDD) with high and ongoing morbidity, bringing heavy burdens to PD patients seriously. Finding neurotrophic drugs still remains vital due to the limited drug spectrum available currently. Substantial evidence suggests that glucagon-like peptide 1 (GLP-1) exerts neuroprotection on PD, yet the short-lived biological activity markedly hindered its application. Herein, we investigated the neurotrophic role of the next-generation probiotic strain L. lactis MG1363-pMG36e-GLP-1 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice and elucidated the mechanisms. Our data suggested that L. lactis MG1363-pMG36e-GLP-1 markedly enhanced motor deficits induced by MPTP via rescuing dopaminergic (DAergic) neurodegeneration in substantia nigra (SN). We found that L. lactis MG1363-pMG36e-GLP-1 exerts neurotrophic effects via activating the Keap1/Nrf2/GPX4 signalling pathway to down-regulate ACSL4 and up-regulate FSP1 to suppress ferroptosis. Additionally, the decreased oxidative stress levels via suppressing generations of ROS and MDA supported our findings. Lastly, we identified that the L. lactis MG1363-pMG36e-GLP-1 administration reversed dysbiosis in PD mice by increasing Akkermansia, Oscillospira, and Sutterella at the genus level. These results indicated that the neurotrophic effects of the next-generation probiotics L. lactis MG1363-pMG36e-GLP-1 against MPTP-induced Parkinsonism are mediated by modulating oxidative stress, inhibiting ferroptosis, and redressing dysbiosis.
Collapse
Affiliation(s)
- Mengyun Yue
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Wenjie Chen
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- Nanchang Joint Programme in Biomedical Sciences, School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
- Correspondence: (T.C.); (X.F.)
| | - Xin Fang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Correspondence: (T.C.); (X.F.)
| |
Collapse
|
40
|
Anticarcinogenic Effects of Isothiocyanates on Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms232213834. [PMID: 36430307 PMCID: PMC9693344 DOI: 10.3390/ijms232213834] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, accounting for about 90% of cases. Sorafenib, lenvatinib, and the combination of atezolizumab and bevacizumab are considered first-line treatments for advanced HCC. However, clinical application of these drugs has also caused some adverse reactions such as hypertension, elevated aspartate aminotransferases, and proteinuria. At present, natural products and their derivatives have drawn more and more attention due to less side effects as cancer treatments. Isothiocyanates (ITCs) are one type of hydrolysis products from glucosinolates (GLSs), secondary plant metabolites found exclusively in cruciferous vegetables. Accumulating evidence from encouraging in vitro and in vivo animal models has demonstrated that ITCs have multiple biological activities, especially their potentially health-promoting activities (antibacterial, antioxidant, and anticarcinogenic effects). In this review, we aim to comprehensively summarize the chemopreventive, anticancer, and chemosensitizative effects of ITCs on HCC, and explain the underlying molecular mechanisms.
Collapse
|
41
|
Upadhayay S, Mehan S, Prajapati A, Sethi P, Suri M, Zawawi A, Almashjary MN, Tabrez S. Nrf2/HO-1 Signaling Stimulation through Acetyl-11-Keto-Beta-Boswellic Acid (AKBA) Provides Neuroprotection in Ethidium Bromide-Induced Experimental Model of Multiple Sclerosis. Genes (Basel) 2022; 13:genes13081324. [PMID: 35893061 PMCID: PMC9331916 DOI: 10.3390/genes13081324] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis (MS) is a severe immune-mediated neurological disease characterized by neuroinflammation, demyelination, and axonal degeneration in the central nervous system (CNS). This is frequently linked to motor abnormalities and cognitive impairments. The pathophysiological hallmarks of MS include inflammatory demyelination, axonal injury, white matter degeneration, and the development of CNS lesions that result in severe neuronal degeneration. Several studies suggested downregulation of nuclear factor erythroid-2-related factor-2 (Nrf2)/Heme oxygenase-1 (HO-1) signaling is a causative factor for MS pathogenesis. Acetyl-11-keto-β-boswellic acid (AKBA) is an active pentacyclictriterpenoid obtained from Boswellia serrata, possessing antioxidant and anti-inflammatory properties. The present study explores the protective potential of AKBA on behavioral, molecular, neurochemical, and gross pathological abnormalitiesandhistopathological alterations by H&E and LFB staining techniques in an experimental model of multiple sclerosis, emphasizing the increase inNrf2/HO-1 levels in the brain. Moreover, we also examine the effect of AKBA on the intensity of myelin basic protein (MBP) in CSF and rat brain homogenate. Specific apoptotic markers (Bcl-2, Bax, andcaspase-3) were also estimated in rat brain homogenate. Neuro behavioralabnormalities in rats were examined using an actophotometer, rotarod test, beam crossing task (BCT),and Morris water maze (MWM). AKBA 50 mg/kg and 100 mg/kg were given orally from day 8 to 35 to alleviate MS symptoms in the EB-injected rats. Furthermore, cellular, molecular, neurotransmitter, neuroinflammatory cytokine, and oxidative stress markers in rat whole brain homogenate, blood plasma, and cerebral spinal fluid were investigated. This study shows that AKBA upregulates the level of antioxidant proteins such as Nrf2 and HO-1 in the rat brain. AKBA restores altered neurochemical levels, potentially preventing gross pathological abnormalities during MS progression.
Collapse
Affiliation(s)
- Shubham Upadhayay
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (S.U.); (A.P.); (P.S.); (M.S.)
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (S.U.); (A.P.); (P.S.); (M.S.)
- Correspondence: (S.M.); (S.T.)
| | - Aradhana Prajapati
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (S.U.); (A.P.); (P.S.); (M.S.)
| | - Pranshul Sethi
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (S.U.); (A.P.); (P.S.); (M.S.)
| | - Manisha Suri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (S.U.); (A.P.); (P.S.); (M.S.)
| | - Ayat Zawawi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.Z.); (M.N.A.)
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Majed N. Almashjary
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.Z.); (M.N.A.)
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Animal House Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shams Tabrez
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.Z.); (M.N.A.)
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (S.M.); (S.T.)
| |
Collapse
|
42
|
Neurodegeneration in Multiple Sclerosis: The Role of Nrf2-Dependent Pathways. Antioxidants (Basel) 2022; 11:antiox11061146. [PMID: 35740042 PMCID: PMC9219619 DOI: 10.3390/antiox11061146] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
Multiple sclerosis (MS) encompasses a chronic, irreversible, and predominantly immune-mediated disease of the central nervous system that leads to axonal degeneration, neuronal death, and several neurological symptoms. Although various immune therapies have reduced relapse rates and the severity of symptoms in relapsing-remitting MS, there is still no cure for this devastating disease. In this brief review, we discuss the role of mitochondria dysfunction in the progression of MS, focused on the possible role of Nrf2 signaling in orchestrating the impairment of critical cellular and molecular aspects such as reactive oxygen species (ROS) management, under neuroinflammation and neurodegeneration in MS. In this scenario, we propose a new potential downstream signaling of Nrf2 pathway, namely the opening of hemichannels and pannexons. These large-pore channels are known to modulate glial/neuronal function and ROS production as they are permeable to extracellular Ca2+ and release potentially harmful transmitters to the synaptic cleft. In this way, the Nrf2 dysfunction impairs not only the bioenergetics and metabolic properties of glial cells but also the proper antioxidant defense and energy supply that they provide to neurons.
Collapse
|
43
|
Melatonin and multiple sclerosis: antioxidant, anti-inflammatory and immunomodulator mechanism of action. Inflammopharmacology 2022; 30:1569-1596. [PMID: 35665873 PMCID: PMC9167428 DOI: 10.1007/s10787-022-01011-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Melatonin is an indole hormone secreted primarily by the pineal gland that showing anti-oxidant, anti-inflammatory and anti-apoptotic capacity. It can play an important role in the pathophysiological mechanisms of various diseases. In this regard, different studies have shown that there is a relationship between Melatonin and Multiple Sclerosis (MS). MS is a chronic immune-mediated disease of the Central Nervous System. AIM The objective of this review was to evaluate the mechanisms of action of melatonin on oxidative stress, inflammation and intestinal dysbiosis caused by MS, as well as its interaction with different hormones and factors that can influence the pathophysiology of the disease. RESULTS Melatonin causes a significant increase in the levels of catalase, superoxide dismutase, glutathione peroxidase, glutathione and can counteract and inhibit the effects of the NLRP3 inflammasome, which would also be beneficial during SARS-CoV-2 infection. In addition, melatonin increases antimicrobial peptides, especially Reg3β, which could be useful in controlling the microbiota. CONCLUSION Melatonin could exert a beneficial effect in people suffering from MS, running as a promising candidate for the treatment of this disease. However, more research in human is needed to help understand the possible interaction between melatonin and certain sex hormones, such as estrogens, to know the potential therapeutic efficacy in both men and women.
Collapse
|
44
|
Acetyl-11-keto-β-boswellic acid improves clinical symptoms through modulation of Nrf2 and NF-κB pathways in SJL/J mouse model of experimental autoimmune encephalomyelitis. Int Immunopharmacol 2022; 107:108703. [DOI: 10.1016/j.intimp.2022.108703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 12/30/2022]
|
45
|
Wang S, Zeng T, Zhao S, Zhu Y, Feng C, Zhan J, Li S, Ho CT, Gosslau A. Multifunctional health-promoting effects of oolong tea and its products. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
46
|
Shrestha D, Massey N, Bhat SM, Jelesijević T, Sahin O, Zhang Q, Bailey KL, Poole JA, Charavaryamath C. Nrf2 Activation Protects Against Organic Dust and Hydrogen Sulfide Exposure Induced Epithelial Barrier Loss and K. pneumoniae Invasion. Front Cell Infect Microbiol 2022; 12:848773. [PMID: 35521223 PMCID: PMC9062039 DOI: 10.3389/fcimb.2022.848773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022] Open
Abstract
Agriculture workers report various respiratory symptoms owing to occupational exposure to organic dust (OD) and various gases. Previously, we demonstrated that pre-exposure to hydrogen sulfide (H2S) alters the host response to OD and induces oxidative stress. Nrf2 is a master-regulator of host antioxidant response and exposures to toxicants is known to reduce Nrf2 activity. The OD exposure-induced lung inflammation is known to increase susceptibility to a secondary microbial infection. We tested the hypothesis that repeated exposure to OD or H2S leads to loss of Nrf2, loss of epithelial cell integrity and that activation of Nrf2 rescues this epithelial barrier dysfunction. Primary normal human bronchial epithelial (NHBE) cells or mouse precision cut-lung slices (PCLS) were treated with media, swine confinement facility organic dust extract (ODE) or H2S or ODE+H2S for one or five days. Cells were also pretreated with vehicle control (DMSO) or RTA-408, a Nrf2 activator. Acute exposure to H2S and ODE+H2S altered the cell morphology, decreased the viability as per the MTT assay, and reduced the Nrf2 expression as well as increased the keap1 levels in NHBE cells. Repeated exposure to ODE or H2S or ODE+H2S induced oxidative stress and cytokine production, decreased tight junction protein occludin and cytoskeletal protein ezrin expression, disrupted epithelial integrity and resulted in increased Klebsiella pneumoniae invasion. RTA-408 (pharmacological activator of Nrf2) activated Nrf2 by decreasing keap1 levels and reduced ODE+H2S-induced changes including reversing loss of barrier integrity, inflammatory cytokine production and microbial invasion in PCLS but not in NHBE cell model. We conclude that Nrf2 activation has a partial protective function against ODE and H2S.
Collapse
Affiliation(s)
- Denusha Shrestha
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Nyzil Massey
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Sanjana Mahadev Bhat
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
- Immunobiology Interdepartmental Graduate Program, Iowa State University, Ames, IA, United States
| | - Tomislav Jelesijević
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Qijing Zhang
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Kristina L. Bailey
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jill A. Poole
- Department of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Chandrashekhar Charavaryamath
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
- *Correspondence: Chandrashekhar Charavaryamath,
| |
Collapse
|
47
|
Advances in the activity evaluation and cellular regulation pathways of food-derived antioxidant peptides. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Michaličková D, Kübra Öztürk H, Hroudová J, Ľupták M, Kučera T, Hrnčíř T, Kutinová Canová N, Šíma M, Slanař O. Edaravone attenuates disease severity of experimental auto-immune encephalomyelitis and increases gene expression of Nrf2 and HO-1. Physiol Res 2022; 71:147-157. [PMID: 35043649 DOI: 10.33549/physiolres.934800] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to evaluate therapeutic potential of edaravone in the murine model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE) and to expand the knowledge of its mechanism of action. Edaravone (6 mg/kg/day) was administered intraperitoneally from the onset of clinical symptoms until the end of the experiment (28 days). Disease progression was assessed daily using severity scores. At the peak of the disease, histological analyses, markers of oxidative stress (OS) and parameters of mitochondrial function in the brains and spinal cords (SC) of mice were determined. Gene expression of inducible nitric oxide synthase (iNOS), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1alpha was determined at the end of the experiment. Edaravone treatment ameliorated EAE severity and attenuated inflammation in the SC of the EAE mice, as verified by histological analysis. Moreover, edaravone treatment decreased OS, increased the gene expression of the Nrf2 and HO-1, increased the activity of the mitochondrial complex II/III, reduced the activity of the mitochondrial complex IV and preserved ATP production in the SC of the EAE mice. In conclusion, findings in this study provide additional evidence of edaravone potential for the treatment of multiple sclerosis and expand our knowledge of the mechanism of action of edaravone in the EAE model.
Collapse
Affiliation(s)
- Danica Michaličková
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wang J, Yang J, Cao M, Zhao Z, Cao B, Yu S. The potential roles of Nrf2/Keap1 signaling in anticancer drug interactions. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100028. [PMID: 34909662 PMCID: PMC8663926 DOI: 10.1016/j.crphar.2021.100028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2), together with its suppressive binding partner Kelch-like ECH-associated protein 1 (Keap1), regulates cellular antioxidant response and drug metabolism. The roles of Nrf2/Keap1 signaling in the pathology of many diseases have been extensively investigated, and small molecules targeting Nrf2/Keap1 signaling have been developed to prevent or treat diseases such as multiple sclerosis, chronic kidney disease and cancer. Notably, Nrf2 plays dual roles in cancer development and treatment. Activation of Nrf2/Keap1 signaling in cancer cells has been reported to promote cancer progression and result in therapy resistance. Since cancer patients are often suffering comorbidities of other chronic diseases, anticancer drugs could be co-administrated with other drugs and herbs. Nrf2/Keap1 signaling modulators, especially activators, are common in drugs, herbs and dietary ingredients, even they are developed for other targets. Therefore, drug-drug or herb-drug interactions due to modulation of Nrf2/Keap1 signaling should be considered in cancer therapies. Here we briefly summarize basic biochemistry and physiology functions of Nrf2/Keap1 signaling, Nrf2/Keap1 signaling modulators that cancer patients could be exposed to, and anticancer drugs that are sensitive to Nrf2/Keap1 signaling, aiming to call attention to the potential drug-drug or herb-drug interactions between anticancer drugs and these Nrf2/Keap1 signaling modulators.
Collapse
Affiliation(s)
- Jingya Wang
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, 100191, PR China
| | - Jin Yang
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, 100191, PR China
| | - Mingnan Cao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Baoshan Cao
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, 100191, China
| | - Siwang Yu
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, 100191, PR China
| |
Collapse
|
50
|
Khan A, Shal B, Khan AU, Bibi T, Islam SU, Baig MW, Haq IU, Ali H, Ahmad S, Khan S. Withametelin, a novel phytosterol, alleviates neurological symptoms in EAE mouse model of multiple sclerosis via modulation of Nrf2/HO-1 and TLR4/NF-κB signaling. Neurochem Int 2021; 151:105211. [PMID: 34688804 DOI: 10.1016/j.neuint.2021.105211] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/11/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023]
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory demyelinating disorder of the central nervous system (CNS) that remains incurable. Withametelin (WMT), a phytosterol, showed diverse biological activities isolated from the leaves of Datura innoxa. In the present study, we used an in vitro model of HT22 and BV-2 cell lines and an in vivo murine model of MS, experimental autoimmune encephalomyelitis (EAE), to explore the antioxidant and anti neuroinflammatory potential of WMT. The results showed that pretreatment with WMT markedly inhibited H2O2-induced cytotoxicity and oxidative stress in a dose-dependent manner. Correspondingly, WMT post-immunization treatment significantly attenuated EAE-induced clinical score, weight loss, neuropathic pain behaviors, and motor dysfunction. It markedly lowers EAE-induced elevated circulating leucocytes, spinal deformity, and splenomegaly. It strikingly inhibited the Evans blue and FITC extravasation in the brain. It remarkably reversed the EAE-induced histopathological alteration of the brain, spinal cord, eye, and optic nerve. It significantly intensified the antioxidant defense mechanism by improving the expression level of nuclear factor-erythroid-related factor-2 (Nrf2), heme-oxygenase-1 (HO-1) but reducing the expression level of the Kelch-like-ECH-associated-protein-1 (keap-1), inducible-nitric-oxide-synthase (iNOS) in the CNS. Likewise, it markedly suppressed neuroinflammation by reducing the expression level of toll-like-receptor 4 (TLR4), nuclear-factor-kappa-B (NF-κB), activator-protein-1 (AP-1) but increased the expression level IkB-α in the CNS. Furthermore, molecular dynamics simulations and MMPBSA binding free energies were determined to validate the dynamic stability of complexes and shed light on the atomic level intermolecular interaction energies. Taken together, this study showed that WMT has significant neuroprotective potential in EAE via modulation of Nrf2 mediated-oxidative stress and NF-κB mediated inflammation.
Collapse
Affiliation(s)
- Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Tehmina Bibi
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, South Korea.
| | - Muhammad Waleed Baig
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan.
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|