1
|
Gu HY, Liu N. Mechanism of effect and therapeutic potential of NLRP3 inflammasome in spinal cord injury. Exp Neurol 2025; 384:115059. [PMID: 39571746 DOI: 10.1016/j.expneurol.2024.115059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Spinal cord injury (SCI) is a serious and disabling central nervous system injury that can trigger various neuropathological conditions, resulting in neuronal damage and release of various pro-inflammatory mediators, leading to neurological dysfunction. Currently, surgical decompression, drugs and rehabilitation are primarily used to relieve symptoms and improve endogenous repair mechanisms; however, they cannot directly promote nerve regeneration and functional recovery. SCI can be divided into primary and secondary injuries. Secondary injury is key to determining the severity of injury, whereas inflammation and cell death are important pathological mechanisms in the process of secondary SCI. The activation of the inflammasome complex is thought to be a necessary step in neuro-inflammation and a key trigger for neuronal death. The NLRP3 inflammasome is a cytoplasmic multiprotein complex that is considered an important factor in the development of SCI. Once the NLRP3 inflammasome is activated after SCI, NLRP3 nucleates the assembly of an inflammasome, leading to caspase 1-mediated proteolytic activation of the interleukin-1β (IL-1β) family of cytokines, and induces an inflammatory, pyroptotic cell death. Inhibition of inflammasomes can effectively inhibit inflammation and cell death in the body and promote the recovery of nerve function after SCI. Therefore, inhibition of NLRP3 inflammasome activation may be a promising approach for the treatment of SCI. In this review, we describe the current understanding of NLRP3 inflammasome activation in SCI pathogenesis and its subsequent impact on SCI and summarize drugs and other potential inhibitors based on NLRP3 inflammasome regulation. The objective of this study was to emphasize the role of the NLRP3 inflammasome in SCI, and provide a new therapeutic strategy and theoretical basis for targeting the NLRP3 inflammasome as a therapy for SCI.
Collapse
Affiliation(s)
- Hou-Yun Gu
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital), Southern Medical University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| | - Ning Liu
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital), Southern Medical University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
2
|
Zhang Y, Wang Y, Cheng X, Guo H, Ma D, Song Y, Zhang Y, Wang H, Du H. Cardioprotective Effects of Phlorizin on Hyperlipidemia-induced Myocardial Injury: Involvement of Suppression in Pyroptosis via Regulating HK1/NLRP3/Caspase-1 Signaling Pathway. Appl Biochem Biotechnol 2025; 197:754-770. [PMID: 39223343 DOI: 10.1007/s12010-024-05056-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Hyperlipidemia (HLP) is a prevalent and intricate condition that plays a pivotal role in impairing heart function. The primary objective of this study was to assess the lipid-lowering and cardioprotective properties of phlorizin (PHZ) and to investigate its potential molecular mechanisms in rats. In this investigation, Sprague-Dawley rats were subjected to a high-fat diet for a period of 28 days to induce an HLP model. Subsequently, the rats received oral doses of PHZ or metformin from day 14 to day 28. We assessed various parameters using commercially available kits, including serum lipid deposition, myocardial injury biomarkers, oxidative stress markers, and inflammatory cytokine levels. We also employed electron microscopy to examine myocardial ultrastructural changes and conducted Western blot analyses to assess apoptosis factors and pyroptosis markers. Comparing the PHZ group with the model group, we observed significant improvements in blood lipid deposition and heart injury biomarkers. Furthermore, PHZ demonstrated a clear reduction in myocardial tissue oxidative stress and inflammatory factors, as well as a suppression of cell apoptosis. Subsequent investigations indicated that PHZ treatment led to a decreased inflammatory response and lowered levels of hexokinase 1 (HK1), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and Caspase-1. In summary, PHZ proved to be an effective remedy for alleviating HLP-induced cardiac damage by reducing blood lipid levels, mitigating oxidative stress, curbing inflammation, and suppressing pyroptosis. The inhibition of pyroptosis by PHZ appears to be linked to the regulation of the HK1/NLRP3/Caspase-1 signaling pathway.
Collapse
Affiliation(s)
- Yuling Zhang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Yanan Wang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Xizhen Cheng
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Haochuan Guo
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Donglai Ma
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
- Hebei Technology Innovation Center of TCM Formula Preparations, Shijiazhuang, 050200, Hebei, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050091, Hebei, China
| | - Yongxing Song
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050091, Hebei, China
| | - Yajing Zhang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China.
- Hebei Technology Innovation Center of TCM Formula Preparations, Shijiazhuang, 050200, Hebei, China.
| | - Hongfang Wang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China.
- Hebei Technology Innovation Center of TCM Formula Preparations, Shijiazhuang, 050200, Hebei, China.
| | - Huiru Du
- Hebei Technology Innovation Center of TCM Formula Preparations, Shijiazhuang, 050200, Hebei, China.
- Department of Pharmaceutical Engineering, Hebei Chemical & Pharmaceutical College, Shijiazhuang, 050026, Hebei, China.
| |
Collapse
|
3
|
Sun Z, Zhang X, Li M, Yang Q, Xiao X, Chen X, Liang W. Targeting ferroptosis in treating traumatic brain injury: Harnessing the power of traditional Chinese medicine. Biomed Pharmacother 2024; 180:117555. [PMID: 39413616 DOI: 10.1016/j.biopha.2024.117555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Traumatic brain injury (TBI) exhibits high prevalence and mortality, but current treatments remain suboptimal. Traditional Chinese medicine (TCM) has long been effectively used for TBI intervention. Moreover, the recently discovered iron-dependent cell death pathway, known as ferroptosis, characterized by lipid peroxidation, as a key target in TCM-based treatments for TBI. This review provides a comprehensive overview of the latest advancements in TCM strategies targeting ferroptosis in TBI therapy, covering natural product monomers, classic formulas, and acupuncture/moxibustion. The review also addresses current challenges and outlines future research directions to further advance the development and application of TBI management strategies.
Collapse
Affiliation(s)
- Zhongjie Sun
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiao Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, China
| | - Manrui Li
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Qiuyun Yang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiao Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and the Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China.
| | - Xiameng Chen
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Wang G, Zhu Y, Liu Y, Yang M, Zeng L. Mesenchymal Stem Cells-Derived Exosomal miR-223-3p Alleviates Ocular Surface Damage and Inflammation by Downregulating Fbxw7 in Dry Eye Models. Invest Ophthalmol Vis Sci 2024; 65:1. [PMID: 39352716 PMCID: PMC11451833 DOI: 10.1167/iovs.65.12.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Purpose Our previous study indicated that exosomes derived from mouse adipose-derived mesenchymal stem cells (mADSC-Exos) alleviated the benzalkonium chloride (BAC)-induced mouse dry eye model. However, the specific active molecules in mADSC-Exos that contribute to anti-dry eye therapy remain unidentified. In this study, we aimed to investigate the efficacy and mechanisms of miR-223-3p derived from mADSC-Exos in dry eye models. Methods Enzyme-linked immunosorbent assay (ELISA) experiments were conducted to determine miR-223-3p derived from mADSC-Exos that exerted anti-inflammatory effects on hyperosmolarity-induced mouse corneal epithelial cells (MCECs). The therapeutic efficacy of miR-223-3p was evaluated in mice with dry eye induced by either BAC or scopolamine (Scop). Mice were randomly assigned to 5 groups: sham, model, miR-223-3p overexpression, miR-223-3p knockdown, and 0.1% pranoprofen (positive group). Post-treatment, the severity of dry eye symptoms, and the pro-inflammatory cytokine levels were assessed. The effect of miR-223-3p on silencing the target gene was verified using ELISA and dual luciferase reporter assays. Results The mADSC-Exos that knocked out miR-223-3p did not reduce interleukin (IL)-6 content. Supplementing with miR-223-3p could restore the reduction of IL-6. The miR-223-3p effectively ameliorated ocular surface damage and decreased pro-inflammatory cytokines or chemokines in both BAC- and Scop-induced mouse dry eye models. Furthermore, miR-223-3p inhibited cell apoptosis. F-box and WD repeat domain-containing 7 (Fbxw7) was the potential direct target of miR-223-3p. The miR-223-3p suppressed the 3'-untranslated region of Fbxw7. The Fbxw7 knockdown suppressed hyperosmolarity-induced inflammation in MCECs. Conclusions The mADSC-derived exosomal miR-223-3p mitigates ocular surface damage and inflammation, indicating its potential as a promising treatment option for dry eye.
Collapse
Affiliation(s)
- Guifang Wang
- Ophthalmology Department, Loudi Central Hospital, Loudi, Hunan, China
| | - Yujie Zhu
- Ophthalmology Department, Loudi Central Hospital, Loudi, Hunan, China
| | - Yuzhen Liu
- Ophthalmology Department, Loudi Central Hospital, Loudi, Hunan, China
| | - Mulin Yang
- Ophthalmology Department, Loudi Central Hospital, Loudi, Hunan, China
| | - Li Zeng
- Ophthalmology Department, Loudi Central Hospital, Loudi, Hunan, China
| |
Collapse
|
5
|
Tan M, Wang J, Chen Z, Xie X. Exploring global research trends in Chinese medicine for atherosclerosis: a bibliometric study 2012-2023. Front Cardiovasc Med 2024; 11:1400130. [PMID: 38952541 PMCID: PMC11216286 DOI: 10.3389/fcvm.2024.1400130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/15/2024] [Indexed: 07/03/2024] Open
Abstract
Background While Traditional Chinese Medicine (TCM) boasts an extensive historical lineage and abundant clinical expertise in addressing atherosclerosis, this field is yet to be penetrated adequately by bibliometric studies. This study is envisaged to evaluate the contemporary scenario of TCM in conjunction with atherosclerosis over the preceding decade while also identifying forthcoming research trends and emerging topics via the lens of bibliometric analysis. Methods Literature pertaining to TCM and atherosclerosis, circulated between January 1, 2012 and November 14, 2023, was garnered for the purpose of this research. The examination embraced annual publications, primary countries/regions, engaged institutions and authors, scholarly journals, references, and keywords, utilizing analytical tools like Bibliometrix, CiteSpace, ScimagoGraphica, and VOSviewer present in the R package. Result This field boasts a total of 1,623 scholarly articles, the majority of which have been contributed by China in this field, with significant contributions stemming from the China Academy of Traditional Chinese Medicine and the Beijing University of Traditional Chinese Medicine. Moreover, this field has received financial support from both the National Natural Science Foundation of China and the National Key Basic Research Development Program. Wang Yong tops the list in terms of publication count, while Xu Hao's articles take the lead for the total number of citations, positioning them at the core of the authors' collaborative network. The Journal of Ethnopharmacology leads with the most publications and boasts the greatest total number of citations. Principal research foci within the intersection of Chinese Medicine and Atherosclerosis encompass disease characteristics and pathogenic mechanisms, theoretical underpinnings and syndrome-specific treatments in Chinese medicine, potentialities of herbal interventions, and modulation exerted by Chinese medicines on gut microbiota. Conclusion This analysis offers a sweeping survey of the contemporary condition, principal foci, and progressive trends in worldwide research related to Traditional Chinese Medicine (TCM) and atherosclerosis. It further delves into an in-depth dissection of prominent countries, research institutions, and scholars that have made noteworthy strides in this discipline. Additionally, the report analyzes the most cited articles, research developments, and hotspots in the field, providing a reference for future research directions for clinical researchers and practitioners.
Collapse
Affiliation(s)
- Moye Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jiuyuan Wang
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhengxin Chen
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuejiao Xie
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
6
|
Li C, Hou D, Huang Y, Liu Y, Li Y, Wang C. Corylin alleviated sepsis-associated cardiac dysfunction via attenuating inflammation through downregulation of microRNA-214-5p. Toxicol Res (Camb) 2024; 13:tfae081. [PMID: 38855635 PMCID: PMC11161260 DOI: 10.1093/toxres/tfae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/19/2024] [Indexed: 06/11/2024] Open
Abstract
Background Corylin, a natural flavonoid, is isolated from the fruit of Psoralea corylifolia L. Nevertheless, the effect of corylin on sepsis-associated cardiac dysfunction is still unclear. The purpose of this study is to determine the role and mechanism of corylin in sepsis related cardiac dysfunction. Methods Experiments were carried out on mice with lipopolysaccharide (LPS) or sepsis induced by cecal ligation and puncture (CLP) or myocardial cell sepsis induced by LPS. Results Administration of corylin improved cardiac dysfunction induced by LPS or CLP in mice. Corylin inhibited the increases of interleukin-1 (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α in the heart of mice with LPS or CLP. LPS elevated the levels of IL-1β, IL-6 and TNF-α in cardiomyocytes, which were inhibited by corylin treatment. Corylin attenuated the increases of microRNA (miRNA)-214-5p in the heart of mice with LPS, CLP, LPS-treated NRCMs, H9c2 and AC16 cells. Administration of miRNA-214-5p agomiR reversed the improving effects of corylin on the damaged cardiac function and the increases of IL-1β, IL-6 and TNF-α in mice treated with LPS. Conclusion These outcomes indicated that corylin improved sepsis-associated cardiac dysfunction by inhibiting inflammation. And corylin inhibited inflammation of sepsis by decreasing miRNA-214-5p. Downregulation of miRNA-214-5p improved sepsis-associated cardiac dysfunction and inhibited inflammatory factors.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Noninvasive Electrocardiology, The First Affiliated Hospital of Ningbo University, No. 59 Liuting Street, Haishu District, Ningbo 315000, China
| | - Daorong Hou
- Key Laboratory of Model Animal Research, Animal Core Facility of Nanjing Medical University, Nanjing Medical University, No. 101 Longmian Avenue, Jiangning District, Nanjing 211166, China
| | - Yanhong Huang
- Department of Clinical Medicine, The First Clinical Medical College of Nanjing Medical University, No. 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China
| | - Yifan Liu
- Department of Clinical Medicine, The First Clinical Medical College of Nanjing Medical University, No. 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China
| | - Yong Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Gulou District, Nanjing 210029, China
| | - Cheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Gulou District, Nanjing 210029, China
| |
Collapse
|
7
|
Gao M, Dong L, Yang Y, Yan J, Liang Y, Ma X, Zhou M, Wu H, Liu Y, Dai M. The anti-atherosclerotic effect of Paeonol against the lipid accumulation in macrophage-derived foam cells by inhibiting ferroptosis via the SIRT1/NRF2/GPX4 signaling pathway. Biochem Biophys Res Commun 2024; 708:149788. [PMID: 38518720 DOI: 10.1016/j.bbrc.2024.149788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Atherosclerosis (AS) is the underlying cause of many severe vascular diseases and is primarily characterized by abnormal lipid metabolism. Paeonol (Pae), a bioactive compound derived from Paeonia Suffruticosa Andr., is recognized for its significant role in reducing lipid accumulation. Our research objective is to explore the link between lipid buildup in foam cells originating from macrophages and the process of ferroptosis, and explore the effect and mechanism of Pae on inhibiting AS by regulating ferroptosis. In our animal model, ApoE-deficient mice, which were provided with a high-fat regimen to provoke atherosclerosis, were administered Pae. The treatment was benchmarked against simvastatin and ferrostatin-1. The results showed that Pae significantly reduced aortic ferroptosis and lipid accumulation in the mice. In vitro experiments further demonstrated that Pae could decrease lipid accumulation in foam cells induced by oxidized low-density lipoprotein (LDL) and challenged with the ferroptosis inducer erastin. Crucially, the protective effect of Pae against lipid accumulation was dependent on the SIRT1/NRF2/GPX4 pathway, as SIRT1 knockdown abolished this effect. Our findings suggest that Pae may offer a novel therapeutic approach for AS by inhibiting lipid accumulation through the suppression of ferroptosis, mediated by the SIRT1/NRF2/GPX4 pathway. Such knowledge has the potential to inform the creation of novel therapeutic strategies aimed at regulating ferroptosis within the context of atherosclerosis.
Collapse
Affiliation(s)
- Menglong Gao
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Lishun Dong
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Yulong Yang
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Jinjin Yan
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Yuning Liang
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Xiaolin Ma
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Min Zhou
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Hongfei Wu
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Yarong Liu
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China.
| | - Min Dai
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China.
| |
Collapse
|
8
|
Förster CY, Künzel SR, Shityakov S, Stavrakis S. Synergistic Effects of Weight Loss and Catheter Ablation: Can microRNAs Serve as Predictive Biomarkers for the Prevention of Atrial Fibrillation Recurrence? Int J Mol Sci 2024; 25:4689. [PMID: 38731908 PMCID: PMC11083177 DOI: 10.3390/ijms25094689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
In atrial fibrillation (AF), multifactorial pathologic atrial alterations are manifested by structural and electrophysiological changes known as atrial remodeling. AF frequently develops in the context of underlying cardiac abnormalities. A critical mechanistic role played by atrial stretch is played by abnormal substrates in a number of conditions that predispose to AF, including obesity, heart failure, hypertension, and sleep apnea. The significant role of overweight and obesity in the development of AF is known; however, the differential effect of overweight, obesity, cardiovascular comorbidities, lifestyle, and other modifiable risk factors on the occurrence and recurrence of AF remains to be determined. Reverse remodeling of the atrial substrate and subsequent reduction in the AF burden by conversion into a typical sinus rhythm has been associated with weight loss through lifestyle changes or surgery. This makes it an essential pillar in the management of AF in obese patients. According to recently published research, microRNAs (miRs) may function as post-transcriptional regulators of genes involved in atrial remodeling, potentially contributing to the pathophysiology of AF. The focus of this review is on their modulation by both weight loss and catheter ablation interventions to counteract atrial remodeling in AF. Our analysis outlines the experimental and clinical evidence supporting the synergistic effects of weight loss and catheter ablation (CA) in reversing atrial electrical and structural remodeling in AF onset and in recurrent post-ablation AF by attenuating pro-thrombotic, pro-inflammatory, pro-fibrotic, arrhythmogenic, and male-sex-associated hypertrophic remodeling pathways. Furthermore, we discuss the promising role of miRs with prognostic potential as predictive biomarkers in guiding approaches to AF recurrence prevention.
Collapse
Affiliation(s)
- Carola Y. Förster
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University of Würzburg, 97080 Würzburg, Germany
| | - Stephan R. Künzel
- Institute for Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany;
- Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East, 01307 Dresden, Germany
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, 197101 Saint-Petersburg, Russia;
| | - Stavros Stavrakis
- Cardiovascular Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
9
|
Li X, Ji LJ, Feng KD, Huang H, Liang MR, Cheng SJ, Meng XD. Emerging role of exosomes in ulcerative colitis: Targeting NOD-like receptor family pyrin domain containing 3 inflammasome. World J Gastroenterol 2024; 30:527-541. [PMID: 38463022 PMCID: PMC10921143 DOI: 10.3748/wjg.v30.i6.527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/21/2023] [Accepted: 01/09/2024] [Indexed: 02/05/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic recurrent inflammatory bowel disease. Despite ongoing advances in our understanding of UC, its pathogenesis is yet unelucidated, underscoring the urgent need for novel treatment strategies for patients with UC. Exosomes are nanoscale membrane particles that mediate intercellular communication by carrying various bioactive molecules, such as proteins, RNAs, DNA, and metabolites. The NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a cytosolic tripartite protein complex whose activation induces the maturation and secretion of proinflammatory cytokines interleukin-1β (IL-1β) and IL-18, triggering the inflammatory response to a pathogenic agent or injury. Growing evidence suggests that exosomes are new modulators of the NLRP3 inflammasome, with vital roles in the pathological process of UC. Here, recent evidence is reviewed on the role of exosomes and NLRP3 inflammasome in UC. First, the dual role of exosomes on NLRP3 inflammasome and the effect of NLRP3 inflammasome on exosome secretion are summarized. Finally, an outlook on the directions of exosome-NLRP3 inflammasome crosstalk research in the context of UC is proposed and areas of further research on this topic are highlighted.
Collapse
Affiliation(s)
- Xin Li
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou Province, China
| | - Li-Jiang Ji
- Department of Anorectal Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, China
| | - Kai-Di Feng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hua Huang
- Department of Anorectal Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, China
| | - Mei-Rou Liang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shi-Jin Cheng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiu-Dong Meng
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
10
|
Zhou M, Ma X, Gao M, Wu H, Liu Y, Shi X, Dai M. Paeonol Attenuates Atherosclerosis by Inhibiting Vascular Smooth Muscle Cells Senescence via SIRT1/P53/TRF2 Signaling Pathway. Molecules 2024; 29:261. [PMID: 38202844 PMCID: PMC10780795 DOI: 10.3390/molecules29010261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease leading to various vascular diseases. Vascular smooth muscle cell (VSMC) senescence promotes atherosclerotic inflammation and the formation of plaque necrosis core, in part through telomere damage mediated by a high-fat diet. Our previous research found that paeonol, a potential anti-inflammatory agent extracted from Cortex Moutan, could significantly improve VSMCs dysfunction. However, the impact of paeonol on the senescence of VSMCs remains unexplored. This study presents the protective effects of paeonol on VSMCs senescence, and its potential activity in inhibiting the progression of atherosclerosis in vivo and in vitro. Sirtuin 1 (SIRT1) is a nuclear deacetylase involved in cell proliferation, senescence, telomere damage, and inflammation. Here, SIRT1 was identified as a potential target of paeonol having anti-senescence and anti-atherosclerosis activity. Mechanistic studies revealed that paeonol binds directly to SIRT1 and then activates the SIRT1/P53/TRF2 pathway to inhibit VSMCs senescence. Our results suggested that SIRT1-mediated VSMCs senescence is a promising druggable target for atherosclerosis, and that pharmacological modulation of the SIRT1/P53/TRF2 signaling pathway by paeonol is of potential benefit for patients with atherosclerosis.
Collapse
Affiliation(s)
- Min Zhou
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.Z.); (X.M.); (M.G.); (H.W.); (Y.L.)
| | - Xiaolin Ma
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.Z.); (X.M.); (M.G.); (H.W.); (Y.L.)
| | - Menglong Gao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.Z.); (X.M.); (M.G.); (H.W.); (Y.L.)
| | - Hongfei Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.Z.); (X.M.); (M.G.); (H.W.); (Y.L.)
- Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei 230012, China
| | - Yarong Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.Z.); (X.M.); (M.G.); (H.W.); (Y.L.)
- Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei 230012, China
| | - Xiaoyan Shi
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.Z.); (X.M.); (M.G.); (H.W.); (Y.L.)
| | - Min Dai
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.Z.); (X.M.); (M.G.); (H.W.); (Y.L.)
- Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei 230012, China
| |
Collapse
|
11
|
Wang W, Li H, Shi Y, Zhou J, Khan GJ, Zhu J, Liu F, Duan H, Li L, Zhai K. Targeted intervention of natural medicinal active ingredients and traditional Chinese medicine on epigenetic modification: Possible strategies for prevention and treatment of atherosclerosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155139. [PMID: 37863003 DOI: 10.1016/j.phymed.2023.155139] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Atherosclerosis is a deadly consequence of cardiovascular disease and has very high mortality rate worldwide. The epigenetic modifications can regulate the pervasiveness and progression of atherosclerosis through its involvement in regulation of inflammation, oxidative stress, lipid metabolism and several other factors. Specific non-coding RNAs, DNA methylation, and histone modifications are key regulatory factors of atherosclerosis. Natural products from traditional Chinese medicine have shown promising therapeutic potential against atherosclerosis by means of regulating the expression of specific genes, stabilizing arterial plaques and protecting vascular endothelial cells. OBJECTIVE Our study is focusing to explore the pathophysiology and probability of traditional Chinese medicine and natural medicinal active ingredients to treat atherosclerosis. METHODS Comprehensive literature review was conducted using PubMed, Web of Science, Google Scholar and China National Knowledge Infrastructure with a core focus on natural medicinal active ingredients and traditional Chinese medicine prying in epigenetic modification related to atherosclerosis. RESULTS Accumulated evidence demonstrated that natural medicinal active ingredients and traditional Chinese medicine have been widely studied as substances that can regulate epigenetic modification. They can participate in the occurrence and development of atherosclerosis through inflammation, oxidative stress, lipid metabolism, cell proliferation and migration, macrophage polarization and autophagy respectively. CONCLUSION The function of natural medicinal active ingredients and traditional Chinese medicine in regulating epigenetic modification may provide a new potential strategy for the prevention and treatment of atherosclerosis. However, more extensive research is essential to determine the potential of these natural medicinal active ingredients to treat atherosclerosis because of least clinical data.
Collapse
Affiliation(s)
- Wei Wang
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Han Li
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Ying Shi
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Jing Zhou
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Ghulam Jilany Khan
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Juan Zhu
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Fawang Liu
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui 230012, China
| | - Hong Duan
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Lili Li
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou 234000, China.
| | - Kefeng Zhai
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China.
| |
Collapse
|
12
|
Wu Z, Zhang T, Ma X, Guo S, Zhou Q, Zahoor A, Deng G. Recent advances in anti-inflammatory active components and action mechanisms of natural medicines. Inflammopharmacology 2023; 31:2901-2937. [PMID: 37947913 DOI: 10.1007/s10787-023-01369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Inflammation is a series of reactions caused by the body's resistance to external biological stimuli. Inflammation affects the occurrence and development of many diseases. Anti-inflammatory drugs have been used widely to treat inflammatory diseases, but long-term use can cause toxic side-effects and affect human functions. As immunomodulators with long-term conditioning effects and no drug residues, natural products are being investigated increasingly for the treatment of inflammatory diseases. In this review, we focus on the inflammatory process and cellular mechanisms in the development of diseases such as inflammatory bowel disease, atherosclerosis, and coronavirus disease-2019. Also, we focus on three signaling pathways (Nuclear factor-kappa B, p38 mitogen-activated protein kinase, Janus kinase/signal transducer and activator of transcription-3) to explain the anti-inflammatory effect of natural products. In addition, we also classified common natural products based on secondary metabolites and explained the association between current bidirectional prediction progress of natural product targets and inflammatory diseases.
Collapse
Affiliation(s)
- Zhimin Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tao Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaofei Ma
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qingqing Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Arshad Zahoor
- College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
13
|
Liu G, Tan L, Zhao X, Wang M, Zhang Z, Zhang J, Gao H, Liu M, Qin W. Anti-atherosclerosis mechanisms associated with regulation of non-coding RNAs by active monomers of traditional Chinese medicine. Front Pharmacol 2023; 14:1283494. [PMID: 38026969 PMCID: PMC10657887 DOI: 10.3389/fphar.2023.1283494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Atherosclerosis is the leading cause of numerous cardiovascular diseases with a high mortality rate. Non-coding RNAs (ncRNAs), RNA molecules that do not encode proteins in human genome transcripts, are known to play crucial roles in various physiological and pathological processes. Recently, researches on the regulation of atherosclerosis by ncRNAs, mainly including microRNAs, long non-coding RNAs, and circular RNAs, have gradually become a hot topic. Traditional Chinese medicine has been proved to be effective in treating cardiovascular diseases in China for a long time, and its active monomers have been found to target a variety of atherosclerosis-related ncRNAs. These active monomers of traditional Chinese medicine hold great potential as drugs for the treatment of atherosclerosis. Here, we summarized current advancement of the molecular pathways by which ncRNAs regulate atherosclerosis and mainly highlighted the mechanisms of traditional Chinese medicine monomers in regulating atherosclerosis through targeting ncRNAs.
Collapse
Affiliation(s)
- Guoqing Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Liqiang Tan
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaona Zhao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Minghui Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Zejin Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Jing Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Honggang Gao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Meifang Liu
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
14
|
Liu Y, Wu H, Wang T, Shi X, He H, Huang H, Yang Y, Dai M. Paeonol reduces microbial metabolite α-hydroxyisobutyric acid to alleviate the ROS/TXNIP/NLRP3 pathway-mediated endothelial inflammation in atherosclerosis mice. Chin J Nat Med 2023; 21:759-774. [PMID: 37879794 DOI: 10.1016/s1875-5364(23)60506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Indexed: 10/27/2023]
Abstract
Gut microbiota dysbiosis is an avenue for the promotion of atherosclerosis (AS) and this effect is mediated partly via the circulating microbial metabolites. More microbial metabolites related to AS vascular inflammation, and the mechanisms involved need to be clarified urgently. Paeonol (Pae) is an active compound isolated from Paeonia suffruticoas Andr. with anti-AS inflammation effect. However, considering the low oral bioavailability of Pae, it is worth exploring the mechanism by which Pae reduces the harmful metabolites of the gut microbiota to alleviate AS. In this study, ApoE-/- mice were fed a high-fat diet (HFD) to establish an AS model. AS mice were administrated with Pae (200 or 400 mg·kg-1) by oral gavage and fecal microbiota transplantation (FMT) was conducted. 16S rDNA sequencing was performed to investigate the composition of the gut microbiota, while metabolomics analysis was used to identify the metabolites in serum and cecal contents. The results indicated that Pae significantly improved AS by regulating gut microbiota composition and microbiota metabolic profile in AS mice. We also identified α-hydroxyisobutyric acid (HIBA) as a harmful microbial metabolite reduced by Pae. HIBA supplementation in drinking water promoted AS inflammation in AS mice. Furthermore, vascular endothelial cells (VECs) were cultured and stimulated by HIBA. We verified that HIBA stimulation increased intracellular ROS levels, thereby inducing VEC inflammation via the TXNIP/NLRP3 pathway. In sum, Pae reduces the production of the microbial metabolite HIBA, thus alleviating the ROS/TXNIP/NLRP3 pathway-mediated endothelial inflammation in AS. Our study innovatively confirms the mechanism by which Pae reduces the harmful metabolites of gut microbiota to alleviate AS and proposes HIBA as a potential biomarker for AS clinical judgment.
Collapse
Affiliation(s)
- Yarong Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei 230012, China
| | - Hongfei Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei 230012, China
| | - Tian Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xiaoyan Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Hai He
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Hanwen Huang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yulong Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Min Dai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
15
|
Yang C, Cheng J, Zhu Q, Pan Q, Ji K, Li J. Review of the Protective Mechanism of Paeonol on Cardiovascular Disease. Drug Des Devel Ther 2023; 17:2193-2208. [PMID: 37525853 PMCID: PMC10387245 DOI: 10.2147/dddt.s414752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/19/2023] [Indexed: 08/02/2023] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death in the world. Paeonol(Pae) is a phenolic component extracted from peony bark, peony root and Xu Changqing. Studies have shown that Pae can protect cardiomyocytes by inhibiting oxidative stress, promoting mitochondrial fusion, regulating mitochondrial autophagy and inhibiting inflammation. In addition, Pae improves ventricular remodeling by inhibiting myocardial apoptosis, hypertrophy and fibrosis. Pae also has a good protective effect on blood vessels by inhibiting vascular inflammation, reducing the expression of adhesion molecules, inhibiting vascular proliferation, and inhibiting oxidative stress and endoplasmic reticulum stress(ERS). Pae also has the effect of anti-endothelial cell senescence, promoting thrombus recanalization and vasodilating. In conclusion, the molecular targets of Pae are very complex, and the relationship between different targets and signaling pathways cannot be clearly explained, which requires us to use systems biology methods to further study specific molecular targets of Pae. It has to be mentioned that the bioavailability of Pae is poor, and some nanotechnology-assisted drug delivery systems improve the therapeutic effect of Pae. We reviewed the protective mechanism of paeonol on the cardiovascular system, hoping to provide help for drug development in the treatment of CVD.
Collapse
Affiliation(s)
- Chunkun Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Jiawen Cheng
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qinwei Zhu
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, People's Republic of China
| | - Qingquan Pan
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, People's Republic of China
| | - Kui Ji
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, People's Republic of China
| | - Jun Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
16
|
Shi M, Lu Q, Zhao Y, Ding Z, Yu S, Li J, Ji M, Fan H, Hou S. miR-223: a key regulator of pulmonary inflammation. Front Med (Lausanne) 2023; 10:1187557. [PMID: 37465640 PMCID: PMC10350674 DOI: 10.3389/fmed.2023.1187557] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Small noncoding RNAs, known as microRNAs (miRNAs), are vital for the regulation of diverse biological processes. miR-223, an evolutionarily conserved anti-inflammatory miRNA expressed in cells of the myeloid lineage, has been implicated in the regulation of monocyte-macrophage differentiation, proinflammatory responses, and the recruitment of neutrophils. The biological functions of this gene are regulated by its expression levels in cells or tissues. In this review, we first outline the regulatory role of miR-223 in granulocytes, macrophages, endothelial cells, epithelial cells and dendritic cells (DCs). Then, we summarize the possible role of miR-223 in chronic obstructive pulmonary disease (COPD), acute lung injury (ALI), coronavirus disease 2019 (COVID-19) and other pulmonary inflammatory diseases to better understand the molecular regulatory networks in pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Mingyu Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Ziling Ding
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Sifan Yu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Junfeng Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Mengjun Ji
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
| |
Collapse
|
17
|
Ding N, Yin Z, Chen C. Targeting non-coding RNAs in sEVs: The biological functions and potential therapeutic strategy of diabetic cardiomyopathy. Biomed Pharmacother 2023; 163:114836. [PMID: 37156118 DOI: 10.1016/j.biopha.2023.114836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/15/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is defined as abnormalities in myocardial structure and function in the setting of diabetes and in the absence of cardiovascular diseases, such as coronary artery disease, hypertension, and valvular heart disease. DCM is one of the leading causes of mortality in patients with diabetes. However, the underlying pathogenesis of DCM has not been fully elucidated. Recent studies have revealed that non-coding RNAs (ncRNAs) in small extracellular vesicles (sEVs) are closely associated with DCM and may act as potential diagnostic and therapeutic targets. Here, we introduced the role of sEV-ncRNAs in DCM, summarized the current therapeutic advancements and limitations of sEV-related ncRNAs against DCM, and discussed their potential improvement.
Collapse
Affiliation(s)
- Nan Ding
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Zhongwei Yin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
18
|
Li YX, Jiao P, Wang XP, Wang JP, Feng F, Bao BW, Dong YW, Luoreng ZM, Wei DW. RNA-seq reveals the role of miR-223 in alleviating inflammation of bovine mammary epithelial cells. Res Vet Sci 2023; 159:257-266. [PMID: 37192556 DOI: 10.1016/j.rvsc.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/18/2023]
Abstract
Bovine mammary epithelial cells (bMECs) are involved in the early defense against the invasion of intramammary pathogens and are essential for the health of bovine mammary gland. MicroRNA (MiRNA) is a key factor that regulates cell state and physiological function. In the present study, the transcriptome profiles of miR-223 inhibitor transfection group (miR-223_Inhibitor) and negative control inhibitor transfection group (NC_Inhibitor) within bMECs were detected via the RNA sequencing (RNA-seq) platform. Based on these experiments, the differentially expressed mRNAs (DE-mRNAs) of the miR-223_Inhibitor transfection group were screened, and the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional analyses of DE-mRNAs were performed. The results revealed that compared with the NC_Inhibitor, 224 differentially expressed genes (DEGs) were identified in the miR-223_Inhibitor, including 184 upregulated and 40 downregulated genes. The functional annotation of the above DEGs indicated that some of these genes are involved in the immune response generated by extracellular substance stimulation, regulation of the activity of cytokines and chemokines, and the immune signaling pathways of NF-κB and TNF. Meanwhile, miR-223_inhibitor upregulated the immune key genes IRF1 and NFκBIA, cytokines IL-6 and IL-24, as well as chemokines CXCL3, CXCL5, and CCR6, triggering a signaling cascade response that exacerbated inflammation in bMECs. These results suggested that miR-223 plays an important role in inhibiting the inflammatory response and maintaining the stability of bMECs, and is a potential target for treating mastitis in dairy cows.
Collapse
Affiliation(s)
- Yan-Xia Li
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Peng Jiao
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Xing-Ping Wang
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jin-Peng Wang
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Fen Feng
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Bin-Wu Bao
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yi-Wen Dong
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Zhuo-Ma Luoreng
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China.
| | - Da-Wei Wei
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| |
Collapse
|
19
|
Desantis V, Potenza MA, Sgarra L, Nacci C, Scaringella A, Cicco S, Solimando AG, Vacca A, Montagnani M. microRNAs as Biomarkers of Endothelial Dysfunction and Therapeutic Target in the Pathogenesis of Atrial Fibrillation. Int J Mol Sci 2023; 24:5307. [PMID: 36982382 PMCID: PMC10049145 DOI: 10.3390/ijms24065307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
The pathophysiology of atrial fibrillation (AF) may involve atrial fibrosis/remodeling and dysfunctional endothelial activities. Despite the currently available treatment approaches, the progression of AF, its recurrence rate, and the high mortality risk of related complications underlay the need for more advanced prognostic and therapeutic strategies. There is increasing attention on the molecular mechanisms controlling AF onset and progression points to the complex cell to cell interplay that triggers fibroblasts, immune cells and myofibroblasts, enhancing atrial fibrosis. In this scenario, endothelial cell dysfunction (ED) might play an unexpected but significant role. microRNAs (miRNAs) regulate gene expression at the post-transcriptional level. In the cardiovascular compartment, both free circulating and exosomal miRNAs entail the control of plaque formation, lipid metabolism, inflammation and angiogenesis, cardiomyocyte growth and contractility, and even the maintenance of cardiac rhythm. Abnormal miRNAs levels may indicate the activation state of circulating cells, and thus represent a specific read-out of cardiac tissue changes. Although several unresolved questions still limit their clinical use, the ease of accessibility in biofluids and their prognostic and diagnostic properties make them novel and attractive biomarker candidates in AF. This article summarizes the most recent features of AF associated with miRNAs and relates them to potentially underlying mechanisms.
Collapse
Affiliation(s)
- Vanessa Desantis
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Maria Assunta Potenza
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Luca Sgarra
- General Hospital “F. Miulli” Acquaviva delle Fonti, 70021 Bari, Italy
| | - Carmela Nacci
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Antonietta Scaringella
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Sebastiano Cicco
- Department of Precision and Regenerative Medicine and Ionian Area, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Antonio Giovanni Solimando
- Department of Precision and Regenerative Medicine and Ionian Area, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Angelo Vacca
- Department of Precision and Regenerative Medicine and Ionian Area, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Monica Montagnani
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| |
Collapse
|
20
|
Sun T, Xu W, Wang J, Song J, Wang T, Wang S, Liu K, Liu J. Paeonol ameliorates diabetic erectile dysfunction by inhibiting HMGB1/RAGE/NF-kB pathway. Andrology 2023; 11:344-357. [PMID: 35678254 DOI: 10.1111/andr.13203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/29/2022] [Accepted: 06/02/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND The management of diabetes mellitus-induced erectile dysfunction (DMED) is progressively becoming tricky due to the surge in the number of patients and the poor efficiency of phosphodiesterase type 5 inhibitors in DMED. Paeonol (Pae), as a traditional Chinese medicine, has been more and more widely used in the treatment of diabetic complications. However, whether Pae could be a potential therapeutic drug of DMED needs to be further evaluated. OBJECTIVES To investigate the pharmacological effect and possible mechanism of Pae in the treatment of DMED. METHODS Intraperitoneal streptozotocin injection and an apomorphine test were used to construct the model of DMED. Seventeen DMED rats were divided into two groups: DMED group (n = 8) and DMED+Pae group (Pae; 100 mg/kg/d; oral administration; n = 9). In addition, there were still 10 normal age-matched male rats as control group. Four weeks later, the cavernous nerve electric stimulation was carried out to measure the erectile response. Moreover, the corpus cavernosum smooth muscle cells (CCSMCs) were primarily isolated and exposed to high glucose (HG) stimulation, Pae treatment and glycyrrhizin (GL; the selective inhibitor of HMGB1). After an incubation for 1 week, the CCSMCs were harvested for detection. RESULTS The impairment of erectile function was observed in DMED rats compared with control samples, accompanied by the upregulation of HMGB1/RAGE/NF-κB Pathway. The lower nitric oxide and cGMP level and the higher level of inflammation, fibrosis, and apoptosis were also observed in DMED rats. It showed contrast that Pae treatment could improve the erectile function, as well as histologic alteration and related molecular changes. In addition, Pae could downregulate the HMGB1/RAGE/NF-κB pathway to regulate the apoptosis and inflammation levels of CCSMCs in high-glucose conditions, which is similar to the results of GL treatment. CONCLUSION Pae alleviated ED in DMED rats, likely by inhibiting HMGB1/RAGE/NF-κB Pathway, inflammatory, apoptosis, and fibrotic activity, and moderating endothelial dysfunction. Our study provide evidence for a potential new therapy for DMED.
Collapse
Affiliation(s)
- Taotao Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxin Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyu Song
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Zhi W, Liu Y, Wang X, Zhang H. Recent advances of traditional Chinese medicine for the prevention and treatment of atherosclerosis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115749. [PMID: 36181983 DOI: 10.1016/j.jep.2022.115749] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atherosclerosis (AS) is a common systemic disease with increasing morbidity and mortality worldwide. Traditional Chinese medicine (TCM) with characteristics of multiple pathways and targets, presents advantages in the diagnosis and treatment of atherosclerosis. AIM OF THE STUDY With the modernization of TCM, the active ingredients and molecular mechanisms of TCM for AS treatment have been gradually revealed. Therefore, it is necessary to examine the existing studies on TCM therapies aimed at regulating AS over the past two decades. MATERIALS AND METHODS Using "atherosclerosis" and "Traditional Chinese medicine" as keywords, all relevant TCM literature published in the last 10 years was collected from electronic databases (such as Elsevier, Springer, PubMed, CNKI, and Web of Science), books and papers until March 2022, and the critical information was statistically analyzed. RESULTS In this review, we highlighted extracts of 8 single herbs, a total of 41 single active ingredients, 20 TCM formulae, and 25 patented drugs, which were described with chemical structure, source, model, efficacy and potential mechanism. CONCLUSION We summarized the cytopathological basis for the development of atherosclerosis involving vascular endothelial cells, macrophages and vascular smooth muscle cells, and categorically elaborated the medicinal TCM used for AS, all of which provide the current evidence on the better management of atherosclerosis by TCM.
Collapse
Affiliation(s)
- Wenbing Zhi
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, 710003, PR China.
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, 710003, PR China
| | - Xiumei Wang
- The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China.
| | - Hong Zhang
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, 710003, PR China.
| |
Collapse
|
22
|
Chen F, Li B, Li W, Chen W, Huang Y, Tian Y, Yang B, Yuan M, Xu D, Cao N. Polysaccharide of Atractylodes macrocephala Koidz alleviate lipopolysaccharide-stimulated liver inflammation injury of goslings through miR-223/NLRP3 axis. Poult Sci 2023; 102:102285. [PMID: 36436369 PMCID: PMC9706645 DOI: 10.1016/j.psj.2022.102285] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Lipopolysaccharide (LPS) infection could cause severe liver inflammation and lead to liver damage, even death. Previous studies have shown that polysaccharide of Atractylodes macrocephala Koidz (PAMK) could protect liver from inflammation caused by LPS in mice. However, whether PAMK could alleviate liver inflammatory injury in other animals with LPS is still unknown. For evaluating whether PAMK could alleviate liver inflammatory injury in goslings with LPS, a total of 80 healthy 1-day old Magang goslings were randomly divided into 4 groups (control group, PAMK group, LPS group, and PAMK+LPS group). Goslings in control group and LPS group were fed with basal diet, and goslings in PAMK group and PAMK+LPS group were fed basal diet supplemented with 400 mg/kg PAMK to the end of trial. On 24 d of age, goslings in the control group and PAMK group were intraperitoneal injected 0.5 mL normal saline, and goslings in LPS and PAMK+LPS groups were intraperitoneal injected with LPS at 5 mg/kg BW. The serum and liver samples were collected for further analysis after treatment of LPS at 6, 12, 24, and 48 h. Furthermore, the hepatocytes were extracted from goose embryo to measure the expression of the key genes of miR-223/NLRP3 axis. The results showed that PAMK pretreatment could maintain normal cell morphology of liver, alleviate the enhanced levels of biochemical indexes ALT and AST, decrease the levels of IL-1β and IL-18, increase the relative mRNA expression of miR-223, and decrease the expression of NLRP3, Caspase-1, and cleaved Caspase-1 in liver and hepatocytes of goslings induced by LPS. These results indicated that PAMK could relieve inflammatory liver tissue damage after LPS treatment and downregulate the level of inflammation factors via miR-223/NLRP3 axis, thus playing a liver protective role in liver inflammation injury in goslings.
Collapse
Affiliation(s)
- Feiyue Chen
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Bingxin Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Wanyan Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Wenbin Chen
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Yunmao Huang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Yunbo Tian
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Baohe Yang
- Yunnan Kuaidaduo Animal Husbandry Technology Co., Ltd, Yuxi 653100, China
| | - Mingfeng Yuan
- Yunnan Kuaidaduo Animal Husbandry Technology Co., Ltd, Yuxi 653100, China
| | - Danning Xu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Nan Cao
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China.
| |
Collapse
|
23
|
Su C, Lu Y, Wang Z, Guo J, Hou Y, Wang X, Qin Z, Gao J, Sun Z, Dai Y, Liu Y, Liu G, Xian X, Cui X, Zhang J, Tang J. Atherosclerosis: The Involvement of Immunity, Cytokines and Cells in Pathogenesis, and Potential Novel Therapeutics. Aging Dis 2022:AD.2022.1208. [PMID: 37163428 PMCID: PMC10389830 DOI: 10.14336/ad.2022.1208] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/08/2022] [Indexed: 05/12/2023] Open
Abstract
As a leading contributor to coronary artery disease (CAD) and stroke, atherosclerosis has become one of the major cardiovascular diseases (CVD) negatively impacting patients worldwide. The endothelial injury is considered to be the initial step of the development of atherosclerosis, resulting in immune cell migration and activation as well as inflammatory factor secretion, which further leads to acute and chronic inflammation. In addition, the inflammation and lipid accumulation at the lesions stimulate specific responses from different types of cells, contributing to the pathological progression of atherosclerosis. As a result, recent studies have focused on using molecular biological approaches such as gene editing and nanotechnology to mediate cellular response during atherosclerotic development for therapeutic purposes. In this review, we systematically discuss inflammatory pathogenesis during the development of atherosclerosis from a cellular level with a focus on the blood cells, including all types of immune cells, together with crucial cells within the blood vessel, such as smooth muscle cells and endothelial cells. In addition, the latest progression of molecular-cellular based therapy for atherosclerosis is also discussed. We hope this review article could be beneficial for the clinical management of atherosclerosis.
Collapse
Affiliation(s)
- Chang Su
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Yongzheng Lu
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Zeyu Wang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Jiacheng Guo
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Yachen Hou
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Xiaofang Wang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Zhen Qin
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Jiamin Gao
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Zhaowei Sun
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Yichen Dai
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yu Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Guozhen Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Xunde Xian
- Institute of Cardiovascular Sciences, Peking University, Beijing, China
| | - Xiaolin Cui
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Jinying Zhang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Junnan Tang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| |
Collapse
|
24
|
Xu J, Wang W, Wang Y, Zhu Z, Li D, Wang T, Liu K. Progress in research on the role of exosomal miRNAs in the diagnosis and treatment of cardiovascular diseases. Front Genet 2022; 13:929231. [PMID: 36267409 PMCID: PMC9577319 DOI: 10.3389/fgene.2022.929231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022] Open
Abstract
Cardiovascular diseases are the most common diseases threatening the health of the elderly, and the incidence and mortality rates associated with cardiovascular diseases remain high and are increasing gradually. Studies on the treatment and prevention of cardiovascular diseases are underway. Currently, several research groups are studying the role of exosomes and biomolecules incorporated by exosomes in the prevention, diagnosis, and treatment of clinical diseases, including cardiovascular diseases. Now, based on the results of published studies, this review discusses the characteristics, separation, extraction, and identification of exosomes, specifically the role of exosomal miRNAs in atherosclerosis, myocardial injury and infarction, heart failure, aortic dissection, myocardial fibrosis, ischemic reperfusion, atrial fibrillation, and other diseases. We believe that the observations noted in this article will aid in the prevention, diagnosis, and treatment of cardiovascular diseases.
Collapse
|
25
|
Ye C, Zheng F, Wu N, Zhu GQ, Li XZ. Extracellular vesicles in vascular remodeling. Acta Pharmacol Sin 2022; 43:2191-2201. [PMID: 35022541 PMCID: PMC9433397 DOI: 10.1038/s41401-021-00846-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
Vascular remodeling contributes to the development of a variety of vascular diseases including hypertension and atherosclerosis. Phenotypic transformation of vascular cells, oxidative stress, inflammation and vascular calcification are closely associated with vascular remodeling. Extracellular vesicles (EVs) are naturally released from almost all types of cells and can be detected in nearly all body fluids including blood and urine. EVs affect vascular oxidative stress, inflammation, calcification, and lipid plaque formation; and thereby impact vascular remodeling in a variety of cardiovascular diseases. EVs may be used as biomarkers for diagnosis and prognosis, and therapeutic strategies for vascular remodeling and cardiovascular diseases. This review includes a comprehensive analysis of the roles of EVs in the vascular remodeling in vascular diseases, and the prospects of EVs in the diagnosis and treatment of vascular diseases.
Collapse
Affiliation(s)
- Chao Ye
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Fen Zheng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Nan Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, 210029, China.
| | - Xiu-Zhen Li
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
26
|
Feng Y, Gao S, Zhu T, Sun G, Zhang P, Huang Y, Qu S, Du X, Mou D. Hawthorn fruit acid consumption attenuates hyperlipidemia-associated oxidative damage in rats. Front Nutr 2022; 9:936229. [PMID: 35990322 PMCID: PMC9384962 DOI: 10.3389/fnut.2022.936229] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Context Hyperlipidemia is a highly prevalent risk factor for atherosclerosis and stroke. The currently available medications used to treat Hyperlipidemia cannot improve its oxidative stress damage. Consumption of hawthorn can regulate blood sugar and blood lipids, and its rich fruit acid is a natural antioxidant that can improve oxidative stress damage. Objective The present research aimed to investigate the protective effect of hawthorn fruit acid (HFA) on hyperlipidemia and to determine its potential molecular mechanism. Materials and methods Sprague-Dawley rats were fed a high-fat diet (HFD) to induce hyperlipidemia and treated orally with hawthorn fruit acids (HFA). Serum and liver levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), superoxide dismutase (SOD), hydrogen peroxide (CAT), and malondialdehyde (MDA) were measured. Human hepatocellular carcinoma cell lines (HepG2) cells were treated with 0.1 mM oleic acid and HFA (0.125, 0.25 mg/mL), and intracellular TC, TG, HDL-C, SOD, CAT and MDA were measured. Changes in LDLR, HMGCR, Nrf2, HO-1, NQO1 protein and gene expression were analyzed by Western blot and qPCR. Results This study found that HFA treatment effectively reduced the level of triglyceride, cholesterol, and glucose, and attenuated hepatic steatosis in rats. Additionally, oxidative stress damage of rats was effectively reduced by treatment with HFA. Western blot and qPCR analysis indicated that HFA treatment inhibited fat accumulation in HepG2 cells by upregulating LDLR and downregulating HMGCR gene expression. HFA inhibits oleic acid (OA)-induced oxidative damage to HepG2 by activating the Nrf2/HO-1 signaling pathway. Conclusion HFA administration can provide health benefits by counteracting the effects of hyperlipidemia caused by an HFD in the body, and the underlying mechanism of this event is closely related to the activation of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Yicheng Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.,College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shan Gao
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Ting Zhu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peisen Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yichun Huang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuang Qu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xiaomeng Du
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Dehua Mou
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| |
Collapse
|
27
|
Shi X, Wu H, Liu Y, Huang H, Liu L, Yang Y, Jiang T, Zhou M, Dai M. Inhibiting vascular smooth muscle cell proliferation mediated by osteopontin via regulating gut microbial lipopolysaccharide: A novel mechanism for paeonol in atherosclerosis treatment. Front Pharmacol 2022; 13:936677. [PMID: 36034838 PMCID: PMC9403310 DOI: 10.3389/fphar.2022.936677] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/05/2022] [Indexed: 11/15/2022] Open
Abstract
Background: Although the gut microbiota is involved in metabolic disease such as atherosclerosis, the underlying mechanism remains elusive. Paeonol (Pae) is a natural phenolic compound isolated from Cortex Moutan, which exhibits anti-atherosclerotic effects. Our previous research demonstrated gut microbiota as a site of Pae action. However, the mechanism by which Pae exerts its anti-atherosclerotic effect by the regulation of gut microbiota remains unclear. Objective: To investigate a potential mechanistic link between the gut microbial lipopolysaccharide (LPS) and vascular smooth muscle cell (VSMC) proliferation in atherosclerosis progression and explore the possible role of Pae. Methods: Experimental atherosclerosis was established in ApoE−/− mice, and the atherosclerosis mice were treated with Pae for 4 weeks before being sacrificed for analyses while conducting fecal microbiota transplantation (FMT). The plaque area, levels of serum LPS, expressions of inflammatory factors in serum or aorta, and intestinal barrier permeability were determined. VSMCs were co-cultured with THP-1 cells. CCK-8 assay and EdU staining were performed to assess the proliferative capacity of VSMCs. Immunofluorescence staining was performed to observe the nuclear transfer of p65. Western blotting was used to detect the candidate protein expression level, and quantitative real-time PCR (qRT-PCR) was used to detect the mRNA expression level in tissues or cells of each group. Results: During atherosclerosis progression, gut dysbiosis leads to the peripheral accumulation of gut microbial LPS, which acts as a trigger to stimulate osteopontin (OPN) production from circulating monocytes, inducing cell-to-cell crosstalk to promote VSMC proliferation in the aorta. Importantly, the elevation of LPS and OPN concentrations in the blood was also observed in patients with atherosclerosis. Pae could significantly improve atherosclerosis, suppress gut microbial LPS accumulation, and inhibit monocyte/macrophage activation and VSMC proliferation. Conclusions: The present study provides a mechanistic scenario for how long-term stimulation of gut microbial LPS in circulating blood generates a pathological secondary response that leads to abnormal proliferation of VSMCs using high OPN expression in circulating monocytes and suggests a novel strategy for atherosclerosis therapy by remodeling the gut microbiota.
Collapse
Affiliation(s)
- Xiaoyan Shi
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Hongfei Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei, China
| | - Yarong Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei, China
| | - Hanwen Huang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ling Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yulong Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Tingting Jiang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Min Zhou
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Min Dai
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei, China
- *Correspondence: Min Dai,
| |
Collapse
|
28
|
Yu W, Ilyas I, Aktar N, Xu S. A review on therapeutical potential of paeonol in atherosclerosis. Front Pharmacol 2022; 13:950337. [PMID: 35991897 PMCID: PMC9385965 DOI: 10.3389/fphar.2022.950337] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
The morbidity and mortality of atherosclerotic cardiovascular disease (ASCVD) is increasing year by year. Cortex Moutan is a traditional Chinese medicinal herb that has been widely used for thousands of years to treat a wide variety of diseases in Eastern countries due to its heat-clearing and detoxifying effects. Paeonol is a bioactive monomer extracted from Cortex Moutan, which has anti-atherosclerotic effects. In this article, we reviewed the pharmacological effects of paeonol against experimental atherosclerosis, as well as its protective effects on vascular endothelial cells, smooth muscle cells, macrophages, platelets, and other important cell types. The pleiotropic effects of paeonol in atherosclerosis suggest that it can be a promising therapeutic agent for atherosclerosis and its complications. Large-scale randomized clinical trials are warranted to elucidate whether paeonol are effective in patients with ASCVD.
Collapse
Affiliation(s)
- Wei Yu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, China
- Anhui Renovo Pharmaceutical Co., Ltd., Hefei, Anhui, China
- *Correspondence: Wei Yu, ; Suowen Xu,
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Nasrin Aktar
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- *Correspondence: Wei Yu, ; Suowen Xu,
| |
Collapse
|
29
|
The Role of MicroRNAs in Hyperlipidemia: From Pathogenesis to Therapeutical Application. Mediators Inflamm 2022; 2022:3101900. [PMID: 35757107 PMCID: PMC9232323 DOI: 10.1155/2022/3101900] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Hyperlipidemia is a common metabolic disorder with high morbidity and mortality, which brings heavy burden on social. Understanding its pathogenesis and finding its potential therapeutic targets are the focus of current research in this field. In recent years, an increasing number of studies have proved that miRNAs play vital roles in regulating lipid metabolism and were considered as promising therapeutic targets for hyperlipidemia and related diseases. It is demonstrated that miR-191, miR-222, miR-224, miR-27a, miR-378a-3p, miR-140-5p, miR-483, and miR-520d-5p were closely associated with the pathogenesis of hyperlipidemia. In this review, we provide brief overviews about advances in miRNAs in hyperlipidemia and its potential clinical application value.
Collapse
|
30
|
Zhao H, Wang X, Liu S, Zhang Q. Paeonol regulates NLRP3 inflammasomes and pyroptosis to alleviate spinal cord injury of rat. BMC Neurosci 2022; 23:16. [PMID: 35303801 PMCID: PMC8932340 DOI: 10.1186/s12868-022-00698-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
Background Spinal cord injury (SCI) is a life-threatening traumatic disorder. Paeonol has been confirmed to be involved in a variety of diseases. The purpose of this study is to investigate the role of paeonol on SCI progression. Methods Sprague Dawley (SD) rat was used for the establishment of SCI model to explore the anti-inflammation, anti-oxidation, and neuroprotective effects of paeonol (60 mg/kg) on SCI in vivo. For in vitro study, mouse primary microglial cells (BV-2) were induced by lipopolysaccharide (LPS)/adenosine triphosphate (ATP) treatment. The effect of paeonol on the polarization of LPS/ATP-induced BV-2 cells was determined by detection the expression inducible nitric oxide synthase (iNOS), tumour necrosis factor alpha (TNF-α), arginase-1 (Arg-1), and interleukin (IL)-10 using qRT-PCR. ELISA was used to assess the levels of IL-1β, IL-18, TNF-α, malondialdehyde (MDA), and glutathione (GSH). Western blotting was conducted to determine the levels of NLRP3 inflammasomes and TLR4/MyD88/NF-κB (p65) pathway proteins. Results Paeonol promoted the recovery of locomotion function and spinal cord structure, and decreased spinal cord water content in rats following SCI. Meanwhile, paeonol reduced the levels of apoptosis-associated speck-like protein (ASC), NLRP3, active caspase 1 and N-gasdermin D (N-GSDMD), repressed the contents of IL-1β, IL-18, TNF-α and MDA, and elevated GSH level. In vitro, paeonol exerted similarly inhibiting effects on pyroptosis and inflammation. Meanwhile, paeonol promoted BV-2 cells M2 polarization. In addition, paeonol also inactivated the expression of TLR4/MyD88/NF-κB (p65) pathway. Conclusion Paeonol may regulate NLRP3 inflammasomes and pyroptosis to alleviate SCI, pointing out the potential for treating SCI in clinic.
Collapse
Affiliation(s)
- Houling Zhao
- Department of Orthopaedic Trauma, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, 250000, Shandong Province, China
| | - Xi Wang
- Department of Spinal Surgery, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, 250000, Shandong Province, China
| | - Shuheng Liu
- Department of Spinal Surgery, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, 250000, Shandong Province, China
| | - Qingguo Zhang
- Department of Spinal Surgery, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, 250000, Shandong Province, China.
| |
Collapse
|
31
|
Li Z, Chen X, Tao J, Shi A, Zhang J, Yu P. Exosomes Regulate NLRP3 Inflammasome in Diseases. Front Cell Dev Biol 2022; 9:802509. [PMID: 35047512 PMCID: PMC8762245 DOI: 10.3389/fcell.2021.802509] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence has suggested the unique and critical role of exosomes as signal molecules vector in various diseases. Numerous researchers have been trying to identify how these exosomes function in immune progression, as this could promote their use as biomarkers for the disease process and potential promising diagnostic tools. NOD-like receptor (NLR) family, pyrin domain containing 3 (NLRP3), a tripartite protein, contains three functional domains a central nucleotide-binding and oligomerization domain (NACHT), an N-terminal pyrin domain (PYD), and a leucine-rich repeat domain (LRR). Of note, existing studies have identified exosome as a novel mediator of the NLRP3 inflammasome, which is critical in diseases progression. However, the actual mechanisms and clinical treatment related to exosomes and NLRP3 are still not fully understood. Herein, we presented an up-to-date review of exosomes and NLRP3 in diseases, outlining what is known about the role of exosomes in the activation of NLRP3 inflammasome and also highlighting areas of this topic that warrant further study.
Collapse
Affiliation(s)
- Zhangwang Li
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Xinyue Chen
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Junjie Tao
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Ao Shi
- School of Medicine, University of Nicosia, Nicosia, Cyprus.,School of Medicine, St. George University of London, London, United Kingdom
| | - Jing Zhang
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China.,Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China.,Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
32
|
Hua F, Shi L, Zhou P. Phenols and terpenoids: natural products as inhibitors of NLRP3 inflammasome in cardiovascular diseases. Inflammopharmacology 2022; 30:137-147. [PMID: 35039992 DOI: 10.1007/s10787-021-00918-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/27/2021] [Indexed: 12/27/2022]
Abstract
Inflammatory infiltration has been implicated in the pathogenesis of cardiovascular diseases (CVDs). The NLRP3 inflammasome is involved in the development of several types of CVDs, including myocardial infarction, myocardial ischemia-reperfusion damage, heart failure, atrial fibrillation, and hypertension. Inhibiting the activity of NLRP3 inflammasome can inhibit the progress of CVDs. However, there is no NLRP3 inflammasome inhibitor in clinic, and it is very important to find a safe and effective NLRP3 inhibitor. Phenols and terpenoids are naturally natural products that have many anti-inflammatory effects in CVDs by modulating the NLRP3 inflammatory pathway. Thus, 20 natural products from phenols and terpenoids for the treatment of cardiovascular disease based on the inhibition of NLRP3 inflammasome were summarized and screened. Docking results showed salvianolic acid B and ellagic acid in phenols, and oridonin and triptolide in terpenoids had a better binding activity with NLRP3, which can provide theoretical support for finding novel NLRP3 inflammasome inhibitors or lead compounds in the future.
Collapse
Affiliation(s)
- Fang Hua
- Pharmacy School, Anhui Xinhua University, Hefei, 230088, People's Republic of China
| | - Lingli Shi
- Pharmacy School, Anhui Xinhua University, Hefei, 230088, People's Republic of China
| | - Peng Zhou
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China. .,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China.
| |
Collapse
|
33
|
Yang F, Yang MY, Le JQ, Luo BY, Yin MD, Chao-Li, Jiang JL, Fang YF, Shao JW. Protective Effects and Therapeutics of Ginsenosides for Improving Endothelial Dysfunction: From Therapeutic Potentials, Pharmaceutical Developments to Clinical Trials. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:749-772. [PMID: 35450513 DOI: 10.1142/s0192415x22500318] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The endothelium covers the internal lumen of the entire circulatory system and plays an important modulatory role in vascular homeostasis. Endothelium dysfunction, characterized by a vasoconstrictive, pro-inflammatory, and pro-coagulant state, usually manifests as a significant pathological process of vascular diseases, including hypertension, atherosclerosis (AS), stroke, diabetes mellitus, coronary artery disease, and cancer. Therefore, there is an urgent necessity to seek promising therapeutic drugs or remedies to ameliorate endothelial dysfunction-induced vascular ailments and complications. Recently, much attention has been attached to ginsenosides, the most significant active components of ginseng, which have always been referred to as "all-healing" and widely used for its extensively medicinal value. Surprisingly, ginsenosides have diverse biological activity which might be related to inflammation, apoptosis, oxidative stress, and angiogenesis. In this review, a brief introduction about endothelial dysfunction and ginsenosides was demonstrated, and the emphasis was put on summarizing multi-faceted pharmacological effects and underlying molecular mechanisms of ginsenosides on the endothelium, including vasorelaxation, anti-oxidation, anti-inflammation, and angio-modulation. Beyond that, nanotechnology to improve efficacy and the existing clinical trials of ginsenosides were concluded. Hopefully, our work will give suggestions for promoting clinical application of traditional Chinese medicine, e.g., hypertension, AS, diabetes, ischemic stroke, and cancer. This review provides a comprehensive base of knowledge for ginsenosides to prevention and treatment of vascular injury- related diseases with clinical significance.
Collapse
Affiliation(s)
- Fang Yang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Ming-Yue Yang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jing-Qing Le
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Bang-Yue Luo
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Meng-Die Yin
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Chao-Li
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jia-Li Jiang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yi-Fan Fang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jing-Wei Shao
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
34
|
Shi X, Huang H, Zhou M, Liu Y, Wu H, Dai M. Paeonol Attenuated Vascular Fibrosis Through Regulating Treg/Th17 Balance in a Gut Microbiota-Dependent Manner. Front Pharmacol 2021; 12:765482. [PMID: 34880759 PMCID: PMC8646048 DOI: 10.3389/fphar.2021.765482] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/18/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Paeonol (Pae) is a natural phenolic compound isolated from Cortex Moutan, which exhibits anti-atherosclerosis (AS) effects. Our previous work demonstrated that gut microbiota plays an important role during AS treatment as it affects the efficacy of Pae. However, the mechanism of Pae in protecting against vascular fibrosis as related to gut microbiota has yet to be elucidated. Objective: To investigate the antifibrosis effect of Pae on AS mice and demonstrate the underlying gut microbiota-dependent mechanism. Methods: ApoE-/- mice were fed with high-fat diet (HFD) to replicate the AS model. H&E and Masson staining were used to observe the plaque formation and collagen deposition. Short-chain fatty acid (SCFA) production was analyzed through LC-MS/MS. The frequency of immune cells in spleen was phenotyped by flow cytometry. The mRNA expression of aortic inflammatory cytokines was detected by qRT-PCR. The protein expression of LOX and fibrosis-related indicators were examined by western blot. Results: Pae restricted the development of AS and collagen deposition. Notably, the antifibrosis effect of Pae was achieved by regulating the gut microbiota. LC-MS/MS data indicated that the level of SCFAs was increased in caecum contents. Additionally, Pae administration selectively upregulated the frequency of regulatory T (Treg) cells as well as downregulated the ratio of T helper type 17 (Th17) cells in the spleen of AS mice, improving the Treg/Th17 balance. In addition, as expected, Pae intervention can significantly downregulate the levels of proinflammatory cytokines IL-1β, IL-6, TNF-α, and IL-17 in the aorta, and upregulate the levels of anti-inflammatory factor IL-10, a marker of Treg cells. Finally, Pae's intervention in the gut microbiota resulted in the restoration of the balance of Treg/Th17, which indirectly downregulated the protein expression level of LOX and fibrosis-related indicators (MMP-2/9 and collagen I/III). Conclusion: Pae attenuated vascular fibrosis in a gut microbiota-dependent manner. The underlying protective mechanism was associated with the improved Treg/Th17 balance in spleen mediated through the increased microbiota-derived SCFA production. Collectively, our results demonstrated the role of Pae as a potential gut microbiota modulator to prevent and treat AS.
Collapse
Affiliation(s)
- Xiaoyan Shi
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei, China
| | - Hanwen Huang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei, China
| | - Min Zhou
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei, China
| | - Yarong Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei, China
| | - Hongfei Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei, China
| | - Min Dai
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
35
|
LncRNA HSPA7 in human atherosclerotic plaques sponges miR-223 and promotes the proinflammatory vascular smooth muscle cell transition. Exp Mol Med 2021; 53:1842-1849. [PMID: 34857901 PMCID: PMC8741916 DOI: 10.1038/s12276-021-00706-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 11/26/2022] Open
Abstract
Although there are many genetic loci in noncoding regions associated with vascular disease, studies on long noncoding RNAs (lncRNAs) discovered from human plaques that affect atherosclerosis have been highly limited. We aimed to identify and functionally validate a lncRNA using human atherosclerotic plaques. Human aortic samples were obtained from patients who underwent aortic surgery, and tissues were classified according to atherosclerotic plaques. RNA was extracted and analyzed for differentially expressed lncRNAs in plaques. Human aortic smooth muscle cells (HASMCs) were stimulated with oxidized low-density lipoprotein (oxLDL) to evaluate the effect of the identified lncRNA on the inflammatory transition of the cells. Among 380 RNAs differentially expressed between the plaque and control tissues, lncRNA HSPA7 was selected and confirmed to show upregulated expression upon oxLDL treatment. HSPA7 knockdown inhibited the migration of HASMCs and the secretion and expression of IL-1β and IL-6; however, HSPA7 knockdown recovered the oxLDL-induced reduction in the expression of contractile markers. Although miR-223 inhibition promoted the activity of Nf-κB and the secretion of inflammatory proteins such as IL-1β and IL-6, HSPA7 knockdown diminished these effects. The effects of miR-223 inhibition and HSPA7 knockdown were also found in THP-1 cell-derived macrophages. The impact of HSPA7 on miR-223 was mediated in an AGO2-dependent manner. HSPA7 is differentially increased in human atheroma and promotes the inflammatory transition of vascular smooth muscle cells by sponging miR-223. For the first time, this study elucidated the molecular mechanism of action of HSPA7, a lncRNA of previously unknown function, in humans. A long non-coding RNA (lncRNA) called HSPA7 promotes the development of atherosclerosis, plaque in arteries. Many atherosclerosis-related genetic loci are in noncoding regions of genome, but there has been an incomplete understanding of them. Sang-Hak Lee at Yonsei University College of Medicine, Seoul, South Korea, and co-workers set out to identify a lncRNA involved in atherosclerosis and investigate its mode of action. Comparison of aortic tissues allowed them to identify lncRNAs more abundant in atherosclerotic tissue but less in healthy tissue. Of the 380 lncRNAs identified, only HSPA7 reliably increased when aortic cells were treated with a trigger of atherosclerosis. Inhibiting HSPA7 restored normal function in vascular cells, decreasing migration and inflammation. Further investigation showed that HSPA7 blocks the activity of miR-223, a microRNA that suppresses inflammation. These results identify a potential therapeutic target for atherosclerosis.
Collapse
|
36
|
Li C, Ni YQ, Xu H, Xiang QY, Zhao Y, Zhan JK, He JY, Li S, Liu YS. Roles and mechanisms of exosomal non-coding RNAs in human health and diseases. Signal Transduct Target Ther 2021; 6:383. [PMID: 34753929 PMCID: PMC8578673 DOI: 10.1038/s41392-021-00779-x] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes play a role as mediators of cell-to-cell communication, thus exhibiting pleiotropic activities to homeostasis regulation. Exosomal non-coding RNAs (ncRNAs), mainly microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are closely related to a variety of biological and functional aspects of human health. When the exosomal ncRNAs undergo tissue-specific changes due to diverse internal or external disorders, they can cause tissue dysfunction, aging, and diseases. In this review, we comprehensively discuss the underlying regulatory mechanisms of exosomes in human diseases. In addition, we explore the current knowledge on the roles of exosomal miRNAs, lncRNAs, and circRNAs in human health and diseases, including cancers, metabolic diseases, neurodegenerative diseases, cardiovascular diseases, autoimmune diseases, and infectious diseases, to determine their potential implication in biomarker identification and therapeutic exploration.
Collapse
Affiliation(s)
- Chen Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Yu-Qing Ni
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Qun-Yan Xiang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Yan Zhao
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Jun-Kun Zhan
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Jie-Yu He
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
37
|
Xu H, Ni YQ, Liu YS. Mechanisms of Action of MiRNAs and LncRNAs in Extracellular Vesicle in Atherosclerosis. Front Cardiovasc Med 2021; 8:733985. [PMID: 34692785 PMCID: PMC8531438 DOI: 10.3389/fcvm.2021.733985] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis, a complex chronic inflammatory disease, involves multiple alterations of diverse cells, including endothelial cells (ECs), vascular smooth muscle cells (VSMCs), monocytes, macrophages, dendritic cells (DCs), platelets, and even mesenchymal stem cells (MSCs). Globally, it is a common cause of morbidity as well as mortality. It leads to myocardial infarctions, stroke and disabling peripheral artery disease. Extracellular vesicles (EVs) are a heterogeneous group of cell-derived membranous structures that secreted by multiple cell types and play a central role in cell-to-cell communication by delivering various bioactive cargos, especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Emerging evidence demonstrated that miRNAs and lncRNAs in EVs are tightly associated with the initiation and development of atherosclerosis. In this review, we will outline and compile the cumulative roles of miRNAs and lncRNAs encapsulated in EVs derived from diverse cells in the progression of atherosclerosis. We also discuss intercellular communications via EVs. In addition, we focused on clinical applications and evaluation of miRNAs and lncRNAs in EVs as potential diagnostic biomarkers and therapeutic targets for atherosclerosis.
Collapse
Affiliation(s)
- Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-related Disease Research, Central South University, Changsha, China
| | - Yu-Qing Ni
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-related Disease Research, Central South University, Changsha, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-related Disease Research, Central South University, Changsha, China
| |
Collapse
|
38
|
Xiang Y, Li L, Xia S, Lv J, Li X. Cullin3 (CUL3) suppresses proliferation, migration and phenotypic transformation of PDGF-BB-stimulated vascular smooth muscle cells and mitigates inflammatory response by repressing Hedgehog signaling pathway. Bioengineered 2021; 12:9463-9472. [PMID: 34699319 PMCID: PMC8809906 DOI: 10.1080/21655979.2021.1995572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vascular smooth muscle cell (VSMC) hyperplasia is closely associated with AS progression. Hence, it is of great significance to elucidate the molecular mechanisms underlying the involvement of VSMCs in AS. SHH antagonist can inhibit the excessive proliferation, migration and phenotypic transformation of PDGF-BB-induced VSMCs. It has been proved that CUL3 can suppress Hedgehog signaling. This current work was designed to identify the biological role of CUL3 in the behaviors of VSMCs in AS and investigate the potential molecular mechanism. VSMCs were treated with PDGF-BB to establish the cell model in vitro. Levels of CUL3, SHH and Gli1 in PDGF-BB-stimulated VSMCs were measured by RT-qPCR analysis. Then, the precise functions of CUL3 in VSMCs were determined from the perspectives of proliferation, migration, apoptosis and phenotype transformation. Besides, the influence of CUL3 on inflammatory response in VSMCs was evaluated. Moreover, the impact of CUL3 on Hedgehog signaling pathway was also investigated. In the present research, it was observed that CUL3 was lowly expressed and SHH and Gli1 were highly expressed in PDGF-BB-stimulated VSMCs. Upregulation of CUL3 suppressed the excessive proliferation, migration and phenotypic transformation and facilitated the apoptosis of PDGF-BB-stimulated VSMCs. In addition, elevation of CUL3 alleviated inflammatory response in PDGF-BB-stimulated VSMCs. Importantly, CUL3 overexpression inactivated Hedgehog signaling pathway. To conclude, CUL3 might regulate the biological behaviors of VSMCs in AS by modulating Hedgehog signaling pathway. These data encourage to further investigate any potential therapeutic role of CUL3 in animal models of AS and explore therapeutic values for AS clinically.
Collapse
Affiliation(s)
- Yuluan Xiang
- Department of Gerontology and Special Medical Services, The First Affiliated Hospital of Dali University, Dali, 671000, Yunnan, China
| | - Lihua Li
- Department of Gerontology and Special Medical Services, The First Affiliated Hospital of Dali University, Dali, 671000, Yunnan, China
| | - Shuang Xia
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China
| | - Jinlin Lv
- Department of Gerontology and Special Medical Services, The First Affiliated Hospital of Dali University, Dali, 671000, Yunnan, China
| | - Xiaoling Li
- Department of cardiovascular medicine, People's Hospital of Fengjie, Chongqing, 404600, China
| |
Collapse
|
39
|
Yuan JN, Hong Y, Ma ZL, Pang RP, Lei QQ, Lv XF, Zhou JG, Huang H, Zhang TT. MiR-302a Limits Vascular Inflammation by Suppressing Nuclear Factor-κ B Pathway in Endothelial Cells. Front Cell Dev Biol 2021; 9:682574. [PMID: 34409030 PMCID: PMC8365611 DOI: 10.3389/fcell.2021.682574] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/21/2021] [Indexed: 01/09/2023] Open
Abstract
The inflammatory response of endothelial cells accelerates various vascular diseases. MicroRNAs (miRNAs) participate in diverse cellular processes during inflammation. In the present study, we found that miR-302a is an effective suppressor of vascular inflammation in endothelial cells. It was revealed that miR-302a exhibited a lower level in a lipopolysaccharide (LPS)-induced mouse model and in patients with vascular inflammatory disease. Genetic haploinsufficiency of miR-302 aggravated the LPS-induced vascular inflammatory response in mice, and overexpression of miR-302a attenuated vascular inflammation in mice. Furthermore, overexpression of miR-302a inhibited the synthesis and secretion of adhesion factors in endothelial cells, and suppressed the adhesion of monocytes to endothelium. In the study of molecular mechanism, we found that miR-302a relieved vascular inflammation mainly by regulating the nuclear factor kappa-B (NF-κB) pathway in endothelial cells. The results showed that interleukin-1 receptor-associated kinase4 (IRAK4) and zinc finger protein 91 (ZFP91) were the binding targets of miR-302a. MiR-302a prevented the nuclear translocation of NF-κB by inhibiting phosphorylation of IκB kinase complex β (IKKβ) and inhibitors of κBα (IκBα) via targeting IRAK4. In addition, miR-302a downregulated the expression of NF-κB by directly binding with ZFP91. These findings indicate that miR-302a negatively regulates inflammatory responses in the endothelium via the NF-κB pathway and it may be a novel target for relieving vascular inflammation.
Collapse
Affiliation(s)
- Jia-Ni Yuan
- Program of Cardiovascular Research, The Eighth Affiliated Hospital, Zhongshan School Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacology, and Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yu Hong
- Department of Pharmacology, and Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhuo-Lin Ma
- Department of Physiology, Zhongshan School Medicine, Sun Yat-sen University, Guangzhou, China
| | - Rui-Ping Pang
- Department of Physiology, Zhongshan School Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qing-Qing Lei
- Department of Pharmacology, and Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Fei Lv
- Department of Pharmacology, and Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jia-Guo Zhou
- Program of Cardiovascular Research, The Eighth Affiliated Hospital, Zhongshan School Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacology, and Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hui Huang
- Program of Cardiovascular Research, The Eighth Affiliated Hospital, Zhongshan School Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ting-Ting Zhang
- Program of Cardiovascular Research, The Eighth Affiliated Hospital, Zhongshan School Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacology, and Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
40
|
Wu M, Yu Z, Li X, Zhang X, Wang S, Yang S, Hu L, Liu L. Paeonol for the Treatment of Atherosclerotic Cardiovascular Disease: A Pharmacological and Mechanistic Overview. Front Cardiovasc Med 2021; 8:690116. [PMID: 34368250 PMCID: PMC8333700 DOI: 10.3389/fcvm.2021.690116] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
With improvement in living standards and average life expectancy, atherosclerotic cardiovascular disease incidences and mortality have been increasing annually. Paeonia suffruticosa, a natural herb, has been used for the treatment of atherosclerotic cardiovascular disease for thousands of years in Eastern countries. Paeonol is an active ingredient extracted from Paeonia suffruticosa. Previous studies have extensively explored the clinical benefits of paeonol. However, comprehensive reviews on the cardiovascular protective effects of paeonol have not been conducted. The current review summarizes studies reporting on the protective effects of paeonol on the cardiovascular system. This study includes studies published in the last 10 years. The biological characteristics of Paeonia suffruticosa, pharmacological mechanisms of paeonol, and its toxicological and pharmacokinetic characteristics were explored. The findings of this study show that paeonol confers protection against atherosclerotic cardiovascular disease through various mechanisms, including inflammation, platelet aggregation, lipid metabolism, mitochondria damage, endoplasmic reticulum stress, autophagy, and non-coding RNA. Further studies should be conducted to elucidate the cardiovascular benefits of paeonol.
Collapse
Affiliation(s)
- Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongliang Yu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoya Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaonan Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Songzi Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lanqing Hu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longtao Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
41
|
Jiao P, Wang XP, Luoreng ZM, Yang J, Jia L, Ma Y, Wei DW. miR-223: An Effective Regulator of Immune Cell Differentiation and Inflammation. Int J Biol Sci 2021; 17:2308-2322. [PMID: 34239357 PMCID: PMC8241730 DOI: 10.7150/ijbs.59876] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/21/2021] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) play a critical role in regulating various biological processes, such as cell differentiation and immune modulation by binding to their target genes. miR-223 is a miRNA with important functions and has been widely investigated in recent years. Under certain physiological conditions, miR-223 is regulated by different transcription factors, including sirtuin1 (Sirt1), PU.1 and Mef2c, and its biological functions are mediated through changes in its cellular or tissue expression. This review paper summarizes miR-223 biosynthesis and its regulatory role in the differentiation of granulocytes, dendritic cells (DCs) and lymphocytes, macrophage polarization, and endothelial and epithelial inflammation. In addition, it describes the molecular mechanisms of miR-223 in regulating lung inflammation, rheumatoid arthritis, enteritis, neuroinflammation and mastitis to provide insights into the existing molecular regulatory networks and therapies for inflammatory diseases in humans and animals.
Collapse
Affiliation(s)
- Peng Jiao
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Xing-Ping Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Zhuo-Ma Luoreng
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Jian Yang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Li Jia
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Yun Ma
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Da-Wei Wei
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| |
Collapse
|
42
|
An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol 2021; 18:1141-1160. [PMID: 33850310 PMCID: PMC8093260 DOI: 10.1038/s41423-021-00670-3] [Citation(s) in RCA: 424] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/25/2021] [Indexed: 02/08/2023] Open
Abstract
The NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome is a multiprotein complex involved in the release of mature interleukin-1β and triggering of pyroptosis, which is of paramount importance in a variety of physiological and pathological conditions. Over the past decade, considerable advances have been made in elucidating the molecular mechanisms underlying the priming/licensing (Signal 1) and assembly (Signal 2) involved in NLRP3 inflammasome activation. Recently, a number of studies have indicated that the priming/licensing step is regulated by complicated mechanisms at both the transcriptional and posttranslational levels. In this review, we discuss the current understanding of the mechanistic details of NLRP3 inflammasome activation with a particular emphasis on protein-protein interactions, posttranslational modifications, and spatiotemporal regulation of the NLRP3 inflammasome machinery. We also present a detailed summary of multiple positive and/or negative regulatory pathways providing upstream signals that culminate in NLRP3 inflammasome complex assembly. A better understanding of the molecular mechanisms underlying NLRP3 inflammasome activation will provide opportunities for the development of methods for the prevention and treatment of NLRP3 inflammasome-related diseases.
Collapse
|
43
|
Jin ZL, Gao WY, Liao SJ, Yu T, Shi Q, Yu SZ, Cai YF. Paeonol inhibits the progression of intracerebral haemorrhage by mediating the HOTAIR/UPF1/ACSL4 axis. ASN Neuro 2021; 13:17590914211010647. [PMID: 33906483 PMCID: PMC8718120 DOI: 10.1177/17590914211010647] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 01/21/2023] Open
Abstract
Intracerebral haemorrhage (ICH) is a devastating subtype of stroke with high morbidity and mortality. It has been reported that paeonol (PAN) inhibits the progression of ICH. However, the mechanism by which paeonol mediates the progression of ICH remains unclear. To mimic ICH in vitro, neuronal cells were treated with hemin. An in vivo model of ICH was established to detect the effect of paeonol on ferroptosis in neurons during ICH. Cell viability was tested by MTT assay. Furthermore, cell injury was detected by GSH, MDA and ROS assays. Ferroptosis was examined by iron assay. RT-qPCR and western blotting were used to detect gene and protein expression, respectively. The correlation among HOTAIR, UPF1 and ACSL4 was explored by FISH, RNA pull-down and RIP assays. Paeonol significantly inhibited the ferroptosis of neurons in ICH mice. In addition, paeonol significantly reversed hemin-induced injury and ferroptosis in neurons, while this phenomenon was notably reversed by HOTAIR overexpression. Moreover, paeonol notably inhibited ferroptosis in hemin-treated neuronal cells via inhibition of ACSL4. Additionally, HOTAIR bound to UPF1, and UPF1 promoted the degradation of ACSL4 by binding to ACSL4. Furthermore, HOTAIR overexpression reversed paeonol-induced inhibition of ferroptosis by mediating the UPF1/ACSL4 axis. Paeonol inhibits the progression of ICH by mediating the HOTAIR/UPF1/ACSL4 axis. Therefore, paeonol might serve as a new agent for the treatment of ICH.
Collapse
Affiliation(s)
- Zheng-Long Jin
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji’nan University, Jiangmen, P.R. China
| | - Wen-Ying Gao
- Department of TCM Pediatrics, Jiangmen Maternal and Child Health Hospital, Jiangmen, P.R. China
| | - Shao-Jun Liao
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Tao Yu
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji’nan University, Jiangmen, P.R. China
| | - Qing Shi
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji’nan University, Jiangmen, P.R. China
| | - Shang-Zhen Yu
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji’nan University, Jiangmen, P.R. China
| | - Ye-Feng Cai
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| |
Collapse
|
44
|
Mukushkina D, Aisina D, Pyrkova A, Ryskulova A, Labeit S, Ivashchenko A. In silico Prediction of miRNA Interactions With Candidate Atherosclerosis Gene mRNAs. Front Genet 2020; 11:605054. [PMID: 33329752 PMCID: PMC7672156 DOI: 10.3389/fgene.2020.605054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
The involvement of genes and miRNAs in the development of atherosclerosis is a challenging problem discussed in recent publications. It is necessary to establish which miRNAs affect the expression of candidate genes. We used known candidate atherosclerosis genes to predict associations. The quantitative characteristics of interactions of miRNAs with mRNA candidate genes were determined using the program, which identifies the localization of miRNA binding sites in mRNA, the free energy interaction of miRNA with mRNA. In mRNAs of GAS6 and NFE2L2 candidate genes, binding sites of 21 miRNAs and of 15 miRNAs, respectively, were identified. In IRS2 mRNA binding sites of 25 miRNAs were located in a cluster of 41 nt. In ADRB3, CD36, FASLG, FLT1, PLA2G7, and PPARGC1A mRNAs, clusters of miR-466, ID00436.3p-miR, and ID01030.3p-miR BS were identified. The organization of overlapping miRNA binding sites in clusters led to their compaction and caused competition among the miRNAs. The binding of 53 miRNAs to the mRNAs of 14 candidate genes with free energy interactions greater than -130 kJ/mole was determined. The miR-619-5p was fully complementary to ADAM17 and CD36 mRNAs, ID01593.5p-miR to ANGPTL4 mRNA, ID01935.5p-miR to NFE2L2, and miR-5096 to IL18 mRNA. Associations of miRNAs and candidate atherosclerosis genes are proposed for the early diagnosis of this disease.
Collapse
Affiliation(s)
- Dina Mukushkina
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Dana Aisina
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Anna Pyrkova
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Alma Ryskulova
- Department of microbiology, Kazakh Medical University of Continuing Education, Almaty, Kazakhstan
| | - Siegfried Labeit
- Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Anatoliy Ivashchenko
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| |
Collapse
|