1
|
Wang W, Thomas ER, Xiao R, Chen T, Guo Q, Liu K, Yang Y, Li X. Targeting mitochondria-regulated ferroptosis: A new frontier in Parkinson's disease therapy. Neuropharmacology 2025; 274:110439. [PMID: 40174689 DOI: 10.1016/j.neuropharm.2025.110439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/16/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantial nigra. Mitochondrial dysfunction and mitochondrial oxidative stress are central to the pathogenesis of PD, with recent evidence highlighting the role of ferroptosis - a type of regulated cell death dependent on iron metabolism and lipid peroxidation. Mitochondria, the central organelles for cellular energy metabolism, play a pivotal role in PD pathogenesis through the production of Reactive oxygen species (ROS) and the disruption of iron homeostasis. This review explores the intricate interplay between mitochondrial dysfunction and ferroptosis in PD, focusing on key processes such as impaired electron transport chain function, tricarboxylic acid (TCA) cycle dysregulation, disruption of iron metabolism, and altered lipid peroxidation. We discuss key pathways, including the role of glutathione (GSH), mitochondrial ferritin, and the regulation of the mitochondrial labile iron pool (mLIP), which collectively influence the susceptibility of neurons to ferroptosis. Furthermore, this review emphasizes the importance of mitochondrial quality control mechanisms, such as mitophagy and mitochondrial biogenesis, in mitigating ferroptosis-induced neuronal death. Understanding these mechanisms linking the interplay between mitochondrial dysfunction and ferroptosis may pave the way for novel therapeutic approaches aimed at preserving mitochondrial integrity and preventing neuronal loss in PD.
Collapse
Affiliation(s)
- Wenjun Wang
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | | | - Ruyue Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Tianshun Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Qulian Guo
- Department of Pediatrics, Birth Defects and Childhood Hematological Oncology Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Kezhi Liu
- The Zigong Affiliated of Hospital of Southwest Medical University, Zigong mental health Center, Zigong Institute of Brain Science, Zigong, Sichuan Province, 643020, China
| | - You Yang
- Department of Pediatrics, Birth Defects and Childhood Hematological Oncology Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Xiang Li
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China; The Zigong Affiliated of Hospital of Southwest Medical University, Zigong mental health Center, Zigong Institute of Brain Science, Zigong, Sichuan Province, 643020, China; Health Science Center, Xi'an Jiaotong University, 710061, China.
| |
Collapse
|
2
|
Popescu C, Munteanu C, Spînu A, Andone I, Bistriceanu R, Postoiu R, Suciu A, Giuvara S, Vlădulescu-Trandafir AI, Aurelian SM, Pop NL, Ciobanu V, Onose G. Actual Data on Essential Trace Elements in Parkinson's Disease. Nutrients 2025; 17:1852. [PMID: 40507121 PMCID: PMC12157143 DOI: 10.3390/nu17111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2025] [Revised: 05/25/2025] [Accepted: 05/28/2025] [Indexed: 06/16/2025] Open
Abstract
"Sola dosis facit venenum" (Paracelsus). Essential trace elements, crucial for maintaining neuronal function, have their dysregulation increasingly correlated with neurodegenerative disorders, particularly Parkinson's disease (PD). This systematic review aims to synthesize recent high-quality evidence regarding the involvement of essential trace elements, such as iron, zinc, copper, manganese, and selenium, in the pathogenesis and, consequently, as potential therapeutic targets of PD. A comprehensive literature search was conducted for articles published between 1 January 2023 and 31 December 2024. Out of an initial pool of 1231 identified studies, 63 met the methodological eligibility criteria according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. All potentially eligible interventional and observational studies were initially assessed using the Physiotherapy Evidence Database (PEDro) scale, which is commonly employed for evaluating the internal validity and statistical interpretability of clinical trials and rehabilitation-focused studies. Following the qualitative assessment using the PEDro scale, 18 studies were ultimately selected based on their scientific relevance and methodological rigor. To supplement the PEDro scoring, which is designed primarily for individual trials, we applied the AMSTAR-2 (A MeaSurement Tool to Assess Systematic Reviews) checklist for the evaluation of the included systematic reviews or meta-analyses. The included studies employed a variety of clinical, postmortem, and experimental models to investigate trace-element concentrations and their mechanistic roles in PD. The findings revealed consistent patterns of iron accumulation in the substantia nigra, zinc's bidirectional effects on oxidative stress and autophagy, copper-induced α-synuclein aggregation, and the neuroprotective role of selenium via antioxidant pathways. Manganese was associated with mitochondrial dysfunction and neuroinflammation. Essential trace-element disturbances contribute to PD pathology through interconnected mechanisms involving redox imbalance, protein misfolding, and impaired cellular homeostasis. These elements may serve as both biomarkers and potential therapeutic tools, warranting further investigation into personalized metal-based interventions for PD.
Collapse
Affiliation(s)
- Cristina Popescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania; (C.P.); (A.S.); (I.A.); (R.B.); (R.P.); (A.S.); (S.G.); (A.-I.V.-T.); (S.M.A.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Constantin Munteanu
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania
| | - Aura Spînu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania; (C.P.); (A.S.); (I.A.); (R.B.); (R.P.); (A.S.); (S.G.); (A.-I.V.-T.); (S.M.A.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Ioana Andone
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania; (C.P.); (A.S.); (I.A.); (R.B.); (R.P.); (A.S.); (S.G.); (A.-I.V.-T.); (S.M.A.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Roxana Bistriceanu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania; (C.P.); (A.S.); (I.A.); (R.B.); (R.P.); (A.S.); (S.G.); (A.-I.V.-T.); (S.M.A.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Ruxandra Postoiu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania; (C.P.); (A.S.); (I.A.); (R.B.); (R.P.); (A.S.); (S.G.); (A.-I.V.-T.); (S.M.A.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Andreea Suciu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania; (C.P.); (A.S.); (I.A.); (R.B.); (R.P.); (A.S.); (S.G.); (A.-I.V.-T.); (S.M.A.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Sebastian Giuvara
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania; (C.P.); (A.S.); (I.A.); (R.B.); (R.P.); (A.S.); (S.G.); (A.-I.V.-T.); (S.M.A.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Andreea-Iulia Vlădulescu-Trandafir
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania; (C.P.); (A.S.); (I.A.); (R.B.); (R.P.); (A.S.); (S.G.); (A.-I.V.-T.); (S.M.A.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Sorina Maria Aurelian
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania; (C.P.); (A.S.); (I.A.); (R.B.); (R.P.); (A.S.); (S.G.); (A.-I.V.-T.); (S.M.A.); (G.O.)
- Clinic of Geriatrics, Hospital of Chronic Diseases “Sf. Luca”, 041915 Bucharest, Romania
| | - Nadina Liana Pop
- Department of Physiology, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Clinicilor Street No. 1-3, 400006 Cluj-Napoca, Romania;
| | - Vlad Ciobanu
- Computer Science Department, Politehnica University of Bucharest, 060042 Bucharest, Romania;
| | - Gelu Onose
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania; (C.P.); (A.S.); (I.A.); (R.B.); (R.P.); (A.S.); (S.G.); (A.-I.V.-T.); (S.M.A.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| |
Collapse
|
3
|
Sun F, Ma Y, Li D, Yang Q, Yuan T, Liu T, Tian X, Zhu Z, Zheng W, Wang Y, Wang W. Gentiopicroside Attenuated Dopaminergic Neurodegeneration via Inhibiting Neuroinflammatory Responses and Ferroptosis in Experimental Models of Parkinson's Disease. Basic Clin Pharmacol Toxicol 2025; 136:e70036. [PMID: 40256942 DOI: 10.1111/bcpt.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/18/2025] [Accepted: 03/23/2025] [Indexed: 04/22/2025]
Abstract
Along with the hallmark of α-synuclein deposition, neuroinflammation and iron accumulation have emerged as essential pathological features for dopaminergic neuron degeneration in PD patients and animal models. Preclinical studies have highlighted gentiopicroside's anti-inflammatory activities in treating arthritis, colitis and pancreatitis, and its neuroprotective effects on neurological diseases such as AD, chronic neuropathic pain and ischemia. However, the effects and mechanisms of gentiopicroside on PD-related conditions remain uncertain. Here, we evaluated the potential benefits of gentiopicroside using a unilateral 6-OHDA rat model and a MPP+-induced cell model. Our findings indicated that gentiopicroside improved motor deficits and restored nigral TH-positive neurons in vivo. Mechanistically, gentiopicroside ameliorated inflammatory responses of 6-OHDA-induced rats, decreased NF-κB and pro-inflammatory cytokines levels and reduced Iba-1-positive microglia in the substantia nigra. Furthermore, gentiopicroside regulated the levels of DMT1 and FPN1, thereby inhibiting iron accumulation in PD rats. In vitro, gentiopicroside preserved the viability of MPP+-treated SH-SY5Y cells and suppressed NF-κB activity and its downstream factors' levels. Meanwhile, gentiopicroside inhibited lipid peroxidation and ROS production, while it upregulated the expression of GPX4 in MPP+-treated cells. And these antiferroptosis effects were also linked to iron transporters regulation. Conclusively, gentiopicroside exhibits neuroprotective effects via alleviating neuroinflammation and iron-dependent ferroptosis, offering promise for PD treatment.
Collapse
Affiliation(s)
- Fangling Sun
- Department of Laboratory Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Yifu Ma
- Department of Laboratory Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Dan Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Qianqian Yang
- Department of Laboratory Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Tingwei Yuan
- Department of Laboratory Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Tingting Liu
- Department of Laboratory Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Xin Tian
- Department of Laboratory Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Zixin Zhu
- Department of Laboratory Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Wenrong Zheng
- Department of Laboratory Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Yufeng Wang
- Department of Laboratory Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Wen Wang
- Department of Laboratory Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| |
Collapse
|
4
|
Caproni S, Di Fonzo A, Colosimo C. Oxidative Stress: A New Pathophysiological Pathway in Parkinson's Disease and a Potential Target of the Brain-Sport Crosstalk. PARKINSON'S DISEASE 2025; 2025:6691390. [PMID: 40162062 PMCID: PMC11952919 DOI: 10.1155/padi/6691390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/09/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025]
Abstract
Oxidative stress (OS), a condition that occurs when the balance between reactive oxygen species production and antioxidant defense mechanisms is disrupted, has been implicated in the pathogenesis of several neurological conditions, including neurodegenerative and vascular disorders. Ferroptosis is a mechanism mediating OS-induced damage, with growing evidence of specific involvement in both Parkinson's disease (PD) and ischemic stroke. Regular physical activity may have an antioxidant effect by increasing the production and activity of nonenzymatic and enzymatic antioxidants. Among the biological mediators of physical activity, irisin may act as an agent capable of inducing systemic changes and crossing the brain-blood barrier. This review aims to describe the main role of OS in the pathophysiology of PD, highlighting putative neurodegenerative mechanisms and emphasizing the potential targeting by physical activity as a possible shared preventive and symptomatic treatment approach.
Collapse
Affiliation(s)
- Stefano Caproni
- Neurology Division and Stroke Unit, Neuroscience Department, Santa Maria University Hospital, Terni, Italy
| | - Alessio Di Fonzo
- Neurology Unit, Neuroscience and Mental Health Department, IRCCS Ca' Granda Ospedale Maggiore Policlinico Hospital, Milan, Italy
| | - Carlo Colosimo
- Neurology Division and Stroke Unit, Neuroscience Department, Santa Maria University Hospital, Terni, Italy
| |
Collapse
|
5
|
Guo X, Wei R, Yin X, Yang G. Crosstalk between neuroinflammation and ferroptosis: Implications for Parkinson's disease progression. Front Pharmacol 2025; 16:1528538. [PMID: 40183096 PMCID: PMC11966490 DOI: 10.3389/fphar.2025.1528538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the degeneration of dopaminergic neurons and the aggregation of α-synuclein. Neuroinflammation is triggered by the activation of microglia and astrocytes, which release pro-inflammatory factors that exacerbate neuronal damage. This inflammatory state also disrupts iron homeostasis, leading to the occurrence of ferroptosis. Ferroptosis is characterized by lipid peroxidation of cell membranes and iron overload. Abnormal accumulation of iron in the brain increases oxidative stress and lipid peroxidation, further aggravating neuroinflammation and damage to dopaminergic neurons. Natural products have garnered attention for their antioxidant, anti-inflammatory, and neuroprotective properties, with many plant extracts showing promising therapeutic potential in PD research. This study further investigates the potential therapeutic roles of various natural products in regulating neuroinflammation and ferroptosis. The results suggest that natural products have significant therapeutic potential in modulating the interaction between neuroinflammation and ferroptosis, making them potential treatments for PD. Future research should further validate the safety and efficacy of these natural compounds in clinical applications to develop novel therapeutic strategies for PD.
Collapse
Affiliation(s)
- Xiangyu Guo
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ran Wei
- Cardiovascular Surgery Department, Second Hospital of Jilin University, Changchun, China
| | - Xunzhe Yin
- Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Ge Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
6
|
Wang H, Wu S, Jiang X, Li W, Li Q, Sun H, Wang Y. Acteoside alleviates salsolinol-induced Parkinson's disease by inhibiting ferroptosis via activating Nrf2/SLC7A11/GPX4 pathway. Exp Neurol 2025; 385:115084. [PMID: 39631720 DOI: 10.1016/j.expneurol.2024.115084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Salsolinol (SAL), i.e.1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroiso-quinoline, is a dopamine metabolite and endogenous neurotoxin that is toxic to dopaminergic neurons, and is involved in the genesis of Parkinson's disease (PD). However, the machinery underlying SAL induces neurotoxicity in PD are still being elucidated. In the present study, we first used RNA sequencing (RNAseq) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to detect differentially expressed genes in SAL-treated SH-SY5Y cells. We found that ferroptosis-related pathway was enriched by SAL, which was validated by in vitro and in vivo SAL models. SAL inducing ferroptosis through downregulating SLC7A11/GPX4 in SH-SY5Y cells, which neurotoxic effect was reversed by ferroptosis inhibitors deferoxamine (DFO) and ferrostatin-1 (Fer-1). Acteoside, a phenylethanoid glycoside of plant origin with neuroprotective effect, attenuates SAL-induced neurotoxicity by inhibiting ferroptosis in in vitro and in vivo PD models through upregulating SLC7A11/GPX4. Mechanistically, acteoside activates Nrf2. Nrf2 inhibitor ML385 abolished acteoside-mediated increased SLC7A11/GPX4 and neuroprotection against SAL in SH-SY5Y cells. Meanwhile, the PI3K inhibitor LY294002 suppressed the acteoside-induced Nrf2 expression and ensued decreased expression of SLC7A11/GPX4 in SAL-treated SH-SY5Y cells. Taken together, these results demonstrate that salsolinol-induced PD through inducing ferroptosis via downregulating SLC7A11/GPX4. Acteoside attenuates SAL-induced PD through inhibiting ferroptosis via activating PI3K/Akt-dependant Nrf2. The present study revealed a novel molecular mechanisms underlining SAL-induced neurotoxicity via induction of ferroptosis in PD, and uncovered a new pharmacological effect against PD through inhibiting ferroptosis. This study highlights SAL-induced ferroptosis -dependent neurotoxicity as a potential therapeutic target in PD.
Collapse
Affiliation(s)
- Hongquan Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China.
| | - Shuang Wu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Xiaodong Jiang
- Department of anatomy, College of Basic Medicine, Chifeng University Health Science Center, Chifeng 024005, China
| | - Wenjing Li
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng 024005, China
| | - Qiang Li
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng 024005, China
| | - Huiyan Sun
- Chifeng University Health Science Center, Chifeng 024000, China.
| | - Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China.
| |
Collapse
|
7
|
Thapa K, Khan H, Chahuan S, Dhankhar S, Kaur A, Garg N, Saini M, Singh TG. Insights into therapeutic approaches for the treatment of neurodegenerative diseases targeting metabolic syndrome. Mol Biol Rep 2025; 52:260. [PMID: 39982557 DOI: 10.1007/s11033-025-10346-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
Due to the significant energy requirements of nerve cells, glucose is rapidly oxidized to generate ATP and works in conjunction with mitochondria in metabolic pathways, resulting in a combinatorial impact. The purpose of this review is to show how glucose metabolism disorder invariably disrupts the normal functioning of neurons, a phenomenon commonly observed in neurodegenerative diseases. Interventions in these systems may alleviate the degenerative load on neurons. Research on the concepts of metabolic adaptability during disease progression has become a key focus. The majority of the existing treatments are effective in mitigating some clinical symptoms, but they are unsuccessful in preventing neurodegeneration. Hence, there is an urgent need for breakthrough and highly effective therapies for neurodegenerative diseases. Here, we summarise the interactions that various neurodegenerative diseases have with abnormalities in insulin signalling, lipid metabolism, glucose control, and mitochondrial bioenergetics. These factors have a crucial role in brain activity and cognition, and also significantly contribute to neuronal degeneration in pathological conditions. In this article, we have discussed the latest and most promising treatment methods, ranging from molecular advancements to clinical trials, that aim at improving the stability of neurons.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, 174103, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Samrat Chahuan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Nitika Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Monika Saini
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| | | |
Collapse
|
8
|
Wang H, Wu S, Li Q, Sun H, Wang Y. Targeting Ferroptosis: Acteoside as a Neuroprotective Agent in Salsolinol-Induced Parkinson's Disease Models. FRONT BIOSCI-LANDMRK 2025; 30:26679. [PMID: 40018928 DOI: 10.31083/fbl26679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/29/2024] [Accepted: 11/30/2024] [Indexed: 03/01/2025]
Abstract
BACKGROUND Salsolinol (SAL) is a dopamine metabolite and endogenous neurotoxin that exerts neurotoxicity to dopaminergic neurons and is involved in the genesis of Parkinson's disease (PD). However, the machinery underlying SAL-induced neurotoxicity in PD is still being elucidated. METHODS In the present study, we first used RNA-seq and KEGG analysis to examine differentially expressed genes in SAL-challenged SH-SY5Y cells. PD animal models were established and treated with acteoside. Cell viability assays, lipid peroxidation assessments (malondialdehyde [MDA] and 4-Hydroxynonenal [4-HNE]), immunoblot, and transmission electron microscopy were used to confirm acteoside-mediated inhibition of ferroptosis and its neuroprotective effect on dopaminergic (DA) neurons. RESULTS We found that ferroptosis-related pathway was enriched by SAL. SAL inducing ferroptosis through upregulating long-chain acyl-CoA synthetase family member 4 (ACSL4) in SH-SY5Y cells, which neurotoxic effect was reversed by ferroptosis inhibitors ferrostatin-1 (Fer-1) and deferoxamine (DFO). Acteoside, a phenylethanoid glycoside of plant origin with a neuroprotective effect, attenuates SAL-induced neurotoxicity by inhibiting ferroptosis in in vitro and in vivo PD models through downregulating ACSL4. CONCLUSIONS The present study revealed a novel molecular mechanism underlying SAL-induced neurotoxicity via induction of ferroptosis in PD, and uncovered a new pharmacological effect against PD through inhibiting ferroptosis. This study highlights SAL-induced neurotoxicity via ferroptosis as a potential therapeutic target in PD.
Collapse
Affiliation(s)
- Hongquan Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, 100049 Beijing, China
| | - Shuang Wu
- Department of Neurology, Zhongnan Hospital of Wuhan University, 430000 Wuhan, Hubei, China
| | - Qiang Li
- Department of Neurology, The Affiliated Hospital of Chifeng University, 024005 Chifeng, Inner Mongolia, China
| | - Huiyan Sun
- Chifeng University Health Science Center, 024000 Chifeng, Inner Mongolia, China
| | - Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, 100049 Beijing, China
| |
Collapse
|
9
|
Qin W, Su R, Chen X, Liang Z, Huang L, Qian X, Yang Y, Qi S, Luo X. Synergistic Anti-Ferroptosis with a Minimalistic, Peroxide-Triggered Carbon Monoxide Donor for Parkinson's Disease. J Med Chem 2025; 68:3547-3558. [PMID: 39895106 DOI: 10.1021/acs.jmedchem.4c02691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease, with current treatments primarily focusing on improving dopaminergic activity, providing symptomatic relief but failing to halt disease progression. Ferroptosis drives PD pathogenesis and is a potential therapeutic target. Herein, we introduce a novel peroxide-activated carbon monoxide (CO) donor, PCOD, featuring a streamlined structure designed to potentially enhance blood-brain barrier (BBB) penetration and optimize therapeutic outcomes. PCOD releases CO upon activation by nucleophilic peroxides, e.g., ONOO- and H2O2. This mechanism provides a potent strategy against ferroptosis: first, scavenging peroxides that generate oxidative radicals involved in ferroptosis, and second, CO is proposed to inhibit Fenton chemistry through coordination to Fe2+. In MPTP-treated mice, PCOD prevents dopaminergic neuron loss in the substantia nigra and alleviates PD symptoms. This peroxide-triggered CO release offers a promising and innovative strategy to combat ferroptosis and neurodegeneration in PD.
Collapse
Affiliation(s)
- Wenjie Qin
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Ruiqi Su
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Tongshan Road 209, Xuzhou 221004, China
| | - Xiaodie Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Zhiyan Liang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Tongshan Road 209, Xuzhou 221004, China
| | - Linyan Huang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Tongshan Road 209, Xuzhou 221004, China
| | - Xuhong Qian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Suhua Qi
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Tongshan Road 209, Xuzhou 221004, China
| | - Xiao Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
10
|
Sanchez JC, Pierson JA, Borcik CG, Rienstra CM, Wright ER. High-resolution Cryo-EM Structure Determination of a-Synuclein-A Prototypical Amyloid Fibril. Bio Protoc 2025; 15:e5171. [PMID: 39959285 PMCID: PMC11825309 DOI: 10.21769/bioprotoc.5171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 02/18/2025] Open
Abstract
The physiological role of a-synuclein (a-syn), an intrinsically disordered presynaptic neuronal protein, is believed to impact the release of neurotransmitters through interactions with the SNARE complex. However, under certain cellular conditions that are not well understood, a-syn will self-assemble into β-sheet-rich fibrils that accumulate and form insoluble neuronal inclusions. Studies of patient-derived brain tissues have concluded that these inclusions are associated with Parkinson's disease, the second most common neurodegenerative disorder, and other synuclein-related diseases called synucleinopathies. In addition, repetitions of specific mutations to the SNCA gene, the gene that encodes a-syn, result in an increased disposition for synucleinopathies. The latest advances in cryo-EM structure determination and real-space helical reconstruction methods have resulted in over 60 in vitro structures of a-syn fibrils solved to date, with a handful of these reaching a resolution below 2.5 Å. Here, we provide a protocol for a-syn protein expression, purification, and fibrilization. We detail how sample quality is assessed by negative stain transmission electron microscopy (NS-TEM) analysis and followed by sample vitrification using the Vitrobot Mark IV vitrification robot. We provide a detailed step-by-step protocol for high-resolution cryo-EM structure determination of a-syn fibrils using RELION and a series of specialized helical reconstruction tools that can be run within RELION. Finally, we detail how ChimeraX, Coot, and Phenix are used to build and refine a molecular model into the high-resolution cryo-EM map. This workflow resulted in a 2.04 Å structure of a-syn fibrils with excellent resolution of residues 36-97 and an additional island of density for residues 15-22 that had not been previously reported. This workflow should serve as a starting point for individuals new to the neurodegeneration and structural biology fields. Together, this procedure lays the foundation for advanced structural studies of a-syn and other amyloid fibrils. Key features • In vitro fibril amplification method yielding twisting fibrils that span several micrometers in length and are suitable for cryo-EM structure determination. • High-throughput cryo-EM data collection of neurodegenerative fibrils, such as alpha-synuclein. • Use of RELION implementations of helical reconstruction algorithms to generate high-resolution 3D structures of a-synuclein fibrils. • Brief demonstration of the use of ChimeraX, Coot, and Phenix for molecular model building and refinement.
Collapse
Affiliation(s)
- Juan C. Sanchez
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Biotechnology Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua A. Pierson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Collin G. Borcik
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, USA
| | - Chad M. Rienstra
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Biotechnology Training Program, University of Wisconsin-Madison, Madison, WI, USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, UW-Madison, Madison, WI, USA
| | - Elizabeth R. Wright
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Biotechnology Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Cryo-Electron Microscopy Research Center, UW-Madison, Madison, WI, USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Morgridge Institute for Research, UW-Madison, Madison, WI, USA
| |
Collapse
|
11
|
Sharma R, Kour A, Dewangan HK. Enhancements in Parkinson's Disease Management: Leveraging Levodopa Optimization and Surgical Breakthroughs. Curr Drug Targets 2025; 26:17-32. [PMID: 39350551 DOI: 10.2174/0113894501319817240919103802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 02/19/2025]
Abstract
Parkinson's disease (PD) is a complex neurological condition caused due to inheritance, environment, and behavior among various other parameters. The onset, diagnosis, course of therapy, and future of PD are thoroughly examined in this comprehensive review. This review also presents insights into pathogenic mechanisms of reactive microgliosis, Lewy bodies, and their functions in the evolution of PD. It addresses interaction complexity with genetic mutations, especially in genes such as UCH-L1, parkin, and α-synuclein, which illuminates changes in the manner dopaminergic cells handle proteins and use proteases. This raises the improved outcomes and life quality for those with PD. Potential treatments for severe PD include new surgical methods like Deep Brain Stimulation (DBS). Further, exploration of non-motor manifestations, such as cognitive impairment, autonomic dysfunction, and others, is covered in this review article. These symptoms have a significant impact on patients' quality of life. Furthermore, one of the emerging therapeutic routes that are being investigated is neuroprotective medicines that aim to prevent the aggregation of α-synuclein and interventions that modify the progression of diseases. The review concludes by stressing the dynamic nature of PD research and the potential game-changing impact of precision medicines on current approaches to therapy.
Collapse
Affiliation(s)
- Ritika Sharma
- University Institute of Pharma Sciences (UIPS), Chandigarh University NH-95, Chandigarh Ludhiana Highway, Mohali, Punjab, India
| | - Avneet Kour
- Chitkara College of Pharmacy, Chitkara University, Punjab-140401, India
| | - Hitesh Kumar Dewangan
- University Institute of Pharma Sciences (UIPS), Chandigarh University NH-95, Chandigarh Ludhiana Highway, Mohali, Punjab, India
| |
Collapse
|
12
|
Li Y, Liu C, Fang B, Chen X, Wang K, Xin H, Wang K, Yang SM. Ferroptosis, a therapeutic target for cardiovascular diseases, neurodegenerative diseases and cancer. J Transl Med 2024; 22:1137. [PMID: 39710702 DOI: 10.1186/s12967-024-05881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
The identification of ferroptosis represents a pivotal advancement in the field of cell death research, revealing an entirely novel mechanism of cellular demise and offering new insights into the initiation, progression, and therapeutic management of various diseases. Ferroptosis is predominantly induced by intracellular iron accumulation, lipid peroxidation, or impairments in the antioxidant defense system, culminating in membrane rupture and consequent cell death. Studies have associated ferroptosis with a wide range of diseases, and by enhancing our comprehension of its underlying mechanisms, we can formulate innovative therapeutic strategies, thereby providing renewed hope for patients.
Collapse
Affiliation(s)
- Yinghui Li
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Cuiyun Liu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Bo Fang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xinzhe Chen
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Kai Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China.
| | - Kun Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| | - Su-Min Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
13
|
Zhou M, Xu K, Ge J, Luo X, Wu M, Wang N, Zeng J. Targeting Ferroptosis in Parkinson's Disease: Mechanisms and Emerging Therapeutic Strategies. Int J Mol Sci 2024; 25:13042. [PMID: 39684753 DOI: 10.3390/ijms252313042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/30/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra and the accumulation of α-synuclein in the brain. Ferroptosis, a recently identified form of regulated cell death, is critical in PD pathogenesis due to its association with iron deposition, overproduction of reactive oxygen species, iron-dependent lipid peroxidation and impaired lipid peroxidation clearance. This cell death mechanism is closely linked to several pathogenic processes in PD, including α-synuclein aggregation, oxidative stress, mitochondrial dysfunction, microglia-induced neuroinflammation, and neuromelanin accumulation. Given the significant role of ferroptosis in these mechanisms, there is increasing interest in targeting ferroptosis for PD treatment. Several drugs have shown potential in alleviating PD symptoms by inhibiting ferroptosis. This review aims to consolidate current knowledge on ferroptosis in PD and assess the therapeutic potential of anti-ferroptosis drugs, highlighting promising directions for future research and clinical applications.
Collapse
Affiliation(s)
- Minghao Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Keyang Xu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xingnian Luo
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Mengyao Wu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ning Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
14
|
Yao Z, Jiao Q, Du X, Jia F, Chen X, Yan C, Jiang H. Ferroptosis in Parkinson's disease -- The iron-related degenerative disease. Ageing Res Rev 2024; 101:102477. [PMID: 39218077 DOI: 10.1016/j.arr.2024.102477] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Parkinson's disease (PD) is a prevalent and advancing age-related neurodegenerative disorder, distinguished by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Iron regional deposit in SNpc is a significant pathological characteristic of PD. Brain iron homeostasis is precisely regulated by iron metabolism related proteins, whereas disorder of these proteins can damage neurons and glial cells in the brain. Additionally, growing studies have reported iron metabolism related proteins are involved in the ferroptosis progression in PD. However, the effect of these proteins in the ferroptosis of PD has not been systematically summarized. This review focuses on the roles of iron metabolism related proteins in the ferroptosis of PD. Finally, we put forward the iron early diagnosis according to the observation of iron deposits in the brain and showed the recent advances in iron chelation therapy in PD.
Collapse
Affiliation(s)
- Zhengyang Yao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Fengju Jia
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Chunling Yan
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Hong Jiang
- Qingdao Key Laboratory of Neurorehabilitation, University of Health and Rehabilitation Sciences, Qingdao, 266113, China.
| |
Collapse
|
15
|
Mercer A, Sancandi M, Maclatchy A, Lange S. Brain-Region-Specific Differences in Protein Citrullination/Deimination in a Pre-Motor Parkinson's Disease Rat Model. Int J Mol Sci 2024; 25:11168. [PMID: 39456949 PMCID: PMC11509057 DOI: 10.3390/ijms252011168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The detection of early molecular mechanisms and potential biomarkers in Parkinson's disease (PD) remains a challenge. Recent research has pointed to novel roles for post-translational citrullination/deimination caused by peptidylarginine deiminases (PADs), a family of calcium-activated enzymes, in the early stages of the disease. The current study assessed brain-region-specific citrullinated protein targets and their associated protein-protein interaction networks alongside PAD isozymes in the 6-hydroxydopamine (6-OHDA) induced rat model of pre-motor PD. Six brain regions (cortex, hippocampus, striatum, midbrain, cerebellum and olfactory bulb) were compared between controls/shams and the pre-motor PD model. For all brain regions, there was a significant difference in citrullinated protein IDs between the PD model and the controls. Citrullinated protein hits were most abundant in cortex and hippocampus, followed by cerebellum, midbrain, olfactory bulb and striatum. Citrullinome-associated pathway enrichment analysis showed correspondingly considerable differences between the six brain regions; some were overlapping for controls and PD, some were identified for the PD model only, and some were identified in control brains only. The KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways identified in PD brains only were associated with neurological, metabolic, immune and hormonal functions and included the following: "Axon guidance"; "Spinocerebellar ataxia"; "Hippo signalling pathway"; "NOD-like receptor signalling pathway"; "Phosphatidylinositol signalling system"; "Rap1 signalling pathway"; "Platelet activation"; "Yersinia infection"; "Fc gamma R-mediated phagocytosis"; "Human cytomegalovirus infection"; "Inositol phosphate metabolism"; "Thyroid hormone signalling pathway"; "Progesterone-mediated oocyte maturation"; "Oocyte meiosis"; and "Choline metabolism in cancer". Some brain-region-specific differences were furthermore observed for the five PAD isozymes (PADs 1, 2, 3, 4 and 6), with most changes in PAD 2, 3 and 4 when comparing control and PD brain regions. Our findings indicate that PAD-mediated protein citrullination plays roles in metabolic, immune, cell signalling and neurodegenerative disease-related pathways across brain regions in early pre-motor stages of PD, highlighting PADs as targets for future therapeutic avenues.
Collapse
Affiliation(s)
- Audrey Mercer
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, UK; (A.M.); (M.S.)
| | - Marco Sancandi
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, UK; (A.M.); (M.S.)
| | - Amy Maclatchy
- Pathobiology and Extracellular Vesicles Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK;
| | - Sigrun Lange
- Pathobiology and Extracellular Vesicles Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK;
| |
Collapse
|
16
|
Sanchez JC, Pierson J, Borcik CG, Rienstra CM, Wright ER. High-Resolution Cryo-EM Structure Determination of α-synuclein - A Prototypical Amyloid Fibril. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613698. [PMID: 39345396 PMCID: PMC11429748 DOI: 10.1101/2024.09.18.613698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The physiological role of α-synuclein (α-syn), an intrinsically disordered presynaptic neuronal protein, is believed to impact the release of neurotransmitters through interactions with the SNARE complex. However, under certain cellular conditions that are not well understood, α-syn will self-assemble into β-sheet rich fibrils that accumulate and form insoluble neuronal inclusions. Studies of patient derived brain tissues have concluded that these inclusions are associated with Parkinson's disease, the second most common neurodegenerative disorder, and other synuclein related diseases called synucleinopathies. In addition, repetitions of and specific mutations to the SNCA gene, the gene that encodes α-syn, results in an increased disposition for synucleinopathies. The latest advances in cryo-EM structure determination and real-space helical reconstruction methods have resulted in over 60 in vitro structures of α-syn fibrils solved to date, with a handful of these reaching a resolution below 2.5 Å. Here, we provide a protocol for α-syn protein expression, purification, and fibrilization. We detail how sample quality is assessed by negative stain transmission electron microscopy (NS-TEM) analysis and followed by sample vitrification using the Vitrobot Mark IV vitrification robot. We provide a detailed step by step protocol for high resolution cryo-EM structure determination of α-syn fibrils using RELION and a series of specialized helical reconstruction tools that can be run within RELION. Finally, we detail how ChimeraX, Coot, and Phenix are used to build and refine a molecular model into the high resolution cryo-EM map. This workflow resulted in a 2.04 Å structure of α-syn fibrils with excellent resolution of residues 36 to 97 and an additional island of density for residues 15 to 22 that had not been previously reported. This workflow should serve as a starting point for individuals new to the neurodegeneration and structural biology fields. Together, this procedure lays the foundation for advanced structural studies of α-synuclein and other amyloid fibrils.
Collapse
Affiliation(s)
- Juan C. Sanchez
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA 53706
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, USA 53706
- Biotechnology Training Program, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - Josh Pierson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - Collin G. Borcik
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA 53706
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - Chad M. Rienstra
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA 53706
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, USA 53706
- Biotechnology Training Program, University of Wisconsin-Madison, Madison, WI, USA 53706
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, USA 53706
- Morgridge Institute for Research, UW-Madison, Madison, WI, USA, 53715
| | - Elizabeth R. Wright
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA 53706
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, USA 53706
- Biotechnology Training Program, University of Wisconsin-Madison, Madison, WI, USA 53706
- Cryo-Electron Microscopy Research Center, UW-Madison, Madison, WI, USA, 53706
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin, Madison, WI, USA, 53706
- Morgridge Institute for Research, UW-Madison, Madison, WI, USA, 53715
| |
Collapse
|
17
|
Miller MR, Landis HE, Miller RE, Tizabi Y. Intercellular Adhesion Molecule 1 (ICAM-1): An Inflammatory Regulator with Potential Implications in Ferroptosis and Parkinson's Disease. Cells 2024; 13:1554. [PMID: 39329738 PMCID: PMC11430830 DOI: 10.3390/cells13181554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Intercellular adhesion molecule 1 (ICAM-1/CD54), a transmembrane glycoprotein, has been considered as one of the most important adhesion molecules during leukocyte recruitment. It is encoded by the ICAM1 gene and plays a central role in inflammation. Its crucial role in many inflammatory diseases such as ulcerative colitis and rheumatoid arthritis are well established. Given that neuroinflammation, underscored by microglial activation, is a key element in neurodegenerative diseases such as Parkinson's disease (PD), we investigated whether ICAM-1 has a role in this progressive neurological condition and, if so, to elucidate the underpinning mechanisms. Specifically, we were interested in the potential interaction between ICAM-1, glial cells, and ferroptosis, an iron-dependent form of cell death that has recently been implicated in PD. We conclude that there exist direct and indirect (via glial cells and T cells) influences of ICAM-1 on ferroptosis and that further elucidation of these interactions can suggest novel intervention for this devastating disease.
Collapse
Affiliation(s)
| | - Harold E. Landis
- Integrative Medicine Fellow, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | | | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| |
Collapse
|
18
|
Su Y, Jiao Y, Cai S, Xu Y, Wang Q, Chen X. The molecular mechanism of ferroptosis and its relationship with Parkinson's disease. Brain Res Bull 2024; 213:110991. [PMID: 38823725 DOI: 10.1016/j.brainresbull.2024.110991] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
Neurodegenerative diseases such as Parkinson's disease (PD) have complex pathogenetic mechanisms. Genetic, age, and environmental factors are all related to PD. Due to the unclear pathogenesis of PD and the lack of effective cure methods, it is urgent to find new targets for treating PD patients. Ferroptosis is a form of cell death that is reliant on iron and exhibits distinct morphological and mechanistic characteristics compared to other types of cell death. It encompasses a range of biological processes, including iron/lipid metabolism and oxidative stress. In recent years, research has found that ferroptosis plays a crucial role in the pathophysiological processes of neurodegenerative diseases and stroke. Therefore, ferroptosis is also closely related to PD, This article reviews the core mechanisms of ferroptosis and elucidates the correlation between PD and ferroptosis. In addition, new compounds that have emerged in recent years to exert anti PD effects by inhibiting the ferroptosis signaling pathway were summarized. I hope to further elaborate the relationship between ferroptosis and PD through the review of this article, and provide new strategies for developing PD treatments targeting ferroptosis.
Collapse
Affiliation(s)
- Yan Su
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Yue Jiao
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Sheng Cai
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Yang Xu
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Qi Wang
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Xianwen Chen
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China.
| |
Collapse
|
19
|
Zhang X, Li G, Chen H, Nie XW, Bian JS. Targeting NKAα1 to treat Parkinson's disease through inhibition of mitophagy-dependent ferroptosis. Free Radic Biol Med 2024; 218:190-204. [PMID: 38574977 DOI: 10.1016/j.freeradbiomed.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/04/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Dysfunction of the Na+/K+-ATPase (NKA) has been documented in various neurodegenerative diseases, yet the specific role of NKAα1 in Parkinson's disease (PD) remains incompletely understood. In this investigation, we utilized NKAα1 haploinsufficiency (NKAα1+/-) mice to probe the influence of NKAα1 on dopaminergic (DA) neurodegeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Our findings reveal that NKAα1+/- mice displayed a heightened loss of DA neurons and more pronounced motor dysfunction compared to the control group when exposed to MPTP. Intriguingly, this phenomenon coincided with the activation of ferroptosis and impaired mitophagy both in vivo and in vitro. To scrutinize the role and underlying mechanism of NKAα1 in PD, we employed DR-Ab, an antibody targeting the DR-region of the NKA α subunit. Our study demonstrates that the administration of DR-Ab effectively reinstated the membrane abundance of NKAα1, thereby mitigating MPTP-induced DA neuron loss and subsequent improvement in behavioral deficit. Mechanistically, DR-Ab heightened the formation of the surface NKAα1/SLC7A11 complex, inhibiting SLC7A11-dependent ferroptosis. Moreover, DR-Ab disrupted the cytosolic interaction between NKAα1 and Parkin, facilitating the translocation of Parkin to mitochondria and enhancing the process of mitophagy. In conclusion, this study establishes NKAα1 as a key regulator of ferroptosis and mitophagy, identifying its DR-region as a promising therapeutic target for PD.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Guanghong Li
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Hanbin Chen
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xiao-Wei Nie
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (the First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, 518055, China.
| | - Jin-Song Bian
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
20
|
Zeng L, Liu Y, Wang Q, Wan H, Meng X, Tu P, Chen H, Luo A, Hu P, Ding X. Botulinum toxin A attenuates osteoarthritis development via inhibiting chondrocyte ferroptosis through SLC7Al1/GPX4 axis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167215. [PMID: 38714267 DOI: 10.1016/j.bbadis.2024.167215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/07/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
Osteoarthritis (OA) is a prevalent joint degenerative disease, resulting in a significant societal burden. However, there is currently a lack of effective treatment option available. Previous studies have suggested that Botulinum toxin A (BONT/A), a macromolecular protein extracted from Clostridium Botulinum, may improve the pain and joint function in OA patients, but the mechanism remains elusive. This study was to investigate the impact and potential mechanism of BONT/A on OA in vivo and in vitro experiment. LPS increased the levels of ROS, Fe2+and Fe3+, as well as decreased GSH levels, the ratio of GSH / GSSH and mitochondrial membrane potential. It also enhanced the degeneration of extracellular matrix (ECM) and altered the ferroptosis-related protein expression in chondrocytes. BONT/A rescued LPS-induced decrease in collagen type II (Collagen II) expression and increase in matrix metalloproteinase 13 (MMP13), mitigated LPS-induced cytotoxicity in chondrocytes, abolished the accumulation of ROS and iron, upregulated GSH and the ratio of GSH/ GSSH, improved mitochondrial function, and promoted SLC7A11/GPX4 anti-ferroptosis system activation. Additionally, intra-articular injection of BONT/A inhibited the degradation of cartilage in OA model rats. This chondroprotective effect of BONT/A was reversed by erastin (a classical ferroptosis agonist) and enhanced by liproxstatin-1 (a classic ferroptosis inhibitor). Our research confirms that BONT/A alleviates the OA development by inhibiting the ferroptosis of chondrocytes, which revealed to be a potential therapeutic mechanism for BONT/A treating the OA.
Collapse
Affiliation(s)
- Lian Zeng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanping Liu
- Department of Rehabilitation Medicine, Clinical Medical Center for Rehabilitation Treatment of Dystonia Disease, Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China
| | - Qingsong Wang
- Department of Rehabilitation Medicine, Clinical Medical Center for Rehabilitation Treatment of Dystonia Disease, Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China
| | - Hongmei Wan
- Department of Rehabilitation Medicine, Clinical Medical Center for Rehabilitation Treatment of Dystonia Disease, Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China
| | - Xiran Meng
- Department of Rehabilitation Medicine, Clinical Medical Center for Rehabilitation Treatment of Dystonia Disease, Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China
| | - Panwen Tu
- Department of Rehabilitation Medicine, Clinical Medical Center for Rehabilitation Treatment of Dystonia Disease, Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China
| | - Huaxian Chen
- Department of Rehabilitation Medicine, Clinical Medical Center for Rehabilitation Treatment of Dystonia Disease, Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China
| | - Ailin Luo
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - PengChao Hu
- Department of Rehabilitation Medicine, Clinical Medical Center for Rehabilitation Treatment of Dystonia Disease, Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China.
| | - Xudong Ding
- Department of Rehabilitation Medicine, Clinical Medical Center for Rehabilitation Treatment of Dystonia Disease, Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China.
| |
Collapse
|
21
|
Khan H, Tiwari C, Kalra P, Vyas D, Grewal AK, Singh TG. Mechanistic correlation of molecular pathways in obesity-mediated stroke pathogenesis. Pharmacol Rep 2024; 76:463-474. [PMID: 38632185 DOI: 10.1007/s43440-024-00590-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
Obesity, a prominent risk factor for the development of heart attacks and several cardiovascular ailments. Obesity ranks as the second most significant avoidable contributor to mortality, whereas stroke stands as the second leading cause of death on a global scale. While changes in lifestyle have been demonstrated to have significant impacts on weight management, the long-term weight loss remains challenging, and the global prevalence of obesity continues to rise. The pathophysiology of obesity has been extensively studied during the last few decades, and an increasing number of signal transduction pathways have been linked to obesity preclinically. This review is focused on signaling pathways, and their respective functions in regulating the consumption of fatty food as well as accumulation of adipose tissue, and the resulting morphological and cognitive changes in the brain of individuals with obesity. We have also emphasized the recent progress in the mechanisms behind the emergence of obesity, as elucidated by both experimental and clinical investigations. The mounting understanding of signaling transduction may shed light on the future course of obesity research as we move into a new era of precision medicine.
Collapse
Affiliation(s)
- Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Chanchal Tiwari
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Palak Kalra
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Daksha Vyas
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | | | | |
Collapse
|
22
|
Zhang L, Luo YL, Xiang Y, Bai XY, Qiang RR, Zhang X, Yang YL, Liu XL. Ferroptosis inhibitors: past, present and future. Front Pharmacol 2024; 15:1407335. [PMID: 38846099 PMCID: PMC11153831 DOI: 10.3389/fphar.2024.1407335] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Ferroptosis is a non-apoptotic mode of programmed cell death characterized by iron dependence and lipid peroxidation. Since the ferroptosis was proposed, researchers have revealed the mechanisms of its formation and continue to explore effective inhibitors of ferroptosis in disease. Recent studies have shown a correlation between ferroptosis and the pathological mechanisms of neurodegenerative diseases, as well as diseases involving tissue or organ damage. Acting on ferroptosis-related targets may provide new strategies for the treatment of ferroptosis-mediated diseases. This article specifically describes the metabolic pathways of ferroptosis and summarizes the reported mechanisms of action of natural and synthetic small molecule inhibitors of ferroptosis and their efficacy in disease. The paper also describes ferroptosis treatments such as gene therapy, cell therapy, and nanotechnology, and summarises the challenges encountered in the clinical translation of ferroptosis inhibitors. Finally, the relationship between ferroptosis and other modes of cell death is discussed, hopefully paving the way for future drug design and discovery.
Collapse
Affiliation(s)
- Lei Zhang
- School of Medicine, Yan’an University, Yan’an, China
| | - Yi Lin Luo
- School of Medicine, Yan’an University, Yan’an, China
| | - Yang Xiang
- College of Physical Education, Yan’an University, Yan’an, China
| | - Xin Yue Bai
- School of Medicine, Yan’an University, Yan’an, China
| | | | - Xin Zhang
- School of Medicine, Yan’an University, Yan’an, China
| | - Yan Ling Yang
- School of Medicine, Yan’an University, Yan’an, China
| | - Xiao Long Liu
- School of Medicine, Yan’an University, Yan’an, China
| |
Collapse
|
23
|
Xu D, Dai J, Tang L, Pan J, Zhang H. Nontargeted metabolomics reveals sequential changes in amino acid and ferroptosis-related metabolism in Parkinson's disease. Biomed Chromatogr 2024; 38:e5834. [PMID: 38308389 DOI: 10.1002/bmc.5834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
Parkinson's disease (PD) is inseparable from metabolic disorders but lacks assessment of specific metabolite alteration. To explore the sequential metabolic changes in PD progression, we evenly divided 78 C57BL/6 mice (10 weeks) into six groups (one control group and five experimental groups) and collected the hippocampus tissue of mice after treating with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and probenecid (twice a week) at five periods (1, 2, 3, 4, and 5 weeks) for metabolome analysis. Our study identified 567 differentially abundant metabolites (DAMs) (total 4348 metabolites). Compared with controls, 145, 146, 171, 208, and 213 DAMs were obtained from the five experimental groups, respectively. Notably, 40 shared DAMs were present in five experimental groups, of which 22 shared DAMs formed a new metabolic network based on amino acid metabolism. Compared with group W3, 84 DAMs were identified in group W5, including 12 unique DAMs. DAMs in different stages of PD were significantly enriched in amino acid metabolism pathway, lipid metabolism pathway, and ferroptosis pathway. l-Glutamine, spermidine, and l-tryptophan were the key hubs in the whole metabolic process of PD. N-Formyl-l-methionine gradually increased in abundance with PD progression, whereas 5-methylcytosine gradually decreased. The study emphasized the sequential changes in DAMs in PD progression, stimulating subsequent studies.
Collapse
Affiliation(s)
- Delai Xu
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing Dai
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liuxing Tang
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Pan
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
24
|
Kontoghiorghes GJ. The Importance and Essentiality of Natural and Synthetic Chelators in Medicine: Increased Prospects for the Effective Treatment of Iron Overload and Iron Deficiency. Int J Mol Sci 2024; 25:4654. [PMID: 38731873 PMCID: PMC11083551 DOI: 10.3390/ijms25094654] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The supply and control of iron is essential for all cells and vital for many physiological processes. All functions and activities of iron are expressed in conjunction with iron-binding molecules. For example, natural chelators such as transferrin and chelator-iron complexes such as haem play major roles in iron metabolism and human physiology. Similarly, the mainstay treatments of the most common diseases of iron metabolism, namely iron deficiency anaemia and iron overload, involve many iron-chelator complexes and the iron-chelating drugs deferiprone (L1), deferoxamine (DF) and deferasirox. Endogenous chelators such as citric acid and glutathione and exogenous chelators such as ascorbic acid also play important roles in iron metabolism and iron homeostasis. Recent advances in the treatment of iron deficiency anaemia with effective iron complexes such as the ferric iron tri-maltol complex (feraccru or accrufer) and the effective treatment of transfusional iron overload using L1 and L1/DF combinations have decreased associated mortality and morbidity and also improved the quality of life of millions of patients. Many other chelating drugs such as ciclopirox, dexrazoxane and EDTA are used daily by millions of patients in other diseases. Similarly, many other drugs or their metabolites with iron-chelation capacity such as hydroxyurea, tetracyclines, anthracyclines and aspirin, as well as dietary molecules such as gallic acid, caffeic acid, quercetin, ellagic acid, maltol and many other phytochelators, are known to interact with iron and affect iron metabolism and related diseases. Different interactions are also observed in the presence of essential, xenobiotic, diagnostic and theranostic metal ions competing with iron. Clinical trials using L1 in Parkinson's, Alzheimer's and other neurodegenerative diseases, as well as HIV and other infections, cancer, diabetic nephropathy and anaemia of inflammation, highlight the importance of chelation therapy in many other clinical conditions. The proposed use of iron chelators for modulating ferroptosis signifies a new era in the design of new therapeutic chelation strategies in many other diseases. The introduction of artificial intelligence guidance for optimal chelation therapeutic outcomes in personalised medicine is expected to increase further the impact of chelation in medicine, as well as the survival and quality of life of millions of patients with iron metabolic disorders and also other diseases.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
25
|
Srivastava R, Choudhury PK, Dev SK, Rathore V. Alpha-pine self-emulsifying nano formulation attenuates rotenone and trichloroethylene-induced dopaminergic loss. Int J Neurosci 2024:1-18. [PMID: 38598315 DOI: 10.1080/00207454.2024.2341916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
AIM The current investigation's goals are to pharmacologically evaluate the neurotherapeutic role of the bioactive compound Alpha Pinene (ALP)-loaded Self-emulsifying nano-formulation (SENF) in neurotoxin (Rotenone and the Industrial Solvent Trichloroethylene)- induced dopaminergic loss. It is believed that these models simulate important aspects of the molecular pathogenesis of Parkinson's disease. MATERIAL AND METHODS The ALP-nano-formulation's anti-Parkinson's activity was compared to ALP suspension in Wistar rats after rotenone and trichloro ethylene-induced dopaminergic loss. Neurobehavioral and motor performances were measured on the 14th, 21st, and 28th day in the rotenone model. However, in the trichloroethylene model, it was measured from the 4th to the 8th week. RESULTS Significant neurobehavioral improvement has been found in ALP-SENF treated animals then untreated and animals treated with plain ALP suspension. Furthermore, biochemical tests reveal marked expression of catalase, glutathione, and superoxide dismutase, which significantly combat the (Oxidative stress) OS-induced neurodegeneration. CONCLUSION The antioxidant effect of ALP-SENF likely includes free radicals neutralization and the activation of enzymes associated with antioxidant activity, leading to the enhancement of neurobehavioral abnormalities caused by rotenone and trichloroethylene.
Collapse
Affiliation(s)
- Rajnish Srivastava
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Pratim Kumar Choudhury
- Department of Pharmacy, Pacific Academy of Higher Education and Research University, Rajasthan, India
| | - Suresh Kumar Dev
- Department of Pharmacy, Pacific Academy of Higher Education and Research University, Rajasthan, India
| | - Vaibhav Rathore
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, India
| |
Collapse
|
26
|
Chen Y, Wu Z, Li S, Chen Q, Wang L, Qi X, Tian C, Yang M. Mapping the Research of Ferroptosis in Parkinson's Disease from 2013 to 2023: A Scientometric Review. Drug Des Devel Ther 2024; 18:1053-1081. [PMID: 38585257 PMCID: PMC10999190 DOI: 10.2147/dddt.s458026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
Methods Related studies on PD and ferroptosis were searched in Web of Science Core Collection (WOSCC) from inception to 2023. VOSviewer, CiteSpace, RStudio, and Scimago Graphica were employed as bibliometric analysis tools to generate network maps about the collaborations between authors, countries, and institutions and to visualize the co-occurrence and trends of co-cited references and keywords. Results A total of 160 original articles and reviews related to PD and ferroptosis were retrieved, produced by from 958 authors from 162 institutions. Devos David was the most prolific author, with 9 articles. China and the University of Melbourne had leading positions in publication volume with 84 and 12 publications, respectively. Current hot topics focus on excavating potential new targets for treating PD based on ferroptosis by gaining insight into specific molecular mechanisms, including iron metabolism disorders, lipid peroxidation, and imbalanced antioxidant regulation. Clinical studies aimed at treating PD by targeting ferroptosis remain in their preliminary stages. Conclusion A continued increase was shown in the literature within the related field over the past decade. The current study suggested active collaborations among authors, countries, and institutions. Research into the pathogenesis and treatment of PD based on ferroptosis has remained a prominent topic in the field in recent years, indicating that ferroptosis-targeted therapy is a potential approach to halting the progression of PD.
Collapse
Affiliation(s)
- Yingfan Chen
- Medical School of Chinese People’s Liberation Army, Beijing, People’s Republic of China
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Zhenhui Wu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Shaodan Li
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Qi Chen
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Liang Wang
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Xiaorong Qi
- Medical School of Chinese People’s Liberation Army, Beijing, People’s Republic of China
| | - Chujiao Tian
- Medical School of Chinese People’s Liberation Army, Beijing, People’s Republic of China
| | - Minghui Yang
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
27
|
Sun Q, Wang Y, Hou L, Li S, Hong JS, Wang Q, Zhao J. Clozapine-N-oxide protects dopaminergic neurons against rotenone-induced neurotoxicity by preventing ferritinophagy-mediated ferroptosis. Free Radic Biol Med 2024; 212:384-402. [PMID: 38182072 PMCID: PMC10842931 DOI: 10.1016/j.freeradbiomed.2023.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, yet treatment options are limited. Clozapine (CLZ), an antipsychotic used for schizophrenia, has potential as a PD treatment. CLZ and its metabolite, Clozapine-N-Oxide (CNO), show neuroprotective effects on dopaminergic neurons, with mechanisms needing further investigation. This study aimed to confirm the neuroprotective effects of CLZ and CNO in a rotenone-induced mouse model and further explore the underlying mechanisms of CNO-afforded protection. Gait pattern and rotarod activity evaluations showed motor impairments in rotenone-exposed mice, with CLZ or CNO administration ameliorating behavioral deficits. Cell counts and biochemical analysis demonstrated CLZ and CNO's effectiveness in reducing rotenone-induced neurodegeneration of dopaminergic neurons in the nigrostriatal system in mice. Mechanistic investigations revealed that CNO suppressed rotenone-induced ferroptosis of dopaminergic neurons by rectifying iron imbalances, curtailing lipid peroxidation, and mitigating mitochondrial morphological changes. CNO also reversed autolysosome and ferritinophagic activation in rotenone-exposed mice. SH-SY5Y cell cultures validated these findings, indicating ferritinophage involvement, where CNO-afforded protection was diminished by ferritinophagy enhancers. Furthermore, knockdown of NCOA4, a crucial cargo receptor for ferritin degradation in ferritinophagy, hampered rotenone-induced ferroptosis and NCOA4 overexpression countered the anti-ferroptotic effects of CNO. Whereas, iron-chelating agents and ferroptosis enhancers had no effect on the anti-ferritinophagic effects of CNO in rotenone-treated cells. In summary, CNO shielded dopaminergic neurons in the rotenone-induced PD model by modulating NCOA4-mediated ferritinophagy, highlighting a potential therapeutic pathway for PD treatment. This research provided insights into the role of NCOA4 in ferroptosis and suggested new approaches for PD therapy.
Collapse
Affiliation(s)
- Qingquan Sun
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China; Department of Neurology, Dalian University Affiliated Xinhua Hospital, No. 156 W. Wansui Road, Dalian 116021, China
| | - Yan Wang
- Institute of Integrative Medicine, College of Pharmacy, Dalian Medical University Library, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Liyan Hou
- Dalian Medical University Library, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Sheng Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health, Sciences, NIH, MD F1-01, P. O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Qingshan Wang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China; School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China.
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China.
| |
Collapse
|
28
|
Carvalho FV, Landis HE, Getachew B, Silva VDA, Ribeiro PR, Aschner M, Tizabi Y. Iron toxicity, ferroptosis and microbiota in Parkinson's disease: Implications for novel targets. ADVANCES IN NEUROTOXICOLOGY 2024; 11:105-132. [PMID: 38770370 PMCID: PMC11105119 DOI: 10.1016/bs.ant.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Parkinson's Disease (PD) is a progressive neurodegenerative disease characterized by loss of dopaminergic neurons in substantia nigra pars compacta (SNpc). Iron (Fe)-dependent programmed cell death known as ferroptosis, plays a crucial role in the etiology and progression of PD. Since SNpc is particularly vulnerable to Fe toxicity, a central role for ferroptosis in the etiology and progression of PD is envisioned. Ferroptosis, characterized by reactive oxygen species (ROS)-dependent accumulation of lipid peroxides, is tightly regulated by a variety of intracellular metabolic processes. Moreover, the recently characterized bi-directional interactions between ferroptosis and the gut microbiota, not only provides another window into the mechanistic underpinnings of PD but could also suggest novel interventions in this devastating disease. Here, following a brief discussion of PD, we focus on how our expanding knowledge of Fe-induced ferroptosis and its interaction with the gut microbiota may contribute to the pathophysiology of PD and how this knowledge may be exploited to provide novel interventions in PD.
Collapse
Affiliation(s)
| | - Harold E. Landis
- Integrative Medicine Fellow, University of Arizona, Tucson, AZ, United States
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| | | | - Paulo R. Ribeiro
- Metabolomics Research Group, Institute of Chemistry, Federal University of Bahia, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| |
Collapse
|
29
|
Wang Y, Hu J, Wu S, Fleishman JS, Li Y, Xu Y, Zou W, Wang J, Feng Y, Chen J, Wang H. Targeting epigenetic and posttranslational modifications regulating ferroptosis for the treatment of diseases. Signal Transduct Target Ther 2023; 8:449. [PMID: 38072908 PMCID: PMC10711040 DOI: 10.1038/s41392-023-01720-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/16/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Ferroptosis, a unique modality of cell death with mechanistic and morphological differences from other cell death modes, plays a pivotal role in regulating tumorigenesis and offers a new opportunity for modulating anticancer drug resistance. Aberrant epigenetic modifications and posttranslational modifications (PTMs) promote anticancer drug resistance, cancer progression, and metastasis. Accumulating studies indicate that epigenetic modifications can transcriptionally and translationally determine cancer cell vulnerability to ferroptosis and that ferroptosis functions as a driver in nervous system diseases (NSDs), cardiovascular diseases (CVDs), liver diseases, lung diseases, and kidney diseases. In this review, we first summarize the core molecular mechanisms of ferroptosis. Then, the roles of epigenetic processes, including histone PTMs, DNA methylation, and noncoding RNA regulation and PTMs, such as phosphorylation, ubiquitination, SUMOylation, acetylation, methylation, and ADP-ribosylation, are concisely discussed. The roles of epigenetic modifications and PTMs in ferroptosis regulation in the genesis of diseases, including cancers, NSD, CVDs, liver diseases, lung diseases, and kidney diseases, as well as the application of epigenetic and PTM modulators in the therapy of these diseases, are then discussed in detail. Elucidating the mechanisms of ferroptosis regulation mediated by epigenetic modifications and PTMs in cancer and other diseases will facilitate the development of promising combination therapeutic regimens containing epigenetic or PTM-targeting agents and ferroptosis inducers that can be used to overcome chemotherapeutic resistance in cancer and could be used to prevent other diseases. In addition, these mechanisms highlight potential therapeutic approaches to overcome chemoresistance in cancer or halt the genesis of other diseases.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Jing Hu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300060, PR China
| | - Shuang Wu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, 430000, PR China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yulin Li
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Yinshi Xu
- Department of Outpatient, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Wailong Zou
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China.
| | - Yukuan Feng
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China.
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China.
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China.
| |
Collapse
|
30
|
Tan Y, Dong X, Zhuang D, Cao B, Jiang H, He Q, Zhao M. Emerging roles and therapeutic potentials of ferroptosis: from the perspective of 11 human body organ systems. Mol Cell Biochem 2023; 478:2695-2719. [PMID: 36913150 DOI: 10.1007/s11010-023-04694-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/26/2023] [Indexed: 03/14/2023]
Abstract
Since ferroptosis was first described as an iron-dependent cell death pattern in 2012, there has been increasing interest in ferroptosis research. In view of the immense potential of ferroptosis in treatment efficacy and its rapid development in recent years, it is essential to track and summarize the latest research in this field. However, few writers have been able to draw on any systematic investigation into this field based on human body organ systems. Hence, in this review, we provide a comprehensive description of the latest progress in unveiling the roles and functions, as well as the therapeutic potential of ferroptosis, in treating diseases from the aspects of 11 human body organ systems (including the nervous system, respiratory system, digestive system, urinary system, reproductive system, integumentary system, skeletal system, immune system, cardiovascular system, muscular system, and endocrine system) in the hope of providing references for further understanding the pathogenesis of related diseases and bringing an innovative train of thought for reformative clinical treatment.
Collapse
Affiliation(s)
- Yaochong Tan
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Medical School of Xiangya, Central South University, Changsha, 410013, Hunan, China
| | - Xueting Dong
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Medical School of Xiangya, Central South University, Changsha, 410013, Hunan, China
| | - Donglin Zhuang
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Buzi Cao
- Hunan Normal University School of Medicine, Changsha, 410081, Hunan, China
| | - Hua Jiang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
31
|
Cao Z, Wang X, Zhang T, Fu X, Zhang F, Zhu J. Discovery of novel 2-(4-(benzyloxy)-5-(hydroxyl) phenyl) benzothiazole derivatives as multifunctional MAO-B inhibitors for the treatment of Parkinson's disease. J Enzyme Inhib Med Chem 2023; 38:2159957. [PMID: 36728713 PMCID: PMC9897792 DOI: 10.1080/14756366.2022.2159957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To discover novel multifunctional agents for the treatment of Parkinson's disease, a series of 2-(4-(benzyloxy)-5-(hydroxyl) phenyl) benzothiazole derivatives was designed, synthesized and evaluated. The results revealed that representative compound 3h possessed potent and selective MAO-B inhibitory activity (IC50 = 0.062 µM), and its inhibitory mode was competitive and reversible. Additionally, 3h also displayed excellent anti-oxidative effect (ORAC = 2.27 Trolox equivalent), significant metal chelating ability and appropriate BBB permeability. Moreover, 3h exhibited good neuroprotective effect and anti-neuroinflammtory ability. These results indicated that compound 3h was a promising candidate for further development against PD.
Collapse
Affiliation(s)
- Zhongcheng Cao
- School of Pharmacy, North Sichuan Medical College, Nanchong, China,CONTACT Zhongcheng Cao School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Xingyue Wang
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Tianlong Zhang
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Xianwu Fu
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Fan Zhang
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Jiang Zhu
- Sichuan Key Laboratory of Medical Imaging, School of Pharmacy and Nanchong Key Laboratory of MRI Contrast Agent, North Sichuan Medical College, Nanchong, China,Jiang Zhu Sichuan Key Laboratory of Medical Imaging, School of Pharmacy and Nanchong Key Laboratory of MRI Contrast Agent, North Sichuan Medical College, Nanchong, 637000, China
| |
Collapse
|
32
|
Kontoghiorghes GJ. Drug Selection and Posology, Optimal Therapies and Risk/Benefit Assessment in Medicine: The Paradigm of Iron-Chelating Drugs. Int J Mol Sci 2023; 24:16749. [PMID: 38069073 PMCID: PMC10706143 DOI: 10.3390/ijms242316749] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The design of clinical protocols and the selection of drugs with appropriate posology are critical parameters for therapeutic outcomes. Optimal therapeutic protocols could ideally be designed in all diseases including for millions of patients affected by excess iron deposition (EID) toxicity based on personalised medicine parameters, as well as many variations and limitations. EID is an adverse prognostic factor for all diseases and especially for millions of chronically red-blood-cell-transfused patients. Differences in iron chelation therapy posology cause disappointing results in neurodegenerative diseases at low doses, but lifesaving outcomes in thalassemia major (TM) when using higher doses. In particular, the transformation of TM from a fatal to a chronic disease has been achieved using effective doses of oral deferiprone (L1), which improved compliance and cleared excess toxic iron from the heart associated with increased mortality in TM. Furthermore, effective L1 and L1/deferoxamine combination posology resulted in the complete elimination of EID and the maintenance of normal iron store levels in TM. The selection of effective chelation protocols has been monitored by MRI T2* diagnosis for EID levels in different organs. Millions of other iron-loaded patients with sickle cell anemia, myelodysplasia and haemopoietic stem cell transplantation, or non-iron-loaded categories with EID in different organs could also benefit from such chelation therapy advances. Drawbacks of chelation therapy include drug toxicity in some patients and also the wide use of suboptimal chelation protocols, resulting in ineffective therapies. Drug metabolic effects, and interactions with other metals, drugs and dietary molecules also affected iron chelation therapy. Drug selection and the identification of effective or optimal dose protocols are essential for positive therapeutic outcomes in the use of chelating drugs in TM and other iron-loaded and non-iron-loaded conditions, as well as general iron toxicity.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
33
|
Huenchuguala S, Segura-Aguilar J. On the Role of Iron in Idiopathic Parkinson's Disease. Biomedicines 2023; 11:3094. [PMID: 38002094 PMCID: PMC10669582 DOI: 10.3390/biomedicines11113094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/04/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
The transition metal characteristics of iron allow it to play a fundamental role in several essential aspects of human life such as the transport of oxygen through hemoglobin or the transport of electrons in the mitochondrial respiratory chain coupled to the synthesis of ATP. However, an excess or deficiency of iron is related to certain pathologies. The maintenance of iron homeostasis is essential to avoid certain pathologies related to iron excess or deficiency. The existence of iron deposits in postmortem tissues of Parkinson's patients has been interpreted as evidence that iron plays a fundamental role in the degenerative process of the nigrostriatal system in this disease. The use of iron chelators has been successful in the treatment of diseases such as transfusion-dependent thalassemia and pantothenate kinase-associated neurodegeneration. However, a clinical study with the iron chelator deferiprone in patients with Parkinson's disease has not shown positive effects but rather worsened clinical symptoms. This suggests that iron may not play a role in the degenerative process of Parkinson's disease.
Collapse
Affiliation(s)
- Sandro Huenchuguala
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Santiago 8370003, Chile
| | - Juan Segura-Aguilar
- Molecular & Clinical Pharmacology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| |
Collapse
|
34
|
Fan W, Zhou J. Icariside II suppresses ferroptosis to protect against MPP +-Induced Parkinson's disease through Keap1/Nrf2/GPX4 signaling. CHINESE J PHYSIOL 2023; 66:437-445. [PMID: 38149556 DOI: 10.4103/cjop.cjop-d-23-00107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Parkinson's disease (PD) is recognized as a degenerative and debilitating neurodegenerative disorder. The novel protective role of icariside II (ICS II) as a plant-derived flavonoid compound in neurodegenerative diseases has aroused much attention. Herein, the definite impacts of ICS II on the process of PD and the relevant action mechanism were studied. Human neuroblastoma SK-N-SH cells were challenged with 1-methyl-4-phenylpyridinium ion (MPP+) to construct the PD cell model. MTT assay and flow cytometry analysis, respectively, appraised cell viability and apoptosis. Caspase 3 Activity Assay examined caspase 3 activity. Corresponding kits examined oxidative stress levels. BODIPY 581/591 C11 assay evaluated lipid reactive oxygen species. Iron Assay Kit assessed iron content. Western blot tested the expression of apoptosis-, ferroptosis- and Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) signaling-associated proteins. Molecular docking verified the binding of ICS II with Keap1. The existing experimental results unveiled that ICS II elevated the viability whereas reduced the apoptosis, oxidative stress, and ferroptosis in MPP+-treated SK-N-SH cells in a concentration-dependent manner. Furthermore, ICS II declined Keap1 expression while raised Nrf2, heme oxygenase 1, and GPX4 expression. In addition, ICS II had a strong binding with Keap1 and Nrf2 inhibitor ML385 partially abolished the suppressive role of ICS II in MPP+-triggered apoptosis, oxidative stress, and ferroptosis in SK-N-SH cells. To summarize, ICS II might inhibit apoptosis, oxidative stress, and ferroptosis in the MPP+-stimulated PD cell model, which might be due to the activation of Keap1/Nrf2/GPX4 signaling.
Collapse
Affiliation(s)
- Wenbo Fan
- Pharmaceutical Technology Department, Chemical Engineering School, Jiuquan Vocational Technical College, Jiuquan, Gansu, China
| | - Jianwu Zhou
- Laboratory of Medical Test, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| |
Collapse
|
35
|
Wang Y, Lv MN, Zhao WJ. Research on ferroptosis as a therapeutic target for the treatment of neurodegenerative diseases. Ageing Res Rev 2023; 91:102035. [PMID: 37619619 DOI: 10.1016/j.arr.2023.102035] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Ferroptosis is an iron- and lipid peroxidation (LPO)-mediated programmed cell death type. Recently, mounting evidence has indicated the involvement of ferroptosis in neurodegenerative diseases, especially in Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and so on. Treating ferroptosis presents opportunities as well as challenges for neurodegenerative diseases. This review provides a comprehensive overview of typical features of ferroptosis and the underlying mechanisms that contribute to its occurrence, as well as their implications in the pathogenesis and advancement of major neurodegenerative disorders. Meanwhile, we summarize the utilization of ferroptosis inhibition in both experimental and clinical approaches for the treatment of major neurodegenerative disorders. In addition, we specifically summarize recent advances in developing therapeutic means targeting ferroptosis in these diseases, which may guide future approaches for the effective management of these devastating medical conditions.
Collapse
Affiliation(s)
- Yi Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Meng-Nan Lv
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wei-Jiang Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Department of Cell Biology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
36
|
Kaur P, Khan H, Grewal AK, Dua K, Singh TG. Therapeutic potential of NOX inhibitors in neuropsychiatric disorders. Psychopharmacology (Berl) 2023; 240:1825-1840. [PMID: 37507462 DOI: 10.1007/s00213-023-06424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
RATIONALE Neuropsychiatric disorders encompass a broad category of medical conditions that include both neurology as well as psychiatry such as major depressive disorder, autism spectrum disorder, bipolar disorder, schizophrenia as well as psychosis. OBJECTIVE NADPH-oxidase (NOX), which is the free radical generator, plays a substantial part in oxidative stress in neuropsychiatric disorders. It is thought that elevated oxidative stress as well as neuroinflammation plays a part in the emergence of neuropsychiatric disorders. Including two linked with membranes and four with subunits of cytosol, NOX is a complex of multiple subunits. NOX has been linked to a significant source of reactive oxygen species in the brain. NOX has been shown to control memory processing and neural signaling. However, excessive NOX production has been linked to cardiovascular disorders, CNS degeneration, and neurotoxicity. The increase in NOX leads to the progression of neuropsychiatric disorders. RESULT Our review mainly emphasized the characteristics of NOX and its various mechanisms, the modulation of NOX in various neuropsychiatric disorders, and various studies supporting the fact that NOX might be the potential therapeutic target for neuropsychiatric disorders. CONCLUSION Here, we summarizes various pharmacological studies involving NOX inhibitors in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Parneet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | | | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | | |
Collapse
|
37
|
Kontoghiorghes GJ. Iron Load Toxicity in Medicine: From Molecular and Cellular Aspects to Clinical Implications. Int J Mol Sci 2023; 24:12928. [PMID: 37629109 PMCID: PMC10454416 DOI: 10.3390/ijms241612928] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Iron is essential for all organisms and cells. Diseases of iron imbalance affect billions of patients, including those with iron overload and other forms of iron toxicity. Excess iron load is an adverse prognostic factor for all diseases and can cause serious organ damage and fatalities following chronic red blood cell transfusions in patients of many conditions, including hemoglobinopathies, myelodyspasia, and hematopoietic stem cell transplantation. Similar toxicity of excess body iron load but at a slower rate of disease progression is found in idiopathic haemochromatosis patients. Excess iron deposition in different regions of the brain with suspected toxicity has been identified by MRI T2* and similar methods in many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Based on its role as the major biological catalyst of free radical reactions and the Fenton reaction, iron has also been implicated in all diseases associated with free radical pathology and tissue damage. Furthermore, the recent discovery of ferroptosis, which is a cell death program based on free radical generation by iron and cell membrane lipid oxidation, sparked thousands of investigations and the association of iron with cardiac, kidney, liver, and many other diseases, including cancer and infections. The toxicity implications of iron in a labile, non-protein bound form and its complexes with dietary molecules such as vitamin C and drugs such as doxorubicin and other xenobiotic molecules in relation to carcinogenesis and other forms of toxicity are also discussed. In each case and form of iron toxicity, the mechanistic insights, diagnostic criteria, and molecular interactions are essential for the design of new and effective therapeutic interventions and of future targeted therapeutic strategies. In particular, this approach has been successful for the treatment of most iron loading conditions and especially for the transition of thalassemia from a fatal to a chronic disease due to new therapeutic protocols resulting in the complete elimination of iron overload and of iron toxicity.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, 3, Ammochostou Street, Limassol 3021, Cyprus
| |
Collapse
|
38
|
Shen L, Wang X, Zhai C, Chen Y. Ferroptosis: A potential therapeutic target in autoimmune disease (Review). Exp Ther Med 2023; 26:368. [PMID: 37408857 PMCID: PMC10318600 DOI: 10.3892/etm.2023.12067] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023] Open
Abstract
Ferroptosis is a distinct type of regulated cell death characterized by iron overload and lipid peroxidation. Ferroptosis is regulated by numerous factors and controlled by several mechanisms. This cell death type has a relationship with the immune system, which may be regulated by damage-associated molecular patterns. Ferroptosis participates in the progression of autoimmune diseases, including autoimmune hepatitis, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease, multiple sclerosis, Parkinson's Disease, psoriasis and insulin-dependent diabetes mellitus. The present review summarizes the role of ferroptosis in autoimmune disorders and discusses ferroptosis as a potential therapeutic target for autoimmune disease.
Collapse
Affiliation(s)
- Liang Shen
- Department of Cardiology, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Xiaohan Wang
- Department of Gastroenterology, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Changlin Zhai
- Department of Cardiology, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Yunqing Chen
- Department of Infectious Diseases, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
39
|
Wang Y, Wu S, Li Q, Sun H, Wang H. Pharmacological Inhibition of Ferroptosis as a Therapeutic Target for Neurodegenerative Diseases and Strokes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300325. [PMID: 37341302 PMCID: PMC10460905 DOI: 10.1002/advs.202300325] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/23/2023] [Indexed: 06/22/2023]
Abstract
Emerging evidence suggests that ferroptosis, a unique regulated cell death modality that is morphologically and mechanistically different from other forms of cell death, plays a vital role in the pathophysiological process of neurodegenerative diseases, and strokes. Accumulating evidence supports ferroptosis as a critical factor of neurodegenerative diseases and strokes, and pharmacological inhibition of ferroptosis as a therapeutic target for these diseases. In this review article, the core mechanisms of ferroptosis are overviewed and the roles of ferroptosis in neurodegenerative diseases and strokes are described. Finally, the emerging findings in treating neurodegenerative diseases and strokes through pharmacological inhibition of ferroptosis are described. This review demonstrates that pharmacological inhibition of ferroptosis by bioactive small-molecule compounds (ferroptosis inhibitors) could be effective for treatments of these diseases, and highlights a potential promising therapeutic avenue that could be used to prevent neurodegenerative diseases and strokes. This review article will shed light on developing novel therapeutic regimens by pharmacological inhibition of ferroptosis to slow down the progression of these diseases in the future.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care MedicineAerospace Center HospitalPeking University Aerospace School of Clinical MedicineBeijing100049P. R. China
| | - Shuang Wu
- Department of NeurologyZhongnan Hospital of Wuhan UniversityWuhan430000P. R. China
| | - Qiang Li
- Department of NeurologyThe Affiliated Hospital of Chifeng UniversityChifeng024005P. R. China
| | - Huiyan Sun
- Chifeng University Health Science CenterChifeng024000P. R. China
| | - Hongquan Wang
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin300060P. R. China
| |
Collapse
|
40
|
Kontoghiorghes GJ. The Vital Role Played by Deferiprone in the Transition of Thalassaemia from a Fatal to a Chronic Disease and Challenges in Its Repurposing for Use in Non-Iron-Loaded Diseases. Pharmaceuticals (Basel) 2023; 16:1016. [PMID: 37513928 PMCID: PMC10384919 DOI: 10.3390/ph16071016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The iron chelating orphan drug deferiprone (L1), discovered over 40 years ago, has been used daily by patients across the world at high doses (75-100 mg/kg) for more than 30 years with no serious toxicity. The level of safety and the simple, inexpensive synthesis are some of the many unique properties of L1, which played a major role in the contribution of the drug in the transition of thalassaemia from a fatal to a chronic disease. Other unique and valuable clinical properties of L1 in relation to pharmacology and metabolism include: oral effectiveness, which improved compliance compared to the prototype therapy with subcutaneous deferoxamine; highly effective iron removal from all iron-loaded organs, particularly the heart, which is the major target organ of iron toxicity and the cause of mortality in thalassaemic patients; an ability to achieve negative iron balance, completely remove all excess iron, and maintain normal iron stores in thalassaemic patients; rapid absorption from the stomach and rapid clearance from the body, allowing a greater frequency of repeated administration and overall increased efficacy of iron excretion, which is dependent on the dose used and also the concentration achieved at the site of drug action; and its ability to cross the blood-brain barrier and treat malignant, neurological, and microbial diseases affecting the brain. Some differential pharmacological activity by L1 among patients has been generally shown in relation to the absorption, distribution, metabolism, elimination, and toxicity (ADMET) of the drug. Unique properties exhibited by L1 in comparison to other drugs include specific protein interactions and antioxidant effects, such as iron removal from transferrin and lactoferrin; inhibition of iron and copper catalytic production of free radicals, ferroptosis, and cuproptosis; and inhibition of iron-containing proteins associated with different pathological conditions. The unique properties of L1 have attracted the interest of many investigators for drug repurposing and use in many pathological conditions, including cancer, neurodegenerative conditions, microbial conditions, renal conditions, free radical pathology, metal intoxication in relation to Fe, Cu, Al, Zn, Ga, In, U, and Pu, and other diseases. Similarly, the properties of L1 increase the prospects of its wider use in optimizing therapeutic efforts in many other fields of medicine, including synergies with other drugs.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
41
|
Fujii J, Osaki T, Soma Y, Matsuda Y. Critical Roles of the Cysteine-Glutathione Axis in the Production of γ-Glutamyl Peptides in the Nervous System. Int J Mol Sci 2023; 24:ijms24098044. [PMID: 37175751 PMCID: PMC10179188 DOI: 10.3390/ijms24098044] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
γ-Glutamyl moiety that is attached to the cysteine (Cys) residue in glutathione (GSH) protects it from peptidase-mediated degradation. The sulfhydryl group of the Cys residue represents most of the functions of GSH, which include electron donation to peroxidases, protection of reactive sulfhydryl in proteins via glutaredoxin, and glutathione conjugation of xenobiotics, whereas Cys-derived sulfur is also a pivotal component of some redox-responsive molecules. The amount of Cys that is available tends to restrict the capacity of GSH synthesis. In in vitro systems, cystine is the major form in the extracellular milieu, and a specific cystine transporter, xCT, is essential for survival in most lines of cells and in many primary cultivated cells as well. A reduction in the supply of Cys causes GPX4 to be inhibited due to insufficient GSH synthesis, which leads to iron-dependent necrotic cell death, ferroptosis. Cells generally cannot take up GSH without the removal of γ-glutamyl moiety by γ-glutamyl transferase (GGT) on the cell surface. Meanwhile, the Cys-GSH axis is essentially common to certain types of cells; primarily, neuronal cells that contain a unique metabolic system for intercellular communication concerning γ-glutamyl peptides. After a general description of metabolic processes concerning the Cys-GSH axis, we provide an overview and discuss the significance of GSH-related compounds in the nervous system.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Tsukasa Osaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Yuya Soma
- Graduate School of Nursing, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Yumi Matsuda
- Graduate School of Nursing, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| |
Collapse
|
42
|
Kawahara M, Kato-Negishi M, Tanaka KI. Dietary Trace Elements and the Pathogenesis of Neurodegenerative Diseases. Nutrients 2023; 15:2067. [PMID: 37432185 PMCID: PMC10180548 DOI: 10.3390/nu15092067] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 07/12/2023] Open
Abstract
Trace elements such as iron (Fe), zinc (Zn), copper (Cu), and manganese (Mn) are absorbed from food via the gastrointestinal tract, transported into the brain, and play central roles in normal brain functions. An excess of these trace elements often produces reactive oxygen species and damages the brain. Moreover, increasing evidence suggests that the dyshomeostasis of these metals is involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease, prion diseases, and Lewy body diseases. The disease-related amyloidogenic proteins can regulate metal homeostasis at the synapses, and thus loss of the protective functions of these amyloidogenic proteins causes neurodegeneration. Meanwhile, metal-induced conformational changes of the amyloidogenic proteins contribute to enhancing their neurotoxicity. Moreover, excess Zn and Cu play central roles in the pathogenesis of vascular-type senile dementia. Here, we present an overview of the intake, absorption, and transport of four essential elements (Fe, Zn, Cu, Mn) and one non-essential element (aluminum: Al) in food and their connections with the pathogenesis of neurodegenerative diseases based on metal-protein, and metal-metal cross-talk.
Collapse
Affiliation(s)
- Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| | - Midori Kato-Negishi
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| | - Ken-Ichiro Tanaka
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| |
Collapse
|
43
|
Jiang X, Wu K, Ye XY, Xie T, Zhang P, Blass BE, Bai R. Novel druggable mechanism of Parkinson's disease: Potential therapeutics and underlying pathogenesis based on ferroptosis. Med Res Rev 2023. [PMID: 36924451 DOI: 10.1002/med.21939] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/07/2023] [Accepted: 02/26/2023] [Indexed: 03/18/2023]
Abstract
Genetics, age, environmental factors, and oxidative stress have all been implicated in the development of Parkinson's disease (PD); however, a complete understanding of its pathology remains elusive. At present, there is no cure for PD, and currently available therapeutics are insufficient to meet patient needs. Ferroptosis, a distinctive iron-dependent cell death mode characterized by lipid peroxidation and oxidative stress, has pathophysiological features similar to those of PD, including iron accumulation, reactive oxygen species-induced oxidative damage, and mitochondrial dysfunction. Ferroptosis has been identified as a specific pathway of neuronal death and is closely related to the pathogenesis of PD. Despite the similarities in the biological targets involved in PD pathogenesis and ferroptosis, the relationship between novel targets in PD and ferroptosis has been neglected in the literature. In this review, the mechanism of ferroptosis is discussed, and the potential therapeutic targets implicated in both PD and ferroptosis are compared. Furthermore, the anti-PD effects of several ferroptosis inhibitors, as well as clinical studies thereof, and the identification of novel lead compounds for the treatment of PD and the inhibition of ferroptosis are reviewed. It is hoped that this review can promote research to further elucidate the relationship between ferroptosis and PD and provide new strategies for the development of novel ferroptosis-targeting PD therapy.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, People's Republic of China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, People's Republic of China.,Department of Chemistry, College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Kaiyu Wu
- Department of Chemistry, College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Xiang-Yang Ye
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, People's Republic of China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Tian Xie
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, People's Republic of China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Pengfei Zhang
- Department of Chemistry, College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Benjamin E Blass
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania, USA
| | - Renren Bai
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, People's Republic of China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, People's Republic of China
| |
Collapse
|
44
|
Torres J, Costa I, Peixoto AF, Silva R, Sousa Lobo JM, Silva AC. Intranasal Lipid Nanoparticles Containing Bioactive Compounds Obtained from Marine Sources to Manage Neurodegenerative Diseases. Pharmaceuticals (Basel) 2023; 16:311. [PMID: 37259454 PMCID: PMC9966140 DOI: 10.3390/ph16020311] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 01/22/2025] Open
Abstract
Marine sources contain several bioactive compounds with high therapeutic potential, such as remarkable antioxidant activity that can reduce oxidative stress related to the pathogenesis of neurodegenerative diseases. Indeed, there has been a growing interest in these natural sources, especially those resulting from the processing of marine organisms (i.e., marine bio-waste), to obtain natural antioxidants as an alternative to synthetic antioxidants in a sustainable approach to promote circularity by recovering and creating value from these bio-wastes. However, despite their expected potential to prevent, delay, or treat neurodegenerative diseases, antioxidant compounds may have difficulty reaching the brain due to the need to cross the blood-brain barrier (BBB). In this regard, alternative delivery systems administered by different routes have been proposed, including intranasal administration of lipid nanoparticles, such as solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), which have shown promising results. Intranasal administration shows several advantages, including the fact that molecules do not need to cross the BBB to reach the central nervous system (CNS), as they can be transported directly from the nasal cavity to the brain (i.e., nose-to-brain transport). The benefits of using SLN and NLC for intranasal delivery of natural bioactive compounds for the treatment of neurodegenerative diseases have shown relevant outcomes through in vitro and in vivo studies. Noteworthy, for bioactive compounds obtained from marine bio-waste, few studies have been reported, showing the open potential of this research area. This review updates the state of the art of using SLN and NLC to transport bioactive compounds from different sources, in particular, those obtained from marine bio-waste, and their potential application in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Joana Torres
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology/Centre of Research in Pharmaceutical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Inês Costa
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-3131 Porto, Portugal
| | - Andreia F. Peixoto
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-3131 Porto, Portugal
| | - José Manuel Sousa Lobo
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology/Centre of Research in Pharmaceutical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana Catarina Silva
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology/Centre of Research in Pharmaceutical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), FP-BHS (Biomedical and Health Sciences Research Unit), Faculty of Health Sciences, University Fernando Pessoa, 4200-150 Porto, Portugal
| |
Collapse
|
45
|
Fukuhara K, Nakanishi I, Imai K, Mizuno M, Matsumoto KI, Ohno A. DTPA-Bound Planar Catechin with Potent Antioxidant Activity Triggered by Fe 3+ Coordination. Antioxidants (Basel) 2023; 12:antiox12020225. [PMID: 36829782 PMCID: PMC9952317 DOI: 10.3390/antiox12020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
In diseases related to oxidative stress, accumulation of metal ions at the site of pathogenesis results in the generation of reactive oxygen species (ROS) through the reductive activation of oxygen molecules catalyzed by the metal ions. If these metals can be removed and the generated ROS can be strongly scavenged, such diseases can be prevented and treated. Planar catechins exhibit stronger radical scavenging activity than natural catechins and can efficiently scavenge hydroxyl radicals generated by the Fenton reaction without showing pro-oxidant effects, even in the presence of iron ions. Hence, in the current study, we designed a compound in which diethylenetriaminepentaacetic acid (DTPA), a metal chelator, was bound to a planar catechin with enhanced radical scavenging activity by immobilizing the steric structure of a natural catechin to be planar. This compound showed almost no radical scavenging activity due to intramolecular hydrogen bonding of DTPA with the planar catechins; however, when coordinated with Fe3+, it showed more potent radical scavenging activity than planar catechins. Owing to its potent antioxidant activity triggered by metal coordination and its inhibition of ROS generation by trapping metal ions, this compound might exert excellent preventive and therapeutic effects against oxidative stress-related diseases.
Collapse
Affiliation(s)
- Kiyoshi Fukuhara
- Division of Organic and Medicinal Chemistry, School of Pharmacy, Showa University, Shinagawa-ku, Tokyo 142-8555, Japan
- Correspondence:
| | - Ikuo Nakanishi
- Quantum RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Inage-ku, Chiba 263-8555, Japan
| | - Kohei Imai
- Division of Organic and Medicinal Chemistry, School of Pharmacy, Showa University, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Mirei Mizuno
- Division of Organic and Medicinal Chemistry, School of Pharmacy, Showa University, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Ken-ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Inage-ku, Chiba 263-8555, Japan
| | - Akiko Ohno
- Division of Risk Assessment, Center for Biological Safety & Research, National Institute of Health Sciences, Kawasaki-ku, Kawasaki, Kanagawa, Yokohama 210-9501, Japan
| |
Collapse
|
46
|
Zhao Y, Zhang J, Zhang Y, Li S, Gao Y, Chang C, Liu X, Xu L, Yang G. Proteomic Analysis of Protective Effects of Dl-3-n-Butylphthalide against mpp + -Induced Toxicity via downregulating P53 pathway in N2A Cells. Proteome Sci 2023; 21:1. [PMID: 36597095 PMCID: PMC9809048 DOI: 10.1186/s12953-022-00199-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/30/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Dl-3-n-butylphthalide (NBP) is an important medial therapy for acute ischemic stroke in China. Recent studied have revealed that NBP not only rescued the loss of dopaminergic neurons in cellular and animal models of Parkinson's disease (PD), but also could improve motor symptoms in PD patients. However, the protective mechanism is not fully understood. P53 is a multifunctional protein implicated in numerous cellular processes, including apoptosis, DNA repair, mitochondrial functions, redox homeostasis, autophagy and protein aggregations. In PD, p53 integrated with various neurodegeneration-related signals inducing neuronal loss, indicating the suppression of P53 might be a promising target for PD treatment. Therefore, the purpose of the current study was to systemically screen new therapeutic targets of NBP in PD. METHOD In our study, we constructed mpp + induced N2A cells to investigate the benefit effect of NBP in PD. MTT assay was performed to evaluate the cell viability; TMT-based LC-MS/MS was applied to determine the different expressed proteins (DEPs) of NBP pretreatment; online bioinformatics databases such as DAVID, STRING, and KEGG was used to construe the proteomic data. After further analyzed and visualized the protein-protein interactions (PPI) by Cytoscape, DEPs were verified by western blot. RESULT A total of 5828 proteins were quantified in the comparative proteomics experiments and 417 proteins were considered as DEPs (fold change > 1.5 and p < 0.05). Among the 417 DEPs, 140 were upregulated and 277 were downregulated in mpp + -induced N2A cells with NBP pretreatment. KEGG pathway analysis indicated that lysosome, phagosome, apoptosis, endocytosis and ferroptosis are the mainly enriched pathways. By using MCL clustering in PPI analysis, 48 clusters were generated and the subsequent KEGG analysis of the top 3 clusters revealed that P53 signaling pathway was recognized as the dominant pathway for NBP treatment. CONCLUSION NBP significantly relived mpp + -induced cell toxicity. The neuroprotective role of NBP was implicated with P53 signaling pathway in some extent. These findings will reinforce the understanding of the mechanism of NBP in PD and identify novel therapeutic targets.
Collapse
Affiliation(s)
- Yuan Zhao
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Jian Zhang
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Yidan Zhang
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Shuyue Li
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Ya Gao
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Cui Chang
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Xiang Liu
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Lei Xu
- grid.452702.60000 0004 1804 3009Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Guofeng Yang
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
47
|
Kanojia N, Thapa K, Kaur G, Sharma A, Puri V, Verma N. Update on Therapeutic potential of emerging nanoformulations of phytocompounds in Alzheimer's and Parkinson's disease. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Saylor JL, Basile ON, Li H, Hunter LM, Weaver A, Shellenberger BM, Ann Tom L, Ma H, Seeram NP, Henry GE. Phenolic furanochromene hydrazone derivatives: Synthesis, antioxidant activity, ferroptosis inhibition, DNA cleavage and DNA molecular docking studies. Bioorg Med Chem 2022; 75:117088. [PMID: 36372027 DOI: 10.1016/j.bmc.2022.117088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/19/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022]
Abstract
Twenty-four phenolic furanochromene hydrazone derivatives were designed and synthesized in order to evaluate structure-activity relationships in a series of antioxidant-related assays. The derivatives have varying substitution patterns on the phenol ring, with some compounds having one, two or three hydroxy groups, and others containing one hydroxy group in combination with methoxy, methyl, bromo, iodo and/or nitro groups. Antioxidant activity was determined using the DPPH free radical scavenging and CUPRAC assays. Compounds containing ortho-dihydroxy and para-dihydroxy patterns had the highest free radical scavenging activity, with IC50 values ranging from 5.0 to 28 μM. Similarly, derivatives with ortho-dihydroxy and para-dihydroxy patterns, together with a 4-hydroxy-3,5‑dimethoxy pattern, displayed strong copper (II) ion reducing capacity, using Trolox as a standard. Trolox equivalent antioxidant capacity (TEAC) coefficients for these derivatives ranged from 1.75 to 3.97. As further evidence of antioxidant potential, greater than half of the derivatives reversed erastin-induced ferroptosis in HaCaT cells. In addition, twenty-three of the derivatives were effective at cleaving supercoiled plasmid DNA in the presence of copper (II) ions at 1 mM, with the 3,4‑dihydroxy derivative showing cleavage to both the linear and open circular forms at 3.9 uM. The interaction of the phenolic furanochromene derivatives with DNA was confirmed by molecular docking studies, which revealed that all the derivatives bind favorably in the minor groove of DNA.
Collapse
Affiliation(s)
- Jessica L Saylor
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Olivia N Basile
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Huifang Li
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Lindsey M Hunter
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Ashton Weaver
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Blake M Shellenberger
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Lou Ann Tom
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Navindra P Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Geneive E Henry
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA.
| |
Collapse
|
49
|
New Iron Metabolic Pathways and Chelation Targeting Strategies Affecting the Treatment of All Types and Stages of Cancer. Int J Mol Sci 2022; 23:ijms232213990. [PMID: 36430469 PMCID: PMC9696688 DOI: 10.3390/ijms232213990] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
There is new and increasing evidence from in vitro, in vivo and clinical studies implicating the pivotal role of iron and associated metabolic pathways in the initiation, progression and development of cancer and in cancer metastasis. New metabolic and toxicity mechanisms and pathways, as well as genomic, transcription and other factors, have been linked to cancer and many are related to iron. Accordingly, a number of new targets for iron chelators have been identified and characterized in new anticancer strategies, in addition to the classical restriction of/reduction in iron supply, the inhibition of transferrin iron delivery, the inhibition of ribonucleotide reductase in DNA synthesis and high antioxidant potential. The new targets include the removal of excess iron from iron-laden macrophages, which affects anticancer activity; the modulation of ferroptosis; ferritin iron removal and the control of hyperferritinemia; the inhibition of hypoxia related to the role of hypoxia-inducible factor (HIF); modulation of the function of new molecular species such as STEAP4 metalloreductase and the metastasis suppressor N-MYC downstream-regulated gene-1 (NDRG1); modulation of the metabolic pathways of oxidative stress damage affecting mitochondrial function, etc. Many of these new, but also previously known associated iron metabolic pathways appear to affect all stages of cancer, as well as metastasis and drug resistance. Iron-chelating drugs and especially deferiprone (L1), has been shown in many recent studies to fulfill the role of multi-target anticancer drug linked to the above and also other iron targets, and has been proposed for phase II trials in cancer patients. In contrast, lipophilic chelators and their iron complexes are proposed for the induction of ferroptosis in some refractory or recurring tumors in drug resistance and metastasis where effective treatments are absent. There is a need to readdress cancer therapy and include therapeutic strategies targeting multifactorial processes, including the application of multi-targeting drugs involving iron chelators and iron-chelator complexes. New therapeutic protocols including drug combinations with L1 and other chelating drugs could increase anticancer activity, decrease drug resistance and metastasis, improve treatments, reduce toxicity and increase overall survival in cancer patients.
Collapse
|
50
|
Morán-Serradilla C, Angulo-Elizari E, Henriquez-Figuereo A, Sanmartín C, Sharma AK, Plano D. Seleno-Metabolites and Their Precursors: A New Dawn for Several Illnesses? Metabolites 2022; 12:874. [PMID: 36144278 PMCID: PMC9504997 DOI: 10.3390/metabo12090874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 01/18/2023] Open
Abstract
Selenium (Se) is an essential element for human health as it is involved in different physiological functions. Moreover, a great number of Se compounds can be considered potential agents in the prevention and treatment of some diseases. It is widely recognized that Se activity is related to multiple factors, such as its chemical form, dose, and its metabolism. The understanding of its complex biochemistry is necessary as it has been demonstrated that the metabolites of the Se molecules used to be the ones that exert the biological activity. Therefore, the aim of this review is to summarize the recent information about its most remarkable metabolites of acknowledged biological effects: hydrogen selenide (HSe-/H2Se) and methylselenol (CH3SeH). In addition, special attention is paid to the main seleno-containing precursors of these derivatives and their role in different pathologies.
Collapse
Affiliation(s)
- Cristina Morán-Serradilla
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Eduardo Angulo-Elizari
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Arun K. Sharma
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Penn State Cancer Institute, 500 University Drive, Hershey, PA 17033, USA
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| |
Collapse
|