1
|
Samanta D. Evolving treatment strategies for early-life seizures in Tuberous Sclerosis Complex: A review and treatment algorithm. Epilepsy Behav 2024; 161:110123. [PMID: 39488094 DOI: 10.1016/j.yebeh.2024.110123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Tuberous sclerosis Complex (TSC) is a genetic disorder characterized by multisystem involvement, with epilepsy affecting 80-90% of patients, often beginning in infancy. Early-life seizures in TSC are associated with poor neurodevelopmental outcomes, underscoring the importance of timely and effective management. This review explores the evolving treatment landscape for TSC-associated seizures in young children, focusing on three recently approved or license-expanded therapies: vigabatrin, everolimus, and cannabidiol. The efficacy and safety profiles of these treatments are examined based on clinical trials and real-world evidence, with a focus on their use in treating seizures in young children. The preemptive use of vigabatrin in clinical studies has also been carefully reviewed. A treatment algorithm is proposed, emphasizing early diagnosis, prompt initiation of appropriate therapy, and a stepwise approach to managing both infantile spasms and focal seizures. The algorithm incorporates these newer therapies alongside traditional antiseizure medications and non-pharmacological approaches. Challenges in optimizing treatment strategies, minimizing side effects, and improving long-term outcomes are discussed. This review aims to guide clinicians in navigating the complex landscape of early-life seizures associated with TSC, ultimately striving for improved seizure control and better developmental outcomes in this vulnerable population.
Collapse
Affiliation(s)
- Debopam Samanta
- Division of Child Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
2
|
Kaya B, Akduman H, Dilli D, Sayıcı İU, Kunt S, Doğangönül M, Şahin G, Aksoy ÖN, Uçan B, Zenciroğlu A. Neonatal Cardiac Rhabdomyoma: A Single-Center Experience. Z Geburtshilfe Neonatol 2024; 228:520-527. [PMID: 38871000 DOI: 10.1055/a-2325-5490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
AIM Cardiac rhabdomyoma, known as the most common benign cardiac tumor in childhood, is strongly associated with tuberous sclerosis complex. This study aims to present our single-center experience regarding clinical observations, diagnostic approaches, and treatment modalities for cardiac rhabdomyoma identified during the neonatal period. PATIENTS AND METHODS In this clinical observational study, we retrospectively assessed the outcomes of 12 newborn patients diagnosed with cardiac rhabdomyoma who were followed up in our neonatal intensive care unit over the past 12 years. RESULTS The mean gestational age of the patients was 38.2±1.6 weeks, with an average birth weight of 3193±314 grams. The mean postnatal age at initial diagnosis was 12.42±15.75 days. Tuberous sclerosis complex was clinically identified in 50% of cases (six patients). Seven infants received everolimus treatment, while three infants underwent clinical monitoring without specific interventions. A significant reduction in cardiac mass size was observed in all surviving patients, leading to their subsequent discharge from the hospital. CONCLUSION Cardiac rhabdomyomas often undergo spontaneous regression in early childhood. However, in cases with obstructive lesions or arrhythmias, they may present life-threatening consequences. Timely diagnosis, appropriate clinical management, and monitoring are crucial in optimizing outcomes for neonates with cardiac rhabdomyoma.
Collapse
Affiliation(s)
- Başak Kaya
- Neonatology, SBU Ankara Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Hasan Akduman
- Neonatology, SBU Ankara Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Dilek Dilli
- Neonatology, SBU Ankara Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - İlker Ufuk Sayıcı
- Pediatric Cardiology, SBU Ankara Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Seda Kunt
- Neonatology, SBU Ankara Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Merve Doğangönül
- Pediatrics, SBU Ankara Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Gürses Şahin
- Department of Pediatric Hematology and Oncology, SBU Ankara Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Ömer Nuri Aksoy
- Pediatric Cardiovascular Surgery, SBU Ankara Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Berna Uçan
- Pediatric Radiology, SBU Ankara Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Ayşegül Zenciroğlu
- Neonatology, SBU Ankara Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
3
|
Le Belle JE, Condro M, Cepeda C, Oikonomou KD, Tessema K, Dudley L, Schoenfield J, Kawaguchi R, Geschwind D, Silva AJ, Zhang Z, Shokat K, Harris NG, Kornblum HI. Acute rapamycin treatment reveals novel mechanisms of behavioral, physiological, and functional dysfunction in a maternal inflammation mouse model of autism and sensory over-responsivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602602. [PMID: 39026891 PMCID: PMC11257517 DOI: 10.1101/2024.07.08.602602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Maternal inflammatory response (MIR) during early gestation in mice induces a cascade of physiological and behavioral changes that have been associated with autism spectrum disorder (ASD). In a prior study and the current one, we find that mild MIR results in chronic systemic and neuro-inflammation, mTOR pathway activation, mild brain overgrowth followed by regionally specific volumetric changes, sensory processing dysregulation, and social and repetitive behavior abnormalities. Prior studies of rapamycin treatment in autism models have focused on chronic treatments that might be expected to alter or prevent physical brain changes. Here, we have focused on the acute effects of rapamycin to uncover novel mechanisms of dysfunction and related to mTOR pathway signaling. We find that within 2 hours, rapamycin treatment could rapidly rescue neuronal hyper-excitability, seizure susceptibility, functional network connectivity and brain community structure, and repetitive behaviors and sensory over-responsivity in adult offspring with persistent brain overgrowth. These CNS-mediated effects are also associated with alteration of the expression of several ASD-,ion channel-, and epilepsy-associated genes, in the same time frame. Our findings suggest that mTOR dysregulation in MIR offspring is a key contributor to various levels of brain dysfunction, including neuronal excitability, altered gene expression in multiple cell types, sensory functional network connectivity, and modulation of information flow. However, we demonstrate that the adult MIR brain is also amenable to rapid normalization of these functional changes which results in the rescue of both core and comorbid ASD behaviors in adult animals without requiring long-term physical alterations to the brain. Thus, restoring excitatory/inhibitory imbalance and sensory functional network modularity may be important targets for therapeutically addressing both primary sensory and social behavior phenotypes, and compensatory repetitive behavior phenotypes.
Collapse
|
4
|
Schachenhofer J, Gruber VE, Fehrer SV, Haider C, Glatter S, Liszewska E, Höftberger R, Aronica E, Rössler K, Jaworski J, Scholl T, Feucht M. Targeting the EGFR pathway: An alternative strategy for the treatment of tuberous sclerosis complex? Neuropathol Appl Neurobiol 2024; 50:e12974. [PMID: 38562027 DOI: 10.1111/nan.12974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Tuberous sclerosis complex (TSC) is caused by variants in TSC1/TSC2, leading to constitutive activation of the mammalian target of rapamycin (mTOR) complex 1. Therapy with everolimus has been approved for TSC, but variations in success are frequent. Recently, caudal late interneuron progenitor (CLIP) cells were identified as a common origin of the TSC brain pathologies such as subependymal giant cell astrocytomas (SEGA) and cortical tubers (CT). Further, targeting the epidermal growth factor receptor (EGFR) with afatinib, which is expressed in CLIP cells, reduces cell growth in cerebral TSC organoids. However, investigation of clinical patient-derived data is lacking. AIMS Observation of EGFR expression in SEGA, CT and focal cortical dysplasia (FCD) 2B human brain specimen and investigation of whether its inhibition could be a potential therapeutic intervention for these patients. METHODS Brain specimens of 23 SEGAs, 6 CTs, 20 FCD2Bs and 17 controls were analysed via immunohistochemistry to characterise EGFR expression, cell proliferation (via Mib1) and mTOR signalling. In a cell-based assay using primary patient-derived cells (CT n = 1, FCD2B n = 1 and SEGA n = 4), the effects of afatinib and everolimus on cell proliferation and cell viability were observed. RESULTS EGFR overexpression was observed in histological sections of SEGA, CT and FCD2B patients. Both everolimus and afatinib decreased the proliferation and viability in primary SEGA, tuber and FCD2B cells. CONCLUSION Our study demonstrates that EGFR suppression might be an effective alternative treatment option for SEGAs and tubers, as well as other mTOR-associated malformations of cortical development, including FCD2B.
Collapse
Affiliation(s)
- Julia Schachenhofer
- Department Pediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | | | | | - Carmen Haider
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Sarah Glatter
- Department Pediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Ewa Liszewska
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Karl Rössler
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Jacek Jaworski
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Theresa Scholl
- Department Pediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Martha Feucht
- Department Pediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Śmiałek D, Kotulska K, Duda A, Jóźwiak S. Effect of mTOR Inhibitors in Epilepsy Treatment in Children with Tuberous Sclerosis Complex Under 2 Years of Age. Neurol Ther 2023; 12:931-946. [PMID: 37085686 DOI: 10.1007/s40120-023-00476-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/28/2023] [Indexed: 04/23/2023] Open
Abstract
INTRODUCTION Mechanistic target of rapamycin (mTOR) inhibitors sirolimus and everolimus are an effective therapy for subependymal giant cell astrocytomas, cardiac rhabdomyomas, renal angiomyolipomas, and lymphangioleiomyomatosis associated with tuberous sclerosis complex (TSC). Everolimus was recently approved in the EU and the USA for the treatment of refractory focal-onset seizures. Despite frequent use of mTOR inhibitors, there are only a few studies on their effect on epilepsy control in children under 2 years of age. This study aims to assess the effect of adjunctive mTOR inhibitor treatment on seizure frequency in this age group. METHODS We performed retrospective data analysis of medical records of patients with TSC who initiated sirolimus or everolimus under the age of 2 years. Participants' antiseizure medication was adjusted according to their epilepsy control independently from mTOR inhibitor administration. The data was assessed separately for patients treated with mTOR inhibitors before and after the onset of seizures. We also compared the treatment group with a matched control group. The follow-up duration was up to 24 months. RESULTS Twenty-one patients with TSC from two clinical centers were included in the study. Nine participants had no history of seizures before mTOR inhibitor initiation. Twelve reported active epilepsy in the month prior to treatment initiation. Most patients treated preventively with mTOR inhibitors did not report active epilepsy at the end of their follow-up. In the second group, the mean frequency of seizures decreased with time. According to the comparative analysis, seizure control was better in the groups treated with mTOR inhibitors. CONCLUSION Patients with TSC treated with mTOR inhibitors demonstrated better seizure control than individuals without this treatment. Adjunctive pharmacotherapy with mTOR inhibitors appears to have a beneficial effect on epilepsy outcome in young children. Further prospective clinical trials should be conducted to determine the efficacy of mTOR inhibitors on epilepsy in patients with TSC under the age of 2 years.
Collapse
Affiliation(s)
- Dominika Śmiałek
- Department of Pediatric Neurology, Medical University of Warsaw, Warsaw, Poland.
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland
| | | | - Sergiusz Jóźwiak
- Department of Pediatric Neurology, Medical University of Warsaw, Warsaw, Poland
- Research Department, The Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
6
|
Menezes CEG, Santos DLD, Nery ES, Serpa ED, Morais LAS, Dutra LS, Portela Filho MB, Goes JS. Everolimus as a therapeutic option in refractory epilepsy in children with tuberous sclerosis: a systematic review. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:392-398. [PMID: 36863402 PMCID: PMC10169230 DOI: 10.1055/s-0042-1758442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
BACKGROUND Tuberous sclerosis (TS) is a multisystem genetic disease in which epilepsy is a frequent manifestation and is often difficult to control. Everolimus is a drug with proven efficacy in the treatment of other conditions related to TS, and some evidence suggests that its use benefits the treatment of refractory epilepsy in these patients. OBJECTIVE To evaluate the efficacy of everolimus in controlling refractory epilepsy in children with TS. METHODS A literature review was conducted in the Pubmed, BVS, and Medline databases, using the descriptors Tuberous sclerosis, Children, Epilepsy, and Everolimus. Original clinical trials and prospective studies published in Portuguese or English in the last decade that evaluated the use of everolimus as an adjuvant therapy in the control of refractory epilepsy in pediatric patients with TS were included. RESULTS Our search screened 246 articles from electronic databases, 6 of which were chosen for review. Despite the methodological variations between the studies, most patients benefited from the use of everolimus to control refractory epilepsy, with response rates ranging from 28.6 to 100%. Adverse effects were present in all studies leading to dropouts of some patients; however, the majority were of low severity. CONCLUSION The selected studies suggest a beneficial effect of everolimus in the treatment of refractory epilepsy in children with TS, despite the adverse effects observed. Further studies involving a larger sample in double-blind controlled clinical trials should be performed to provide more information and statistical credibility.
Collapse
Affiliation(s)
| | | | - Erick Santos Nery
- Universidade do Estado da Bahia, Departamento de Ciências da Vida, Salvador BA, Brazil
| | - Evelin Duarte Serpa
- Universidade do Estado da Bahia, Departamento de Ciências da Vida, Salvador BA, Brazil
| | | | - Lucas Santana Dutra
- Escola Bahiana de Medicina e Saúde Pública, Departamento de Medicina, Salvador BA, Brazil
| | | | - Julieta Sobreira Goes
- Universidade do Estado da Bahia, Departamento de Ciências da Vida, Salvador BA, Brazil
| |
Collapse
|
7
|
Subependymal Giant Cell Astrocytomas in Tuberous Sclerosis Complex-Current Views on Their Pathogenesis and Management. J Clin Med 2023; 12:jcm12030956. [PMID: 36769603 PMCID: PMC9917805 DOI: 10.3390/jcm12030956] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction, Tuberous sclerosis complex (TSC) is an autosomal-dominant disorder caused by mutations inactivating TSC1 or TSC2 genes and characterized by the presence of tumors involving many organs, including the brain, heart, kidneys, and skin. Subependymal giant cell astrocytoma (SEGA) is a slow-growing brain tumor almost exclusively associated with TSC. STATE OF THE ART Despite the fact that SEGAs are benign, they require well-considered decisions regarding the timing and modality of pharmacological or surgical treatment. In TSC children and adolescents, SEGA is the major cause of mortality and morbidity. CLINICAL IMPLICATIONS Until recently, surgical resection has been the standard therapy for SEGAs but the discovery of the role of the mTOR pathway and the introduction of mTOR inhibitors to clinical practice changed the therapeutic landscape of these tumors. In the current paper, we discuss the pros and cons of mTOR inhibitors and surgical approaches in SEGA treatment. FUTURE DIRECTIONS In 2021, the International Tuberous Sclerosis Complex Consensus Group proposed a new integrative strategy for SEGA management. In the following review, we discuss the proposed recommendations and report the results of the literature search for the latest treatment directions.
Collapse
|
8
|
Gomes I, Jesus Ribeiro J, Palavra F. Monitoring and Managing Patients with Tuberous Sclerosis Complex: Current State of Knowledge. J Multidiscip Healthc 2022; 15:1469-1480. [PMID: 35860622 PMCID: PMC9292455 DOI: 10.2147/jmdh.s266990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/29/2022] [Indexed: 12/05/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare genetic disease of autosomal dominant transmission that, in most cases, results from the presence of pathogenic variants of the TSC1 or TSC2 genes, encoding hamartin and tuberin, respectively. It is a multisystemic disease, affecting most frequently the brain, skin, kidney, and heart. The wide variety of possible clinical manifestations, given this multisystem dimension, makes the follow-up of patients with TSC an exercise of multidisciplinarity. In fact, these patients may require the intervention of various medical specialties, which thus have to combine their efforts to practice a medicine that is truly holistic. The past few years have witnessed a dramatic leap not only in the diagnosis and management of TSC patients, with standard monitoring recommendations, but also in the therapeutic field, with the use of mTORC1 inhibitors. In this article, we review the clinical manifestations associated with TSC, as well as the treatment and follow-up strategies that should be implemented, from a multidisciplinary perspective.
Collapse
Affiliation(s)
- Inês Gomes
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | | | - Filipe Palavra
- Center for Child Development - Neuropediatrics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Laboratory of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
9
|
Hertzberg C, Franz DN. Anti-convulsant Agents: Everolimus. NEUROPSYCHOPHARMACOTHERAPY 2022:3721-3751. [DOI: 10.1007/978-3-030-62059-2_306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
Bakhtiary H, Barzegar M, Shiva S, Poorshiri B, Hajalioghli P, Herizchi Ghadim H. The Effect of Everolimus on Subependymal Giant Cell Astrocytoma (SEGA) in Children with Tuberous Sclerosis Complex. IRANIAN JOURNAL OF CHILD NEUROLOGY 2021; 15:15-25. [PMID: 34782838 PMCID: PMC8570625 DOI: 10.22037/ijcn.v15i4.30591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/15/2020] [Indexed: 02/03/2023]
Abstract
Objective Subependymal Giant Cell Astrocytomas (SEGAs) are slow-growing glioneuronal tumors typically found around the ventricles of the brain, particularly near the foramen of Monro in 15%-20% of patients with tuberous sclerosis complex (TSC). Surgical resection is the standard treatment for these symptomatic tumors. The mTOR inhibitor everolimus can be regarded as an alternative treatment for SEGAs due to the complications of surgery. The present study primarily aimed to specify the effect of everolimus on SEGA volume change before and after treatment. The secondary objective was to determine the effect of this drug on renal angiomyolipoma (AML), skin lesions, and seizures in TSC patients. Materials & Methods This pre- and post-treatment clinical trial was performed on 14 children (eight females and six males with a mean age of 10 years) previously diagnosed with TSC based on the diagnostic criteria. The subjects received oral everolimus at a dose of 3 mg/m2 for at least six months. Results Half of the patients had more than 30% of volume loss in SEGA, and in 28.5% of them, a ≥ 50% reduction in SEGA volume was observed (P=0.01). Moreover, 92.9% of the patients had a ≥ 50% decrease in the frequency of seizures (P=0.000). The response rate in AML and skin lesions was 14.2% and 50%, respectively. Conclusion Everolimus significantly reduced the seizure frequency and SEGA volume in the subjects; hence, it can be used as a potential alternative treatment for symptomatic SEGA in TSC patients.
Collapse
Affiliation(s)
- Hassan Bakhtiary
- Pediatric Health Research Center, Tabriz University of Medical Science, Tabriz , Iran
| | - Mohammad Barzegar
- Pediatric Health Research Center, Tabriz University of Medical Science, Tabriz , Iran
| | - Shadi Shiva
- Pediatric Health Research Center, Tabriz University of Medical Science, Tabriz , Iran
| | - Bita Poorshiri
- Pediatric Health Research Center, Tabriz University of Medical Science, Tabriz , Iran
| | - Parisa Hajalioghli
- Department of Radiology , Tabriz University of Medical Science, Tabriz , Iran
| | | |
Collapse
|
11
|
Armstrong C, Marsh ED. Electrophysiological Biomarkers in Genetic Epilepsies. Neurotherapeutics 2021; 18:1458-1467. [PMID: 34642905 PMCID: PMC8609056 DOI: 10.1007/s13311-021-01132-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 02/04/2023] Open
Abstract
Precision treatments for epilepsy targeting the underlying genetic diagnoses are becoming a reality. Historically, the goal of epilepsy treatments was to reduce seizure frequency. In the era of precision medicine, however, outcomes such as prevention of epilepsy progression or even improvements in cognitive functions are both aspirational targets for any intervention. Developing methods, both in clinical trial design and in novel endpoints, will be necessary for measuring, not only seizures, but also the other neurodevelopmental outcomes that are predicted to be targeted by precision treatments. Biomarkers that quantitatively measure disease progression or network level changes are needed to allow for unbiased measurements of the effects of any gene-level treatments. Here, we discuss some of the promising electrophysiological biomarkers that may be of use in clinical trials of precision therapies, as well as the difficulties in implementing them.
Collapse
Affiliation(s)
- Caren Armstrong
- Division of Neurology and Pediatric Epilepsy Program, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Eric D Marsh
- Division of Neurology and Pediatric Epilepsy Program, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pediatrics and Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
12
|
Kingswood JC, Belousova E, Benedik MP, Budde K, Carter T, Cottin V, Curatolo P, Dahlin M, D'Amato L, d'Augères GB, de Vries PJ, Ferreira JC, Feucht M, Fladrowski C, Hertzberg C, Jozwiak S, Lawson JA, Macaya A, Marques R, Nabbout R, O'Callaghan F, Qin J, Sander V, Sauter M, Shah S, Takahashi Y, Touraine R, Youroukos S, Zonnenberg B, Jansen AC. TuberOus SClerosis registry to increAse disease awareness (TOSCA) Post-Authorisation Safety Study of Everolimus in Patients With Tuberous Sclerosis Complex. Front Neurol 2021; 12:630378. [PMID: 33833726 PMCID: PMC8021912 DOI: 10.3389/fneur.2021.630378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/03/2021] [Indexed: 11/20/2022] Open
Abstract
This non-interventional post-authorisation safety study (PASS) assessed the long-term safety of everolimus in patients with tuberous sclerosis complex (TSC) who participated in the TuberOus SClerosis registry to increase disease Awareness (TOSCA) clinical study and received everolimus for the licensed indications in the European Union. The rate of adverse events (AEs), AEs that led to dose adjustments or treatment discontinuation, AEs of potential clinical interest, treatment-related AEs (TRAEs), serious AEs (SAEs), and deaths were documented. One hundred seventy-nine patients were included in the first 5 years of observation; 118 of 179 patients had an AE of any grade, with the most common AEs being stomatitis (7.8%) and headache (7.3%). AEs caused dose adjustments in 56 patients (31.3%) and treatment discontinuation in nine patients (5%). AEs appeared to be more frequent and severe in children. On Tanner staging, all patients displayed signs of age-appropriate sexual maturation. Twenty-two of 106 female (20.8%) patients had menstrual cycle disorders. The most frequent TRAEs were stomatitis (6.7%) and aphthous mouth ulcer (5.6%). SAEs were reported in 54 patients (30.2%); the most frequent SAE was pneumonia (>3% patients; grade 2, 1.1%, and grade 3, 2.8%). Three deaths were reported, all in patients who had discontinued everolimus for more than 28 days, and none were thought to be related to everolimus according to the treating physicians. The PASS sub-study reflects the safety and tolerability of everolimus in the management of TSC in real-world routine clinical practice.
Collapse
Affiliation(s)
- J Chris Kingswood
- Genomics Clinical Academic Group, Molecular and Clinical Sciences Research Centre, St George's Hospital, University of London, London, United Kingdom
| | - Elena Belousova
- Research and Clinical Institute of Paediatrics, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Klemens Budde
- Internal Medicine and Nephrology, Hypertensiology DHL, University Medicine Berlin, Berline, Germany
| | - Tom Carter
- Tuberous Sclerosis Association, Nottingham, United Kingdom
| | - Vincent Cottin
- Hôpital Louis Pradel, Claude Bernard University Lyon, Lyon, France
| | | | - Maria Dahlin
- Karolinska University Hospital, Stockholm, Sweden
| | | | | | - Petrus J de Vries
- Division of Child and Adolescent Psychiatry, University of Cape Town, Cape Town, South Africa
| | | | - Martha Feucht
- Universitätsklinik für Kinder-und Jugendheilkunde, Vienna, Austria
| | - Carla Fladrowski
- Associazione Sclerosi Tuberosa ONLUS, Milan, Italy.,European Tuberous Sclerosis Complex Association, In den Birken, Dattein, Neuharlingersiel, Germany
| | | | - Sergiusz Jozwiak
- Department of Child Neurology, Medical University of Warsaw, Warsaw, Poland.,Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland
| | - John A Lawson
- The Tuberous Sclerosis Multidisciplinary Management Clinic, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Alfons Macaya
- Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Ruben Marques
- Novartis Farma S.p.A., Origgio, Italy.,Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - Rima Nabbout
- Department of Paediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
| | - Finbar O'Callaghan
- Institute of Child Health, University College London, London, United Kingdom
| | - Jiong Qin
- Department of Paediatrics, Peking University People's Hospital, Beijing, China
| | | | | | - Seema Shah
- Novartis Healthcare Pvt. Ltd, Hyderabad, India
| | - Yukitoshi Takahashi
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, NHO, Shizuoka, Japan
| | - Renaud Touraine
- Department of Genetics, CHU-Hôpital Nord, Saint Etienne, France
| | | | | | - Anna C Jansen
- Pediatric Neurology Unit, Department of Paediatrics, UZ Brussel VUB, Brussels, Belgium
| | | |
Collapse
|
13
|
Borgenvik A, Čančer M, Hutter S, Swartling FJ. Targeting MYCN in Molecularly Defined Malignant Brain Tumors. Front Oncol 2021; 10:626751. [PMID: 33585252 PMCID: PMC7877538 DOI: 10.3389/fonc.2020.626751] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022] Open
Abstract
Misregulation of MYC genes, causing MYC overexpression or protein stabilization, is frequently found in malignant brain tumors highlighting their important roles as oncogenes. Brain tumors in children are the most lethal of all pediatric malignancies and the most common malignant primary adult brain tumor, glioblastoma, is still practically incurable. MYCN is one of three MYC family members and is crucial for normal brain development. It is associated with poor prognosis in many malignant pediatric brain tumor types and is focally amplified in specific adult brain tumors. Targeting MYCN has proved to be challenging due to its undruggable nature as a transcription factor and for its importance in regulating developmental programs also in healthy cells. In this review, we will discuss efforts made to circumvent the difficulty of targeting MYCN specifically by using direct or indirect measures to treat MYCN-driven brain tumors. We will further consider the mechanism of action of these measures and suggest which molecularly defined brain tumor patients that might benefit from MYCN-directed precision therapies.
Collapse
Affiliation(s)
- Anna Borgenvik
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Matko Čančer
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Sonja Hutter
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Strowd RE, Plotkin SR. Familial Nervous System Tumor Syndromes. ACTA ACUST UNITED AC 2020; 26:1523-1552. [PMID: 33273171 DOI: 10.1212/con.0000000000000950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE OF REVIEW Although sporadic primary neoplasms account for the majority of nervous system tumors, familial nervous system tumor syndromes are important and clinically relevant conditions for the neurologist to understand. This article reviews common inherited nervous system tumor syndromes including neurofibromatosis type 1, neurofibromatosis type 2, schwannomatosis, tuberous sclerosis complex, and von Hippel-Lindau syndrome. The epidemiology, genetics, approach to diagnosis, neurologic and nonneurologic manifestations, and management options are reviewed. RECENT FINDINGS Awareness of the more common and clinically relevant familial nervous system tumor syndromes is important. These conditions teach us about the underlying biology that drives tumor development in the central and peripheral nervous systems including peripheral nerve sheath tumors (eg, neurofibroma, schwannoma), meningioma, vestibular schwannoma, subependymal giant cell astrocytoma, and hemangioblastoma. Knowledge of the clinical manifestations ensures that the neurologist will be able to diagnose these conditions, recommend appropriate surveillance, refer to specialists, and support optimal management. Important discoveries in the role of the underlying genetics have contributed to the launch of several novel drug trials for these tumors, which are changing therapeutic options for patients. SUMMARY Familial nervous system tumor syndromes are uncommon conditions that require specialized surveillance and management strategies. Coordination across a multidisciplinary team that includes neurologists, neuro-oncologists, radiologists, neurosurgeons, radiation oncologists, otolaryngologists, pathologists, neuropsychologists, physical medicine and rehabilitation specialists, and geneticists is necessary for the optimal treatment of these patients.
Collapse
|
15
|
Abstract
Phakomatoses present with characteristic findings on the skin, central or peripheral nervous system, and tumors. Neurofibromatosis type 1 is the most common syndrome and is characterized by Café-au-lait macules, intertriginous freckling, Lisch nodules, and tumors including neurofibromas, malignant peripheral nerve sheath tumors, and gliomas. Tuberous Sclerosis Complex is characterized by benign hamartomas presenting with hypomelanotic macules, shagreen patches, angiofibromas, confetti lesions and tumors including cortical tubers, subependymal nodules, subependymal giant cell astrocytomas and tumors of the kidney, lung, and heart. Managing these disorders requires disease specific supportive care, tumor monitoring, surveillance for selected cancers, and treatment of comorbid conditions.
Collapse
Affiliation(s)
- Benjamin Becker
- Department of Neurology, Wake Forest Baptist Health, 1 Medical Center Boulevard, Winston Salem, NC 27157, USA.
| | - Roy E Strowd
- Department of Neurology, Wake Forest Baptist Health, 1 Medical Center Boulevard, Winston Salem, NC 27157, USA; Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest Baptist Health, Winston Salem, NC 27157, USA; Translational Science Institute, Wake Forest Baptist Health, Winston Salem, NC 27157, USA
| |
Collapse
|
16
|
Bongaarts A, van Scheppingen J, Korotkov A, Mijnsbergen C, Anink JJ, Jansen FE, Spliet WGM, den Dunnen WFA, Gruber VE, Scholl T, Samueli S, Hainfellner JA, Feucht M, Kotulska K, Jozwiak S, Grajkowska W, Buccoliero AM, Caporalini C, Giordano F, Genitori L, Coras R, Blümcke I, Krsek P, Zamecnik J, Meijer L, Scicluna BP, Schouten-van Meeteren AYN, Mühlebner A, Mills JD, Aronica E. The coding and non-coding transcriptional landscape of subependymal giant cell astrocytomas. Brain 2020; 143:131-149. [PMID: 31834371 PMCID: PMC6935755 DOI: 10.1093/brain/awz370] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/13/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominantly inherited neurocutaneous disorder caused by inactivating mutations in TSC1 or TSC2, key regulators of the mechanistic target of rapamycin complex 1 (mTORC1) pathway. In the CNS, TSC is characterized by cortical tubers, subependymal nodules and subependymal giant cell astrocytomas (SEGAs). SEGAs may lead to impaired circulation of CSF resulting in hydrocephalus and raised intracranial pressure in patients with TSC. Currently, surgical resection and mTORC1 inhibitors are the recommended treatment options for patients with SEGA. In the present study, high-throughput RNA-sequencing (SEGAs n = 19, periventricular control n = 8) was used in combination with computational approaches to unravel the complexity of SEGA development. We identified 9400 mRNAs and 94 microRNAs differentially expressed in SEGAs compared to control tissue. The SEGA transcriptome profile was enriched for the mitogen-activated protein kinase (MAPK) pathway, a major regulator of cell proliferation and survival. Analysis at the protein level confirmed that extracellular signal-regulated kinase (ERK) is activated in SEGAs. Subsequently, the inhibition of ERK independently of mTORC1 blockade decreased efficiently the proliferation of primary patient-derived SEGA cultures. Furthermore, we found that LAMTOR1, LAMTOR2, LAMTOR3, LAMTOR4 and LAMTOR5 were overexpressed at both gene and protein levels in SEGA compared to control tissue. Taken together LAMTOR1-5 can form a complex, known as the 'Ragulator' complex, which is known to activate both mTORC1 and MAPK/ERK pathways. Overall, this study shows that the MAPK/ERK pathway could be used as a target for treatment independent of, or in combination with mTORC1 inhibitors for TSC patients. Moreover, our study provides initial evidence of a possible link between the constitutive activated mTORC1 pathway and a secondary driver pathway of tumour growth.
Collapse
Affiliation(s)
- Anika Bongaarts
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Anatoly Korotkov
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Caroline Mijnsbergen
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jasper J Anink
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Floor E Jansen
- Department of Pediatric Neurology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wim G M Spliet
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Victoria E Gruber
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Theresa Scholl
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Sharon Samueli
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | - Martha Feucht
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
| | - Sergiusz Jozwiak
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
- Department of Child Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Wieslawa Grajkowska
- Department of Pathology, Children's Memorial Health Institute, Warsaw, Poland
| | | | | | - Flavio Giordano
- Department of Neurosurgery, Anna Meyer Children's Hospital, Florence, Italy
| | - Lorenzo Genitori
- Department of Neurosurgery, Anna Meyer Children's Hospital, Florence, Italy
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Pavel Krsek
- Department of Paediatric Neurology, Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic
| | - Josef Zamecnik
- Department of Pathology and Molecular Medicine, Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic
| | - Lisethe Meijer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Brendon P Scicluna
- Center for Experimental and Molecular Medicine and Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Antoinette Y N Schouten-van Meeteren
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Angelika Mühlebner
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - James D Mills
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), The Netherlands
| |
Collapse
|
17
|
Modifying genetic epilepsies - Results from studies on tuberous sclerosis complex. Neuropharmacology 2019; 166:107908. [PMID: 31962286 DOI: 10.1016/j.neuropharm.2019.107908] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant neurocutaneous disorder affecting approximately 1 in 6,000 in general population and represents one of the most common genetic causes of epilepsy. Epilepsy affects 90% of the patients and appears in the first 2 years of life in the majority of them. Early onset of epilepsy in the first year of life is associated with high risk of cognitive decline and neuropsychiatric problems including autism. Recently TSC has been recognized as a model of genetic epilepsies. TSC is a genetic condition with known dysregulated mTOR pathway and is increasingly viewed as a model for human epileptogenesis. Moreover, TSC is characterized by a hyperactivation of mTOR (mammalian target of rapamycin) pathway, and mTOR activation was showed to be implicated in epileptogenesis in many animal models and human epilepsies. Recently published studies documented positive effect of preventive or disease modifying treatment of epilepsy in infants with high risk of epilepsy with significantly lower incidence of epilepsy and better cognitive outcome. Further studies on preventive treatment of epilepsy in other genetic epilepsies of early childhood are considered. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
|
18
|
Čančer M, Hutter S, Holmberg KO, Rosén G, Sundström A, Tailor J, Bergström T, Garancher A, Essand M, Wechsler-Reya RJ, Falk A, Weishaupt H, Swartling FJ. Humanized Stem Cell Models of Pediatric Medulloblastoma Reveal an Oct4/mTOR Axis that Promotes Malignancy. Cell Stem Cell 2019; 25:855-870.e11. [PMID: 31786016 PMCID: PMC6900751 DOI: 10.1016/j.stem.2019.10.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 06/26/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022]
Abstract
Medulloblastoma (MB), the most frequent malignant childhood brain tumor, can arise from cellular malfunctions during hindbrain development. Here we generate humanized models for Sonic Hedgehog (SHH)-subgroup MB via MYCN overexpression in primary human hindbrain-derived neuroepithelial stem (hbNES) cells or iPSC-derived NES cells, which display a range of aggressive phenotypes upon xenografting. iPSC-derived NES tumors develop quickly with leptomeningeal dissemination, whereas hbNES-derived cells exhibit delayed tumor formation with less dissemination. Methylation and expression profiling show that tumors from both origins recapitulate hallmarks of infant SHH MB and reveal that mTOR activation, as a result of increased Oct4, promotes aggressiveness of human SHH tumors. Targeting mTOR decreases cell viability and prolongs survival, showing the utility of these varied models for dissecting mechanisms mediating tumor aggression and demonstrating the value of humanized models for a better understanding of pediatric cancers. Human iPSC-derived or primary neuroepithelial stem cells can be transformed by MYCN MYCN drives infant SHH medulloblastoma with clinically relevant features Epigenetically regulated Oct4 promotes mTOR hyperactivation in infant SHH tumors mTOR inhibition efficiently targets metastatic SHH medulloblastoma models and PDXs
Collapse
Affiliation(s)
- Matko Čančer
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Sonja Hutter
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Karl O Holmberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Gabriela Rosén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Anders Sundström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Jignesh Tailor
- Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Tobias Bergström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Alexandra Garancher
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 92037 La Jolla, CA, USA
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 92037 La Jolla, CA, USA
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Holger Weishaupt
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden.
| |
Collapse
|
19
|
Shibata Y, Maruyama H, Hayashi T, Ono H, Wada Y, Fujinaga H, Fujino S, Nagasawa J, Amari S, Tsukamoto K, Ito Y. Effect and Complications of Everolimus Use for Giant Cardiac Rhabdomyomas with Neonatal Tuberous Sclerosis. AJP Rep 2019; 9:e213-e217. [PMID: 31304050 PMCID: PMC6624115 DOI: 10.1055/s-0039-1692198] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/05/2019] [Indexed: 12/16/2022] Open
Abstract
Most cardiac rhabdomyomas with tuberous sclerosis (TS) are asymptomatic and spontaneously regress. However, some cases require surgical intervention due to arrhythmia and severe obstruction of cardiac inflow or outflow. We report herein a neonatal case of giant cardiac rhabdomyomas with TS and insufficient pulmonary blood flow from the right ventricle. Lipoprostaglandin E1 was necessary to maintain patency of the ductus arteriosus. We used everolimus, a mammalian target of rapamycin inhibitor, to diminish the cardiac rhabdomyomas. After treatment, the rhabdomyomas shrank rapidly, but the serum concentration of everolimus increased sharply (maximum serum trough level: 76.1 ng/mL) and induced complications including pulmonary hemorrhage, liver dysfunction, and acne. After the everolimus level decreased, the complications resolved. Everolimus may be a viable treatment option for rhabdomyomas, but its concentration requires close monitoring to circumvent complications associated with its use.
Collapse
Affiliation(s)
- Yuka Shibata
- Division of Neonatology, Center for Maternal-Fetal, Neonatal and Reproductive Medicine, Setagaya, Tokyo, Japan
| | - Hidehiko Maruyama
- Division of Neonatology, Center for Maternal-Fetal, Neonatal and Reproductive Medicine, Setagaya, Tokyo, Japan
| | - Taiyu Hayashi
- Division of Cardiology, National Center for Child Health and Development, Setagaya, Tokyo, Japan
| | - Hiroshi Ono
- Division of Cardiology, National Center for Child Health and Development, Setagaya, Tokyo, Japan
| | - Yuka Wada
- Division of Neonatology, Center for Maternal-Fetal, Neonatal and Reproductive Medicine, Setagaya, Tokyo, Japan
| | - Hideshi Fujinaga
- Division of Neonatology, Center for Maternal-Fetal, Neonatal and Reproductive Medicine, Setagaya, Tokyo, Japan
| | - Shuhei Fujino
- Division of Neonatology, Center for Maternal-Fetal, Neonatal and Reproductive Medicine, Setagaya, Tokyo, Japan
| | - Junko Nagasawa
- Division of Neonatology, Center for Maternal-Fetal, Neonatal and Reproductive Medicine, Setagaya, Tokyo, Japan
| | - Shoichiro Amari
- Division of Neonatology, Center for Maternal-Fetal, Neonatal and Reproductive Medicine, Setagaya, Tokyo, Japan
| | - Keiko Tsukamoto
- Division of Neonatology, Center for Maternal-Fetal, Neonatal and Reproductive Medicine, Setagaya, Tokyo, Japan
| | - Yushi Ito
- Division of Neonatology, Center for Maternal-Fetal, Neonatal and Reproductive Medicine, Setagaya, Tokyo, Japan
| |
Collapse
|
20
|
Kuo CJ, Huang CC, Chou SY, Lo YC, Kao TJ, Huang NK, Lin C, Lin HC, Lin HC, Lee YC. Potential therapeutic effect of curcumin, a natural mTOR inhibitor, in tuberous sclerosis complex. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 54:132-139. [PMID: 30668362 DOI: 10.1016/j.phymed.2018.09.203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/28/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Curcumin is a polyphenol natural product of the plant Curcuma longa. Recent studies suggest that curcumin inhibit mTOR activity in vitro, which prompts us to investigate curcumin function as a new class of mTOR inhibitor suitable for tuberous sclerosis complex (TSC) treatment. PURPOSE We aim to investigate the efficacy of curcumin in the treatment of TSC related manifestations in animal model. STUDY DESIGN Solid lipid curcumin particle (SLCP), a novel curcumin formulation, was used to treat TSC related manifestations in Tsc2 knockout mice. METHODS The novel object recognition test was used to analyze the recognition memory function. The long-term potentiation was studied using electrophysiological analysis. Western blotting was used to assess the protein expression and activation status. RESULTS Recognition memory deficit began as early as 4 weeks of age in both male and female Tsc2+/- mice. Oral administration with SLCP activates AMPK activity and inhibits mTOR activity in the brain tissue of Tsc2+/- mice, and can rescue the electrophysiological abnormality and object recognition memory loss in the mice. CONCLUSIONS Our results suggest that SLCP could be an effective treatment for TSC patients.
Collapse
Affiliation(s)
- Chu-Jen Kuo
- Health Management Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Chi-Chen Huang
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Szu-Yi Chou
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chun Lo
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Jen Kao
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Nai-Kuei Huang
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Connie Lin
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Chuan Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-Ching Lin
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Institute and Department of Physiology, School of Medicine, National Yang-Ming University, 155 Linong St., Taipei 112, Taiwan.
| | - Yi-Chao Lee
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
21
|
Schubert-Bast S, Rosenow F, Klein KM, Reif PS, Kieslich M, Strzelczyk A. The role of mTOR inhibitors in preventing epileptogenesis in patients with TSC: Current evidence and future perspectives. Epilepsy Behav 2019; 91:94-98. [PMID: 29941212 DOI: 10.1016/j.yebeh.2018.05.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 12/16/2022]
Abstract
Tuberous sclerosis complex (TSC) is one of the most common genetic causes of epilepsy. Mutations in the TSC1 or TSC2 genes lead to the dysregulation of the mechanistic target of rapamycin (mTOR) pathway. This mTOR pathway hyperactivation is associated with several processes resulting in epileptic conditions. The occurrence of seizures and their treatment outcomes seem to play a crucial role in cognitive and behavioral developments in patients with TSC. Mechanistic target of rapamycin inhibitors have been proven to be effective in epilepsy treatment in individuals with TSC. Specifically, because of their disease-modifying mechanism of action, they have the capability to prevent epileptogenesis in patients with TSC. This article will provide an overview of the current evidence of and delineate future perspectives for mTOR inhibitors and their role in preventing epileptogenesis.
Collapse
Affiliation(s)
- Susanne Schubert-Bast
- Department of Neuropediatrics, Goethe-University, Frankfurt am Main, Germany; Epilepsy Center Frankfurt Rhine-Main and Department of Neurology, Goethe-University, Frankfurt am Main, Germany; LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University, Frankfurt am Main, Germany.
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main and Department of Neurology, Goethe-University, Frankfurt am Main, Germany; LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University, Frankfurt am Main, Germany
| | - Karl Martin Klein
- Epilepsy Center Frankfurt Rhine-Main and Department of Neurology, Goethe-University, Frankfurt am Main, Germany; LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University, Frankfurt am Main, Germany
| | - Philipp S Reif
- Epilepsy Center Frankfurt Rhine-Main and Department of Neurology, Goethe-University, Frankfurt am Main, Germany; LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University, Frankfurt am Main, Germany
| | - Matthias Kieslich
- Department of Neuropediatrics, Goethe-University, Frankfurt am Main, Germany; Epilepsy Center Frankfurt Rhine-Main and Department of Neurology, Goethe-University, Frankfurt am Main, Germany; LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University, Frankfurt am Main, Germany
| | - Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main and Department of Neurology, Goethe-University, Frankfurt am Main, Germany; LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
22
|
Vuokila N, Lukasiuk K, Bot AM, van Vliet EA, Aronica E, Pitkänen A, Puhakka N. miR-124-3p is a chronic regulator of gene expression after brain injury. Cell Mol Life Sci 2018; 75:4557-4581. [PMID: 30155647 PMCID: PMC11105702 DOI: 10.1007/s00018-018-2911-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/02/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) initiates molecular and cellular pathologies that underlie post-injury morbidities, including hippocampus-related memory decline and epileptogenesis. Non-coding small RNAs are master regulators of gene expression with the potential to affect multiple molecular pathways. To evaluate whether hippocampal gene expression networks are chronically regulated by microRNAs after TBI, we sampled the dentate gyrus of rats with severe TBI induced by lateral fluid-percussion injury 3 months earlier. Ingenuity pathway analysis revealed 30 upregulated miR-124-3p targets, suggesting that miR-124-3p is downregulated post-TBI (z-score = - 5.146, p < 0.05). Droplet digital polymerase chain reaction (ddPCR) and in situ hybridization confirmed the chronic downregulation of miR-124-3p (p < 0.05). Quantitative PCR analysis of two targets, Plp2 and Stat3, indicated that their upregulation correlated with the miR-124-3p downregulation (r = - 0.647, p < 0.05; r = - 0.629, p < 0.05, respectively). Immunohistochemical staining of STAT3 confirmed the increased protein expression. STRING analysis showed that 9 of the 30 miR-124-3p targets belonged to a STAT3 network. Reactome analysis and data mining connected the targets especially to inflammation and signal transduction. L1000CDS2 software revealed drugs (e.g., importazole, trichostatin A, and IKK-16) that could reverse the observed molecular changes. The translational value of our data was emphasized by in situ hybridization showing chronic post-traumatic downregulation of miR-124-3p in the dentate gyrus of TBI patients. Analysis of another brain injury model, status epilepticus, highlighted the fact that chronic downregulation of miR-124 is a common phenomenon after brain injury. Together, our findings indicate that miR-124-3p is a chronic modulator of molecular networks relevant to post-injury hippocampal pathologies in experimental models and in humans.
Collapse
Affiliation(s)
- Niina Vuokila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland
| | - Katarzyna Lukasiuk
- The Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str, 02-093, Warsaw, Poland
| | - Anna Maria Bot
- The Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str, 02-093, Warsaw, Poland
| | - Erwin A van Vliet
- Department of (Neuro)pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Amsterdam, The Netherlands
| | - Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland.
| | - Noora Puhakka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
23
|
Drozd HP, Karathanasis SF, Molosh AI, Lukkes JL, Clapp DW, Shekhar A. From bedside to bench and back: Translating ASD models. PROGRESS IN BRAIN RESEARCH 2018; 241:113-158. [PMID: 30447753 DOI: 10.1016/bs.pbr.2018.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autism spectrum disorders (ASD) represent a heterogeneous group of disorders defined by deficits in social interaction/communication and restricted interests, behaviors, or activities. Models of ASD, developed based on clinical data and observations, are used in basic science, the "bench," to better understand the pathophysiology of ASD and provide therapeutic options for patients in the clinic, the "bedside." Translational medicine creates a bridge between the bench and bedside that allows for clinical and basic science discoveries to challenge one another to improve the opportunities to bring novel therapies to patients. From the clinical side, biomarker work is expanding our understanding of possible mechanisms of ASD through measures of behavior, genetics, imaging modalities, and serum markers. These biomarkers could help to subclassify patients with ASD in order to better target treatments to a more homogeneous groups of patients most likely to respond to a candidate therapy. In turn, basic science has been responding to developments in clinical evaluation by improving bench models to mechanistically and phenotypically recapitulate the ASD phenotypes observed in clinic. While genetic models are identifying novel therapeutics targets at the bench, the clinical efforts are making progress by defining better outcome measures that are most representative of meaningful patient responses. In this review, we discuss some of these challenges in translational research in ASD and strategies for the bench and bedside to bridge the gap to achieve better benefits to patients.
Collapse
Affiliation(s)
- Hayley P Drozd
- Program in Medical Neurobiology, Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sotirios F Karathanasis
- Program in Medical Neurobiology, Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Andrei I Molosh
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jodi L Lukkes
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - D Wade Clapp
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Anantha Shekhar
- Program in Medical Neurobiology, Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States; Indiana Clinical and Translation Sciences Institute, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
24
|
Canpolat M, Gumus H, Kumandas S, Coskun A, Per H. The use of rapamycin in patients with tuberous sclerosis complex: Long-term results. Epilepsy Behav 2018; 88:357-364. [PMID: 30305233 DOI: 10.1016/j.yebeh.2018.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/16/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the long-term results of eight cases diagnosed with tuberous sclerosis complex (TSC) and receiving rapamycin therapy because of epileptic seizures and/or accompanying TSC findings. METHOD Rapamycin therapy was initiated at a dose of 1.5 mg/m2. Seizure frequency, electroencephalographic (EEG) findings, renal and cranial imaging findings, and cutaneous lesions over 3- to 6-month periods during follow-up and treatment were evaluated. RESULTS Four girls and four boys aged 4-16 years at the start of rapamycin therapy and now aged 9-24 years were evaluated. Duration of rapamycin therapy was 1-5 years, and the monitoring period after commencement of rapamycin therapy lasted 5-8 years. Positive effects were observed at 9-12 months in three out of six cases of renal angiomyolipoma (AML) and in the second year of treatment in one. An increase in AML dimensions was observed in three cases after treatment was stopped. Seizure control was established in the first year of rapamycin therapy in all cases. An increased frequency of seizures was observed in three cases after the second year of treatment. No seizure recurrence was determined in the second year of treatment with rapamycin in five out of eight cases. Recurrence of seizure was observed in 6-12 months after the discontinuation of rapamycin in three cases. CONCLUSION Rapamycin therapy exhibits positive effects on epileptic seizures in cases of TSC in 1-2 years but these positive effects on seizure control of rapamycin therapy decline after the second year. Larger case series are still needed to determine the duration and effectiveness of treatment in childhood.
Collapse
Affiliation(s)
- Mehmet Canpolat
- Erciyes University Medical School, Department of Pediatrics, Division of Pediatric Neurology, Talas, Kayseri, Turkey.
| | - Hakan Gumus
- Erciyes University Medical School, Department of Pediatrics, Division of Pediatric Neurology, Talas, Kayseri, Turkey
| | - Sefer Kumandas
- Erciyes University Medical School, Department of Pediatrics, Division of Pediatric Neurology, Talas, Kayseri, Turkey
| | - Abdulhakim Coskun
- Erciyes University Medical School, Department of Radiology and Pediatric Radiology, Talas, Kayseri, Turkey
| | - Huseyin Per
- Erciyes University Medical School, Department of Pediatrics, Division of Pediatric Neurology, Talas, Kayseri, Turkey.
| |
Collapse
|
25
|
Canevini MP, Kotulska-Jozwiak K, Curatolo P, La Briola F, Peron A, Słowińska M, Strzelecka J, Vignoli A, Jóźwiak S. Current concepts on epilepsy management in tuberous sclerosis complex. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:299-308. [PMID: 30255982 DOI: 10.1002/ajmg.c.31652] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant neurocutaneous disease affecting approximately 1 in 6,000 people, and represents one of the most common genetic causes of epilepsy. Epilepsy affects 90% of the patients and appears in the first 2 years of life in the majority of them. Early onset of epilepsy in the first 12 months of life is associated with high risk of cognitive decline and neuropsychiatric problems including autism. Prenatal or early infantile diagnosis of TSC, before the onset of epilepsy, provides a unique opportunity to monitor EEG before the onset of clinical seizures, thus enabling early intervention in the process of epileptogenesis. In this review, we discuss the current status of knowledge on epileptogenesis in TSC, and present recommendations of American and European experts in the field of epilepsy.
Collapse
Affiliation(s)
- Maria Paola Canevini
- Child Neuropsychiatry Unit - Epilepsy Center, San Paolo Hospital, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Paolo Curatolo
- Department of Pediatric Neuropsychiatry, Tor Vergata University, Rome, Italy
| | - Francesca La Briola
- Child Neuropsychiatry Unit - Epilepsy Center, San Paolo Hospital, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Angela Peron
- Child Neuropsychiatry Unit - Epilepsy Center, San Paolo Hospital, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.,Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Monika Słowińska
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland.,Department of Pediatric Neurology, Warsaw Medical University, Warsaw, Poland
| | - Jolanta Strzelecka
- Department of Pediatric Neurology, Warsaw Medical University, Warsaw, Poland
| | - Aglaia Vignoli
- Child Neuropsychiatry Unit - Epilepsy Center, San Paolo Hospital, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Sergiusz Jóźwiak
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland.,Department of Pediatric Neurology, Warsaw Medical University, Warsaw, Poland
| |
Collapse
|
26
|
Moavero R, Pisani LR, Pisani F, Curatolo P. Safety and tolerability profile of new antiepileptic drug treatment in children with epilepsy. Expert Opin Drug Saf 2018; 17:1015-1028. [PMID: 30169997 DOI: 10.1080/14740338.2018.1518427] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Treatment of pediatric epilepsy requires a careful evaluation of the safety and tolerability profile of antiepileptic drugs (AEDs) to avoid or minimize as much as possible adverse events (AEs) on various organs, hematological parameters, and growth, pubertal, motor, cognitive and behavioral development. AREAS COVERED Treatment-emergent AEs (TEAEs) reported in the literature 2000-2018 regarding second- and third-generation AEDs used in the pediatric age, with exclusion of the neonatal period that exhibits specific peculiarities, have been described on the basis of their frequency, severity/tolerability, and particular association with a given AED. EXPERT OPINION Somnolence/sedation and behavioral changes, like irritability and nervousness, are among the most commonly observed TEAEs associated with almost all AEDs. Lamotrigine, Gabapentin, Oxcarbazepine, and Levetiracetam appear to be the best-tolerated AEDs with a ≤2% withdrawal rate, while Tiagabine and Everolimus are discontinued in up to >20% of the patients because of intolerable TEAEs. For some AEDs, literature data are scanty to draw a high-level evidence on their safety and tolerability profile. The reasons are: insufficient population size, short duration of treatments, or lack of controlled trials. A future goal is that of identifying clearer, easier, and more homogeneous methodological strategies to facilitate AED testing in pediatric populations.
Collapse
Affiliation(s)
- Romina Moavero
- a Child Neurology and Psychiatry Unit, Systems Medicine Department , Tor Vergata University of Rome , Rome , Italy.,b Child Neurology Unit, Neuroscience and Neurorehabilitation Department , "Bambino Gesù", Children's Hospital, IRCCS , Rome , Italy
| | | | - Francesco Pisani
- d Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Paolo Curatolo
- a Child Neurology and Psychiatry Unit, Systems Medicine Department , Tor Vergata University of Rome , Rome , Italy
| |
Collapse
|
27
|
Portocarrero LKL, Quental KN, Samorano LP, de Oliveira ZNP, Rivitti-Machado MCDM. Tuberous sclerosis complex: review based on new diagnostic criteria. An Bras Dermatol 2018; 93:323-331. [PMID: 29924239 PMCID: PMC6001077 DOI: 10.1590/abd1806-4841.20186972] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/18/2017] [Indexed: 02/07/2023] Open
Abstract
Tuberous sclerosis complex is a multisystemic, autosomal dominant genetic disorder with complete penetrance, that can evolve with hamartomas in multiple organs, such as skin, central nervous system, kidney and lung. Due to the wide phenotypic variability, the disease is often not recognized. Tuberous sclerosis complex affects one in 10,000 newborns and most patients are diagnosed during the first 15 months of life. The diagnostic criteria for tuberous sclerosis were reviewed in 2012, at the second International Tuberous Sclerosis Complex Consensus Conference. The diagnosis is based on genetic criteria, by the identification of inactivating pathogenic mutation of tumor suppressor genes TSC1 and TSC2, and clinical criteria, including cutaneous, renal, pulmonary, cardiac and neurological manifestations. The treatment of tuberous sclerosis complex consists, mainly, in management of the symptoms caused by hamartomas and in prevention of organ failure. Multidisciplinary approach is recommended, in order to obtain better clinical outcomes.
Collapse
Affiliation(s)
- Larissa Karine Leite Portocarrero
- Outpatient Clinic of Pediatric Dermatology, Hospital das
Clínicas, Faculdade de Medicina, Universidade de São Paulo (HC-FMUSP),
São Paulo (SP), Brazil
| | - Klícia Novais Quental
- Outpatient Clinic of Pediatric Dermatology, Hospital das
Clínicas, Faculdade de Medicina, Universidade de São Paulo (HC-FMUSP),
São Paulo (SP), Brazil
| | - Luciana Paula Samorano
- Department of Dermatology, Hospital das Clínicas, Faculdade
de Medicina, Universidade de São Paulo (HC-FMUSP), São Paulo (SP),
Brazil
| | - Zilda Najjar Prado de Oliveira
- Department of Dermatology, Hospital das Clínicas, Faculdade
de Medicina, Universidade de São Paulo (HC-FMUSP), São Paulo (SP),
Brazil
| | | |
Collapse
|
28
|
Abstract
Nearly a third of patients with epilepsy have seizures refractory to current medical therapies. In the search for novel drug targets, the mTOR pathway has emerged as key in the regulation of neuronal function, growth and survival, and other cellular processes related to epileptogenesis. Hyperactivation of the mTOR pathway has been implicated in tuberous sclerosis complex and other 'mTORopathies', clinical syndromes associated with cortical developmental malformations and drug-resistant epilepsy. Recently published clinical trials of mTOR inhibitors in tuberous sclerosis complex have shown that these drugs are effective at decreasing seizure frequency. Future studies may establish whether mTOR inhibitors can provide effective treatment for patients with diverse genetic and acquired epilepsies, including preventative, disease-modifying therapies.
Collapse
Affiliation(s)
- Jennifer L Griffith
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael Wong
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
29
|
Adjunctive everolimus for children and adolescents with treatment-refractory seizures associated with tuberous sclerosis complex: post-hoc analysis of the phase 3 EXIST-3 trial. THE LANCET CHILD & ADOLESCENT HEALTH 2018; 2:495-504. [PMID: 30169322 DOI: 10.1016/s2352-4642(18)30099-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/01/2018] [Accepted: 03/09/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Epilepsy occurs in 70-90% of patients with tuberous sclerosis complex. We aimed to assess the efficacy and safety of adjunctive everolimus for treatment-refractory seizures associated with tuberous sclerosis complex in paediatric patients enrolled in the EXIST-3 trial, a double-blind, placebo-controlled, randomised, phase 3 study. METHODS This post-hoc analysis focused on paediatric patients (age <18 years) in the EXIST-3 trial, which consisted of baseline (8 weeks), core (18 weeks), and extension phases (≥48 weeks) and was done at 99 centres in 25 countries worldwide. Briefly, patients with tuberous sclerosis complex-associated treatment-refractory seizures, who were receiving a stable dose of one to three antiepileptic drugs, were randomly assigned (1:1:1) to receive placebo, low-exposure everolimus (3-7 ng/mL), or high-exposure everolimus (9-15 ng/mL). Following the core phase, patients could enter the extension phase to receive everolimus at a targeted exposure range of 3-15 ng/mL up to 48 weeks after the last patient had completed the core phase. Efficacy endpoints were response rate (≥50% of reduction from baseline in average weekly seizure frequency) and median percentage reduction in seizure frequency during the 12-week maintenance period of the core phase, and at 12-week intervals throughout the extension phase. This study is registered with ClinicalTrials.gov, number NCT01713946. FINDINGS Between July 3, 2013, and May 29, 2015, 299 paediatric patients enrolled in the trial. In the younger subgroup (<6 years; n=104), 34 received placebo, 33 low-exposure everolimus, and 37 high-exposure everolimus; in the older subgroup (≥6 years to <18 years; n=195), 62 received placebo, 63 low-exposure everolimus, and 70 high-exposure everolimus. At the end of the core phase, response rate was higher in the treatment groups than placebo in both the younger subgroup (17·6% [6·8-34·5] for placebo vs 30·3% [95% CI 15·6-48·7; p=0·2245] for low-exposure everolimus vs 59·5% [42·1-75·2; p=0·0003] for high-exposure everolimus) and the older subgroup (12·9% [5·7-23·9] vs 27·0% [16·6-39·7; p=0·0491] vs 30·0% [19·6-42·1; p=0·0179]), as were median reduction in seizure frequency (12·3% [95% CI -10·1 to 24·8] vs 29·3% [95% CI 13·4 to 46·3; p=0·0474] vs 54·7% [43·5 to 73·1; p<0·0001] in younger patients; 13·5% [-3·0 to 26·8] vs 31·0% [16·1 to 42·9; p=0·0128] vs 34·8% [26·7 to 41·3; p=0·0006] in older patients). The efficacy persisted, with sustained seizure reduction after 1 year of treatment across both paediatric subgroups (response rate 48·9% [95% CI 38·1-59·8] for the younger subgroup vs 47·2% [39·3-55·2] for the older subgroup; median percentage reduction in seizure frequency 48·4% [95% CI 34·3-73·6] vs 48·0% [38·2-57·5]). At the cutoff date for the extension phase, grade 3 or 4 adverse events were reported in 45 (45%) younger patients (commonly pneumonia [n=16]) and 74 (38%) older patients (commonly pneumonia [n=8] and stomatitis [n=6]). Two deaths (pneumonia, which was suspected to be treatment-related, and sudden unexplained death due to epilepsy) were reported. INTERPRETATION Adjunctive everolimus resulted in sustained reductions in seizure frequency after 1 year and was well tolerated in paediatric patients with treatment-refractory seizures associated with tuberous sclerosis complex. FUNDING Novartis Pharmaceuticals Corporation.
Collapse
|
30
|
Davis PE, Filip-Dhima R, Sideridis G, Peters JM, Au KS, Northrup H, Bebin EM, Wu JY, Krueger D, Sahin M. Presentation and Diagnosis of Tuberous Sclerosis Complex in Infants. Pediatrics 2017; 140:e20164040. [PMID: 29101226 PMCID: PMC5703775 DOI: 10.1542/peds.2016-4040] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2017] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES Tuberous sclerosis complex (TSC) is a neurocutaneous genetic disorder with a high prevalence of epilepsy and neurodevelopmental disorders. TSC can be challenging to diagnose in infants because they often do not show many clinical signs early in life. In this study, we describe the timing and pattern of presenting and diagnostic features in a prospective longitudinal study of infants with TSC. METHODS Two multicenter, prospective studies enrolled 130 infants with definite TSC by clinical or genetic criteria and followed them longitudinally up to 36 months of age. Periodic study visits included medical and seizure histories, physical and neurologic examinations, and developmental assessments. Ages at which major and minor features of TSC and seizures were first identified were analyzed. RESULTS The most common initial presenting features of TSC were cardiac rhabdomyomas (59%) and hypomelanotic macules or other skin findings (39%), and 85% of infants presented with either or both. Ultimately, the most prevalent diagnostic TSC features were hypomelanotic macules (94%), tubers or other cortical dysplasias (94%), subependymal nodules (90%), and cardiac rhabdomyomas (82%). Thirty-five percent of infants presented prenatally, 41% presented at birth or within the first month of life, and 74% met criteria for TSC diagnosis at or within 30 days of presentation. Seizure onset occurred before or at initial presentation in only 15% of infants, but 73% developed epilepsy within the first year of life. CONCLUSIONS Infants with TSC can often be identified early, before the onset of neurologic sequelae, enabling earlier diagnosis, surveillance, and possibly disease-modifying treatment.
Collapse
Affiliation(s)
| | - Rajna Filip-Dhima
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts
| | | | - Jurriaan M Peters
- Departments of Neurology and
- Division of Epilepsy and Clinical Neurophysiology
| | - Kit Sing Au
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - E Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joyce Y Wu
- Division of Pediatric Neurology, University of California at Los Angeles Mattel Children's Hospital, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; and
| | - Darcy Krueger
- Department of Neurology and Rehabilitation Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mustafa Sahin
- Departments of Neurology and
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts
| |
Collapse
|
31
|
Flader M, Kurzawa P, Maldyk J, Sygut J, Harasymczuk J, Kropinska A, Handkiewicz-Junak D, Jarzab B, Kotulska K, Niedziela M. Papillary thyroid carcinoma in a boy with familial tuberous sclerosis complex attributable to a TSC2 deletion-a case report. ACTA ACUST UNITED AC 2017; 24:e423-e428. [PMID: 29089812 DOI: 10.3747/co.24.3555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tuberous sclerosis complex (tsc), a phacomatosis, is a rare genetic disease (autosomal dominant; incidence: 1 in 6,800-17,300) associated with mutations in the TSC1 and TSC2 genes, 70% of which are sporadic. The disease causes benign tumours in the brain, kidneys, heart, lungs, skin, and eyes; thyroid lesions are extremely rare. A 13-year-old euthyroid boy with a hereditary form of tsc (del 4730G in TSC2, also seen in 2 sisters and the father) was admitted to hospital with a thyroid nodule. Physical examination revealed a nodular left lobe with increased consistency. Thyroid ultrasonography revealed a heterogeneous left lobe, predominantly hypoechoic with multiple microcalcifications and the presence of suspicious cervical lymph nodes on the left side. A macrocalcification was observed on the right lobe. Fine-needle biopsy results showed a few groups of cells with discrete atypical characteristics, including abundant cytoplasm, nuclei with conspicuous nucleoli, intra-nuclear inclusions, and nuclear grooves. The patient underwent total thyroidectomy with lymphadenectomy. Histopathology examination confirmed papillary thyroid carcinoma. The coincidence of endocrine neoplasia including thyroid cancer and tsc is rare, and tsc with papillary thyroid carcinoma has never been described in a child. Studies of mutations in the tumour suppressor genes TSC1, TSC2, and STK11, activating the mtor (mammalian target of rapamycin) pathway, might support their role in the pathogenesis of thyroid cancer.
Collapse
Affiliation(s)
- M Flader
- Department of Pediatric Endocrinology and Rheumatology, 2nd Chair of Pediatrics, Karol Jonscher's Clinical Hospital, and
| | - P Kurzawa
- Division of Pathomorphology, Karol Jonscher's Clinical Hospital, Department of Clinical Pathology, Poznan University of Medical Sciences, Poznan
| | - J Maldyk
- Division of Pathomorphology, Children's Clinical Hospital, Medical University of Warsaw, Warsaw
| | - J Sygut
- Department of Tumor Pathology, Greater Poland Cancer Centre in Poznan, Poznan
| | - J Harasymczuk
- Chair and Department of Pediatric Surgery, Traumatology and Urology, Poznan University of Medical Sciences, Poznan
| | - A Kropinska
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Memorial Cancer Center, and Institute of Oncology, Gliwice Branch, Gliwice; and
| | - D Handkiewicz-Junak
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Memorial Cancer Center, and Institute of Oncology, Gliwice Branch, Gliwice; and
| | - B Jarzab
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Memorial Cancer Center, and Institute of Oncology, Gliwice Branch, Gliwice; and
| | - K Kotulska
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland
| | - M Niedziela
- Department of Pediatric Endocrinology and Rheumatology, 2nd Chair of Pediatrics, Karol Jonscher's Clinical Hospital, and
| |
Collapse
|
32
|
Brakemeier S, Bachmann F, Budde K. Treatment of renal angiomyolipoma in tuberous sclerosis complex (TSC) patients. Pediatr Nephrol 2017; 32:1137-1144. [PMID: 27585680 DOI: 10.1007/s00467-016-3474-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/26/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
In adult tuberous sclerosis complex (TSC) patients, renal complications are the leading cause of death. Beginning in childhood, up to 80 % of patients develop renal angiomyolipoma characterized by a size-dependent risk of life-threatening bleeding. After discovery of the two causative genes, TSC1 and TSC2, and the role of mammalian target of rapamycin (mTOR) regulation in the pathogenesis of TSC, an increasing number of clinical studies evaluating mTOR inhibition in TSC patients have shown impressive results in many organ manifestations, such as brain, lung, and kidney. For renal angiomyolipoma, mTOR inhibitor treatment fundamentally changed the approach from preventive embolization or even partial nephrectomy to everolimus treatment in order to preserve kidney function.
Collapse
Affiliation(s)
- S Brakemeier
- Department of Internal Medicine, Division of Nephrology, Charité Campus Mitte, Berlin, Germany.
| | - F Bachmann
- Department of Internal Medicine, Division of Nephrology, Charité Campus Mitte, Berlin, Germany
| | - K Budde
- Department of Internal Medicine, Division of Nephrology, Charité Campus Mitte, Berlin, Germany
| |
Collapse
|
33
|
Yamamura M, Kojima T, Koyama M, Sazawa A, Yamada T, Minakami H. Everolimus in pregnancy: Case report and literature review. J Obstet Gynaecol Res 2017; 43:1350-1352. [DOI: 10.1111/jog.13369] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/05/2017] [Accepted: 04/04/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Mie Yamamura
- Department of Obstetrics and Gynecology; Obihiro Kosei Hospital; Obihiro Hokkaido Japan
| | - Takashi Kojima
- Department of Obstetrics; Hokkaido University Graduate School of Medicine; Sapporo Hokkaido Japan
| | - Masayuki Koyama
- Department of Cardiovascular Medicine; Obihiro Kosei Hospital; Obihiro Hokkaido Japan
| | - Ataru Sazawa
- Department of Urology; Obihiro Kosei Hospital; Obihiro Hokkaido Japan
| | - Takahiro Yamada
- Department of Obstetrics; Hokkaido University Graduate School of Medicine; Sapporo Hokkaido Japan
| | - Hisanori Minakami
- Department of Obstetrics; Hokkaido University Graduate School of Medicine; Sapporo Hokkaido Japan
| |
Collapse
|
34
|
Jacob S, Nair AB. A review on therapeutic drug monitoring of the mTOR class of immunosuppressants: everolimus and sirolimus. DRUGS & THERAPY PERSPECTIVES 2017. [DOI: 10.1007/s40267-017-0403-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Katz JS, Frankel H, Ma T, Zagzag D, Liechty B, Zeev BB, Tzadok M, Devinsky O, Weiner HL, Roth J. Unique findings of subependymal giant cell astrocytoma within cortical tubers in patients with tuberous sclerosis complex: a histopathological evaluation. Childs Nerv Syst 2017; 33:601-607. [PMID: 28074282 DOI: 10.1007/s00381-017-3335-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Tuberous sclerosis is associated with three central nervous system pathologies: cortical/subcortical tubers, subependymal nodules (SENs), and subependymal giant cell astrocytomas (SEGAs). Tubers are associated with epilepsy, which is often medication-resistant and often leads to resective surgery. Recently, mammalian target of rapamycin inhibitors (mTORi) have been shown to be effective reducing seizure burden in some patients with tuberous sclerosis complex (TSC)-related refractory epilepsy. mTORi have also been shown to be an alternative for surgery treating SEGAs. We describe several cases of resected tubers that contained SEGA tissue without an intraventricular SEGA. METHODS After institutional review board (IRB) protocol approval, we retrospectively reviewed the surgical-pathological data for all TSC patients who underwent cortical resections for treatment of refractory epilepsy at NYU Langone Medical Center and Tel Aviv Medical Center between 2003 and 2013. Data included demographics, epilepsy type, MRI characteristics, epilepsy outcome, and histopathological staining. RESULTS We reviewed cortical resections from 75 patients with complete pathological studies. In three patients, cortical lesions demonstrated histopathological findings consistent with a SEGA within the resected tuber tissue, with no intraventricular SEGA. All lesions were cortically based and none had any intraventricular extension. No patient had been treated before surgery with an mTORi. Two of the three patients remain Engel grade I-II. All lesions stained positive for glial fibrillary acidic protein (GFAP), synaptophysin, and neuronal nuclear antigen (NeuN). CONCLUSION This is the first description of cortical tubers harboring SEGA tissue. This observation though preliminary may suggest a subgroup of patients with intractable epilepsy in whom mTORi may be considered before surgical intervention.
Collapse
Affiliation(s)
- Joel S Katz
- Department of Neurosurgery, OhioHealth, Grant and Riverside Medical Center, 111 S Grant Avenue, Columbus, OH, 43215, USA
| | - Hyman Frankel
- Department of Neurosurgery, Division of Pediatric Neurosurgery, NYU Langone Medical Center, 550 First Avenue, New York, NY, 10016, USA
| | - Tracy Ma
- Department of Neurosurgery, Division of Pediatric Neurosurgery, NYU Langone Medical Center, 550 First Avenue, New York, NY, 10016, USA
| | - David Zagzag
- Department of Neurosurgery, Division of Pediatric Neurosurgery, NYU Langone Medical Center, 550 First Avenue, New York, NY, 10016, USA.,Department of Pathology, NYU Langone Medical Center, 550 First Avenue, New York, NY, 10016, USA
| | - Benjamin Liechty
- Department of Pathology, NYU Langone Medical Center, 550 First Avenue, New York, NY, 10016, USA
| | - Bruria Ben Zeev
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, 52621, Tel Hashomer, Israel
| | - Michal Tzadok
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, 52621, Tel Hashomer, Israel
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, NYU Langone Medical Center, 550 First Avenue, New York, NY, 10016, USA
| | - Howard L Weiner
- Department of Neurosurgery, Texas Children's Hospital, 6701 Fannin Street, Suite 1230.01, Houston, TX, 77030, USA
| | - Jonathan Roth
- Department of Pediatric Neurosurgery Dana Children's Hospital, Tel Aviv Medical Center, 6 Weizman Street, 64239, Tel Aviv, Israel.
| |
Collapse
|
36
|
mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation. Mol Cell Biol 2017; 37:MCB.00668-16. [PMID: 28069737 DOI: 10.1128/mcb.00668-16] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/03/2017] [Indexed: 01/15/2023] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) is activated by extracellular factors that control bone accrual. However, the direct role of this complex in osteoblast biology remains to be determined. To investigate this question, we disrupted mTORC1 function in preosteoblasts by targeted deletion of Raptor (Rptor) in Osterix-expressing cells. Deletion of Rptor resulted in reduced limb length that was associated with smaller epiphyseal growth plates in the postnatal skeleton. Rptor deletion caused a marked reduction in pre- and postnatal bone accrual, which was evident in skeletal elements derived from both intramembranous and endochondrial ossification. The decrease in bone accrual, as well as the associated increase in skeletal fragility, was due to a reduction in osteoblast function. In vitro, osteoblasts derived from knockout mice display a reduced osteogenic potential, and an assessment of bone-developmental markers in Rptor knockout osteoblasts revealed a transcriptional profile consistent with an immature osteoblast phenotype suggesting that osteoblast differentiation was stalled early in osteogenesis. Metabolic labeling and an assessment of cell size of Rptor knockout osteoblasts revealed a significant decrease in protein synthesis, a major driver of cell growth. These findings demonstrate that mTORC1 plays an important role in skeletal development by regulating mRNA translation during preosteoblast differentiation.
Collapse
|
37
|
Recent Advances and Challenges of mTOR Inhibitors Use in the Treatment of Patients with Tuberous Sclerosis Complex. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9820181. [PMID: 28386314 PMCID: PMC5366202 DOI: 10.1155/2017/9820181] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/11/2017] [Accepted: 02/21/2017] [Indexed: 11/18/2022]
Abstract
Tuberous sclerosis complex (TSC) is a genetic condition characterized by the presence of benign, noninvasive, and tumor-like lesions called hamartomas that can affect multiple organ systems and are responsible for the clinical features of the disease. In the majority of cases, TSC results from mutations in the TSC1 and TSC2 genes, leading to the overactivation of the mammalian target of rapamycin (mTOR) signalling pathway, which controls several cell functions, including cell growth, proliferation, and survival. The establishment of a connection between TSC and mTOR led to the clinical use of drugs known as mTOR inhibitors (like rapamycin, also known as sirolimus and everolimus), which are becoming an increasingly interesting tool in the management of TSC-associated features, such as subependymal giant cell astrocytomas, renal angiomyolipomas, and also epilepsy. However, the intrinsic characteristics of these drugs and their systemic effects in such a heterogeneous condition pose many challenges in clinical practice, so that some questions remain unanswered. This article provides an overview of the pharmacological aspects of mTOR inhibitors about the clinical trials leading to their approval in TSC-related conditions and exposes current challenges and future directions associated with this promising therapeutic line.
Collapse
|
38
|
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is a neurocutaneous disorder with a wide spectrum of manifestations. Recent consensus recommendations stress the importance of multidisciplinary management of children with TSC. The objective of this study was to examine the manifestations of TSC at a large referral centre to determine the care needs of this population. METHODS A retrospective, systematic chart review was performed of children with TSC managed at British Columbia Children's Hospital. Patients were identified through epilepsy and clinical neurophysiology databases. RESULTS The study population comprised 81 patients, born between 1987 and 2014, who were a median of 10 years (range, 0.2-23.2) at most recent follow-up. Epilepsy occurred in 91% of patients, including 32% with a history of infantile spasms. Nineteen patients underwent epilepsy surgery, nine (47%) of whom were seizure-free at most recent follow-up. Overall, 61% of epilepsy patients had been seizure-free for at least 1 year at the time of last follow-up. Neuropsychiatric disorders were diagnosed in 49% of children, with autism (25%), attention deficit hyperactivity order (19%) and anxiety (16%) being the most common. Cardiac rhabdomyomata occurred in 35% of children and renal angiomyolipomas were seen in 43%. A total of 91% had skin manifestations. CONCLUSION This study outlines the multisystem manifestations of TSC, observed through a large pediatric referral center. Epilepsy and neuropsychiatric disorders are the major source of morbidity in this age group and provide many challenges to the treating clinician. Because a subset of the study population is still quite young, the prevalence of neuropsychiatric disorders is likely underestimated.
Collapse
|
39
|
Switon K, Kotulska K, Janusz-Kaminska A, Zmorzynska J, Jaworski J. Molecular neurobiology of mTOR. Neuroscience 2017; 341:112-153. [PMID: 27889578 DOI: 10.1016/j.neuroscience.2016.11.017] [Citation(s) in RCA: 299] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/09/2016] [Accepted: 11/13/2016] [Indexed: 01/17/2023]
Abstract
Mammalian/mechanistic target of rapamycin (mTOR) is a serine-threonine kinase that controls several important aspects of mammalian cell function. mTOR activity is modulated by various intra- and extracellular factors; in turn, mTOR changes rates of translation, transcription, protein degradation, cell signaling, metabolism, and cytoskeleton dynamics. mTOR has been repeatedly shown to participate in neuronal development and the proper functioning of mature neurons. Changes in mTOR activity are often observed in nervous system diseases, including genetic diseases (e.g., tuberous sclerosis complex, Pten-related syndromes, neurofibromatosis, and Fragile X syndrome), epilepsy, brain tumors, and neurodegenerative disorders (Alzheimer's disease, Parkinson's disease, and Huntington's disease). Neuroscientists only recently began deciphering the molecular processes that are downstream of mTOR that participate in proper function of the nervous system. As a result, we are gaining knowledge about the ways in which aberrant changes in mTOR activity lead to various nervous system diseases. In this review, we provide a comprehensive view of mTOR in the nervous system, with a special focus on the neuronal functions of mTOR (e.g., control of translation, transcription, and autophagy) that likely underlie the contribution of mTOR to nervous system diseases.
Collapse
Affiliation(s)
- Katarzyna Switon
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, Warsaw 02-109, Poland
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Aleja Dzieci Polskich 20, Warsaw 04-730, Poland
| | | | - Justyna Zmorzynska
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, Warsaw 02-109, Poland
| | - Jacek Jaworski
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, Warsaw 02-109, Poland.
| |
Collapse
|
40
|
Curatolo P, Bjørnvold M, Dill PE, Ferreira JC, Feucht M, Hertzberg C, Jansen A, Jóźwiak S, Kingswood JC, Kotulska K, Macaya A, Moavero R, Nabbout R, Zonnenberg BA. The Role of mTOR Inhibitors in the Treatment of Patients with Tuberous Sclerosis Complex: Evidence-based and Expert Opinions. Drugs 2016; 76:551-65. [PMID: 26927950 DOI: 10.1007/s40265-016-0552-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tuberous sclerosis complex (TSC) is a genetic disorder arising from mutations in the TSC1 or TSC2 genes. The resulting over-activation of the mammalian target of rapamycin (mTOR) signalling pathway leaves patients with TSC susceptible to the growth of non-malignant tumours in multiple organs. Previously, surgery was the main therapeutic option for TSC. However, pharmacological therapy with mTOR inhibitors such as everolimus and sirolimus is now emerging as an alternate approach. Everolimus and sirolimus have already been shown to be effective in treating subependymal giant cell astrocytoma (SEGA) and renal angiomyolipoma (AML), and everolimus is currently being evaluated in treating TSC-related epilepsy. In November 2013 a group of European experts convened to discuss the current options and practical considerations for treating various manifestations of TSC. This article provides evidence-based recommendations for the treatment of SEGA, TSC-related epilepsy and renal AML, with a focus on where mTOR inhibitor therapy may be considered alongside other treatment options. Safety considerations regarding mTOR inhibitor therapy are also reviewed. With evidence of beneficial effects in neurological and non-neurological TSC manifestations, mTOR inhibitors may represent a systemic treatment for TSC.
Collapse
Affiliation(s)
- Paolo Curatolo
- Department of Neurosciences, Child Neurology and Psychiatry Unit, Tor Vergata University Hospital of Rome, Rome, Italy.
| | - Marit Bjørnvold
- National Center for Rare Epilepsy-related Disorders, National Center of Epilepsy, Oslo University Hospital, Oslo, Norway
| | - Patricia E Dill
- Department of Pediatric Neurology and Developmental Medicine, University Children's Hospital Basel, University of Basel, Basel, Switzerland.,INSERM Unité 1511, Paris, France
| | - José Carlos Ferreira
- Neuro Pediatra, Centro Hospitalar Lisboa Ocidental, Hospital São Francisco Xavier, Lisbon, Portugal
| | - Martha Feucht
- Department of Paediatrics, University Hospital Vienna, Vienna, Austria
| | - Christoph Hertzberg
- Diagnose und Behandlungszentrum für Kinder und Jugendliche, Vivantes Klinikum Neukölln, Berlin, Germany
| | - Anna Jansen
- Pediatric Neurology Unit-UZ Brussel, Brussels, Belgium
| | - Sergiusz Jóźwiak
- Department of Child Neurology, Medical University of Warsaw, Warsaw, Poland
| | - J Christopher Kingswood
- Sussex Renal Unit, Royal Sussex County Hospital, Brighton, UK.,The Trafford Department of Renal Medicine, Royal Sussex County Hospital, Brighton, UK
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Alfons Macaya
- Servei de Neurologia Pediàtrica, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Romina Moavero
- Department of Neurosciences, Child Neurology and Psychiatry Unit, Tor Vergata University Hospital of Rome, Rome, Italy.,Pediatric Neurology Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rima Nabbout
- Department of Pediatric Neurology, Reference Centre for Rare Epilepsies and Tuberous Sclerosis Complex, Necker-Enfants Malades Hospital, University Paris Descartes, Paris, France
| | | |
Collapse
|
41
|
Krueger DA, Wilfong AA, Mays M, Talley CM, Agricola K, Tudor C, Capal J, Holland-Bouley K, Franz DN. Long-term treatment of epilepsy with everolimus in tuberous sclerosis. Neurology 2016; 87:2408-2415. [PMID: 27815402 DOI: 10.1212/wnl.0000000000003400] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/06/2016] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE To evaluate the long-term benefit and safety of everolimus for the treatment of medically refractory epilepsy in patients with tuberous sclerosis complex (TSC). METHODS Everolimus was titrated over 4 weeks and continued an additional 8 weeks in a prospective, open-label, phase I/II clinical trial design. Participants demonstrating initial benefit continued treatment until study completion (48 months). The primary endpoint was percentage of patients with a ≥50% reduction in seizure frequency compared to baseline. Secondary endpoints assessed absolute seizure frequency, adverse events (AEs), behavior, and quality of life. RESULTS Of the 20 participants who completed the initial study phase, 18 continued extended treatment. Fourteen of 18 (78%) participants completed the study, all but 1 of whom reported ≥50% reduction in seizure frequency at 48 months. All participants reported at least 1 AE, the vast majority (94%) of which were graded mild or moderate severity. Improvements in behavior and quality of life were also observed, but failed to achieve statistical significance at 48 months. CONCLUSIONS Improved seizure control was maintained for 4 years in the majority of patients with TSC with medically refractory epilepsy treated with everolimus. Long-term treatment with everolimus is safe and well-tolerated in this population. Everolimus may be a therapeutic option for refractory epilepsy in TSC. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that for patients with TSC with medically refractory epilepsy everolimus improves seizure control.
Collapse
Affiliation(s)
- Darcy A Krueger
- From the Departments of Pediatrics and Neurology (D.A.K., M.M., K.A., C.T., J.C., K.H.-B., D.N.F.), University of Cincinnati College of Medicine; Division of Child Neurology (D.A.K., M.M., K.A., C.T., J.C., K.H.-B., D.N.F.) and Pediatric Neurology (A.A.W., C.M.T.), Texas Children's Hospital, Baylor College of Medicine, Houston.
| | - Angus A Wilfong
- From the Departments of Pediatrics and Neurology (D.A.K., M.M., K.A., C.T., J.C., K.H.-B., D.N.F.), University of Cincinnati College of Medicine; Division of Child Neurology (D.A.K., M.M., K.A., C.T., J.C., K.H.-B., D.N.F.) and Pediatric Neurology (A.A.W., C.M.T.), Texas Children's Hospital, Baylor College of Medicine, Houston
| | - Maxwell Mays
- From the Departments of Pediatrics and Neurology (D.A.K., M.M., K.A., C.T., J.C., K.H.-B., D.N.F.), University of Cincinnati College of Medicine; Division of Child Neurology (D.A.K., M.M., K.A., C.T., J.C., K.H.-B., D.N.F.) and Pediatric Neurology (A.A.W., C.M.T.), Texas Children's Hospital, Baylor College of Medicine, Houston
| | - Christina M Talley
- From the Departments of Pediatrics and Neurology (D.A.K., M.M., K.A., C.T., J.C., K.H.-B., D.N.F.), University of Cincinnati College of Medicine; Division of Child Neurology (D.A.K., M.M., K.A., C.T., J.C., K.H.-B., D.N.F.) and Pediatric Neurology (A.A.W., C.M.T.), Texas Children's Hospital, Baylor College of Medicine, Houston
| | - Karen Agricola
- From the Departments of Pediatrics and Neurology (D.A.K., M.M., K.A., C.T., J.C., K.H.-B., D.N.F.), University of Cincinnati College of Medicine; Division of Child Neurology (D.A.K., M.M., K.A., C.T., J.C., K.H.-B., D.N.F.) and Pediatric Neurology (A.A.W., C.M.T.), Texas Children's Hospital, Baylor College of Medicine, Houston
| | - Cindy Tudor
- From the Departments of Pediatrics and Neurology (D.A.K., M.M., K.A., C.T., J.C., K.H.-B., D.N.F.), University of Cincinnati College of Medicine; Division of Child Neurology (D.A.K., M.M., K.A., C.T., J.C., K.H.-B., D.N.F.) and Pediatric Neurology (A.A.W., C.M.T.), Texas Children's Hospital, Baylor College of Medicine, Houston
| | - Jamie Capal
- From the Departments of Pediatrics and Neurology (D.A.K., M.M., K.A., C.T., J.C., K.H.-B., D.N.F.), University of Cincinnati College of Medicine; Division of Child Neurology (D.A.K., M.M., K.A., C.T., J.C., K.H.-B., D.N.F.) and Pediatric Neurology (A.A.W., C.M.T.), Texas Children's Hospital, Baylor College of Medicine, Houston
| | - Katherine Holland-Bouley
- From the Departments of Pediatrics and Neurology (D.A.K., M.M., K.A., C.T., J.C., K.H.-B., D.N.F.), University of Cincinnati College of Medicine; Division of Child Neurology (D.A.K., M.M., K.A., C.T., J.C., K.H.-B., D.N.F.) and Pediatric Neurology (A.A.W., C.M.T.), Texas Children's Hospital, Baylor College of Medicine, Houston
| | - David Neal Franz
- From the Departments of Pediatrics and Neurology (D.A.K., M.M., K.A., C.T., J.C., K.H.-B., D.N.F.), University of Cincinnati College of Medicine; Division of Child Neurology (D.A.K., M.M., K.A., C.T., J.C., K.H.-B., D.N.F.) and Pediatric Neurology (A.A.W., C.M.T.), Texas Children's Hospital, Baylor College of Medicine, Houston
| |
Collapse
|
42
|
Switon K, Kotulska K, Janusz-Kaminska A, Zmorzynska J, Jaworski J. Tuberous sclerosis complex: From molecular biology to novel therapeutic approaches. IUBMB Life 2016; 68:955-962. [PMID: 27797139 DOI: 10.1002/iub.1579] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/09/2016] [Indexed: 12/20/2022]
Abstract
Tuberous sclerosis complex (TSC) is a rare multi-system disorder, primary manifestations of which are benign tumors and lesions in various organs of the body, including the brain. TSC patients often suffer from epilepsy, mental retardation, and autism spectrum disorder (ASD). Therefore, TSC serves as a model of epilepsy, ASD, and tumorigenesis. TSC is caused by the lack of functional Tsc1-Tsc2 complex, which serves as a major cellular inhibitor of mammalian Target of Rapamycin Complex 1 (mTORC1). mTORC1 is a kinase controlling most of anabolic processes in eukaryotic cells. Consequently, mTORC1 inhibitors, such as rapamycin, serve as experimental or already approved drugs for several TSC symptoms. However, rapalogs, although quite effective, need to be administered chronically and likely for a lifetime, since therapy discontinuation results in tumor regrowth and epilepsy recurrence. Recent studies revealed that metabolism and excitability (in the case of neurons) of cells lacking Tsc1-Tsc2 complex are changed, and these features may potentially be used to treat some of TSC symptoms. In this review, we first provide basic facts about TSC and its molecular background, to next discuss the newest findings in TSC cell biology that can be used to improve existing therapies of TSC and other diseases linked to mTORC1 hyperactivation. © 2016 IUBMB Life, 68(12):955-962, 2016.
Collapse
Affiliation(s)
- Katarzyna Switon
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
| | - Aleksandra Janusz-Kaminska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Justyna Zmorzynska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Jacek Jaworski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
43
|
Cost-utility analysis of competing treatment strategies for drug-resistant epilepsy in children with Tuberous Sclerosis Complex. Epilepsy Behav 2016; 63:79-88. [PMID: 27591681 DOI: 10.1016/j.yebeh.2016.07.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/07/2016] [Accepted: 07/24/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND The management of drug-resistant epilepsy in children with Tuberous Sclerosis Complex (TSC) is challenging because of the multitude of treatment options, wide range of associated costs, and uncertainty of seizure outcomes. The most cost-effective approach for children whose epilepsy has failed to improve with first-line medical therapy is uncertain. METHODS A review of MEDLINE from 1990 to 2015 was conducted. A cost-utility analysis, from a third-party payer perspective, was performed for children with drug-resistant epilepsy that had failed to improve with 2 antiseizure drugs (ASDs) and that was amenable to resective epilepsy surgery, across a time-horizon of 5years. Four strategies were included: (1) resective epilepsy surgery, (2) vagus nerve stimulator (VNS) implantation, (3) ketogenic diet, and (4) addition of a third ASD (specifically, carbamazepine). The incremental cost per quality-adjusted life year (QALY) gained was analyzed. RESULTS Given a willingness-to-pay (WTP) of $100,000 per QALY, the addition of a third ASD ($6600 for a gain of 4.14 QALYs) was the most cost-effective treatment strategy. In a secondary analysis, if the child whose epilepsy had failed to improve with 3 ASDs, ketogenic diet, addition of a fourth ASD, and resective epilepsy surgery were incrementally cost-effective treatment strategies. Vagus nerve stimulator implantation was more expensive yet less effective than alternative strategies and should not be prioritized. CONCLUSIONS The addition of a third ASD is a universally cost-effective treatment option in the management of children with drug-resistant epilepsy that has failed to improve with 2 ASDs. For children whose epilepsy has failed to improve with 3 ASDs, the most cost-effective treatment depends on the health-care resources available reflected by the WTP.
Collapse
|
44
|
Flores-González JC, Estalella-Mendoza A, Lechuga-Sancho AM, Quintero-Otero S, Rubio-Quiñones F, Hernández-González A, Saldaña-Valderas M. Severe pneumonia by Mycoplasma as an adverse event of everolimus therapy in patients with tuberous sclerosis complex. Eur J Paediatr Neurol 2016; 20:758-60. [PMID: 27215926 DOI: 10.1016/j.ejpn.2016.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/03/2016] [Accepted: 05/03/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Epilepsy is one of the most common symptoms in Tuberous Sclerosis Complex (TSC), appearing mainly in the first year of life and often resistant to therapy. Several studies have demonstrated the effectiveness of everolimus but its safety in children has not yet been well reported. We present two cases of severe pneumonia caused by Mycoplasma in two children receiving everolimus for epilepsy secondary to TSC. STUDY CASES Both patients were admitted to the PICU for severe pneumonia with pleural effusion. One of them needed support with high concentration of oxygen and broad spectrum antibiotics and the other developed a septic shock with acute respiratory distress needing mechanical ventilation, vasoactive drugs, pleural drainage and broad-spectrum antibiotics. Everolimus was discontinued and in both patients Mycoplasma pneumoniae was identified by PCR. Both patients were discharged without sequelae. CONCLUSION Everolimus therapy for epilepsy in the context of TCS could be associated, as in these two cases, with severe bacterial infection by Mycoplasma.
Collapse
|
45
|
EFFECTS: an expanded access program of everolimus for patients with subependymal giant cell astrocytoma associated with tuberous sclerosis complex. BMC Neurol 2016; 16:126. [PMID: 27502586 PMCID: PMC4976509 DOI: 10.1186/s12883-016-0658-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/02/2016] [Indexed: 01/04/2023] Open
Abstract
Background Everolimus, a mammalian target of rapamycin (mTOR) inhibitor, has been shown to be effective and safe in the treatment of subependymal giant cell astrocytoma (SEGA) associated with tuberous sclerosis complex (TSC). The Everolimus For Fast Expanded aCcess in TSC SEGA (EFFECTS) study was designed to provide everolimus access to patients with SEGA associated with TSC and to mainly assess the safety and also efficacy of everolimus in a real-world setting. Methods EFFECTS was a phase 3b, open-label, noncomparative, multicenter, expanded access study. Eligible patients were ≥ 3 years of age, with a definite diagnosis of TSC, and with at least one SEGA lesion identified by MRI or CT scan. Patients received once daily everolimus (dose adjusted to attain a trough level of 5-15 ng/mL). Safety evaluation was the primary objective and included collection of adverse events (AEs) and serious AEs, with their severity and relationship to everolimus. Efficacy evaluation, which was the secondary objective, was based on the best overall response as per medical judgment. Results Of the 120 patients enrolled, 100 (83.3 %) completed the study. Median age of patients was 11 years (range, 1-47). Median daily dose of everolimus was 5.82 mg (range, 2.0–11.8). Median duration of exposure was 56.5 weeks (range, 0.3–130). The overall incidence of AEs was 74.2 %. Aphthous stomatitis (18 [15.0 %]), pyrexia (18 [15.0 %]), bronchitis (11 [9.2 %]), and stomatitis (10 [8.3 %]) were the most common AEs reported. Overall, 25 patients had grade 3 AEs; most frequent was stomatitis (4 [3.3 %]). Grade 4 AEs were reported in three (2.5 %) patients. A total of 62 (51.7 %) patients had suspected drug-related AEs, of which 15 (12.5 %) were of grade 3 or 4. In eight (6.7 %) patients, AEs led to drug discontinuation. With regard to efficacy, 81 (67.5 %) patients had a partial response, 35 (29.2 %) had a stable disease, and one (0.8 %) had progressive disease. The response was unknown in three (2.5 %) patients. Conclusion This study confirms the acceptable safety profile of everolimus in patients with SEGA associated with TSC in a real-world setting. The results further support the efficacy of everolimus in the treatment of SEGA associated with TSC. (EudraCT: 2010-022583-13)
Collapse
|
46
|
Russo E, Leo A, Crupi R, Aiello R, Lippiello P, Spiga R, Chimirri S, Citraro R, Cuzzocrea S, Constanti A, De Sarro G. Everolimus improves memory and learning while worsening depressive- and anxiety-like behavior in an animal model of depression. J Psychiatr Res 2016; 78:1-10. [PMID: 27019134 DOI: 10.1016/j.jpsychires.2016.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 10/22/2022]
Abstract
Everolimus (EVR) is an orally-administered rapamycin analog that selectively inhibits the mammalian target of rapamycin (mTOR) kinase (mainly mTORC1 and likely mTORC2) and the related signaling pathway. mTOR is a serine/threonine protein kinase regulating multiple important cellular functions; dysfunction of mTOR signaling has also been implicated in the pathophysiology of several neurological, neurodegenerative, developmental and cognitive disorders. EVR is widely used as an anti-neoplastic therapy and more recently in children with tuberous sclerosis complex (TSC). However, no clear correlation exists between EVR use and development of central side effects e.g. depression, anxiety or cognitive impairment. We studied the effects of a 3 weeks administration of EVR in mice chronically treated with betamethasone 21-phosphate disodium (BTM) as a model of depression and cognitive decline. EVR treatment had detrimental effects on depressive- and anxiety-like behavior while improving cognitive performance in both control (untreated) and BTM-treated mice. Such effects were accompanied by an increased hippocampal neurogenesis and synaptogenesis. Our results therefore might support the proposed pathological role of mTOR dysregulation in depressive disorders and confirm some previous data on the positive effects of mTOR inhibition in cognitive decline. We also show that EVR, possibly through mTOR inhibition, may be linked to the development of anxiety. The increased hippocampal neurogenesis by EVR might explain its ability to improve cognitive function or protect from cognitive decline. Our findings suggest some caution in the use of EVR, particularly in the developing brain; patients should be carefully monitored for their psychiatric/neurological profiles in any clinical situation where an mTOR inhibitor and in particular EVR is used e.g. cancer treatment, TSC or immunosuppression.
Collapse
Affiliation(s)
- Emilio Russo
- Science of Health Department, School of Medicine, University of Catanzaro, Italy.
| | - Antonio Leo
- Science of Health Department, School of Medicine, University of Catanzaro, Italy
| | - Rosalia Crupi
- Department of Biological and Environmental Science, University of Messina, Italy
| | - Rossana Aiello
- Science of Health Department, School of Medicine, University of Catanzaro, Italy
| | | | - Rosangela Spiga
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100, Viale Europa, Catanzaro, Italy
| | - Serafina Chimirri
- Science of Health Department, School of Medicine, University of Catanzaro, Italy
| | - Rita Citraro
- Science of Health Department, School of Medicine, University of Catanzaro, Italy
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Science, University of Messina, Italy
| | - Andrew Constanti
- Department of Pharmacology, UCL School of Pharmacy, 29/39 Brunswick Square, London, United Kingdom
| | | |
Collapse
|
47
|
Convulsive seizures from experimental focal cortical dysplasia occur independently of cell misplacement. Nat Commun 2016; 7:11753. [PMID: 27249187 PMCID: PMC4895394 DOI: 10.1038/ncomms11753] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/26/2016] [Indexed: 12/19/2022] Open
Abstract
Focal cortical dysplasia (FCD), a local malformation of cortical development, is the most common cause of pharmacoresistant epilepsy associated with life-long neurocognitive impairments. It remains unclear whether neuronal misplacement is required for seizure activity. Here we show that dyslamination and white matter heterotopia are not necessary for seizure generation in a murine model of type II FCDs. These experimental FCDs generated by increasing mTOR activity in layer 2/3 neurons of the medial prefrontal cortex are associated with tonic-clonic seizures and a normal survival rate. Preventing all FCD-related defects, including neuronal misplacement and dysmorphogenesis, with rapamycin treatments from birth eliminates seizures, but seizures recur after rapamycin withdrawal. In addition, bypassing neuronal misplacement and heterotopia using inducible vectors do not prevent seizure occurrence. Collectively, data obtained using our new experimental FCD-associated epilepsy suggest that life-long treatment to reduce neuronal dysmorphogenesis is required to suppress seizures in individuals with FCD.
Collapse
|
48
|
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that affects multiple organ systems and is caused by loss-of-function mutations in one of two genes: TSC1 or TSC2. The disorder can affect both adults and children. First described in depth by Bourneville in 1880, it is now estimated that nearly 2 million people are affected by the disease worldwide. The clinical features of TSC are distinctive and can vary widely between individuals, even within one family. Major features of the disease include tumours of the brain, skin, heart, lungs and kidneys, seizures and TSC-associated neuropsychiatric disorders, which can include autism spectrum disorder and cognitive disability. TSC1 (also known as hamartin) and TSC2 (also known as tuberin) form the TSC protein complex that acts as an inhibitor of the mechanistic target of rapamycin (mTOR) signalling pathway, which in turn plays a pivotal part in regulating cell growth, proliferation, autophagy and protein and lipid synthesis. Remarkable progress in basic and translational research, in addition to several randomized controlled trials worldwide, has led to regulatory approval of the use of mTOR inhibitors for the treatment of renal angiomyolipomas, brain subependymal giant cell astrocytomas and pulmonary lymphangioleiomyomatosis, but further research is needed to establish full indications of therapeutic treatment. In this Primer, we review the state-of-the-art knowledge in the TSC field, including the molecular and cellular basis of the disease, medical management, major knowledge gaps and ongoing research towards a cure.
Collapse
Affiliation(s)
- Elizabeth P Henske
- Pulmonary and Critical Care Medicine Division, Brigham and Women's Hospital, Harvard Medical School, 15 Francis Street, Boston, Massachusetts 02115, USA
| | - Sergiusz Jóźwiak
- Department of Pediatric Neurology, Medical University of Warsaw, Warsaw, Poland.,Children's Memorial Health Institute, Warsaw, Poland
| | | | - Julian R Sampson
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Elizabeth A Thiele
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
49
|
Citraro R, Leo A, Constanti A, Russo E, De Sarro G. mTOR pathway inhibition as a new therapeutic strategy in epilepsy and epileptogenesis. Pharmacol Res 2016; 107:333-343. [DOI: 10.1016/j.phrs.2016.03.039] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/23/2016] [Accepted: 03/31/2016] [Indexed: 12/24/2022]
|
50
|
Jóźwiak S, Kotulska K, Berkowitz N, Brechenmacher T, Franz DN. Safety of Everolimus in Patients Younger than 3 Years of Age: Results from EXIST-1, a Randomized, Controlled Clinical Trial. J Pediatr 2016; 172:151-155.e1. [PMID: 26858193 DOI: 10.1016/j.jpeds.2016.01.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/13/2015] [Accepted: 01/08/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To assess the long-term safety of everolimus in young children with tuberous sclerosis complex (TSC)-associated subependymal giant cell astrocytoma (SEGA). STUDY DESIGN EXamining everolimus In a Study of Tuberous Sclerosis Complex-1 (EXIST-1) was a multicenter, randomized, double-blind phase 3 study with an open-label extension evaluating the efficacy and tolerability of everolimus in patients with TSC-associated SEGA. Everolimus was initiated at 4.5 mg/m(2)/day and titrated to blood trough levels of 5-15 ng/mL. Post hoc analysis of safety data (adverse events [AEs]) was performed in a subgroup of patients aged <3 years at everolimus initiation. RESULTS Eighteen patients (median age 1.82 years) were included; 16 were still receiving everolimus at the analysis cut-off date of January 11, 2013. Median everolimus exposure was 31.1 months (range, 11.5-39 months). One patient discontinued treatment because of AEs (ie, Acinetobacter bacteremia, increased blood alkaline phosphatase, and viral infection). AEs were reported in all patients, but events were mostly grade 1/2 in severity; 12 patients (66.7%) experienced grade 3 events, and 2 patients (11.1%) reported grade 4 events. The most common AEs were stomatitis, cough, pharyngitis, and pyrexia; no new safety issues were identified in this population. Serious AEs were reported in 50% of patients; these were suspected to be medication related in 4 patients (22.2%). CONCLUSIONS Everolimus appears to be a safe therapeutic option for patients aged <3 years with TSC-associated SEGA. The small sample size in this subpopulation limits interpretation of the results; additional studies in the pediatric population are needed and are underway. TRIAL REGISTRATION ClinicalTrials.gov: NCT00789828.
Collapse
Affiliation(s)
- Sergiusz Jóźwiak
- Department of Pediatric Neurology, Warsaw Medical University, Warsaw, Poland; Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland.
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Noah Berkowitz
- Department of Oncology, Novartis Pharmaceuticals Corporation, Florham Park, NJ
| | - Thomas Brechenmacher
- Department of Oncology, Novartis Pharmaceuticals S.A.S., Rueil-Malmaison, France
| | - David Neal Franz
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|